第9章 spss的相关分析和线性回归分析
spss统计分析和应用教程_第9章_结构方程模型

模型识别
确定所设定的模型是否能够对其估计求解.,如果模型是可 识別的,表示理论上模型中的每一个参数都可以估计出唯一的一 个估计值.
模型识别结果包括不能识别<Under-Identified>、适度识别 <just-Identified>及过度识别<Over-Identified>三种.
❖ 模型识别
实验一 结构方程模型
❖ 实验目的
明确结构方程分析有关的概念 熟练掌握结构方程模型构建的过程 能用SPSS软件中的AMOS插件进行结构方程模拟及检验 培养运用结构方程分析方法解决身边实际问题的能力
❖ 准备知识
结构方程模型中常用概念
测量变量:也叫观察变量或显示变量,是直接可以测量的指标. 潜变量:其测量是通过一个或几个可观察指标来间接完成的. 外生潜在变量:他们的影响因素处于模型之外,也就是常说的自变量. 内生潜在变量:由模型内变量作用所影响的变量〔因变量.
〔3可以在一个模型中同时处理因素的测量和因素之间的结构 传统的统计方法中,因素自身的测量和因素之间的结构关系往
往是分开处理的——对因素先进行测量,评估概念的信度与效度,通 过评估标准之后,才将测量资料用于进一步的分析.
在结构方程模型中,则允许将因素测量与因素之间的结构关系纳 入同一模型中同时予以拟合,这不仅可以检验因素测量的信度和效 度,还可以将测量信度的概念整合到路经分析等统计推理中.
❖ 请对大学生闲暇时间消费与满意度之间构 建结构方程模型.
❖ 实验步骤
❖ 结构方程分析由SPSS17.0软件中的 AMOS插件完成.下面以案例说明判别分析 的基本操作步骤.
❖ 实验步骤
〔1准备工作.在SPSSl7.0软件中安装AMOS插件后,先 调用SPSS17.0软件,打开数据文件9-1.sav,通过选择" 文件—打开"命令将数据调入SPSSl7.0的工作文件窗口.
SPSS的相关分析和线性回归分析

• 如果两变量的正相关性较强,它们秩的变化具有同步性,于
是
n
Di2
n
(Ui
Vi)2的值较小,r趋向于1;
• i1
i1
如果两变量的正相关性较弱,它们秩的变化不具有同步性,
于是
n
n
Di2 (Ui Vi)2
的值较大,r趋向于0;
• i1
i1
在小样本下,在零假设成立时, Spearman等级相关系数
用最小二乘法求解方程中的两个参数,得到:
1
(xi x)(yi y) (xi x)2
0 ybx
多元线性回归模型
多元线性回归方程: y=β0+β1x1+β2x2+.+βkxk
β1、β2、βk为偏回归系数。 β1表示在其他自变量保持不变的情况下,自变量x1变动
一个单位所引起的因变量y的平均变动。
析功能子命令Bivariate过程、Partial过程、 Distances过程,分别对应着相关分析、偏相关分析和相 似性测度(距离)的三个spss过程。
Bivariate过程用于进行两个或多个变量间的相关分 析,如为多个变量,给出两两相关的分析结果。
Partial过程,当进行相关分析的两个变量的取值都受 到其他变量的影响时,就可以利用偏相关分析对其他变量 进行控制,输出控制其他变量影响后的偏相关系数。
• 回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释变量( 因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
8.4.2 线性回归模型 一元线性回归模型的数学模型:
y0 1x
其中x为自变量;y为因变量; 0 为截距,即
常量; 1 为回归系数,表明自变量对因变量的影
第9章SPSS线性回归分析

第9章SPSS线性回归分析1.线性回归分析概述线性回归分析是一种广泛应用于统计学和数据分析领域的方法,它用于研究自变量与因变量之间的线性关系。
线性回归模型基于一条直线的假设,通过最小化残差平方和来估计各个回归系数,并利用这些系数进行预测和推断。
