SPSS线性回归描述
SPSS—回归—多元线性回归结果分析

SPSS—回归—多元线性回归结果分析(二),最近一直很忙,公司的潮起潮落,就好比人生的跌岩起伏,眼看着一步步走向衰弱,却无能为力,也许要学习“步步惊心”里面“四阿哥”的座右铭:“行到水穷处”,”坐看云起时“。
接着上一期的“多元线性回归解析”里面的内容,上一次,没有写结果分析,这次补上,结果分析如下所示:结果分析1:由于开始选择的是“逐步”法,逐步法是“向前”和“向后”的结合体,从结果可以看出,最先进入“线性回归模型”的是“price in thousands"建立了模型1,紧随其后的是“Wheelbase"建立了模型2,所以,模型中有此方法有个概率值,当小于等于0.05时,进入“线性回归模型”(最先进入模型的,相关性最强,关系最为密切)当大于等0.1时,从“线性模型中”剔除结果分析:1:从“模型汇总”中可以看出,有两个模型,(模型1和模型2)从R2 拟合优度来看,模型2的拟合优度明显比模型1要好一些(0.422>0.300)2:从“Anova"表中,可以看出“模型2”中的“回归平方和”为115.311,“残差平方和”为153.072,由于总平方和=回归平方和+残差平方和,由于残差平方和(即指随即误差,不可解释的误差)由于“回归平方和”跟“残差平方和”几乎接近,所有,此线性回归模型只解释了总平方和的一半,3:根据后面的“F统计量”的概率值为0.00,由于0.00<0.01,随着“自变量”的引入,其显著性概率值均远小于0.01,所以可以显著地拒绝总体回归系数为0的原假设,通过ANOVA方差分析表可以看出“销售量”与“价格”和“轴距”之间存在着线性关系,至于线性关系的强弱,需要进一步进行分析。
结果分析:1:从“已排除的变量”表中,可以看出:“模型2”中各变量的T检的概率值都大于“0.05”所以,不能够引入“线性回归模型”必须剔除。
从“系数a” 表中可以看出:1:多元线性回归方程应该为:销售量=-1.822-0.055*价格+0.061*轴距但是,由于常数项的sig为(0.116>0.1) 所以常数项不具备显著性,所以,我们再看后面的“标准系数”,在标准系数一列中,可以看到“常数项”没有数值,已经被剔除所以:标准化的回归方程为:销售量=-0.59*价格+0.356*轴距2:再看最后一列“共线性统计量”,其中“价格”和“轴距”两个容差和“vif都一样,而且VIF 都为1.012,且都小于5,所以两个自变量之间没有出现共线性,容忍度和膨胀因子是互为倒数关系,容忍度越小,膨胀因子越大,发生共线性的可能性也越大从“共线性诊断”表中可以看出:1:共线性诊断采用的是“特征值”的方式,特征值主要用来刻画自变量的方差,诊断自变量间是否存在较强多重共线性的另一种方法是利用主成分分析法,基本思想是:如果自变量间确实存在较强的相关关系,那么它们之间必然存在信息重叠,于是就可以从这些自变量中提取出既能反应自变量信息(方差),而且有相互独立的因素(成分)来,该方法主要从自变量间的相关系数矩阵出发,计算相关系数矩阵的特征值,得到相应的若干成分。
SPSS线性回归描述之欧阳与创编

SPSS 10.0高级教程十二:多元线性回归与曲线拟合,国内生物医药的突破之年。
不仅有干细胞发现的新突破,还有转基因作物政策的新举措。
回归分析是处理两个及两个以上变量间线性依存关系的统计方法。
在医学领域中,此类问题很普遍,如人头发中某种金属元素的含量与血液中该元素的含量有关系,人的体表面积与身高、体重有关系;等等。
回归分析就是用于说明这种依存变化的数学关系。
§10.1Linear过程10.1.1 简单操作入门调用此过程可完成二元或多元的线性回归分析。
在多元线性回归分析中,用户还可根据需要,选用不同筛选自变量的方法(如:逐步法、向前法、向后法,等)。
例10.1:请分析在数据集Fat surfactant.sav中变量fat 对变量spovl的大小有无影响?显然,在这里spovl是连续性变量,而fat是分类变量,我们可用用单因素方差分析来解决这个问题。
