SPSS多元线性回归分析实例操作步骤

合集下载

SPSS数据分析—多元线性模型

SPSS数据分析—多元线性模型

SPSS数据分析—多元线性模型多元线性模型是一种广泛应用于数据分析领域的统计方法,可以帮助研究者研究多个自变量对一个因变量的影响。

本文档将介绍使用SPSS软件进行多元线性模型分析的基本步骤。

步骤一:准备数据在进行多元线性模型分析之前,首先需要准备好所需的数据。

确保数据集中包含了自变量和因变量,并且数据是完整和准确的。

可以使用SPSS软件打开数据文件。

步骤二:选择分析方法在SPSS软件中,选择“Analyze”菜单,然后选择“Regression”子菜单。

在弹出的窗口中,选择“Linear”选项,然后将所需的自变量和因变量添加到相应的列表中。

步骤三:设置模型选项在设置模型选项时,可以选择是否需要常数项、是否需要标准化因子等。

根据研究的需求和背景,进行相应的设置。

步骤四:运行分析设置好模型选项后,点击“OK”按钮,SPSS软件会开始进行多元线性模型分析。

请耐心等待分析结果的生成。

步骤五:解读结果分析完成后,SPSS软件会生成分析结果的汇总表和详细报告。

通过查看汇总表,可以了解自变量和因变量之间的相关性以及回归系数的显著性。

详细报告将提供更深入的分析结果和解读。

步骤六:结果验证在解读结果之前,需要验证多元线性模型是否符合分析的假设。

可以通过检查残差的正态分布、方差齐性和线性关系来验证模型的适应度。

结论通过SPSS软件进行多元线性模型分析可以帮助研究者了解自变量对因变量的影响,并且提供了统计上的支持。

然而,在进行分析和解读结果时,需要注意模型的假设和验证步骤,以确保分析结果的有效性。

以上是关于SPSS数据分析中多元线性模型的简要介绍和步骤。

希望本文档对您的研究能有所帮助。

SPSS多元线性回归分析报告实例操作步骤

SPSS多元线性回归分析报告实例操作步骤

SPSS 统计分析多元线性回归分析方法操作与分析实验目的:引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。

实验变量:以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。

实验方法:多元线性回归分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2. Opening excel data source——OK.第二步:1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method 选择Stepwise.进入如下界面:2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue.3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals(残差)选项组中的Unstandardized;点击Continue.5.点击右侧Options,默认,点击Continue.6.返回主对话框,单击OK.输出结果分析:1.引入/剔除变量表Variables Entered/Removed aModel Variables Entered Variables Removed Method1 城市人口密度(人/平方公里) . Stepwise (Criteria:Probability-of-F-to-enter<= .050,Probability-of-F-to-remove >=.100).2 城市居民人均可支配收入(元) . Stepwise (Criteria:Probability-of-F-to-enter<= .050,Probability-of-F-to-remove >=.100).a. Dependent Variable: 商品房平均售价(元/平方米)该表显示模型最先引入变量城市人口密度(人/平方公里),第二个引入模型的是变量城市居民人均可支配收入(元),没有变量被剔除。

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤多元线性回归是一种常用的统计分析方法,用于探究多个自变量对因变量的影响程度。

SPSS(Statistical Package for the Social Sciences)是一款常用的统计软件,可以进行多元线性回归分析,并提供了简便易用的操作界面。

本文将介绍SPSS中进行多元线性回归分析的实例操作步骤,帮助您快速掌握该分析方法的使用。

步骤一:准备数据在进行多元线性回归分析之前,首先需要准备好相关的数据。

数据应包含一个或多个自变量和一个因变量,以便进行回归分析。

数据可以来自实验、调查或其他来源,但应确保数据的质量和可靠性。

步骤二:导入数据在SPSS软件中,打开或创建一个新的数据集,然后将准备好的数据导入到数据集中。

可以通过导入Excel、CSV等格式的文件或手动输入数据的方式进行数据导入。

确保数据被正确地导入到SPSS中,并正确地显示在数据集的各个变量列中。

步骤三:进行多元线性回归分析在SPSS软件中,通过依次点击"分析"-"回归"-"线性",打开线性回归分析对话框。

在对话框中,将因变量和自变量移入相应的输入框中。

可以使用鼠标拖拽或双击变量名称来快速进行变量的移动。

步骤四:设置分析选项在线性回归分析对话框中,可以设置一些分析选项,以满足具体的分析需求。

例如,可以选择是否计算标准化回归权重、残差和预测值,并选择是否进行方差分析和共线性统计检验等。

根据需要,适当调整这些选项。

步骤五:获取多元线性回归分析结果点击对话框中的"确定"按钮后,SPSS将自动进行多元线性回归分析,并生成相应的分析结果。

结果包括回归系数、显著性检验、残差统计和模型拟合度等信息,这些信息可以帮助我们理解自变量对因变量的贡献情况和模型的拟合程度。

步骤六:解读多元线性回归分析结果在获取多元线性回归分析结果之后,需要对结果进行解读,以得出准确的结论。

SPSS多元线性回归分析报告实例操作步骤

SPSS多元线性回归分析报告实例操作步骤

SPSS 统计分析多元线性回归分析方法操作与分析实验目的:引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。

