2015年贵州省黔东南州中考数学试题及解析

合集下载

2015年贵州省黔南州中考数学试题及解析

2015年贵州省黔南州中考数学试题及解析

2015年贵州省黔南州中考数学试卷一、单项选择题(共13小题,每小题4分,满分52分) 的倒数是2.(4分)(2015•黔南州)在“青春脉动•唱响黔南校园青年歌手大赛”总决赛中,7位评委对5.(4分)(2015•黔南州)如图所示,该几何体的左视图是( )B6.(4分)(2015•黔南州)如图,下列说法错误的是( )8.(4分)(2015•黔南州)函数y=+的自变量x的取值范围是()9.(4分)(2015•黔南州)如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()=10.(4分)(2015•黔南州)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的11.(4分)(2015•黔南州)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()12.(4分)(2015•黔南州)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M 方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()13.(4分)(2015•黔南州)二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()二、填空题(共6小题,每小题4分,满分24分)14.(4分)(2015•黔南州)计算:2×﹣+.15.(4分)(2015•黔南州)如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是.16.(4分)(2015•黔南州)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C 处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是米(平面镜的厚度忽略不计).17.(4分)(2015•黔南州)如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,则弧BC的长度等于(结果保留π).18.(4分)(2015•黔南州)甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为.19.(4分)(2015•黔南州)如图,函数y=﹣x的图象是二、四象限的角平分线,将y=﹣x的图象以点O为中心旋转90°与函数y=的图象交于点A,再将y=﹣x的图象向右平移至点A,与x轴交于点B,则点B的坐标为.三、解答题(共7小题,满分74分)20.(10分)(2015•黔南州)(1)已知:x=2sin60°,先化简+,再求它的值.(2)已知m和n是方程3x2﹣8x+4=0的两根,求+.21.(6分)(2015•黔南州)如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC 的坡度为i=:3.若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732)22.(10分)(2015•黔南州)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.(3)若AD=3,AE=5,则菱形AECF的面积是多少?23.(12分)(2015•黔南州)今年3月5日,黔南州某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”四项,从九年级同学中抽取了部分同学对“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”的人数进行了统计,并绘制成如图所示的直方图和扇形统计图.请根据统计图提供的信息,回答以下问题:(1)抽取的部分同学的人数是多少?(2)补全直方图的空缺部分.(3)若九年级有400名学生,估计该年级去打扫街道的人数.(4)九(1)班计划在3月5日这天完成“青年志愿者”活动中的三项,请用列表或画树状图求恰好是“打扫街道”、“去敬老院服务”和“法制宣传”的概率.(用A表示“打扫街道”;用B 表示“去敬老院服务”;用C表示“法制宣传”)24.(12分)(2015•黔南州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.25.(12分)(2015•黔南州)为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求彩虹桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使彩虹桥上车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.26.(12分)(2015•黔南州)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上;(3)是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.2015年贵州省黔南州中考数学试卷参考答案与试题解析一、单项选择题(共13小题,每小题4分,满分52分)的倒数是的倒数是,2.(4分)(2015•黔南州)在“青春脉动•唱响黔南校园青年歌手大赛”总决赛中,7位评委对≈5.(4分)(2015•黔南州)如图所示,该几何体的左视图是()B6.(4分)(2015•黔南州)如图,下列说法错误的是()8.(4分)(2015•黔南州)函数y=+的自变量x的取值范围是()+y=有意义,y=的自变量9.(4分)(2015•黔南州)如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()=,正确;10.(4分)(2015•黔南州)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的;两反面朝上的概率;一个正面朝上,另一个背面朝上=.11.(4分)(2015•黔南州)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()12.(4分)(2015•黔南州)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M 方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()13.(4分)(2015•黔南州)二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()二、填空题(共6小题,每小题4分,满分24分)14.(4分)(2015•黔南州)计算:2×﹣+.××﹣=.15.(4分)(2015•黔南州)如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是50cm.AB=30cm16.(4分)(2015•黔南州)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C 处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是8米(平面镜的厚度忽略不计).,根据相似三角形的性质可得=817.(4分)(2015•黔南州)如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,则弧BC的长度等于(结果保留π).的圆心角的度数,然后利用弧长公式即可求解.的长是:=,故答案是:.18.(4分)(2015•黔南州)甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为4.19.(4分)(2015•黔南州)如图,函数y=﹣x的图象是二、四象限的角平分线,将y=﹣x的图象以点O为中心旋转90°与函数y=的图象交于点A,再将y=﹣x的图象向右平移至点A,与x轴交于点B,则点B的坐标为(2,0).,得.三、解答题(共7小题,满分74分)20.(10分)(2015•黔南州)(1)已知:x=2sin60°,先化简+,再求它的值.(2)已知m和n是方程3x2﹣8x+4=0的两根,求+.==+==,,=21.(6分)(2015•黔南州)如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC 的坡度为i=:3.若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732)i=:=10米,1022.(10分)(2015•黔南州)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.(3)若AD=3,AE=5,则菱形AECF的面积是多少?23.(12分)(2015•黔南州)今年3月5日,黔南州某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”四项,从九年级同学中抽取了部分同学对“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”的人数进行了统计,并绘制成如图所示的直方图和扇形统计图.请根据统计图提供的信息,回答以下问题:(1)抽取的部分同学的人数是多少?(2)补全直方图的空缺部分.(3)若九年级有400名学生,估计该年级去打扫街道的人数.(4)九(1)班计划在3月5日这天完成“青年志愿者”活动中的三项,请用列表或画树状图求恰好是“打扫街道”、“去敬老院服务”和“法制宣传”的概率.(用A表示“打扫街道”;用B 表示“去敬老院服务”;用C表示“法制宣传”)××的概率为:=.24.(12分)(2015•黔南州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.BOD===,即=××﹣﹣.25.(12分)(2015•黔南州)为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求彩虹桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使彩虹桥上车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.,x+88﹣(﹣(26.(12分)(2015•黔南州)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上;(3)是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.x,且相似比为=落在抛物线上时,有﹣+t((负值舍去)2+28+4。

贵阳2015中考数学试题(含答案)

贵阳2015中考数学试题(含答案)

2015年初中毕业生学业考试数学卷第1页(共8页)秘密★启用前贵阳市2015年初中毕业生学业考试试题卷数 学考生注意:考生注意:1.本卷为数学试题卷,全卷共4页,三大题25小题,满分150分.考试时间为120分钟.2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效. 3.可以使用科学计算器.一、选择题(以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分) 1.计算:4+3- 的结果等于的结果等于(A )7 (B )7- (C )1 (D )1- 2.如图,∠1的内错角是的内错角是(A )∠2 (B )∠3 (C )∠4 (D )∠5 3.今年5月份在贵阳召开了国际大数据产业博览会,据统计,到5月28日为止,来观展的人数已突破64000人次,64000这个数用科学记数法可表示为n10´46.,则n 的值是(A )3 (B )4 (C )5 (D )6 4.如图,一个空心圆柱体,其左视图正确的是.如图,一个空心圆柱体,其左视图正确的是5.小红根据去年4~10月本班同学去孔学堂听中国传统文化讲座的 人数,绘制了如图所示的折线统计图,图中统计数据的众数是(A )46 (B )42 (C )32 (D )27 6.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形,那么这两个相似三角形 面积的比是面积的比是(A )2:3 (B )2:3 (C )4:9 (D )8:27 7.王大伯为了估计他家鱼塘里有多少条鱼,从鱼塘里捞出150条鱼,将它们作上标记,然后放回鱼塘.经过一段时间后,再从中随机捕捞300条鱼,其中有标记的鱼有30条,请估计鱼塘里鱼的数量大约有(A )1500条 (B )1600条 (C )1700条 (D )3000条8.如图,点E ,F 在AC 上,AD =BC ,DF =BE ,要使△ADF ≌△CBE ,还需要添加的一个条件是,还需要添加的一个条件是(第5题图)人数月份42323227423246610897545040302010(第8题图)FED CB A(第12题图)ODCB A(第9题图)04004020x /分l 2l 1y /元的解为 ▲ ., 的面积等于的面积等于 ▲ .化简的结果为化简的结果为 ▲ .投到小正方形(阴影)区域的概率是投到小正方形(阴影)区域的概率是 ▲ .心经过的距离是心经过的距离是 ▲ .,其中2=x .第3页(共8页))此次共调查)此次共调查 ▲ 人,并补全条形统计图;(4分)分))由上表提供的数据可以制成扇形统计图,求“南江大峡谷”所对的圆心角的度数;()该旅行社预计7月份接待来我市的游客有2500人,根据以上信息,请你估计去黔灵山公园的游客大约有多少人?(3分)分) (本题满分10分) 如图,在Rt △ABC 中,∠ACB =90°,D 为AB 的中点,的中点, CD ,CE ∥AB .小敏、小洁四位同学进行一次羽毛球单打比赛,小洁四位同学进行一次羽毛球单打比赛,小洁四位同学进行一次羽毛球单打比赛,要从中选出两)若已确定小英打第一场,再从其余三位同学中随机选取一位, )用画树状图或列表的方法,求恰好选中小敏、小洁 某校为了增强学生对中华优秀传统文化的理解,决定购买一批相关的书籍.据了解,经典著作元购买经典著作与用8000元购买传说故事的本数相32a▲0▲0是抛物线上一动点,是抛物线上一动点,为顶点所组成的四边形是平行四边形.),将矩形纸片折叠,使点C落在AD边上的点贵阳市2015年初中毕业生学业考试分参考120100人数116100806040200黔灵山 小车河 南江花溪观山湖景点366484题号题号 11 12 13 14 15 答案答案îíì2=10=yx p 22+1a 51 334 33 小英小英 小丽小丽 小敏小敏 小洁小洁 小英小英(小英,小丽) (小英,小敏) (小英,小洁) 小丽小丽 (小丽,小英) (小丽,小敏) (小丽,小洁) 小敏小敏 (小敏,小英) (小敏,小丽) (小敏,小洁) 小洁小洁(小洁,小英) (小洁,小丽) (小洁,小敏) F D20.(本题满分10分)解:(1)在Rt △BCD 中,CBD Ð∴sin15CD BD =°,………………………………………………………………∴25».CD (m )答:小华与地面的垂直距离(2)在Rt △AFE 中,AEF Ð=BC BD 3GBC D O E F(第23题图)页(共8页)3333393 > 0 > 0…………………………(10分)分) 为顶点所组成的四边形是为顶点所组成的四边形是 727,7,47,). ………………..…(12分) =90°,………………………………………………………………………(4分)分) 于点F ,(第24题图1)-22EN ME '11时,△2211255=+=,55. .…………………………………………………………………(12分)分)(第25题图1)(第25题图2)。