但此处我们要采用和方差分析等价的分析方法回归分析来解决它。
回归分析和方差分析都可以被归入广义线性模型中,因此他们在模型的定义、计算方法等许多方面都非常近似,下面大家很快就会看到。
这里spovl是模型中的因变量,根据回归模型的要求,它必须是正态分布的变量才可以,我们可以用直方图来大致看一下,可以看到基本服从正态,因此不再检验其正态性,继续往下做。
10.1.1.1 界面详解在菜单中选择Regression==>liner,系统弹出线性回归对话框如下:除了大家熟悉的内容以外,里面还出现了一些特色菜,让我们来一一品尝。
【Dependent框】用于选入回归分析的应变量。
【Block按钮组】由Previous和Next两个按钮组成,用于将下面Independent框中选入的自变量分组。
由于多元回归分析中自变量的选入方式有前进、后退、逐步等方法,如果对不同的自变量选入的方法不同,则用该按钮组将自变量分组选入即可。
下面的例子会讲解其用法。
【Independent框】用于选入回归分析的自变量。
第九章 SPSS的线性回归分析

第九章 SPSS的线性回归分析线性回归分析是一种常用的统计方法,用于探索自变量与因变量之间的线性关系。
在SPSS中,进行线性回归分析可以帮助研究者了解变量之间的关系,并预测因变量的数值。
本文将介绍如何在SPSS中进行线性回归分析,并解释如何解释结果。
一、数据准备。
在进行线性回归分析之前,首先需要准备好数据。
在SPSS中,数据通常以数据集的形式存在,可以通过导入外部文件或手动输入数据来创建数据集。
确保数据集中包含自变量和因变量的数值,并且数据的质量良好,没有缺失值或异常值。
二、进行线性回归分析。
在SPSS中进行线性回归分析非常简单。
首先打开SPSS软件,然后打开已经准备好的数据集。
接下来,依次点击“分析”-“回归”-“线性”,将自变量和因变量添加到相应的框中。
在“统计”选项中,可以选择输出各种统计信息,如残差分析、离群值检测等。
点击“确定”按钮后,SPSS会自动进行线性回归分析,并生成相应的结果报告。
三、解释结果。
线性回归分析的结果报告包括了各种统计信息和图表,需要仔细解释和分析。
以下是一些常见的统计信息和图表:1. 相关系数,线性回归分析的结果报告中通常包括了自变量和因变量之间的相关系数,用来衡量两个变量之间的线性关系强度。
相关系数的取值范围为-1到1,接近1表示两个变量呈正相关,接近-1表示呈负相关,接近0表示无相关。
2. 回归系数,回归系数用来衡量自变量对因变量的影响程度。
回归系数的符号表示自变量对因变量的影响方向,系数的大小表示影响程度。
在结果报告中,通常包括了回归系数的估计值、标准误、t值和显著性水平。
3. 残差分析,残差是因变量的观测值与回归方程预测值之间的差异,残差分析可以用来检验回归模型的拟合程度。
在结果报告中,通常包括了残差的分布图和正态概率图,用来检验残差是否符合正态分布。
4. 变量间关系图,在SPSS中,可以生成自变量和因变量之间的散点图和回归直线图,用来直观展示变量之间的线性关系。
线性回归—SPSS操作

线性回归—SPSS操作线性回归是一种用于研究自变量和因变量之间的关系的常用统计方法。
在进行线性回归分析时,我们通常假设误差项是同方差的,即误差项的方差在不同的自变量取值下是相等的。
然而,在实际应用中,误差项的方差可能会随着自变量的变化而发生变化,这就是异方差性问题。
异方差性可能导致对模型的预测能力下降,因此在进行线性回归分析时,需要进行异方差的诊断检验和修补。
在SPSS中,我们可以使用几种方法进行异方差性的诊断检验和修补。
第一种方法是绘制残差图,通过观察残差图的模式来判断是否存在异方差性。
具体的步骤如下:1. 首先,进行线性回归分析,在"Regression"菜单下选择"Linear"。