实验变量:以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。

实验方法:多元线性回归分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2. Opening excel data source——OK.第二步:1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method选择Stepwise.进入如下界面:2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue.3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals(残差)选项组中的Unstandardized;点击Continue.5.点击右侧Options,默认,点击Continue.6.返回主对话框,单击OK.输出结果分析: 1.引入/剔除变量表该表显示模型最先引入变量城市人口密度 (人/平方公里),第二个引入模型的是变量城市居民人均可支配收入(元),没有变量被剔除。

SPSS多元线性回归分析报告实例操作步骤

SPSS多元线性回归分析报告实例操作步骤

SPSS 统计分析多元线性回归分析方法操作与分析实验目的:引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。

实验变量:以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。

实验方法:多元线性回归分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2. Opening excel data source——OK.第二步:1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent (因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method选择Stepwise.进入如下界面:2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue.3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals(残差)选项组中的Unstandardized;点击Continue.5.点击右侧Options,默认,点击Continue.6.返回主对话框,单击OK.输出结果分析: 1.引入/剔除变量表该表显示模型最先引入变量城市人口密度 (人/平方公里),第二个引入模型的是变量城市居民人均可支配收入(元),没有变量被剔除。

线性回归分析的SPSS操作(多元线性回归)

线性回归分析的SPSS操作(多元线性回归)

线性回归分析的SPSS操作本节内容主要介绍如何确定并建立线性回归方程。

包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。

为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。

也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。

另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。

一、一元线性回归分析1.数据以本章第三节例3的数据为例,简单介绍利用SPSS如何进行一元线性回归分析。

数据编辑窗口显示数据输入格式如下图7-8(文件7-6-1.sav):图7-8:回归分析数据输入2.用SPSS进行回归分析,实例操作如下:2.1.回归方程的建立与检验(1)操作①单击主菜单Analyze / Regression / Linear…,进入设置对话框如图7-9所示。

从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x选入到自变量(Independent)框中。

在方法即Method一项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。

所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。

具体如下图所示:图7-9 线性回归分析主对话框②请单击Statistics…按钮,可以选择需要输出的一些统计量。

如Regression Coefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、T值及显著性水平等。

Model fit项可输出相关系数R,测定系数R2,调整系数、估计标准误及方差分析表。

上述两项为默认选项,请注意保持选中。

设置如图7-10所示。

设置完成后点击Continue返回主对话框。

图7-10:线性回归分析的Statistics选项图7-11:线性回归分析的Options选项回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。

SPSS多元线性回归分析教程

SPSS多元线性回归分析教程
中包含的自变量列表 同时显示进入方法。如本例中方程中的自变量为x,方法为
Enter。
Variables Entered/Removed
ModelVariables EnteredVariables RemovedMethod
1X.Enter
a All requested variables entered.
合判据的自变量为止。
·Stepwise选项,逐步进入法,是向前选择法和向后剔除法的结合。根据在Option对话框中所设
定的判据,首先根据方差分析结果选择符合判据的自变量且对因变量贡献最大的进入回归方程。
根据向前选择法则进入自变量;然后根据向后剔除法,将模型中F值最小的且符合剔除判据的变
为120 的被试,均值95%的预测区间为:(76.42,84.56); 个体预测95%的预测区间为:(66.68,
94.30)。
二、多元线性回归
1.数据
以本章第四节例4为例,简单说明多元线性回归方程的建立与检验。数据输入如图7-14(文
件7-6-2.sav):
1995.791,残差平方和为710.209,总平方
和为2706.000,对应的F统计量的值为50.583,显著性水平小于0.05,可以认为所建立的回归方
程有效。

④④
④回归系数表
回归系数表回归系数表
回归系数表 列出了常数及非标准化回归系数的值及标准化的回归系数,同时对其进行显
Method后面的下拉框,在Method框中选择一种回归分析的方法。SPSS提供下列几种变量进入
回归方程的方法:
·Enter选项,强行进入法,即所选择的自变量全部进入回归模型,该选项是默认方式。

wqeAAASPSS多元线性回归分析报告实例操作步骤

wqeAAASPSS多元线性回归分析报告实例操作步骤

SPSS 统计分析多元线性回归分析方法操作与分析实验目的:引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。

实验变量:以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。

实验方法:多元线性回归分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2. Opening excel data source——OK.第二步:1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method选择Stepwise.进入如下界面:2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue.3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals(残差)选项组中的Unstandardized;点击Continue.5.点击右侧Options,默认,点击Continue.6.返回主对话框,单击OK.输出结果分析: 1.引入/剔除变量表该表显示模型最先引入变量城市人口密度 (人/平方公里),第二个引入模型的是变量城市居民人均可支配收入(元),没有变量被剔除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPSS 统计分析
多元线性回归分析方法操作与分析
实验目的:
引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。