中考数学真题分类汇编一元二次方程根与系数的关系解析

中考数学真题分类汇编一元二次方程根与系数的关系解析

2015中考数学真题分类汇编:一元二次方程根及系数的关系一.选择题(共10小题)1.(2015•金华)一元二次方程x2+4x﹣3=0的两根为x1、x2,则x1•x2的值是()A.4 B.﹣4 C.3 D.﹣32.(2015•枣庄)已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.23.(2015•黔东南州)设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22=()A.6 B.8 C.10 D.124.(2015•衡阳)若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣35.(2015•南充)关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m﹣1)2+(n﹣1)2≥2;③﹣1≤2m﹣2n≤1,其中正确结论的个数是()A.0个B.1个C.2个D.3个6.(2015•广西)已知实数x1,x2满意x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是()A.x2﹣7x+12=0 B.x2+7x+12=0 C.x2+7x﹣12=0 D.x2﹣7x﹣12=07.(2014•防城港)x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在8.(2014•呼和浩特)已知函数y=的图象在第一象限的一支曲线上有一点A(a,c),点B(b,c+1)在该函数图象的另外一支上,则关于一元二次方程ax2+bx+c=0的两根x1,x2推断正确的是()A.x1+x2>1,x1•x2>0B.x1+x2<0,x1•x2>0C.0<x1+x2<1,x1•x2>0D.x1+x2及x1•x2的符号都不确定9.(2014•烟台)关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a 的值是()A.﹣1或5 B.1 C.5 D.﹣110.(2014•攀枝花)若方程x2+x﹣1=0的两实根为α、β,那么下列说法不正确的是()A.α+β=﹣1 B.αβ=﹣1 C.α2+β2=3 D.+=﹣1二.填空题(共10小题)11.(2015•荆州)若m,n是方程x2+x﹣1=0的两个实数根,则m2+2m+n 的值为.12.(2015•日照)假如m,n是两个不相等的实数,且满意m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2015= .13.(2015•内江)已知关于x的方程x2﹣6x+k=0的两根分别是x1,x2,且满意+=3,则k的值是.14.(2015•凉山州)已知实数m,n满意3m2+6m﹣5=0,3n2+6n﹣5=0,且m≠n,则= .15.(2015•六盘水)已知x1=3是关于x的一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根x2是.16.(2015•成都)假如关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是(写出全部正确说法的序号)①方程x2﹣x﹣2=0是倍根方程.②若(x﹣2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0;③若点(p,q)在反比例函数y=的图象上,则关于x的方程px2+3x+q=0的倍根方程;④若方程ax2+bx+c=0是倍根方程,且相异两点M(1+t,s),N(4﹣t,s)都在抛物线y=ax2+bx+c上,则方程ax2+bx+c=0的一个根为.17.(2015•西宁)若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为.18.(2015•赤峰)若关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别为2和b,则ab= .19.(2014•雅安)关于x的方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1,x2,且x12+x22=3,则m= .20.(2014•桂林)已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根为x1和x2,且(x1﹣2)(x1﹣x2)=0,则k的值是.三.解答题(共10小题)21.(2014•南充)已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.(1)务实数m的最大整数值;(2)在(1)的条下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.22.(2014•泸州)已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.23.(2014•怀化)设m是不小于﹣1的实数,使得关于x的方程x2+2(m ﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1,x2.(1)若+=1,求的值;(2)求+﹣m2的最大值.24.(2013•孝感)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)务实数k的取值范围;(2)是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?若存在,恳求出k的值;若不存在,请说明理由.25.(2013•厦门)若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,x2+3x﹣=0,x2+6x﹣27=0,x2+4x+4=0,都是“偶系二次方程”.(1)推断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由;(2)对于随意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”,并说明理由.26.(2013•菏泽)已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0 (k是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x1,x2(其中x1<x2),设y=x2﹣x1﹣2,推断y是否为变量k的函数?假如是,请写出函数解析式;若不是,请说明理由.27.(2012•鄂州)关于x的一元二次方程x2﹣(m﹣3)x﹣m2=0.(1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为x1,x2,且|x1|=|x2|﹣2,求m的值及方程的根.28.(2012•怀化)已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.29.(2012•内江)假如方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1•x2=q,请依据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满意a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值;(3)已知a、b、c满意a+b+c=0,abc=16,求正数c的最小值.30.(2011•南充)关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2.(1)求k的取值范围;(2)假如x1+x2﹣x1x2<﹣1且k为整数,求k的值.2015中考数学分化真题分类汇编:一元二次方程根及系数的关系参考答案及试题解析一.选择题(共10小题)1.(2015•金华)一元二次方程x2+4x﹣3=0的两根为x1、x2,则x1•x2的值是()A.4 B.﹣4 C.3 D.﹣3考点:根及系数的关系.专题:计算题.分析:依据根及系数的关系求解.解答:解:x1•x2=﹣3.故选D.点评:本题考察了根及系数的关系:若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.2.(2015•枣庄)已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.2考点:根及系数的关系.分析:依据根及系数的关系得出﹣2+4=﹣m,﹣2×4=n,求出即可.解答:解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,∴﹣2+4=﹣m,﹣2×4=n,解得:m=﹣2,n=﹣8,∴m+n=﹣10,故选A.点评:本题考察了根及系数的关系的应用,能依据根及系数的关系得出﹣2+4=﹣m,﹣2×4=n是解此题的关键.3.(2015•黔东南州)设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22=()A.6 B.8 C.10 D.12考点:根及系数的关系.分析:依据根及系数的关系得到x1+x2=2,x1•x2=﹣3,再变形x12+x22得到(x1+x2)2﹣2x1•x2,然后利用代入计算即可.解答:解:∵一元二次方程x2﹣2x﹣3=0的两根是x1、x2,∴x1+x2=2,x1•x2=﹣3,∴x12+x22=(x1+x2)2﹣2x1•x2=22﹣2×(﹣3)=10.故选C.点评:本题考察了一元二次方程ax2+bx+c=0(a≠0)的根及系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.4.(2015•衡阳)若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣3考点:根及系数的关系.分析:依据一元二次方程根及系数的关系,利用两根和,两根积,即可求出a的值和另一根.