2. 在"Residuals"选项中,选择"Save standardized residuals",将标准化残差保存。
3. 完成线性回归分析后,在输出结果的"Residuals Statistics"中可以看到标准化残差,将其保存。
4. 在菜单栏中选择"Graphs",然后选择"Legacy Dialogs",再选择"Scatter/Dot"。
5. 在"Simple Scatter"选项中,将保存的标准化残差添加到"Y-Axis",将自变量添加到"X-Axis"。
6.点击"OK"生成残差图。
观察残差图,如果残差随着自变量的变化而出现明显的模式,如呈现"漏斗"形状,则表明存在异方差性。
第二种方法是利用Levene检验进行异方差性的检验。
具体步骤如下:1. 进行线性回归分析,在"Regression"菜单下选择"Linear"。
用spss软件进行一元线性回归分析

step2:做散点图
给散点图添加趋势线的方法: • 双击输出结果中的散点图 • 在“图表编辑器”的菜单中依次点击“元素”—“总计拟合线”,由此“属性”中加载了 “拟合线” • 拟合方法选择“线性”,置信区间可以选95%个体,应用
step3:线性回归分析
从菜单上依次点选:分析—回归—线性 设置:因变量为“年降水量”,自变量为“纬度” “方法”:选择默认的“进入”,即自变量一次全部进入的方法。 “统计量”:
step4:线性回归结果
【Anova】 (analysisofvariance方差分析) • 此表是所用模型的检验结果,一个标准的方差分析表。 • Sig.(significant )值是回归关系的显著性系数,sig.是F值的实际显著性概率即P值。 当sig. <= 0.05的时候,说明回归关系具有统计学意义。如果sig. > 0.05,说明二者 之间用当前模型进行回归没有统计学意义,应该换一个模型来进行回归。 • 由表可见所用的回归模型F统计量值=226.725 ,P值为0.000,因此我们用的这个回 归模型是有统计学意义的,可以继续看下面系数分别检验的结果。 • 由于这里我们所用的回归模型只有一个自变量,因此模型的检验就等价与系数的检验, 在多元回归中这两者是不同的。
• 勾选“模型拟合度”,在结果中会输出“模型汇总”表 • 勾选“估计”,则会输出“系数”表 “绘制”:在这一项设置中也可以做散点图 “保存”: • 注意:在保存中被选中的项目,都将在数据编辑窗口显示。 • 在本例中我们勾选95%的置信区间单值,未标准化残差 “选项”:只需要在选择方法为逐步回归后,才需要打开
利用spss进行一元线性回归
step1:建立数据文件 打开spss的数据编辑器,编辑变量视图
SPSS线性回归分析

SPSS分析技术:线性回归分析相关分析可以揭示事物之间共同变化的一致性程度,但它仅仅只是反映出了一种相关关系,并没有揭示出变量之间准确的可以运算的控制关系,也就是函数关系,不能解决针对未来的分析与预测问题。
回归分析就是分析变量之间隐藏的内在规律,并建立变量之间函数变化关系的一种分析方法,回归分析的目标就是建立由一个因变量和若干自变量构成的回归方程式,使变量之间的相互控制关系通过这个方程式描述出来。
回归方程式不仅能够解释现在个案内部隐藏的规律,明确每个自变量对因变量的作用程度。
而且,基于有效的回归方程,还能形成更有意义的数学方面的预测关系。
因此,回归分析是一种分析因素变量对因变量作用强度的归因分析,它还是预测分析的重要基础。
回归分析类型回归分析根据自变量个数,自变量幂次以及变量类型可以分为很多类型,常用的类型有:线性回归;曲线回归;二元Logistic回归技术;线性回归原理回归分析就是建立变量的数学模型,建立起衡量数据联系强度的指标,并通过指标检验其符合的程度。
线性回归分析中,如果仅有一个自变量,可以建立一元线性模型。
如果存在多个自变量,则需要建立多元线性回归模型。
