spss线性回归分析

合集下载

SPSS的相关分析和线性回归分析

SPSS的相关分析和线性回归分析

• 如果两变量的正相关性较强,它们秩的变化具有同步性,于

n
Di2
n
(Ui
Vi)2的值较小,r趋向于1;
• i1
i1
如果两变量的正相关性较弱,它们秩的变化不具有同步性,
于是
n
n
Di2 (Ui Vi)2
的值较大,r趋向于0;
• i1
i1
在小样本下,在零假设成立时, Spearman等级相关系数
用最小二乘法求解方程中的两个参数,得到:
1
(xi x)(yi y) (xi x)2
0 ybx
多元线性回归模型
多元线性回归方程: y=β0+β1x1+β2x2+.+βkxk
β1、β2、βk为偏回归系数。 β1表示在其他自变量保持不变的情况下,自变量x1变动
一个单位所引起的因变量y的平均变动。
析功能子命令Bivariate过程、Partial过程、 Distances过程,分别对应着相关分析、偏相关分析和相 似性测度(距离)的三个spss过程。
Bivariate过程用于进行两个或多个变量间的相关分 析,如为多个变量,给出两两相关的分析结果。
Partial过程,当进行相关分析的两个变量的取值都受 到其他变量的影响时,就可以利用偏相关分析对其他变量 进行控制,输出控制其他变量影响后的偏相关系数。
• 回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释变量( 因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
8.4.2 线性回归模型 一元线性回归模型的数学模型:
y0 1x
其中x为自变量;y为因变量; 0 为截距,即
常量; 1 为回归系数,表明自变量对因变量的影