解答:解:设一元二次方程的另一根为x1,则依据一元二次方程根及系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选A.点评:本题考察了一元二次方程根及系数的关系,方程ax2+bx+c=0的两根为x1,x2,则x1+x2=﹣,x1•x2=.5.(2015•南充)关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m﹣1)2+(n﹣1)2≥2;③﹣1≤2m﹣2n≤1,其中正确结论的个数是()A.0个B.1个C.2个D.3个考点:根及系数的关系;根的判别式.专题:计算题.分析:①依据题意,以及根及系数的关系,可知两个整数根都是负数;②依据根的判别式,以及题意可以得出m2﹣2n≥0以及n2﹣2m≥0,进而得解;③可以采纳举例反证的方法解决,据此即可得解.解答:解:①两个整数根且乘积为正,两个根同号,由韦达定理有,x1•x2=2n >0,y1•y2=2m>0,y1+y2=﹣2n<0,x1+x2=﹣2m<0,这两个方程的根都为负根,①正确;②由根判别式有:△=b2﹣4ac=4m2﹣8n≥0,△=b2﹣4ac=4n2﹣8m≥0,4m2﹣8n=m2﹣2n≥0,4n2﹣8m=n2﹣2m≥0,m2﹣2m+1+n2﹣2n+1=m2﹣2n+n2﹣2m+2≥2,(m﹣1)2+(n﹣1)2≥2,②正确;③∵y1+y2=﹣2n,y1•y2=2m,∴2m﹣2n=y1+y2+y1•y2,∵y1及y2都是负整数,不妨令y1=﹣3,y2=﹣5,则:2m﹣2n=﹣8+15=7,不在﹣1及1之间,③错误,其中正确的结论的个数是2,故选C.点评:本题主要考察了根及系数的关系,以及一元二次方程的根的判别式,还考察了举例反证法,有肯定的难度,留意总结.6.(2015•广西)已知实数x1,x2满意x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是()A.x2﹣7x+12=0 B.x2+7x+12=0 C.x2+7x﹣12=0 D.x2﹣7x﹣12=0考点:根及系数的关系.分析:依据以x1,x2为根的一元二次方程是x2﹣(x1+x2)x+x1,x2=0,列出方程进展推断即可.解答:解:以x1,x2为根的一元二次方程x2﹣7x+12=0,故选:A.点评:本题考察的是一元二次方程根及系数的关系,驾驭以x1,x2为根的一元二次方程是x2﹣(x1+x2)x+x1,x2=0是详细点关键.7.(2014•防城港)x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在考点:根及系数的关系.分析:先由一元二次方程根及系数的关系得出,x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,求出m=0,再用判别式进展检验即可.解答:解:∵x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,∴x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,∴=0,∴m=0.当m=0时,方程x2﹣mx+m﹣2=0即为x2﹣2=0,此时△=8>0,∴m=0符合题意.故选:A.点评:本题主要考察了一元二次方程根及系数的关系:假如x1,x2是方程x2+px+q=0的两根时,那么x1+x2=﹣p,x1x2=q.8.(2014•呼和浩特)已知函数y=的图象在第一象限的一支曲线上有一点A(a,c),点B(b,c+1)在该函数图象的另外一支上,则关于一元二次方程ax2+bx+c=0的两根x1,x2推断正确的是()A.x1+x2>1,x1•x2>0B.x1+x2<0,x1•x2>0C.0<x1+x2<1,x1•x2>0D.x1+x2及x1•x2的符号都不确定考点:根及系数的关系;反比例函数图象上点的坐标特征.专题:计算题.分析:依据点A(a,c)在第一象限的一支曲线上,得出a>0,c>0,再点B(b,c+1)在该函数图象的另外一支上,得出b<0,c+1>0,再依据x1•x2=,x1+x2=﹣,即可得出答案.解答:解:∵点A(a,c)在第一象限的一支曲线上,∴a>0,c>0,ac=1,即a=,∵点B(b,c+1)在该函数图象的另外一支上,即第二象限上,∴b<0,c+1>0,b(c+1)=﹣1,即b=﹣,∴x1•x2=>0,x1+x2=﹣=,∴0<x1+x2<1,故选:C.点评:本题考察了根及系数的关系,驾驭根及系数的关系和各个象限点的特点是本题的关键;若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=﹣,x1x2=.9.(2014•烟台)关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是()A.﹣1或5 B.1 C.5 D.﹣1考点:根及系数的关系;根的判别式.专题:计算题.分析:设方程的两根为x1,x2,依据根及系数的关系得到x1+x2=a,x1•x2=2a,由于x12+x22=5,变形得到(x1+x2)2﹣2x1•x2=5,则a2﹣4a﹣5=0,然后解方程,满意△≥0的a的值为所求.解答:解:设方程的两根为x1,x2,则x1+x2=a,x1•x2=2a,∵x12+x22=5,∴(x1+x2)2﹣2x1•x2=5,∴a2﹣4a﹣5=0,∴a1=5,a2=﹣1,∵△=a2﹣8a≥0,∴a=﹣1.故选:D.点评:本题考察了一元二次方程ax2+bx+c=0(a≠0)的根及系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考察了一元二次方程的根的判别式.10.(2014•攀枝花)若方程x2+x﹣1=0的两实根为α、β,那么下列说法不正确的是()A.α+β=﹣1 B.αβ=﹣1 C.α2+β2=3 D.+=﹣1考点:根及系数的关系.专题:计算题.分析:先依据根及系数的关系得到α+β=﹣1,αβ=﹣1,再利用完全平方公式变形α2+β2得到(α+β)2﹣2αβ,利用通分变形+得到,然后利用整体代入的方法分别计算两个代数式的值,这样可对各选项进展推断.解答:解:依据题意得α+β=﹣1,αβ=﹣1.所以α2+β2=(α+β)2﹣2αβ=(﹣1)2﹣2×(﹣1)=3;+===1.故选:D.点评:本题考察了一元二次方程ax2+bx+c=0(a≠0)的根及系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.二.填空题(共10小题)11.(2015•荆州)若m,n是方程x2+x﹣1=0的两个实数根,则m2+2m+n的值为0 .考点:根及系数的关系;一元二次方程的解.专题:计算题.分析:由题意m为已知方程的解,把x=m代入方程求出m2+m的值,利用根及系数的关系求出m+n的值,原式变形后代入计算即可求出值.解答:解:∵m,n是方程x2+x﹣1=0的两个实数根,∴m+n=﹣1,m2+m=1,则原式=(m2+m)+(m+n)=1﹣1=0,故答案为:0点评:此题考察了根及系数的关系,以及一元二次方程的解,娴熟驾驭根及系数的关系是解本题的关键.12.(2015•日照)假如m,n是两个不相等的实数,且满意m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2015= 2026 .考点:根及系数的关系.分析:由于m,n是两个不相等的实数,且满意m2﹣m=3,n2﹣n=3,可知m,n是x2﹣x﹣3=0的两个不相等的实数根.则依据根及系数的关系可知:m+n=2,mn=﹣3,又n2=n+3,利用它们可以化简2n2﹣mn+2m+2015=2(n+3)﹣mn+2m+2015=2n+6﹣mn+2m+2015=2(m+n)﹣mn+2021,然后就可以求出所求的代数式的值.解答:解:由题意可知:m,n是两个不相等的实数,且满意m2﹣m=3,n2﹣n=3,所以m,n是x2﹣x﹣3=0的两个不相等的实数根,则依据根及系数的关系可知:m+n=1,mn=﹣3,又n2=n+3,则2n2﹣mn+2m+2015=2(n+3)﹣mn+2m+2015=2n+6﹣mn+2m+2015=2(m+n)﹣mn+2021=2×1﹣(﹣3)+2021=2+3+2021=2026.故答案为:2026.点评:本题考察一元二次方程根及系数的关系,解题关键是把所求代数式化成两根之和、两根之积的系数,然后利用根及系数的关系式求值.13.(2015•内江)已知关于x的方程x2﹣6x+k=0的两根分别是x1,x2,且满意+=3,则k的值是 2 .考点:根及系数的关系.分析:找出一元二次方程的系数a,b及c的值,利用根及系数的关系求出两根之和及两根之积,然后利用完全平方公式变形后,将求出的两根之和及两根之积代入,即可求出所求式子的值.解答:解:∵3x2+2x﹣11=0的两个解分别为x1、x2,∴x1+x2=6,x1x2=k,+===3,解得:k=2,故答案为:2.点评:此题考察了一元二次方程根及系数的关系,对所求的代数式进展正确的变形是解决本题的关键.14.(2015•凉山州)已知实数m,n满意3m2+6m﹣5=0,3n2+6n﹣5=0,且m≠n,则= ﹣.考点:根及系数的关系.分析:由m≠n时,得到m,n是方程x2﹣2x﹣1=0的两个不等的根,依据根及系数的关系进展求解.解答:解:∵m≠n时,则m,n是方程3x2﹣6x﹣5=0的两个不相等的根,∴m+n=2,mn=﹣.∴原式====﹣,故答案为:﹣.点评:本题考察了一元二次方程ax2+bx+c=0(a≠0)的根及系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.15.(2015•六盘水)已知x1=3是关于x的一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根x2是 1 .考点:根及系数的关系.分析:依据根及系数的关系,由两根之和可以求出方程的另一个根.解答:解:设方程的另一个根是x2,则:3+x2=4,解得x=1,故另一个根是1.故答案为1.点评:本题考察的是一元二次方程的解,依据根及系数的关系,由两根之和可以求出方程的另一个根.16.(2015•成都)假如关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是②③(写出全部正确说法的序号)①方程x2﹣x﹣2=0是倍根方程.