线性回归的过程就是把各个自变量和因变量的个案值带入到回归方程式当中,通过逐步迭代与拟合,最终找出回归方程式中的各个系数,构造出一个能够尽可能体现自变量与因变量关系的函数式。
在一元线性回归中,回归方程的确立就是逐步确定唯一自变量的系数和常数,并使方程能够符合绝大多数个案的取值特点。
在多元线性回归中,除了要确定各个自变量的系数和常数外,还要分析方程内的每个自变量是否是真正必须的,把回归方程中的非必需自变量剔除。
名词解释线性回归方程:一次函数式,用于描述因变量与自变量之间的内在关系。
根据自变量的个数,可以分为一元线性回归方程和多元线性回归方程。
观测值:参与回归分析的因变量的实际取值。
对参与线性回归分析的多个个案来讲,它们在因变量上的取值,就是观测值。
spss多元线性回归分析结果解读

spss多元线性回归分析结果解读SPSS多元线性回归分析结果解读1. 引言多元线性回归分析是一种常用的统计分析方法,用于研究多个自变量对因变量的影响程度及相关性。
SPSS是一个强大的统计分析软件,可以进行多元线性回归分析并提供详细的结果解读。
本文将通过解读SPSS多元线性回归分析结果,帮助读者理解分析结果并做出合理的判断。
2. 数据收集与变量说明在进行多元线性回归分析之前,首先需要收集所需的数据,并明确变量的含义。
例如,假设我们正在研究学生的考试成绩与他们的学习时间、家庭背景、社会经济地位等因素之间的关系。
收集到的数据包括每个学生的考试成绩作为因变量,以及学习时间、家庭背景、社会经济地位等作为自变量。
变量说明应当明确每个变量的测量方式和含义。
3. 描述性统计分析在进行多元线性回归分析之前,我们可以首先对数据进行描述性统计分析,以了解各个变量的分布情况。
SPSS提供了丰富的描述性统计方法,如均值、标准差、最小值、最大值等。
通过描述性统计分析,我们可以获得每个变量的分布情况,如平均值、方差等。
4. 相关性分析多元线性回归的前提是自变量和因变量之间存在一定的相关性。
因此,在进行回归分析之前,通常需要进行相关性分析来验证自变量和因变量之间的关系。
SPSS提供了相关性分析的功能,我们可以得到每对变量之间的相关系数以及其显著性水平。
5. 多元线性回归模型完成了描述性统计分析和相关性分析后,我们可以构建多元线性回归模型。
SPSS提供了简单易用的界面,我们只需要选择因变量和自变量,然后点击进行回归分析。
在SPSS中,我们可以选择不同的回归方法,如逐步回归、前向回归、后向回归等。
6. 回归结果解读在进行多元线性回归分析后,SPSS将提供详细的回归结果。
我们可以看到每个自变量的系数、标准误差、t值、显著性水平等指标。
系数表示自变量与因变量之间的关系程度,标准误差表示估计系数的不确定性,t值表示系数的显著性,显著性水平则表示系数是否显著。
用SPSS做回归分析

用SPSS做回归分析回归分析是一种统计方法,用于研究两个或多个变量之间的关系,并预测一个或多个因变量如何随着一个或多个自变量的变化而变化。
SPSS(统计软件包的统计产品与服务)是一种流行的统计分析软件,广泛应用于研究、教育和业务领域。
要进行回归分析,首先需要确定研究中的因变量和自变量。
因变量是被研究者感兴趣的目标变量,而自变量是可能影响因变量的变量。
例如,在研究投资回报率时,投资回报率可能是因变量,而投资额、行业类型和利率可能是自变量。
在SPSS中进行回归分析的步骤如下:1.打开SPSS软件,并导入数据:首先打开SPSS软件,然后点击“打开文件”按钮导入数据文件。
确保数据文件包含因变量和自变量的值。
2.选择回归分析方法:在SPSS中,有多种类型的回归分析可供选择。
最常见的是简单线性回归和多元回归。
简单线性回归适用于只有一个自变量的情况,而多元回归适用于有多个自变量的情况。
3.设置因变量和自变量:SPSS中的回归分析工具要求用户指定因变量和自变量。
选择适当的变量,并将其移动到正确的框中。
4.运行回归分析:点击“运行”按钮开始进行回归分析。
SPSS将计算适当的统计结果,包括回归方程、相关系数、误差项等。