第9章SPSS线性回归分析

第9章SPSS线性回归分析

第9章SPSS线性回归分析1.线性回归分析概述线性回归分析是一种广泛应用于统计学和数据分析领域的方法,它用于研究自变量与因变量之间的线性关系。

线性回归模型基于一条直线的假设,通过最小化残差平方和来估计各个回归系数,并利用这些系数进行预测和推断。

SPSS是一款强大的统计分析软件,提供了丰富的功能和工具,使得线性回归分析变得更加简单和高效。

2.数据准备在进行线性回归分析之前,需要准备好相关的数据。

SPSS可以导入各种类型的数据文件,包括Excel、CSV等格式。

在导入数据之后,可以对数据进行预处理,如缺失值处理、异常值处理等。

3.构建线性回归模型在SPSS中,构建线性回归模型非常简单。

首先选择“回归”菜单下的“线性”选项,然后将所需要的自变量和因变量选择到相应的框中。

SPSS还提供了多种方法来选择自变量,如逐步回归、逐步回归法等。

选择好自变量之后,点击“确定”按钮,即可得到回归模型结果。

4.分析回归模型在得到回归模型结果之后,需要对模型进行分析。

SPSS提供了丰富的结果输出,包括参数估计值、显著性检验、模型拟合度等。

需要注意的是,线性回归模型的可靠性需要通过一系列统计检验进行验证,如F统计量、t统计量、残差分析等。

5.模型诊断6.预测与推断线性回归模型可以用于预测和推断,SPSS也提供了相应的功能。

在SPSS中可以输入自变量的数值,从而得到相应的因变量预测值。

此外,SPSS还可以进行参数估计的推断,包括置信区间和假设检验等。

7.扩展与应用除了简单的线性回归模型,SPSS还支持复杂的线性回归模型,如多重回归分析、多元回归分析等。

此外,SPSS还可以进行模型的改进和优化,如加入交互项、非线性变换等。

这些扩展功能在实际应用中非常有用,可以提高模型的解释力和预测能力。

总结:本章介绍了SPSS中的线性回归分析方法,包括模型构建、结果分析、模型诊断、预测与推断等。

SPSS提供了丰富的功能和工具,使得线性回归分析变得更加简单和高效。

第九章 SPSS的线性回归分析

第九章 SPSS的线性回归分析

第九章 SPSS的线性回归分析线性回归分析是一种常用的统计方法,用于探索自变量与因变量之间的线性关系。

在SPSS中,进行线性回归分析可以帮助研究者了解变量之间的关系,并预测因变量的数值。

本文将介绍如何在SPSS中进行线性回归分析,并解释如何解释结果。

一、数据准备。

在进行线性回归分析之前,首先需要准备好数据。

在SPSS中,数据通常以数据集的形式存在,可以通过导入外部文件或手动输入数据来创建数据集。

确保数据集中包含自变量和因变量的数值,并且数据的质量良好,没有缺失值或异常值。

二、进行线性回归分析。

在SPSS中进行线性回归分析非常简单。

首先打开SPSS软件,然后打开已经准备好的数据集。

接下来,依次点击“分析”-“回归”-“线性”,将自变量和因变量添加到相应的框中。

在“统计”选项中,可以选择输出各种统计信息,如残差分析、离群值检测等。

点击“确定”按钮后,SPSS会自动进行线性回归分析,并生成相应的结果报告。

三、解释结果。

线性回归分析的结果报告包括了各种统计信息和图表,需要仔细解释和分析。

以下是一些常见的统计信息和图表:1. 相关系数,线性回归分析的结果报告中通常包括了自变量和因变量之间的相关系数,用来衡量两个变量之间的线性关系强度。

相关系数的取值范围为-1到1,接近1表示两个变量呈正相关,接近-1表示呈负相关,接近0表示无相关。

2. 回归系数,回归系数用来衡量自变量对因变量的影响程度。

回归系数的符号表示自变量对因变量的影响方向,系数的大小表示影响程度。

在结果报告中,通常包括了回归系数的估计值、标准误、t值和显著性水平。

3. 残差分析,残差是因变量的观测值与回归方程预测值之间的差异,残差分析可以用来检验回归模型的拟合程度。

在结果报告中,通常包括了残差的分布图和正态概率图,用来检验残差是否符合正态分布。

4. 变量间关系图,在SPSS中,可以生成自变量和因变量之间的散点图和回归直线图,用来直观展示变量之间的线性关系。

线性回归—SPSS操作

线性回归—SPSS操作

线性回归—SPSS操作线性回归是一种用于研究自变量和因变量之间的关系的常用统计方法。

在进行线性回归分析时,我们通常假设误差项是同方差的,即误差项的方差在不同的自变量取值下是相等的。

然而,在实际应用中,误差项的方差可能会随着自变量的变化而发生变化,这就是异方差性问题。

异方差性可能导致对模型的预测能力下降,因此在进行线性回归分析时,需要进行异方差的诊断检验和修补。

在SPSS中,我们可以使用几种方法进行异方差性的诊断检验和修补。

第一种方法是绘制残差图,通过观察残差图的模式来判断是否存在异方差性。

具体的步骤如下:1. 首先,进行线性回归分析,在"Regression"菜单下选择"Linear"。

2. 在"Residuals"选项中,选择"Save standardized residuals",将标准化残差保存。