②若(x﹣2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0;③若点(p,q)在反比例函数y=的图象上,则关于x的方程px2+3x+q=0的倍根方程;④若方程ax2+bx+c=0是倍根方程,且相异两点M(1+t,s),N(4﹣t,s)都在抛物线y=ax2+bx+c上,则方程ax2+bx+c=0的一个根为.考点:根及系数的关系;根的判别式;反比例函数图象上点的坐标特征;二次函数图象上点的坐标特征.专题:新定义.分析:①解方程x2﹣x﹣2=0得:x1=2,x2=﹣1,得到方程x2﹣x﹣2=0不是倍根方程,故①错误;②由(x﹣2)(mx+n)=0是倍根方程,且x1=2,x2=﹣,得到=﹣1,或=﹣4,∴m+n=于是得到4m2+5mn+n2=(4m+1)(m+n)=0,故②正确;③由点(p,q)在反比例函数y=的图象上,得到pq=2,解方程px2+3x+q=0得:x1=﹣,x2=﹣,故∴③正确;④由方程ax2+bx+c=0是倍根方程,得到x1=2x2,由相异两点M(1+t,s),N(4﹣t,s)都在抛物线y=ax2+bx+c上,∴得到抛物线的对称轴x===,于是求出x1=,故④错误.解答:解:①解方程x2﹣x﹣2=0得:x1=2,x2=﹣1,∴方程x2﹣x﹣2=0不是倍根方程,故①错误;②∵(x﹣2)(mx+n)=0是倍根方程,且x1=2,x2=﹣,∴=﹣1,或=﹣4,∴m+n=0,4m+n=0,∵4m2+5mn+n2=(4m+n)(m+n)=0,故②正确;③∵点(p,q)在反比例函数y=的图象上,∴pq=2,解方程px2+3x+q=0得:x1=﹣,x2=﹣,∴x2=2x1,故③正确;④∵方程ax2+bx+c=0是倍根方程,∴设x1=2x2,∵相异两点M(1+t,s),N(4﹣t,s)都在抛物线y=ax2+bx+c上,∴抛物线的对称轴x===,∴x1+x2=5,∴x1+2x1=5,∴x1=,故④错误.故答案为:②③.点评:本题考察了根及系数的关系,根的判别式,反比例函数图形上点的坐标特征,二次函数图形上点的坐标特征,正确的理解“倍根方程”的定义是解题的关键.17.(2015•西宁)若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为16 .考点:根及系数的关系;矩形的性质.分析:设矩形的长和宽分别为x、y,由矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两个根,依据一元二次方程ax2+bx+c=0(a≠0)的根及系数的关系得到x+y=8;xy=,然后利用矩形的性质易求得到它的周长.解答:解:设矩形的长和宽分别为x、y,依据题意得x+y=8;所以矩形的周长=2(x+y)=16.故答案为:16.点评:本题考察了一元二次方程ax2+bx+c=0(a≠0)的根及系数的关系:若方程的两根分别为x1,x2,则x1+x2=﹣,x1•x2=.也考察了矩形的性质.18.(2015•赤峰)若关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别为2和b,则ab= 4 .考点:根及系数的关系.分析:依据根及系数的关系得到,通过解该方程组可以求得a、b的值.解答:解:∵关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别是2、b,∴由韦达定理,得,解得,.∴ab=1×4=4.故答案是:4.点评:本题考察了根及系数的关系.x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=,反过来也成立,即=﹣(x1+x2),=x1x2.19.(2014•雅安)关于x的方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1,x2,且x12+x22=3,则m= 0 .考点:根及系数的关系;根的判别式.专题:计算题.分析:依据方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1,x2,得出x1+x2及x1x2的值,再依据x12+x22=3,即可求出m的值.解答:解:∵方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1,x2,∴x1+x2=2m﹣1,x1x2=m2﹣1,∵x12+x22=(x1+x2)2﹣2x1x2=(2m﹣1)2﹣2(m2﹣1)=3,解得:m1=0,m2=2,∵方程有两实数根,∴△=(2m﹣1)2﹣4(m2﹣1)≥0,即m≤∴m2=2(不合题意,舍去),∴m=0;故答案为:0.点评:本题考察了根及系数的关系及根的判别式,难度适中,关键驾驭x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.20.(2014•桂林)已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根为x1和x2,且(x1﹣2)(x1﹣x2)=0,则k的值是﹣2或﹣.考点:根及系数的关系;根的判别式.分析:先由(x1﹣2)(x1﹣x2)=0,得出x1﹣2=0或x1﹣x2=0,再分两种状况进展探讨:①假如x1﹣2=0,将x=2代入x2+(2k+1)x+k2﹣2=0,得4+2(2k+1)+k2﹣2=0,解方程求出k=﹣2;②假如x1﹣x2=0,那么将x1+x2=﹣(2k+1),x1x2=k2﹣2代入可求出k的值,再依据判别式进展检验.解答:解:∵(x1﹣2)(x1﹣x2)=0,∴x1﹣2=0或x1﹣x2=0.①假如x1﹣2=0,那么x1=2,将x=2代入x2+(2k+1)x+k2﹣2=0,得4+2(2k+1)+k2﹣2=0,整理,得k2+4k+4=0,解得k=﹣2;②假如x1﹣x2=0,那么(x1﹣x2)2=(x1+x2)2﹣4x1x2=[﹣(2k+1)]2﹣4(k2﹣2)=4k+9=0,解得k=﹣.又∵△=(2k+1)2﹣4(k2﹣2)≥0.解得:k≥﹣.所以k的值为﹣2或﹣.故答案为:﹣2或﹣.点评:本题考察了一元二次方程的根及系数的关系,根的判别式,留意在利用根及系数的关系时,需用判别式进展检验.三.解答题(共10小题)21.(2014•南充)已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.(1)务实数m的最大整数值;(2)在(1)的条下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.考点:根及系数的关系;根的判别式.专题:代数综合题.分析:(1)若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac >0,建立关于m的不等式,求出m的取值范围,进而得出m的最大整数值;(2)依据(1)可知:m=1,继而可得一元二次方程为x2﹣2x+1=0,依据根及系数的关系,可得x1+x2=2,x1x2=1,再将x12+x22﹣x1x2变形为(x1+x2)2﹣3x1x2,则可求得答案.解答:解:∵一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=8﹣4m>0,解得m<2,故整数m的最大值为1;(2)∵m=1,∴此一元二次方程为:x2﹣2x+1=0,∴x1+x2=2,x1x2=1,∴x12+x22﹣x1x2=(x1+x2)2﹣3x1x2=8﹣3=5.点评:此题考察了一元二次方程根及系数的关系及根的判别式.此题难度不大,解题的关键是驾驭一元二次方程根的状况及判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.驾驭根及系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.22.(2014•泸州)已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.考点:根及系数的关系;三角形三边关系;等腰三角形的性质.专题:代数几何综合题.分析:(1)利用(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=m2+5﹣2(m+1)+1=28,求得m的值即可;(2)分7为底边和7为腰两种状况分类探讨即可确定等腰三角形的周长.解答:解:(1)∵x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根,∴x1+x2=2(m+1),x1•x2=m2+5,∴(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=m2+5﹣2(m+1)+1=28,解得:m=﹣4或m=6;当m=﹣4时原方程无解,∴m=6;(2)①当7为底边时,此时方程x2﹣2(m+1)x+m2+5=0有两个相等的实数根,∴△=4(m+1)2﹣4(m2+5)=0,解得:m=2,∴方程变为x2﹣6x+9=0,解得:x1=x2=3,∵3+3<7,∴不能构成三角形;②当7为腰时,设x1=7,代入方程得:49﹣14(m+1)+m2+5=0,解得:m=10或4,当m=10时方程变为x2﹣22x+105=0,解得:x=7或15∵7+7<15,不能组成三角形;当m=4时方程变为x2﹣10x+21=0,解得:x=3或7,此时三角形的周长为7+7+3=17.点评:本题考察了根及系数的关系及三角形的三边关系,解题的关键是熟知两根之和和两根之积分别及系数的关系.23.(2014•怀化)设m是不小于﹣1的实数,使得关于x的方程x2+2(m ﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1,x2.(1)若+=1,求的值;(2)求+﹣m2的最大值.考点:根及系数的关系;根的判别式;二次函数的最值.专题:代数综合题.分析:(1)首先依据根的判别式求出m的取值范围,利用根及系数的关系,求出符合条件的m的值;(2)把利用根及系数的关系得到的关系式代入代数式,细心化简,结合m 的取值范围求出代数式的最大值.解答:解:∵方程有两个不相等的实数根,∴△=b2﹣4ac=4(m﹣2)2﹣4(m2﹣3m+3)=﹣4m+4>0,∴m<1,结合题意知:﹣1≤m<1.(1)∵x1+x2=﹣2(m﹣2),x1x2=m2﹣3m+3,∴+===1解得:m1=,m2=(不合题意,舍去)∴=﹣2.