SPSS是一款强大的统计分析软件,提供了丰富的功能和工具,使得线性回归分析变得更加简单和高效。
2.数据准备在进行线性回归分析之前,需要准备好相关的数据。
SPSS可以导入各种类型的数据文件,包括Excel、CSV等格式。
在导入数据之后,可以对数据进行预处理,如缺失值处理、异常值处理等。
3.构建线性回归模型在SPSS中,构建线性回归模型非常简单。
首先选择“回归”菜单下的“线性”选项,然后将所需要的自变量和因变量选择到相应的框中。
SPSS还提供了多种方法来选择自变量,如逐步回归、逐步回归法等。
选择好自变量之后,点击“确定”按钮,即可得到回归模型结果。
4.分析回归模型在得到回归模型结果之后,需要对模型进行分析。
SPSS提供了丰富的结果输出,包括参数估计值、显著性检验、模型拟合度等。
需要注意的是,线性回归模型的可靠性需要通过一系列统计检验进行验证,如F统计量、t统计量、残差分析等。
5.模型诊断6.预测与推断线性回归模型可以用于预测和推断,SPSS也提供了相应的功能。
在SPSS中可以输入自变量的数值,从而得到相应的因变量预测值。
此外,SPSS还可以进行参数估计的推断,包括置信区间和假设检验等。
7.扩展与应用除了简单的线性回归模型,SPSS还支持复杂的线性回归模型,如多重回归分析、多元回归分析等。
此外,SPSS还可以进行模型的改进和优化,如加入交互项、非线性变换等。
这些扩展功能在实际应用中非常有用,可以提高模型的解释力和预测能力。
总结:本章介绍了SPSS中的线性回归分析方法,包括模型构建、结果分析、模型诊断、预测与推断等。
SPSS提供了丰富的功能和工具,使得线性回归分析变得更加简单和高效。
第九章 SPSS的线性回归分析

第九章 SPSS的线性回归分析线性回归分析是一种常用的统计方法,用于探索自变量与因变量之间的线性关系。
在SPSS中,进行线性回归分析可以帮助研究者了解变量之间的关系,并预测因变量的数值。
本文将介绍如何在SPSS中进行线性回归分析,并解释如何解释结果。
一、数据准备。
在进行线性回归分析之前,首先需要准备好数据。
在SPSS中,数据通常以数据集的形式存在,可以通过导入外部文件或手动输入数据来创建数据集。
确保数据集中包含自变量和因变量的数值,并且数据的质量良好,没有缺失值或异常值。
二、进行线性回归分析。
在SPSS中进行线性回归分析非常简单。
首先打开SPSS软件,然后打开已经准备好的数据集。
接下来,依次点击“分析”-“回归”-“线性”,将自变量和因变量添加到相应的框中。
在“统计”选项中,可以选择输出各种统计信息,如残差分析、离群值检测等。
点击“确定”按钮后,SPSS会自动进行线性回归分析,并生成相应的结果报告。
三、解释结果。
线性回归分析的结果报告包括了各种统计信息和图表,需要仔细解释和分析。
以下是一些常见的统计信息和图表:1. 相关系数,线性回归分析的结果报告中通常包括了自变量和因变量之间的相关系数,用来衡量两个变量之间的线性关系强度。
相关系数的取值范围为-1到1,接近1表示两个变量呈正相关,接近-1表示呈负相关,接近0表示无相关。
2. 回归系数,回归系数用来衡量自变量对因变量的影响程度。
回归系数的符号表示自变量对因变量的影响方向,系数的大小表示影响程度。
在结果报告中,通常包括了回归系数的估计值、标准误、t值和显著性水平。
3. 残差分析,残差是因变量的观测值与回归方程预测值之间的差异,残差分析可以用来检验回归模型的拟合程度。
在结果报告中,通常包括了残差的分布图和正态概率图,用来检验残差是否符合正态分布。
4. 变量间关系图,在SPSS中,可以生成自变量和因变量之间的散点图和回归直线图,用来直观展示变量之间的线性关系。
相关分析和回归分析SPSS实现

相关分析和回归分析SPSS实现SPSS(统计包统计分析软件)是一种广泛使用的数据分析工具,在相关分析和回归分析方面具有强大的功能。
本文将介绍如何使用SPSS进行相关分析和回归分析。