3. 完成线性回归分析后,在输出结果的"Residuals Statistics"中可以看到标准化残差,将其保存。

4. 在菜单栏中选择"Graphs",然后选择"Legacy Dialogs",再选择"Scatter/Dot"。

5. 在"Simple Scatter"选项中,将保存的标准化残差添加到"Y-Axis",将自变量添加到"X-Axis"。

6.点击"OK"生成残差图。

观察残差图,如果残差随着自变量的变化而出现明显的模式,如呈现"漏斗"形状,则表明存在异方差性。

第二种方法是利用Levene检验进行异方差性的检验。

具体步骤如下:1. 进行线性回归分析,在"Regression"菜单下选择"Linear"。

SPSS的线性回归分析分析

SPSS的线性回归分析分析

SPSS的线性回归分析分析SPSS是一款广泛用于统计分析的软件,其中包括了许多功能强大的工具。

其中之一就是线性回归分析,它是一种常用的统计方法,用于研究一个或多个自变量对一个因变量的影响程度和方向。

线性回归分析是一种用于解释因变量与自变量之间关系的统计技术。

它主要基于最小二乘法来评估自变量与因变量之间的关系,并估计出最合适的回归系数。

在SPSS中,线性回归分析可以通过几个简单的步骤来完成。

首先,需要加载数据集。

可以选择已有的数据集,也可以导入新的数据。

在SPSS的数据视图中,可以看到所有变量的列表。

接下来,选择“回归”选项。

在“分析”菜单下,选择“回归”子菜单中的“线性”。

在弹出的对话框中,将因变量拖放到“因变量”框中。

然后,将自变量拖放到“独立变量”框中。

可以选择一个或多个自变量。

在“统计”选项中,可以选择输出哪些统计结果。

常见的选项包括回归系数、R方、调整R方、标准误差等。

在“图形”选项中,可以选择是否绘制残差图、分布图等。

点击“确定”后,SPSS将生成线性回归分析的结果。

线性回归结果包括多个重要指标,其中最重要的是回归系数和R方。

回归系数用于衡量自变量对因变量的影响程度和方向,其值表示每个自变量单位变化对因变量的估计影响量。

R方则反映了自变量对因变量变异的解释程度,其值介于0和1之间,越接近1表示自变量对因变量的解释程度越高。

除了回归系数和R方外,还有其他一些统计指标可以用于判断模型质量。

例如,标准误差可以用来衡量回归方程的精确度。

调整R方可以解决R方对自变量数量的偏向问题。

此外,SPSS还提供了多种工具来检验回归方程的显著性。

例如,可以通过F检验来判断整个回归方程是否显著。

此外,还可以使用t检验来判断每个自变量的回归系数是否显著。

在进行线性回归分析时,还需要注意一些统计前提条件。

例如,线性回归要求因变量与自变量之间的关系是线性的。

此外,还需要注意是否存在多重共线性,即自变量之间存在高度相关性。

用spss软件进行一元线性回归分析

用spss软件进行一元线性回归分析
由散点图发现,降水量与纬度之间线性相关
step2:做散点图
给散点图添加趋势线的方法: • 双击输出结果中的散点图 • 在“图表编辑器”的菜单中依次点击“元素”—“总计拟合线”,由此“属性”中加载了 “拟合线” • 拟合方法选择“线性”,置信区间可以选95%个体,应用
step3:线性回归分析
从菜单上依次点选:分析—回归—线性 设置:因变量为“年降水量”,自变量为“纬度” “方法”:选择默认的“进入”,即自变量一次全部进入的方法。 “统计量”:
step4:线性回归结果
【Anova】 (analysisofvariance方差分析) • 此表是所用模型的检验结果,一个标准的方差分析表。 • Sig.(significant )值是回归关系的显著性系数,sig.是F值的实际显著性概率即P值。 当sig. <= 0.05的时候,说明回归关系具有统计学意义。如果sig. > 0.05,说明二者 之间用当前模型进行回归没有统计学意义,应该换一个模型来进行回归。 • 由表可见所用的回归模型F统计量值=226.725 ,P值为0.000,因此我们用的这个回 归模型是有统计学意义的,可以继续看下面系数分别检验的结果。 • 由于这里我们所用的回归模型只有一个自变量,因此模型的检验就等价与系数的检验, 在多元回归中这两者是不同的。
• 勾选“模型拟合度”,在结果中会输出“模型汇总”表 • 勾选“估计”,则会输出“系数”表 “绘制”:在这一项设置中也可以做散点图 “保存”: • 注意:在保存中被选中的项目,都将在数据编辑窗口显示。 • 在本例中我们勾选95%的置信区间单值,未标准化残差 “选项”:只需要在选择方法为逐步回归后,才需要打开
利用spss进行一元线性回归
step1:建立数据文件 打开spss的数据编辑器,编辑变量视图

SPSS线性回归分析

SPSS线性回归分析

SPSS分析技术:线性回归分析相关分析可以揭示事物之间共同变化的一致性程度,但它仅仅只是反映出了一种相关关系,并没有揭示出变量之间准确的可以运算的控制关系,也就是函数关系,不能解决针对未来的分析与预测问题。