(2)+﹣m2=﹣m2=﹣2(m﹣1)﹣m2=﹣(m+1)2+3.当m=﹣1时,最大值为3.点评:此题考察根及系数的关系,一元二次方程的根的判别式△=b2﹣4ac 来求出m的取值范围;解答此题的关键是熟知一元二次方程根及系数的关系:x1+x2=﹣,x1x2=.24.(2013•孝感)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)务实数k的取值范围;(2)是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?若存在,恳求出k的值;若不存在,请说明理由.考点:根及系数的关系;根的判别式.专题:压轴题.分析:(1)依据已知一元二次方程的根的状况,得到根的判别式△≥0,据此列出关于k的不等式[﹣(2k+1)]2﹣4(k2+2k)≥0,通过解该不等式即可求得k的取值范围;(2)假设存在实数k使得≥0成立.利用根及系数的关系可以求得,然后利用完全平方公式可以把已知不等式转化为含有两根之和、两根之积的形式≥0,通过解不等式可以求得k的值.解答:解:(1)∵原方程有两个实数根,∴[﹣(2k+1)]2﹣4(k2+2k)≥0,∴4k2+4k+1﹣4k2﹣8k≥0∴1﹣4k≥0,∴k≤.∴当k≤时,原方程有两个实数根.(2)假设存在实数k使得≥0成立.∵x1,x2是原方程的两根,∴.由≥0,得≥0.∴3(k2+2k)﹣(2k+1)2≥0,整理得:﹣(k﹣1)2≥0,∴只有当k=1时,上式才能成立.又∵由(1)知k≤,∴不存在实数k使得≥0成立.点评:本题综合考察了根的判别式和根及系数的关系,在解不等式时肯定要留意数值的正负及不等号的改变关系.25.(2013•厦门)若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,x2+3x﹣=0,x2+6x﹣27=0,x2+4x+4=0,都是“偶系二次方程”.(1)推断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由;(2)对于随意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”,并说明理由.考点:根及系数的关系;解一元二次方程-因式分解法;根的判别式.专题:压轴题;阅读型;新定义.分析:(1)求出原方程的根,再代入|x1|+|x2|看结果是否为2的整数倍就可以得出结论;(2)由条件x2﹣6x﹣27=0和x2+6x﹣27=0是偶系二次方程建模,设c=mb2+n,就可以表示出c,然后依据公式法就可以求出其根,再代入|x1|+|x2|就可以得出结论.解答:解:(1)不是,解方程x2+x﹣12=0得,x1=3,x2=﹣4.|x1|+|x2|=3+4=7=2×3.5.∵3.5不是整数,∴x2+x﹣12=0不是“偶系二次方程;(2)存在.理由如下:∵x2﹣6x﹣27=0和x2+6x﹣27=0是偶系二次方程,∴假设c=mb2+n,当b=﹣6,c=﹣27时,﹣27=36m+n.∵x2=0是偶系二次方程,∴n=0时,m=﹣,∴c=﹣b2.∵是偶系二次方程,当b=3时,c=﹣×32.∴可设c=﹣b2.对于随意一个整数b,c=﹣b2时,△=b2﹣4ac,=4b2.x=,∴x1=﹣b,x2=b.∴|x1|+|x2|=2|b|,∵b是整数,∴对于任何一个整数b,c=﹣b2时,关于x的方程x2+bx+c=0是“偶系二次方程”.点评:本题考察了一元二次方程的解法的运用,根的判别式的运用根及系数的关系的运用及数学建模思想的运用,解答本题时依据条件特征建立模型是关键.26.(2013•菏泽)已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0 (k是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x1,x2(其中x1<x2),设y=x2﹣x1﹣2,推断y是否为变量k的函数?假如是,请写出函数解析式;若不是,请说明理由.考点:根及系数的关系;根的判别式.专题:证明题.分析:(1)依据一元二次方程的定义得到k≠0,再计算出判别式得到△=(2k﹣1)2,依据k为整数和非负数的性质得到△>0,则依据判别式的意义即可得到结论;(2)依据根及系数的关系得x1+x2=,x1•x2=,则依据完全平方公式变形得(x1﹣x2)2=(x1+x2)2﹣4x1•x2=﹣==(2﹣)2,由于k为整数,则2﹣>0,所以x2﹣x1=2﹣,则y=2﹣﹣2=﹣.解答:(1)证明:依据题意得k≠0,∵△=(4k+1)2﹣4k(3k+3)=4k2﹣4k+1=(2k﹣1)2,而k为整数,∴2k﹣1≠0,∴(2k﹣1)2>0,即△>0,∴方程有两个不相等的实数根;(2)解:y是变量k的函数.∵x1+x2=,x1•x2=,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=﹣==(2﹣)2,∵k为整数,∴2﹣>0,而x1<x2,∴x2﹣x1=2﹣,∴y=2﹣﹣2=﹣(k≠0的整数),∴y是变量k的函数.点评:本题考察了一元二次方程ax2+bx+c=0(a≠0)的根及系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考察了一元二次方程的根的判别式.27.(2012•鄂州)关于x的一元二次方程x2﹣(m﹣3)x﹣m2=0.(1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为x1,x2,且|x1|=|x2|﹣2,求m的值及方程的根.考点:根及系数的关系;根的判别式.专题:计算题.分析:(1)找出一元二次方程中的a,b及c,表示出b2﹣4ac,然后推断出b2﹣4ac大于0,即可得到原方程有两个不相等的实数根;(2)利用根及系数的关系表示出两根之和及两根之积,推断出两根之积小于0,得到两根异号,分两种状况考虑:若x1>0,x2<0,利用肯定值的代数意义化简已知的等式,将表示出的两根之和代入,列出关于m的方程,求出方程的解得到m的值,进而确定出方程,求出方程的解即可;若x1<0,x2>0,同理求出m的值及方程的解.解答:解:(1)一元二次方程x2﹣(m﹣3)x﹣m2=0,∵a=1,b=﹣(m﹣3)=3﹣m,c=﹣m2,∴△=b2﹣4ac=(3﹣m)2﹣4×1×(﹣m2)=5m2﹣6m+9=5(m﹣)2+,∴△>0,则方程有两个不相等的实数根;(2)∵x1•x2==﹣m2≤0,x1+x2=m﹣3,∴x1,x2异号,又|x1|=|x2|﹣2,即|x1|﹣|x2|=﹣2,若x1>0,x2<0,上式化简得:x1+x2=﹣2,∴m﹣3=﹣2,即m=1,方程化为x2+2x﹣1=0,解得:x1=﹣1+,x2=﹣1﹣,若x1<0,x2>0,上式化简得:﹣(x1+x2)=﹣2,∴x1+x2=m﹣3=2,即m=5,方程化为x2﹣2x﹣25=0,解得:x1=1﹣,x2=1+.点评:此题考察了一元二次方程根的判别式,以及根及系数的关系,一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac>0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程没有实数根.28.(2012•怀化)已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.考点:根及系数的关系;根的判别式.分析:依据根及系数的关系求得x1x2=,x1+x2=﹣;依据一元二次方程的根的判别式求得a的取值范围;(1)将已知等式变形为x1x2=4+(x2+x1),即=4+,通过解该关于a的方程即可求得a的值;(2)依据限制性条件“(x1+1)(x2+1)为负整数”求得a的取值范围,然后在取值范围内取a的整数值.解答:解:∵x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,∴由根及系数的关系可知,x1x2=,x1+x2=﹣;∵一元二次方程(a﹣6)x2+2ax+a=0有两个实数根,∴△=4a2﹣4(a﹣6)•a≥0,且a﹣6≠0,解得,a≥0,且a≠6;(1)∵﹣x1+x1x2=4+x2,∴x1x2=4+(x1+x2),即=4﹣,解得,a=24>0;∴存在实数a,使﹣x1+x1x2=4+x2成立,a的值是24;(2)∵(x1+1)(x2+1)=x1x2+(x1+x2)+1=﹣+1=﹣,∴当(x1+1)(x2+1)为负整数时,a﹣6>0,且a﹣6是6的约数,∴a﹣6=6,a﹣6=3,a﹣6=2,a﹣6=1,∴a=12,9,8,7;∴使(x1+1)(x2+1)为负整数的实数a的整数值有12,9,8,7.点评:本题综合考察了根及系数的关系、根的判别式.留意:一元二次方程ax2+bx+c=0(a、b、c是常数)的二次项系数a≠0.29.(2012•内江)假如方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1•x2=q,请依据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满意a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值;(3)已知a、b、c满意a+b+c=0,abc=16,求正数c的最小值.考点:根及系数的关系;根的判别式.分析:(1)先设方程x2+mx+n=0,(n≠0)的两个根分别是x1,x2,得出+=﹣,•=,再依据这个一元二次方程的两个根分别是已知方程两根的倒数,即可求出答案.(2)依据a、b满意a2﹣15a﹣5=0,b2﹣15b﹣5=0,得出a,b是x2﹣15x ﹣5=0的解,求出a+b和ab的值,即可求出的值.(3)依据a+b+c=0,abc=16,得出a+b=﹣c,ab=,a、b是方程x2+cx+=0的解,再依据c2﹣4•≥0,即可求出c的最小值.解答:解:(1)设方程x2+mx+n=0,(n≠0)的两个根分别是x1,x2,则:+==﹣,•==,若一个一元二次方程的两个根分别是已知方程两根的倒数,则这个一元二次方程是:x2+x+=0;(2)∵a、b满意a2﹣15a﹣5=0,b2﹣15b﹣5=0,∴a,b是x2﹣15x﹣5=0的解,当a≠b时,a+b=15,ab=﹣5,。