相关分析(Correlation Analysis)用于探索两个或多个变量之间的关系。
在SPSS中,可以通过如下步骤进行相关分析:1.打开SPSS软件并导入数据集。
2.选择“分析”菜单,然后选择“相关”子菜单。
3.在“相关”对话框中,选择将要分析的变量,然后单击“箭头”将其添加到“变量”框中。
4.选择相关系数的计算方法(如皮尔逊相关系数、斯皮尔曼等级相关系数)。
5.单击“确定”按钮,SPSS将计算相关系数并将结果显示在输出窗口中。
回归分析(Regression Analysis)用于建立一个预测模型,来预测因变量在自变量影响下的变化。
在SPSS中,可以通过如下步骤进行回归分析:1.打开SPSS软件并导入数据集。
2.选择“分析”菜单,然后选择“回归”子菜单。
3.在“回归”对话框中,选择要分析的因变量和自变量,然后单击“箭头”将其添加到“因变量”和“自变量”框中。
4.选择回归模型的方法(如线性回归、多项式回归等)。
5.单击“统计”按钮,选择要计算的统计量(如参数估计、拟合优度等)。
6.单击“确定”按钮,SPSS将计算回归模型并将结果显示在输出窗口中。
在分析结果中,相关分析会显示相关系数的数值和统计显著性水平,以评估变量之间的关系强度和统计显著性。
回归分析会显示回归系数的数值和显著性水平,以评估自变量对因变量的影响。
值得注意的是,相关分析和回归分析在使用前需要考虑数据的要求和前提条件。
例如,相关分析要求变量间的关系是线性的,回归分析要求自变量与因变量之间存在一定的关联关系。
总结起来,SPSS提供了强大的功能和工具,便于进行相关分析和回归分析。
通过上述步骤,用户可以轻松地完成数据分析和结果呈现。
然而,分析结果的解释和应用需要结合具体的研究背景和目的进行综合考虑。
SPSS的线性回归分析分析

SPSS的线性回归分析分析SPSS是一款广泛用于统计分析的软件,其中包括了许多功能强大的工具。
其中之一就是线性回归分析,它是一种常用的统计方法,用于研究一个或多个自变量对一个因变量的影响程度和方向。
线性回归分析是一种用于解释因变量与自变量之间关系的统计技术。
它主要基于最小二乘法来评估自变量与因变量之间的关系,并估计出最合适的回归系数。
在SPSS中,线性回归分析可以通过几个简单的步骤来完成。
首先,需要加载数据集。
可以选择已有的数据集,也可以导入新的数据。
在SPSS的数据视图中,可以看到所有变量的列表。
接下来,选择“回归”选项。
在“分析”菜单下,选择“回归”子菜单中的“线性”。
在弹出的对话框中,将因变量拖放到“因变量”框中。
然后,将自变量拖放到“独立变量”框中。
可以选择一个或多个自变量。
在“统计”选项中,可以选择输出哪些统计结果。
常见的选项包括回归系数、R方、调整R方、标准误差等。
在“图形”选项中,可以选择是否绘制残差图、分布图等。
点击“确定”后,SPSS将生成线性回归分析的结果。
线性回归结果包括多个重要指标,其中最重要的是回归系数和R方。
回归系数用于衡量自变量对因变量的影响程度和方向,其值表示每个自变量单位变化对因变量的估计影响量。
R方则反映了自变量对因变量变异的解释程度,其值介于0和1之间,越接近1表示自变量对因变量的解释程度越高。
除了回归系数和R方外,还有其他一些统计指标可以用于判断模型质量。
例如,标准误差可以用来衡量回归方程的精确度。
调整R方可以解决R方对自变量数量的偏向问题。
此外,SPSS还提供了多种工具来检验回归方程的显著性。
例如,可以通过F检验来判断整个回归方程是否显著。
此外,还可以使用t检验来判断每个自变量的回归系数是否显著。
在进行线性回归分析时,还需要注意一些统计前提条件。
例如,线性回归要求因变量与自变量之间的关系是线性的。
此外,还需要注意是否存在多重共线性,即自变量之间存在高度相关性。
《统计分析和SPSS的应用(第五版)》课后练习答案与解析(第9章)