实验变量:
以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。

实验方法:多元线性回归分析法
软件:spss19.0
操作过程:
第一步:导入Excel数据文件
1.open data document——open data——open;
2. Opening excel data source——OK.
第二步:
1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method 选择Stepwise.
进入如下界面:
2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue.
3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.
4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals(残差)选项组中的Unstandardized;点击Continue.
5.点击右侧Options,默认,点击Continue.
6.返回主对话框,单击OK.
输出结果分析:
1.引入/剔除变量表
Variables Entered/Removed a
Model Variables Entered Variables Removed Method
1 城市人口密度(人/平方公里) . Stepwise (Criteria:
Probability-of-F-to-enter
<= .050,
Probability-of-F-to-remove >=
.100).
2 城市居民人均可支配收入(元) . Stepwise (Criteria:
Probability-of-F-to-enter
<= .050,
Probability-of-F-to-remove >=
.100).
a. Dependent Variable: 商品房平均售价(元/平方米)
该表显示模型最先引入变量城市人口密度(人/平方公里),第二个引入模型的是变量城市居民人均可支配收入(元),没有变量被剔除。

2.模型汇总
该表显示模型的拟合情况。

从表中可以看出,模型的复相关系数(R)为1.000,判定系数(R Square)为1.000,调整判定系数(Adjusted R Square)为1.000,估计值的标准误差(Std. Error of the Estimate)为28.351,Durbin-Watson检验统计量为2.845,当DW≈2时说明残差独立。

3.方差分析表
ANOVA c
Model Sum of Squares df Mean Square F Sig.
1 Regression 38305583.506 1 38305583.506 30938.620 .000a
Residual 11143.039 9 1238.115
Total 38316726.545 10
2 Regression 38310296.528 2 19155148.264 23832.156 .000b
Residual 6430.018 8 803.752
Total 38316726.545 10
a. Predictors: (Constant), 城市人口密度(人/平方公里)
b. Predictors: (Constant), 城市人口密度(人/平方公里), 城市居民人均可支配收入(元)
c. Dependent Variable: 商品房平均售价(元/平方米)
该表为多元线性回归的系数列表。

表中显示了模型的偏回归系数(B)、标准误差(Std. Error)、常数(Constant)、标准化偏回归系数(Beta)、回归系数检验的t统计量观测值和相应的概率p值(Sig.)、共线性统计量显示了变量的容差(Tolerance)和方差膨胀因子(VIF)。

令x1表示城市人口密度(人/平方公里),x2表示城市居民人均可支配收入(元),根据模型建立的多元多元线性回归方程为:
y=1555.506+1.020 x1 +0.017x2
方程中的常数项为1555.506,偏回归系数b1为1.020,b2为0.017,经T检验,b1和b2的概率p值分别为0.000和0.042,按照给定的显著性水平0.10的情形下,均有显著性意义。

根据容差发现,自变量间共线性问题严重;VIF值为20.126,也可以说明共线性较明显。

这可能是由于样本容量太小造成的。

5.模型外的变量
6. 共线性诊断
该表是多重共线性检验的特征值以及条件指数。

对于第二个模型,最大特征值为2.891,其余依次快速减小。

第三列的各个条件指数,可以看出有多重共线性。

7. 残差统计量
该表为回归模型的残差统计量,标准化残差(Std. Residual )的绝对值最大为1.659,没有超过默认值3,不能发现奇异值。

Collinearity Diagnostics a
Model Dimension Eigenvalue
Condition Index
Variance Proportions
(Constant)
城市人口密度 (人/平方公里)
城市居民人均可
支配收入(元)
1
1 1.898 1.000 .05 .05 2
.102 4.319 .95 .95
2
1 2.891 1.000 .00 .00 .00
2 .106 5.21
3 .21 .03 .00 3
.003
30.736
.78
.97
1.00
a. Dependent Variable: 商品房平均售价(元/平方米)
Residuals Statistics a
Minimum
Maximum
Mean Std. Deviation
N
Predicted Value
3394.71
8382.83
5465.64
1957.302
11
Residual -47.035 40.271 .000 25.357 11
Std. Predicted Value -1.058 1.490 .000 1.000 11
Std. Residual -1.659 1.420 .000 .894 11
a. Dependent Variable: 商品房平均售价(元/平方米)
该图为回归标准化残差的直方图,正态曲线也被显示在直方图上,用以判断标准化残差是否呈正态分布。

但是由于样本数只有11个,所以只能大概判断其呈正态分布。

9.回归标准化的正态P-P图
10.因变量与回归标准化预测值的散点图
完美格式整理版
附件:
原始数据:
自变量散点图:
由散点图可以看出,可进入分析的变量为城市人口密度、城市居民人均可支配收入。

学习好帮手。

相关文档
最新文档