2015年贵州数学中考真题及答案

2015年贵州数学中考真题及答案
答:他家应交水费 47元. (14分)
解得 x1=3,x2=-1,


∴点 C的坐标为(-1,0),点 A′的坐标为(3,0). (2分)
当 x=0时,y=3.


∴点 A的坐标为(0,3); (3分)
3 x+2
≥0的解集.(6分)
解:(1)根据“异号两数相乘,积为负”可得


第一人

C1Βιβλιοθήκη C2C3B

第二人


C1
(C2,C1) (C3,C1) (B,C1)

C2
(C1,C2)
(C3,C2) (B,C2)

C3
(C1,C3) (C2,C3)
(B,C3)


(C1,B) (C2,B) (C3,B)


(11分)

{ { 2x-3>0 2x-3<0


或②
x+1<0
, x+1>0

(3分)
解①得无解;解②得 -1<x<32.


∴原不等式的解集为 -1<x<32;
(6分)
有 6种结果.


八、(本题共 16分)

∴P(一人是喜欢跳绳,一人是喜欢足球的学生)=162=12.
(14分)
26.如图,在平面直角坐标系中,平行四边形 ABOC如图放置,将此平行四边形绕


O顺时针旋转
90°得到平行四边形
A′B′OC′.抛物线
y=
-x2
+2x+3经过

六、(本题共 14分)
中考数学备考 QQ群:689548040

2015年贵州省黔东南州中考数学试题及参考答案(word解析版)

2015年贵州省黔东南州中考数学试题及参考答案(word解析版)

2015年贵州省黔东南州中考数学试题及参考答案与解析一、选择题(每小题4分,10个小题共40分)1.25-的倒数是()A.25B.52C.25-D.52-2.下列运算正确的是()A.(a﹣b)2=a2﹣b2B.3ab﹣ab=2ab C.a(a2﹣a)=a2D=3.如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=110°,则∠4=()A.70°B.80°C.110°D.100°4.已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别是()A.4,4 B.3,4 C.4,3 D.3,35.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22=()A.6 B.8 C.10 D.126.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.245B.125C.12 D.247.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.8.若ab<0,则正比例函数y=ax与反比例函数byx=在同一坐标系中的大致图象可能是()A.B.C.D.9.如图,在△ABO中,AB⊥OB,AB=1.将△ABO绕O点旋转90°后得到△A1B1O,则点A1的坐标为()A.(﹣1B.(﹣11,C.(﹣1,D.(﹣1,1)10.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c >0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分)11.a6÷a2=.12.将2015000000用科学记数法表示为.13.如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件,使△ABD≌△CDB.(只需写一个)14.如图,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,且AM=100海里.那么该船继续航行海里可使渔船到达离灯塔距离最近的位置.15.如图,AD 是⊙O 的直径,弦BC ⊥AD 于E ,AB=BC=12,则OC= .16.将全体正整数排成一个三角形数阵,根据上述排列规律,数阵中第10行从左至右的第5个数是 .三、解答题(8个小题,共86分)17.(8分)计算:(10120154sin 60|3-⎛⎫-+-︒+ ⎪⎝⎭18.(8分)解不等式组()2233122x x x +⎧⎪⎨--⎪⎩>≥,并将它的解集在数轴上表示出来.19.(10分)先化简,再求值:2352362m m m m m -⎛⎫÷+- ⎪--⎝⎭,其中m 是方程x 2+2x ﹣3=0的根. 20.(12分)某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果; (2)某顾客参加一次抽奖,能获得返还现金的概率是多少?21.(12分)如图,已知PC平分∠MPN,点O是PC上任意一点,PM与⊙O相切于点E,交PC 于A、B两点.(1)求证:PN与⊙O相切;(2)如果∠MPC=30°,PE=BE的长.22.(12分)如图,已知反比例函数kyx=与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△A0B的面积.23.(12分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?24.(12分)如图,已知二次函数2113 4y x x c=-++的图象与x轴的一个交点为A(4,0),与y 轴的交点为B,过A、B的直线为y2=kx+b.(1)求二次函数y 1的解析式及点B 的坐标; (2)由图象写出满足y 1<y 2的自变量x 的取值范围;(3)在两坐标轴上是否存在点P ,使得△ABP 是以AB 为底边的等腰三角形?若存在,求出P 的坐标;若不存在,说明理由.参考答案与解析一、选择题(每小题4分,10个小题共40分)1.25-的倒数是( ) A .25 B .52 C .25- D .52-【知识考点】倒数.【思路分析】根据倒数的定义,互为倒数的两数乘积为1,25152⎛⎫-⨯-= ⎪⎝⎭即可解答.【解答过程】解:根据倒数的定义得:25152⎛⎫-⨯-= ⎪⎝⎭, 因此倒数是52-. 故选D .【总结归纳】本题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列运算正确的是( )A .(a ﹣b )2=a 2﹣b 2B .3ab ﹣ab=2abC .a (a 2﹣a )=a 2D =【知识考点】单项式乘多项式;立方根;合并同类项;完全平方公式.【思路分析】根据完全平方公式,合并同类项,单项式乘多项式,立方根的法则进行解答.。

2015年贵州省黔南州中考真题数学

2015年贵州省黔南州中考真题数学

A.∠A=∠D B. CB = BD C.∠ACB=90° D.∠COB=3∠D 解析:考查圆周角定理,垂径定理,同弧所对的圆周角相等.对各个选项进行分析判断: A、根据同弧所对的圆周角相等可知,∠A=∠D,正确; B、根据垂径定理可知, CB = BD ,正确; C、根据圆周角定理可知,∠ACB=90°,正确; D、根据圆周角定理可知,∠COB=2∠CDB,故错误. 答案:D. 10. 同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是( A.两正面都朝上 B.两背面都朝上 C.一个正面朝上,另一个背面朝上 D.三种情况发生的概率一样大 解析:画树状图为: )
1 ,B 正确; 3
C、(-3)-(-5)=-3+5=2,C 正确; D、-11,0,4 这三个数中最小的数是-11,D 错误. 答案:D. 2. 在“青春脉动·唱响黔南校园青年歌手大赛”总决赛中,7 位评委对某位选手评分为(单 位:分):9、8、9、7、8、9、7.这组数据的众数和平均数分别是( ) A.9、8 B.9、7 C.8、7 D.8、8 解析:考查众数和平均数.9 出现了三次,出现次数最多,所以这组数据的众数是 9, 这组数据的平均数是: 答案:A. 3. 下列各数表示正确的是( ) 6 A.57000000=57×10 B.0.0158(用四舍五入法精确到 0.001)=0.015 C.1.804(用四舍五入法精确到十分位)=1.8 -4 D.0.0000257=2.57×10 解析:把各项中较大与较小的数字利用科学记数法表示,取其近似值得到结果,进而作出判 断: 7 A、57000000=5.7×10 ,错误; B、0.0158(用四舍五入法精确到 0.001)≈0.016,错误; C、1.804(用四舍五入法精确到十分位)≈1.8,正确; -5 D、0.0000257=2.57×10 ,错误, 答案:C. 4. 下列运算正确( 5 5 A.a·a =a )