《统计分析与SPSS的应用(第五版)》(薛薇)课后练习答案第9章SPSS的线性回归分析1、利用第2章第9题的数据,任意选择两门课程成绩作为解释变量和被解释变量,利用SPSS 提供的绘制散点图功能进行一元线性回归分析。
请绘制全部样本以及不同性别下两门课程成绩的散点图,并在图上绘制三条回归直线,其中,第一条针对全体样本,第二和第三条分别针对男生样本和女生样本,并对各回归直线的拟和效果进行评价。
选择fore和phy两门成绩体系散点图步骤:图形旧对话框散点图简单散点图定义将fore导入Y轴,将phy导入X轴,将sex导入设置标记确定。
接下来在SPSS输出查看器中,双击上图,打开图表编辑在图表编辑器中,选择“元素”菜单选择总计拟合线选择线性应用再选择元素菜单点击子组拟合线选择线性应用。
分析:如上图所示,通过散点图,被解释变量y(即:fore)与解释变量phy有一定的线性关系。
但回归直线的拟合效果都不是很好。
2、请说明线性回归分析与相关分析的关系是怎样的?相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。
相关分析需要依靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变量之间数量变化的相关程度。
只有当变量之间存在高度相关时,进行回归分析寻求其相关的具体形式才有意义。
如果在没有对变量之间是否相关以及相关方向和程度做出正确判断之前,就进行回归分析,很容易造成“虚假回归”。
与此同时,相关分析只研究变量之间相关的方向和程度,不能推断变量之间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况,因此,在具体应用过程中,只有把相关分析和回归分析结合起来,才能达到研究和分析的目的。
线性回归分析是相关性回归分析的一种,研究的是一个变量的增加或减少会不会引起另一个变量的增加或减少。
3、请说明为什么需要对线性回归方程进行统计检验?一般需要对哪些方面进行检验?检验其可信程度并找出哪些变量的影响显著、哪些不显著。
《统计分析与SPSS的应用(第五版)》课后练习答案(第9章)

《统计分析与SPSS的应用(第五版)》(薛薇)课后练习答案第9章SPSS的线性回归分析1、利用第2章第9题的数据,任意选择两门课程成绩作为解释变量和被解释变量,利用SPSS 提供的绘制散点图功能进行一元线性回归分析。
请绘制全部样本以及不同性别下两门课程成绩的散点图,并在图上绘制三条回归直线,其中,第一条针对全体样本,第二和第三条分别针对男生样本和女生样本,并对各回归直线的拟和效果进行评价。
选择fore和phy两门成绩体系散点图步骤:图形→旧对话框→散点图→简单散点图→定义→将fore导入Y轴,将phy导入X轴,将sex导入设置标记→确定。
接下来在SPSS输出查看器中,双击上图,打开图表编辑在图表编辑器中,选择“元素”菜单→选择总计拟合线→选择线性→应用→再选择元素菜单→点击子组拟合线→选择线性→应用。
分析:如上图所示,通过散点图,被解释变量y(即:fore)与解释变量phy有一定的线性关系。
但回归直线的拟合效果都不是很好。
2、请说明线性回归分析与相关分析的关系是怎样的?相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。
相关分析需要依靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变量之间数量变化的相关程度。
只有当变量之间存在高度相关时,进行回归分析寻求其相关的具体形式才有意义。
如果在没有对变量之间是否相关以及相关方向和程度做出正确判断之前,就进行回归分析,很容易造成“虚假回归”。
与此同时,相关分析只研究变量之间相关的方向和程度,不能推断变量之间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况,因此,在具体应用过程中,只有把相关分析和回归分析结合起来,才能达到研究和分析的目的。