这些结果可以帮助解释自变量如何影响因变量。
5.解释结果:在完成回归分析后,需要解释得到的统计结果。
回归方程表示因变量与自变量之间的关系。
相关系数表示自变量和因变量之间的相关性。
误差项表示回归方程无法解释的变异。
6.进行模型诊断:完成回归分析后,还应进行模型诊断。
模型诊断包括检查模型的假设、残差的正态性、残差的方差齐性等。
SPSS提供了多种图形和统计工具,可用于评估回归模型的质量。
回归分析是一种强大的统计分析方法,可用于解释变量之间的关系,并预测因变量的值。
SPSS作为一种广泛使用的统计软件,可用于执行回归分析,并提供了丰富的功能和工具,可帮助研究者更好地理解和解释数据。
通过了解回归分析的步骤和SPSS的基本操作,可以更好地利用这种方法来分析数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年,国内生物医药的突破之年。
不仅有干细胞发现的新突破,还有转基因作物政策的新举措。
回归分析是处理两个及两个以上变量间线性依存关系的统计方法。
在医学领域中,此类问题很普遍,如人头发中某种金属元素的含量与血液中该元素的含量有关系,人的体表面积与身高、体重有关系;等等。
回归分析就是用于说明这种依存变化的数学关系。
§Linear过程简单操作入门调用此过程可完成二元或多元的线性回归分析。
在多元线性回归分析中,用户还可根据需要,选用不同筛选自变量的方法(如:逐步法、向前法、向后法,等)。
例:请分析在数据集Fat 中变量fat对变量spovl的大小有无影响显然,在这里spovl是连续性变量,而fat是分类变量,我们可用用单因素方差分析来解决这个问题。
但此处我们要采用和方差分析等价的分析方法--回归分析来解决它。
回归分析和方差分析都可以被归入广义线性模型中,因此他们在模型的定义、计算方法等许多方面都非常近似,下面大家很快就会看到。
这里spovl是模型中的因变量,根据回归模型的要求,它必须是正态分布的变量才可以,我们可以用直方图来大致看一下,可以看到基本服从正态,因此不再检验其正态性,继续往下做。
界面详解在菜单中选择Regression==>liner,系统弹出线性回归对话框如下:除了大家熟悉的内容以外,里面还出现了一些特色菜,让我们来一一品尝。
【Dependent框】用于选入回归分析的应变量。
【Block按钮组】由Previous和Next两个按钮组成,用于将下面Independent框中选入的自变量分组。
由于多元回归分析中自变量的选入方式有前进、后退、逐步等方法,如果对不同的自变量选入的方法不同,则用该按钮组将自变量分组选入即可。
下面的例子会讲解其用法。
【Independent框】用于选入回归分析的自变量。
【Method下拉列表】用于选择对自变量的选入方法,有Enter(强行进入法)、Stepwise(逐步法)、Remove(强制剔除法)、Backward(向后法)、Forward(向前法)五种。
该选项对当前Independent框中的所有变量均有效。
【Selection Variable框】选入一个筛选变量,并利用右侧的Rules钮建立一个选择条件,这样,只有满足该条件的记录才会进入回归分析。
【Case Labels框】选择一个变量,他的取值将作为每条记录的标签。
最典型的情况是使用记录ID 号的变量。
【WLS>>钮】可利用该按钮进行权重最小二乘法的回归分析。
单击该按钮会扩展当前对话框,出现WLS Weight框,在该框内选入权重变量即可。
【Statistics钮】弹出Statistics对话框,用于选择所需要的描述统计量。
有如下选项:o Regression Coefficients复选框组:定义回归系数的输出情况,选中Estimates可输出回归系数B及其标准误,t值和p值,还有标准化的回归系数beta;选中Confidence intervals则输出每个回归系数的95%可信区间;选中covariance matrix则会输出各个自变量的相关矩阵和方差、协方差矩阵。