2015年贵州省黔南州中考数学试题及答案

2015年贵州省黔南州中考数学试题及答案

2015年##省黔南州中考数学试卷一、单项选择题〔共13小题,每小题4分,满分52分〕1.〔4分〕〔2015•黔南州〕下列说法错误的是〔〕A.﹣2的相反数是2B.3的倒数是C.〔﹣3〕﹣〔﹣5〕=2D.﹣11,0,4这三个数中最小的数是02.〔4分〕〔2015•黔南州〕在"青春脉动•唱响黔南校园青年歌手大赛"总决赛中,7位评委对某位选手评分为〔单位:分〕:9、8、9、7、8、9、7.这组数据的众数和平均数分别是〔〕A.9、8 B.9、7 C.8、7 D.8、83.〔4分〕〔2015•黔南州〕下列各数表示正确的是〔〕A.57000000=57×106B.0.0158〔用四舍五入法精确到0.001〕=0.015C. 1.804〔用四舍五入法精确到十分位〕=1.8D.0.0000257=2.57×10﹣44.〔4分〕〔2015•黔南州〕下列运算正确〔〕A.a•a5=a5B.a7÷a5=a3C.〔2a〕3=6a3D. 10ab3÷〔﹣5ab〕=﹣2b25.〔4分〕〔2015•黔南州〕如图所示,该几何体的左视图是〔〕A.B.C.D.6.〔4分〕〔2015•黔南州〕如图,下列说法错误的是〔〕A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c7.〔4分〕〔2015•黔南州〕下列说法正确的是〔〕A.为了检测一批电池使用时间的长短,应该采用全面调查的方法B.方差反映了一组数据的波动大小,方差越大,波动越大C.打开电视正在播放新闻节目是必然事件D.为了了解某县初中学生的身体情况,从八年级学生中随机抽取50名学生作为总体的一个样本8.〔4分〕〔2015•黔南州〕函数y=+的自变量x的取值范围是〔〕A.x≤3B.x≠4C.x≥3且x≠4D.x≤3或x≠49.〔4分〕〔2015•黔南州〕如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是〔〕A.∠A=∠D B.=C.∠ACB=90°D.∠COB=3∠D10.〔4分〕〔2015•黔南州〕同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是〔〕A.两正面都朝上B.两背面都朝上C.一个正面朝上,另一个背面朝上D.三种情况发生的概率一样大11.〔4分〕〔2015•黔南州〕如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是〔〕A.转化思想B.三角形的两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的任意一个内角12.〔4分〕〔2015•黔南州〕如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到〔〕A.M处B.N处C.P处D.Q处13.〔4分〕〔2015•黔南州〕二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是〔〕A.函数图象与y轴的交点坐标是〔0,﹣3〕B.顶点坐标是〔1,﹣3〕C.函数图象与x轴的交点坐标是〔3,0〕、〔﹣1,0〕D.当x<0时,y随x的增大而减小二、填空题〔共6小题,每小题4分,满分24分〕14.〔4分〕〔2015•黔南州〕计算:2×﹣+.15.〔4分〕〔2015•黔南州〕如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是.16.〔4分〕〔2015•黔南州〕如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是米〔平面镜的厚度忽略不计〕.17.〔4分〕〔2015•黔南州〕如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF 的弧EF上.若∠BAD=120°,则弧BC的长度等于〔结果保留π〕.18.〔4分〕〔2015•黔南州〕甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为.19.〔4分〕〔2015•黔南州〕如图,函数y=﹣x的图象是二、四象限的角平分线,将y=﹣x的图象以点O为中心旋转90°与函数y=的图象交于点A,再将y=﹣x的图象向右平移至点A,与x轴交于点B,则点B的坐标为.三、解答题〔共7小题,满分74分〕20.〔10分〕〔2015•黔南州〕〔1〕已知:x=2sin60°,先化简+,再求它的值.〔2〕已知m和n是方程3x2﹣8x+4=0的两根,求+.21.〔6分〕〔2015•黔南州〕如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC的坡度为i=:3.若新坡角下需留3米宽的人行道,问离原坡角〔A点处〕10米的建筑物是否需要拆除?〔参考数据:≈1.414,≈1.732〕22.〔10分〕〔2015•黔南州〕如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.〔1〕求证:△AED≌△CFD;〔2〕求证:四边形AECF是菱形.〔3〕若AD=3,AE=5,则菱形AECF的面积是多少?23.〔12分〕〔2015•黔南州〕今年3月5日,黔南州某中学组织全体学生参加了"青年志愿者"活动,活动分为"打扫街道"、"去敬老院服务"、"到社区文艺演出"和"法制宣传"四项,从九年级同学中抽取了部分同学对"打扫街道"、"去敬老院服务"、"到社区文艺演出"和"法制宣传"的人数进行了统计,并绘制成如图所示的直方图和扇形统计图.请根据统计图提供的信息,回答以下问题:〔1〕抽取的部分同学的人数是多少?〔2〕补全直方图的空缺部分.〔3〕若九年级有400名学生,估计该年级去打扫街道的人数.〔4〕九〔1〕班计划在3月5日这天完成"青年志愿者"活动中的三项,请用列表或画树状图求恰好是"打扫街道"、"去敬老院服务"和"法制宣传"的概率.〔用A表示"打扫街道";用B表示"去敬老院服务";用C表示"法制宣传"〕24.〔12分〕〔2015•黔南州〕如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.〔1〕求⊙O的半径OD;〔2〕求证:AE是⊙O的切线;〔3〕求图中两部分阴影面积的和.25.〔12分〕〔2015•黔南州〕为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v〔千米/小时〕是车流密度x〔辆/千米〕的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.〔1〕求彩虹桥上车流密度为100辆/千米时的车流速度;〔2〕在交通高峰时段,为使彩虹桥上车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?〔3〕当车流量〔辆/小时〕是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.26.〔12分〕〔2015•黔南州〕如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c过点A〔0,4〕和C〔8,0〕,P〔t,0〕是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.〔1〕求b、c的值;〔2〕当t为何值时,点D落在抛物线上;〔3〕是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.。