线性回归分析是相关性回归分析的一种,研究的是一个变量的增加或减少会不会引起另一个变量的增加或减少。
3、请说明为什么需要对线性回归方程进行统计检验?一般需要对哪些方面进行检验?检验其可信程度并找出哪些变量的影响显著、哪些不显著。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(a)
不相关
y
正线性相关
y -1 0 1 2
(b)
-1
0
1
2
-2
-3
-2
-1 x
0
1
2
-2
-2
-1 x
0
1
2
负线性相关
2 1 y 0
(c)
相关但非线性相关
(d)
y 4 0 2
-3
-2
-1
-2
-1
0 x
1
2
6
8
-2
-1
0 x
1
2
3
但如何在数量上描述相关呢?下面 引进几种对相关程度的度量。 Pearson相关系数 Spearman 秩相关系数 Kendall t 相关系数
1、直线相关:两变量呈线性共同增大,或一增一减。 2、曲线相关:两变量存在相关趋势,但非线性。此时若 进行直线相关,有可能出现无相关性的结论,曲线相 关分析是一般都先将变量进行变量变换,以将趋势变 换为直线分析,或者采用曲线回归方法来分析。 相关的方向 依照两种变量变动的方向分,有正相关、负相关 和无相关(零相关)。
简单相关分析
实例:有50个从初中升到高中的学生。有 他们在初三和高一的各科平均成绩(数据 在highschool.sav)。要求比较初三的成 绩是否和高中的成绩相关。 练习:利用数据SY-8.sav,对城镇居民消 费额与人均国内生产总值两变量进行相关 分析。
分析结果
从运行结果看,城镇居民消费额与人均国 内生产总值有很强的线形相关关系.
S1
截距=26.444; 斜率=0.651
40
40
50
60
70
80
90
y 26.44 0.65 x
100
50
60
70 J3
80
90
100
这个直线实际上是对所假设的下面线 性回归模型的估计(这里的 是随机 误差):
简单相关分析菜单
画散点图
Graphs→Scatter 选择散点图的类型 根据所选择的散点图类型,单击Define对散点图作具体定 义。
计算相关系数
Analyze→Correlate→Bivariate 选择参加计算的变量到Variable中 在Correlation Coefficents框中选择计算哪种相关系数 在Test of Significance框中选择输出单尾还是双尾p值 选择Flag significance correlations输出星号标记 在Options中选择其他描述统计量
对初三和高一的各科平均成绩这两个变量的数据 进行线性回归,就是要找到一条直线来适当地代表 图中的那些点的趋势。
100 S1 40
40
50
60
70
80
90
50
60
70 J3
80
90
100
首先需要确定选择这条直线的标准。这里介绍 最小二乘回归(least squares regression)。 古汉语“二乘”是平方的意思。 这就是寻找一条直线,使得所有点到该直线的 竖直距离的平方和最小。用数据寻找一条直线 的过程也叫做拟合(fit)一条直线。 根据计算,找到初三成绩和高一成绩的回归直 线 。 计 算 机 输 出 给 出 来 截 距 ( Constant ) 26.444和斜率(变量j3的系数) 0.651。
Pearson 相 关 系 数 ( Pearson’s correlation coefficient ) 又 叫 相关系数或线性相关系数。它一般 用字母r表示。
r
( x x )( y y ) (x x ) (y y )
2
2
它是由两个变量的样本取值得到,这是一个 描述线性相关强度的量,取值于-1和1之间。当 两个变量有很强的线性相关时,相关系数接近 于1(正相关)或-1(负相关),而当两个变量 不那么线性相关时,相关系数就接近0。
i 1 2
n