以上选项默认只选中Estimates。
o Residuals复选框组:用于选择输出残差诊断的信息,可选的有Durbin-Watson残差序列相关性检验、超出规定的n倍标准误的残差列表。
o Model fit复选框:模型拟合过程中进入、退出的变量的列表,以及一些有关拟合优度的检验:,R,R2和调整的R2, 标准误及方差分析表。
o R squared change复选框:显示模型拟合过程中R2、F值和p值的改变情况。
o Descriptives复选框:提供一些变量描述,如有效例数、均数、标准差等,同时还给出一个自变量间的相关矩阵。
o Part and partial correlations复选框:显示自变量间的相关、部分相关和偏相关系数。
o Collinearity diagnostics复选框:给出一些用于共线性诊断的统计量,如特征根(Eigenvalues)、方差膨胀因子(VIF)等。
以上各项在默认情况下只有Estimates和Model fit复选框被选中。
【Plot钮】弹出Plot对话框,用于选择需要绘制的回归分析诊断或预测图。
可绘制的有标准化残差的直方图和正态分布图,应变量、预测值和各自变量残差间两两的散点图等。
【Save钮】许多时候我们需要将回归分析的结果存储起来,然后用得到的残差、预测值等做进一步的分析,Save钮就是用来存储中间结果的。
可以存储的有:预测值系列、残差系列、距离(Distances)系列、预测值可信区间系列、波动统计量系列。
下方的按钮可以让我们选择将这些新变量存储到一个新的SPSS数据文件或XML 中。
【Options钮】设置回归分析的一些选项,有:o Stepping Method Criteria单选钮组:设置纳入和排除标准,可按P值或F值来设置。
o Include constant in equation复选框:用于决定是否在模型中包括常数项,默认选中。
o Missing Values单选钮组:用于选择对缺失值的处理方式,可以是不分析任一选入的变量有缺失值的记录(Exclude cases listwise)而无论该缺失变量最终是否进入模型;不分析具体进入某变量时有缺失值的记录(Exclude cases pairwise);将缺失值用该变量的均数代替(Replace with mean)。
输出结果解释根据题目的要求,我们只需要在Dependent框中选入spovl,Independent 框中选入fat即可,其他的选项一律不管。
单击OK后,系统很快给出如下结果:Regression这里的表格是拟合过程中变量进入/退出模型的情况记录,由于我们只引入了一个自变量,所以只出现了一个模型1(在多元回归中就会依次出现多个回归模型),该模型中fat为进入的变量,没有移出的变量,具体的进入/退出方法为enter。
上表为所拟合模型的情况简报,显示在模型1中相关系数R为,而决定系数R2为,校正的决定系数为。
这是所用模型的检验结果,可以看到这就是一个标准的方差分析表!有兴趣的读者可以自己用方差分析模型做一下,就会发现出了最左侧的一列名字不太一样外,其他的各个参数值都是相同的。
从上表可见所用的回归模型F值为,P值为,因此我们用的这个回归模型是有统计学意义的,可以继续看下面系数分别检验的结果。
由于这里我们所用的回归模型只有一个自变量,因此模型的检验就等价与系数的检验,在多元回归中这两者是不同的。
上表给出了包括常数项在内的所有系数的检验结果,用的是t检验,同时还会给出标化/未标化系数。
可见常数项和fat都是有统计学意义的,上表的内容如果翻译成中文则如下所示:未标准化系数标准化系数模型系数b系数标准误系数βt值P值1常数fat复杂实例操作分析实例例:请分析在数据集中变量extrusn、additive、gloss和opacity对变量tear_res的大小有无影响已知extrusn对tear_res的大小有影响。