贵州省黔东南州中考数学试题及答案学习资料

贵州省黔东南州中考数学试题及答案学习资料

2015年贵州省黔东南州中考数学试题及答案黔东南州2015年初中毕业升学统一考试试卷数学(本试题满分150分,考试时间120分钟)一.选择题(每小题4分,10个小题共40分)1.52-的倒数是( )A.52B.25C.52-D.25-2.下列运算正确的是( )A.222)(b a b a -=-B.ab ab ab 23=-C.22)(a a a a =-D.2283= 3.如图,直线a 、b 与直线c 、d 相交,已知∠1=∠2,,3=110°,则 ∠4=( )A.70°B.80°C.110°D.100°4.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别是( )A.4,4B.3,4C.4,3D.3,35.设21,x x 是一元二次方程0322=--x x 的两根,则2221x x +=( )A.6B.8C.10D.126.如图,四边形ABCD 是菱形,AC=8,DB=6,DH ⊥AB 于H ,则DH=( ) A.524 B.512C.12D.24 7.一个几何体的三视图如图所示,则该几何体的形状可能是( )8.若0<ab ,则正比例函数ax y =与反比例函数xby =在同一坐标系的大致图象可能是( )2341dcb aBACHD9.如图,在△ABO 中,AB ⊥OB ,OB=3,AB=1.将△ABO 绕O 点旋转90°后得到△A 1B 1O ,则点A 1的坐标 为( )A.)3,1(-B.)3,1(-或)3,1(-C.)3,1(--D.)3,1(--或)1,3(--10.如图,已知二次函数)0(2≠++=a c bx ax y 的图像如图所示,给出下列四个结论:①0=abc ;②0>++c b a ;③b a >;④042<-b ac .其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个二.填空题(每小题4分,6个小题共24分) 11.=÷26a a _________.12.将数据201 500 000用科学计数法表示为_________.13.如图,在四边形ABCD 中,AB//CD ,连接BD.请添加一个适当的条件_______________,使得△ABD ≌△CDB.(只需写一个)14.如图,某渔船在海面上朝正东方向匀速航行,在A 处观测到灯塔M 在北偏东60°方向上,且AM=100海里. 那么该船继续航行__________海里可使渔船到达离灯塔最近的位置.A BOxy23-=x Oyx15.如图,AD 是☉O 的直径,弦BC ⊥AD 于E ,AB=BC=12,则OC=_________.16.将全体正整数排成一个三角形数阵:根据上述排列规律,数阵中第10行从左到右的第5个数是________.三.解答题(8个小题,共86分)17.(本题共8分)计算|12|60sin 4)32015()31(01-︒+--+--18.(本题共8分)解不等式组⎪⎩⎪⎨⎧-≥->+22133)2(2x x x ,并将它的解集在数轴上表示出来.19.(本题共10分)先化简,后求值:)252(6332--+÷--m m m m m ,其中m 是方程0322=-+x x 的根.D CBA 北东︒60AM20.(本题共12分)某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数字为每次所得的数(若指针指在分界线时重转);当两次所得的数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时,返现金10元.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?21.(本题共12分)如图,已知PC 平分∠MPN ,点O 是PC 上一点,PM 与☉O 相切于点E ,交PC 于A 、B 两点.(1)求证:PN 与☉O 相切;(2)如果∠MPC=30°,PE=32,求劣弧⌒BE的长.22.(本题12分)如图,已知反比例函数xy =与一次函数b x y +=的图像在第一象限相交于点A (1,4+-k ).(1)试确定这两个函数的表达式;(2)求出这两个函数的另一个交点B 的坐标,并求出△AOB 的面积.23.(本题12分)今年夏天,我州某地区遭受罕见的水灾,“水灾无情人有情”,凯里某单位给该地区某中学捐献一批饮用水和蔬菜共120件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种型号的货车共8量,一次性将这批饮用水和蔬菜全部运往受灾地区某中学.已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜各20件.则凯里某单位安排甲、乙两种货车时有几种方案?请你帮助设计出来.(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元.凯里每某单位应选择哪种方案可使运费最少?最少运费是多少?24.(本题12分)如图,已知二次函数c x x y ++-=41321的图像与x 轴的一个交点为A (4,0),与y 轴的交点为B ,过A 、B 的直线为b kx y +=2.(1)求二次函数1y 的解析式及点B 的坐标; (2)由图像写出满足21y y <的自变量x 的取值范围;(3)在两坐标轴上是否存在点P ,使得△ABP 是以AB 为底边的等腰三角形?若存在,求出点P 的坐标;若不存在,说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年贵州省黔东南州中考数学试卷一、选择题(每小题4分,10个小题共40分)1.(4分)(2015•黔东南州)的倒数是()..3.(4分)(2015•黔东南州)如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=110°,则∠4=()4.(4分)(2015•黔东南州)已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组2226.(4分)(2015•黔东南州)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()..7.(4分)(2015•黔东南州)一个几何体的三视图如图所示,则该几何体的形状可能是()..8.(4分)(2015•黔东南州)若ab <0,则正比例函数y=ax 与反比例函数y=在同一坐标系..9.(4分)(2015•黔东南州)如图,在△ABO 中,AB ⊥OB ,OB=,AB=1.将△ABO绕O 点旋转90°后得到△A 1B 1O ,则点A 1的坐标为( ),,,﹣,﹣(﹣10.(4分)(2015•黔东南州)如图,已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c >0,③a >b ,④4ac ﹣b 2<0;其中正确的结论有( )二、填空题(每小题4分,共24分)11.(4分)(2015•黔东南州)a6÷a2=.12.(4分)(2015•黔东南州)将2015000000用科学记数法表示为.13.(4分)(2015•黔东南州)如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件,使△ABD≌△CDB.(只需写一个)14.(4分)(2015•黔东南州)如图,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,且AM=100海里.那么该船继续航行海里可使渔船到达离灯塔距离最近的位置.15.(4分)(2015•黔东南州)如图,AD是⊙O的直径,弦BC⊥AD于E,AB=BC=12,则OC=.16.(4分)(2015•黔东南州)将全体正整数排成一个三角形数阵,根据上述排列规律,数阵中第10行从左至右的第5个数是.三、解答题(8个小题,共86分)17.(8分)(2015•黔东南州)计算:+﹣4sin60°+|﹣|18.(8分)(2015•黔东南州)解不等式组,并将它的解集在数轴上表示出来.19.(10分)(2015•黔东南州)先化简,再求值:÷,其中m是方程x2+2x﹣3=0的根.20.(12分)(2015•黔东南州)某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?21.(12分)(2015•黔东南州)如图,已知PC平分∠MPN,点O是PC上任意一点,PM 与⊙O相切于点E,交PC于A、B两点.(1)求证:PN与⊙O相切;(2)如果∠MPC=30°,PE=2,求劣弧的长.22.(12分)(2015•黔东南州)如图,已知反比例函数y=与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△A0B的面积.23.(12分)(2015•黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?24.(12分)(2015•黔东南州)如图,已知二次函数y1=﹣x2+x+c的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A、B的直线为y2=kx+b.(1)求二次函数y1的解析式及点B的坐标;(2)由图象写出满足y1<y2的自变量x的取值范围;(3)在两坐标轴上是否存在点P,使得△ABP是以AB为底边的等腰三角形?若存在,求出P的坐标;若不存在,说明理由.2015年贵州省黔东南州中考数学试卷参考答案与试题解析一、选择题(每小题4分,10个小题共40分)1.(4分)(2015•黔东南州)的倒数是()..,﹣×)×(﹣).、应为3.(4分)(2015•黔东南州)如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=110°,则∠4=()4.(4分)(2015•黔东南州)已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组222,.6.(4分)(2015•黔东南州)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()..AO=AC=BD=×=DH=5DH=×DH=.7.(4分)(2015•黔东南州)一个几何体的三视图如图所示,则该几何体的形状可能是()..由俯视图为圆环可得几何体为.8.(4分)(2015•黔东南州)若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系..9.(4分)(2015•黔东南州)如图,在△ABO中,AB⊥OB,OB=,AB=1.将△ABO绕O点旋转90°后得到△A1B1O,则点A1的坐标为(),,,﹣,﹣(﹣,))10.(4分)(2015•黔东南州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()﹣可得﹣﹣,,二、填空题(每小题4分,共24分)11.(4分)(2015•黔东南州)a6÷a2=a4.12.(4分)(2015•黔东南州)将2015000000用科学记数法表示为 2.015×109.13.(4分)(2015•黔东南州)如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件AB=CD,使△ABD≌△CDB.(只需写一个)14.(4分)(2015•黔东南州)如图,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,且AM=100海里.那么该船继续航行50海里可使渔船到达离灯塔距离最近的位置.×海里..15.(4分)(2015•黔东南州)如图,AD是⊙O的直径,弦BC⊥AD于E,AB=BC=12,则OC=4.BE=CE=BC=6=6AD=,OC=AD=4.16.(4分)(2015•黔东南州)将全体正整数排成一个三角形数阵,根据上述排列规律,数阵中第10行从左至右的第5个数是50.n三、解答题(8个小题,共86分)17.(8分)(2015•黔东南州)计算:+﹣4sin60°+|﹣|+﹣|×+2+218.(8分)(2015•黔东南州)解不等式组,并将它的解集在数轴上表示出来.,由19.(10分)(2015•黔东南州)先化简,再求值:÷,其中m是方程x2+2x﹣3=0的根.首先根据运算顺序和分式的化简方法,化简÷的算式,求出算式÷÷20.(12分)(2015•黔东南州)某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?=.21.(12分)(2015•黔东南州)如图,已知PC平分∠MPN,点O是PC上任意一点,PM 与⊙O相切于点E,交PC于A、B两点.(1)求证:PN与⊙O相切;(2)如果∠MPC=30°,PE=2,求劣弧的长.的长.,PE=2,的长l==.22.(12分)(2015•黔东南州)如图,已知反比例函数y=与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△A0B的面积.y=与一次函数,)由题意得:×2+.23.(12分)(2015•黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?24.(12分)(2015•黔东南州)如图,已知二次函数y1=﹣x2+x+c的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A、B的直线为y2=kx+b.(1)求二次函数y1的解析式及点B的坐标;(2)由图象写出满足y1<y2的自变量x的取值范围;(3)在两坐标轴上是否存在点P,使得△ABP是以AB为底边的等腰三角形?若存在,求出P的坐标;若不存在,说明理由.x+3x+3,)x﹣,﹣),,),第21页(共21页)。

相关文档
最新文档