回归分析就是分析变量之间隐藏的内在规律,并建立变量之间函数变化关系的一种分析方法,回归分析的目标就是建立由一个因变量和若干自变量构成的回归方程式,使变量之间的相互控制关系通过这个方程式描述出来。

回归方程式不仅能够解释现在个案内部隐藏的规律,明确每个自变量对因变量的作用程度。

而且,基于有效的回归方程,还能形成更有意义的数学方面的预测关系。

因此,回归分析是一种分析因素变量对因变量作用强度的归因分析,它还是预测分析的重要基础。

回归分析类型回归分析根据自变量个数,自变量幂次以及变量类型可以分为很多类型,常用的类型有:线性回归;曲线回归;二元Logistic回归技术;线性回归原理回归分析就是建立变量的数学模型,建立起衡量数据联系强度的指标,并通过指标检验其符合的程度。

线性回归分析中,如果仅有一个自变量,可以建立一元线性模型。

如果存在多个自变量,则需要建立多元线性回归模型。

线性回归的过程就是把各个自变量和因变量的个案值带入到回归方程式当中,通过逐步迭代与拟合,最终找出回归方程式中的各个系数,构造出一个能够尽可能体现自变量与因变量关系的函数式。

在一元线性回归中,回归方程的确立就是逐步确定唯一自变量的系数和常数,并使方程能够符合绝大多数个案的取值特点。

在多元线性回归中,除了要确定各个自变量的系数和常数外,还要分析方程内的每个自变量是否是真正必须的,把回归方程中的非必需自变量剔除。

名词解释线性回归方程:一次函数式,用于描述因变量与自变量之间的内在关系。

根据自变量的个数,可以分为一元线性回归方程和多元线性回归方程。

观测值:参与回归分析的因变量的实际取值。

对参与线性回归分析的多个个案来讲,它们在因变量上的取值,就是观测值。

SPSS 线性回归分析

SPSS 线性回归分析
一元线性回归方程的检验和回归系数的检 验是等效的。
整理课件
二、多元线性方程回归系数的检验
26
需要对回归系数是否为零逐一进行检验。
原假设H0:βi=0 ,即:第i个偏回归系数与0无显 著差异
利用t检验统计量(略) 若与t统计量的概率伴随p <a,则拒绝H0
多元线性回归中回归系数的检验与整体回归方程 的检验不能相互替代。
第9章 SPSS的线性回归分析
1
9.1 回归分析概述 9.2 线性回归分析和线性回归模型 9.3 回归方程的统计检验 9.4 多元回归分析中的其他问题 9.5 线性回归分析的基本操作 9.6 线性回归分析的应用举例
整理课件
学习的内容与目标
2
掌握线性回归分析的主要指标,了解最小二乘法 的基本思想
熟练掌握线性回归分析的具体操作,读懂分析结 果;掌握计算结果之间的数量关系,写出回归方 程,对回归方程进行各种统计检验
(ordinary least square estimation ,OLSE)
11
估计思想:
使每个样本点(xi , yi)与回归线上的对应点( xi , E (yi ))在垂直方向上偏差距离的二次方总和达 到最小的原则来估计参数 即,∑( yi - E(yi ))2 =最小
b b b b c ˆ ˆ y ˆ ˆ n
19
用于检验被解释变量与所有解释变量之间的线 性关系是否显著,用线性模型来描述它们之间的
关系是否恰当,即检验模型对总体的近似程度。
➢ SST =回归平方和 SSA + 剩余平方和SSE
➢ 回归方程的显著性检验中采用方差分析的方法,研究在 SST中SSA相对于SSE来说是否占有较大比例。如果比例较 大,表明y与x全体的线性关系明显,则利用线性模型反映 y与x的关系是恰当的;反之,不恰当。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以p=2为例。在建立空调机销售量的预测模型时,用y来表示空调机的销售 量,用x1表示空调机的价格,用x2表示消费者可用于支配的收入。则可 以建立二元线性回归模型: y 0 1 x1 2 x2 E y 0 1 x1 2 x2
假如x2保持不变,为一常数时,则有 Ey =1 x1
ˆ
x
第二节 一元线性回归
一元线性回归是描述两个变量之间统计 关系的最简单的回归模型。
例1 假定一保险公司希望确定居民住宅火灾造成的损失数额与该 住户到最近的消防站的距离之间的相关关系,以便准确地确定出 保险金额,表1列出了15起火灾事故的损失及火灾发生地与最近 的消防站的距离。
距消防站距离 火灾损失 距消防站距离 火灾损失 3.4 26.2 2.6 19.6 1.8 17.8 4.3 31.3 4.6 31.3 2.1 24.0 2.3 23.1 1.1 17.3 3.1 27.5 6.1 43.2 5.5 36.0 4.8 36.4 0.7 14.1 3.8 26.1 3.0 22.3
i
y
y
2 n i 1
i
yi
2
其中 yi y 称为总平方和,简记SST
i 1