显然,这里是一个多元回归,由于除了extrusn确有影响以外,我们不知道另三个变量有无影响,因此这里我们将extrusn放在第一个block,进入方法为enter (我们有把握extrusn一定有统计学意义);另三个变量放在第二个block,进入方法为stepwise(让软件自动选择判断),操作如下:1.Analyze==>Regression==>Liner2.Dependent框:选入tear_res3.Independent框:选入extrusn;单击next钮4.Independent框:选入additive、gloss和opacity;Method列表框:选择stepwise5.单击OK钮结果解释最终的结果如下:Regression上面的表格依次列出了模型的筛选过程,模型1用进入法引入了extrusn,然后模型2用stepwise法引入了additive,另两个变量因没有达到进入标准,最终没有进入。
上面的表格翻译出来如下:模型进入的变量移出的变量变量筛选方法1extrusn进入法2additive stepwise法(标准:进入概率小于,移出概率大于)上表是两个模型变异系数的改变情况,从调整的R2可见,从上到下随着新变量的引入,模型可解释的变异占总变异的比例越来越大。
上表是所用两个模型的检验结果,用的方法是方差分析,可见二个模型都有统计学意义。
上表仍然为三个模型中各个系数的检验结果,用的是t检验,可见在模型2中所有的系数都有统计学意义,上表的内容翻译如下:未标化的系数标化的系数模型B标准误Beta t值P值1(常数).265.000extrusion.590.167.639.0002(常数).314.000extrusion.590.144.639.000additive.390.144.422.000这是新出现的一个表格,反映的是没有进入模型的各个变量的检验结果,可见在模型1中,未引入模型的候选变量additive还有统计学意义,可能需要引入,而模型2中没有引入的两个变量其P值均大于,无需再进行分析了。
Curve Estimation过程Curve Estimation过程可以用与拟合各种各样的曲线,原则上只要两个变量间存在某种可以被它所描述的数量关系,就可以用该过程来分析。
但这里我们要指出,由于曲线拟合非常的复杂,而该模块的功能十分有限,因此最好采用将曲线相关关系通过变量变换的方式转化为直线回归的形式来分析,或者采用其他专用的模块分析。
界面详解Curve Estimation过程中有特色的对话框界面内容如下:下面我们分别解释一下它们的具体功能。
【Dependent框】用于选入曲线拟和中的应变量,可选入多个,如果这样,则对各个应变量分别拟合模型。
【Independent单选框组】用于选入曲线拟和中的自变量,有两种选择,可以选入普通的自变量,也可以选择时间作为自变量,如果这样做,则所用的数据应为时间序列数据格式。
【Models复选框组】是该对话框的重点,用于选择所用的曲线模型,可用的有:Linear:拟合直线方程,实际上与Linear过程的二元直线回归相同;Quadratic:拟合二次方程Y = b0+b1X+b2X2;Compound:拟合复合曲线模型Y = b0×b1X;Growth:拟合等比级数曲线模型Y = e(b0+b1X);Logarithmic:拟合对数方程Y = b0+b1lnX;Cubic:拟合三次方程Y = b0+b1X+b2X2+b3X3;S:拟合S形曲线Y = e(b0+b1/X);Exponential:拟合指数方程Y = b0 eb1X;Inverse:数据按Y = b0+b1/X进行变换;Power:拟合乘幂曲线模型Y = b0X b1;Logistic:拟合Logistic曲线模型Y = 1/(1/u + b0×b1X),如选择该线型则要求输入上界。