2
y
n i 1 n
i
y 称为回归平方和,简记SSR
2

2
yi yi 成为残差平方和,简记SSE
i 1
因而平方和分解式可以简写为SST SSR SSE
1)绘制散点图
50
线 性 相 关
40
30
20
10 0 1 2 3 4 5 6 7
线 性 回 归 模 型
距离
损失
2)相关系数
Correlations 距离 距离 Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N 1 . 15 .961** .000 15 损失 .961** .000 15 1 . 15
如何建立这个公式? 1.绘制散点图
2.建立线性函数:y= α +βx
2.建立实际问题回归模型的过程
一、根据研究的目的,设置指标变量 二、搜集整理统计数据 三、确定理论回归模型的数学形式 四、模型参数的估计 五、模型的检验与修改 六、回归模型的运用
具体(社会经济)问题 建立 实际 问题 回归 模型 过程 设置指标变量 搜集整理数据 构造理论模型 估计模型参数
i
x yi y
i


x
i 1
x

4.919
2
1 1 x xi , y yi n i 1 n i 1 ˆ 回归方程:y 10 .278 4.919 x
n
应用Spss软件进行回归参数的估计
1、执行Analyze →Regression →Linear命令,打开对话 框
此构造F检验统计量:
SSR / k MSR F SSE /(n k 1) MSE
在零假设 H : = 0 成立的情况下, 0 1 2 r F 统计量服从F分布,第一个自由度为1,第二个自由 度为n – 2 ,即 F ~ F(1,n – 2)。
决策的规则是:对于给定的显著水平 α ,若F <= F(1, n – 2)就接受原假设,若F >F(1,n – 2) 就拒绝原假设。
损失
**. Correlation is significant at the 0.01 level (2-tailed).
2.一元线性回归模型的数学形式
y 0 1 x
参数的估计
0 y 1 x 1

x
n i 1 n n
i
x
i
y
i
y
设随机变量y与一般变量x1,x 2, ,x p的线性回归模型为: y 0 1 x1 2 x2 + p xp 其中, 0,1, 2, , p是p+1个未知参数,
0 称为回归常数, 1, 2, , p 称为回归系数。
二、多元线性回归方程的解释
回归参数可以应用普通最小二乘估计。 具体计算可以通过spss软件进行。
a Coefficients
Model 1
Unstandardized Coefficients B Std. Error (Constant) 35316.885 2329.457 空 调价 格 6.696 1.562 家 庭收 入 .097 .102
回归平方和SSR=841.766,残差平方和SSE=69.751 总平方和SST= 841.766+ 69.751=911.517
SSR / k MSR F 841 .766 / 5.365 156 .886 SSE /(n k 1) MSE
SIG=0.000<0.05,拒绝原来的假设,H 0:1 表示所有的回归系数不同时为0,也就是说,
H 0:1 2 = r 0
注:检验是否可以用回归方程方法进行模型估计, 也就是回归方程是否有效?
回归方程的显著性检验——F检验
F检验是根据平方和分解式,直接从回归效 果检验回归方程的显著性。
50
ˆ ˆ ˆ y 0 1 x
40
y
i 1
n
i
ˆ y
2
30
Standardized Coefficients Beta .809 .180
t 15.161 4.287 .952
Sig. .000 .003 .369
a. Dependent ble: 空 调 销 售 量
未标准化回归方程为:
y=35316.885+6.696x1+0.097x2
标准化回归方程为:
总平方和反映因变量y的波动程度或称不确定性,在建
立了y对x的线性回归后,总平方和SST就分解成回归平 方和SSR与残差平方和SSE这两个组成部分,其中SSR 是由回归方程确定的,也就是由自变量x的波动引起的, SSE是不能用自变量解释的波动,是由x之外的未加控 制的因素引起的。这样,总平方和SST中,能够由自变 量解释的部分为SSR,不能由自变量解释的部分为SSE。 这样,回归平方和SSR越大,回归效果就越好,可以据
即1可解释为在消费者收入x2保持不变时, 空调机的价格x1每变动一个单位,对空调 机销售量y的平均影响程度。 同理,假如x2保持不变,为一常数时,则有 Ey = 2 x 2
即 2可解释为在空调机价格x1保持不变时, 消费者收入x 2每变动一个单位,对空调 机销售量y的平均影响程度。
三、 回归参数的估计
空 调销 售量
空 调价 格
家 庭收 入
**. Correlation is significant at the 0.01 level (2-tailed).
4.2回归方程的显著性检验
y 0 1 x1 2 x2 r xr
检验因变量与所有自变量之间的线性关系是否 显著,是否可以用线性模型来描述因变量和自 变量之间的关系。也就是检验所有回归系数是 否同时与零无显著差异。应用F检验法加以检 验。
第十章 线性回归分析过程
第一节 回归分析概述
1.回归方程
回归分析是处理变量x与y之间统计关系的一种统计方法和技术。
如果要由x预测y的值,就要利用x与y的观察值,即样本观测值 (x1,y1),(x2,y2),…,(xn,yn)来建立一个公式,当给
定x值后,就代入此公式中算出一个y值,这个值就称为y的预测值。
b ANOVA
Model 1 Regression Residual Total
Sum of Squares 841.766 69.751 911.517
df
Mean Square 1 841.766 13 5.365 14
F 156.886
Sig. .000a
a. Predictors: (Constant), 距 离 b. Dependent Variable: 损 失
(1)从源文件量清
单中选择一个数值 型变量移入 Dependent框中, 选择一个变量作为 自变量移入 Independent 框中 (2)点击OK
0 10 .278 1 4.919
ˆ y 10 .278 4.919 x
多元线性回归模型
一、多元线性回归模型的一般形式
一、根据研究的目的,设置指标变量
试验指标:火灾损失 试验因素:距离消防站的距离 因此建立两个变量: x——距离消防站的距离 y——火灾损失
二、获取相关数据
三、确定理论回归模型的数学形式
1.判断x变量与y变量之间的关系是否为 线性相关关系? 判断方法:1)散点图 2)相关系数法 2.如果是显著线性相关关系,可以选择一 元回归方程做为理论回归模型。

x
i 1
x

2
1 x n

i 1
1 xi , y n

i 1
n
yi
50
40
(xi,yi)
30
y 0 1 x
20
损失
10 0 1 2 3 4 5 6 7
距离
四、模型参数的估计
0 y 1 x 10 .278 1



x
n i 1 n n
y=0.809x1+0.18x2
四、模型的检验与修改
4.1 4.2 4.3 4.4 4.5 相关系数的显著性检验 F检验 t检验 样本决定系数 残差分析
4.1相关系数的显著性检验
由于一元线性回归方程讨论的是变量x与y之间的线性关 系,所以我们可以用变量x与y之间的相关系数来检验 回归方程的显著性。 当 r = 0 时,说明变量之间不存在线性相关关系; 当 0 < r < 1时,说明变量之间存在一定程度的正相关 关系; 当 -1 < r < 0时,说明变量之间存在一定程度的负相 关关系; 当r =1 或 r = -1 时说明变量之间完全正相关或完全负 相关。
相关文档
最新文档