d Ri , Si 为两变量各自对应的秩, i 为对应的秩之差。
Spearman相关系数也是取值在-1和1之 间,也有类似的解释。
Spearman 秩相关系数适用范围:
Spearman相关系数更多用于测量两个有序 分类变量之间的相关程度。对于适合 Pearson相关系数的数据亦可计算Spearman 相关系数,但统计效能要低一些。通过它 也可以进行不依赖于总体分布的非参数检 验。
相关分析基本步骤:
1.绘制散点图 2.计算相关系数 3.进行相关果两个定量变量没有关系,就 谈不上建立模型或进行回归。但 怎样才能发现两个变量有没有关 系呢? 最简单的直观办法就是画出它们 的散点图。下面是四组数据的散 点图;每一组数据表示了两个变 量x和y的样本。
Pearson相关系数的局限性:
①要求变量服从正态分布 ②只能度量线性相关性,对于曲线相关等更为复杂的 情形,该相关系数的大小并不能代表相关性的强弱。 如果Pearson系数很低,只能说明两变量之间没有线 性关系,并不能说明两者之间没有相关关系。也就是 说,该指标只能度量线性相关性,而不是相关性。 (线性相关性隐含着相关性,而相关性并不隐含着线 性相关性) 另外:样本中存在的极端值对Pearson相关系数的影 响极大,因此要慎重考虑和处理,必要时可以对其进 行剔出,或者加以变量变换,以避免因为一两个数值 导致出现错误的结论。
第9章 spss的相关分析和线 性回归分析
相关分析和回归分析是统计分析方法中最重要内容 之一,是多元统计分析方法的基础。相关分析和回 归分析主要用于研究和分析变量之间的相关关系, 在变量之间寻求合适的函数关系式,特别是线性表 达式。 本章主要内容: 对变量之间的相关关系进行分析(Correlate)。 其中包括简单相关分析(Bivariate)和偏相关分 析(Partial)。 建立因变量和自变量之间回归模型(Regression), 其中包括线性回归分析(Linear)和曲线估计 (Curve Estimation)。 数据条件:参与分析的变量数据是数值型变量或 有序变量。
本章内容
9.1 9.2 9.3 9.4 9.5 相关分析 偏相关分析 线性回归分析 曲线估计 二项Logistic回归
线性回归分析
线性回归是统计分析方法中最常用的方法之一。 如果所研究的现象有若干个影响因素,且这些因 素对现象的综合影响是线性的,则可以使用线性 回归的方法建立现象 (因变量)与影响因素(自 变量)之间的线性函数关系式。由于多元线性回 归的计算量比较大,所以有必要应用统计分析软 件实现。这一节将专门介绍SPSS软件的线性回归 分析的操作方法,包括求回归系数,给出回归模 型的各项检验统计量值及相应的概率,对输出结 果的分析等相关内容。
Kendall τ 相关系数(Kendall’s τ )
Kendall’s τ统计量的数学定义为:
2 t (U V ) n(n 1)
U、V分别为协同和 不协同的数目
大样本下采用的检验统计量为:
9n(n 1) Z t 2(2n 5)
Z统计量近似服从标准正态分布
人们可能会问,上面的三种对相关 的度量都是在其值接近1或-1时相关, 而接近于0时不相关。到底如何才能 够称为“接近”呢? 这很难一概而论。但在计算机输出 中都有和这些相关度量相应的检验 和 p-值;因此可以根据这些结果来 判断是否相关
线性回归模型假设条件与模型的各种检验
1、线性回归的假设理论 (1)正态性假设:即所研究的变量均服从正态分布; (2)等方差假设:即各变量总体的方差是相等的; (3)独立性假设, 即各变量之间是相互独立的; (4)残差项无自相关性,即误差项之间互不相关, Cov(i,j)= 0 2、线性回归模型的检验项目 (1)回归系数的检验(t检验)。 (2)回归方程的检验(F检验)。 (3)拟合程度判定(可决系数R2 )。 (4)D.W检验(残差项是否自相关)。 (5)共线性检验(多元线性回归)。 (6)残差图示分析(判断异方差性和残差序列自相关)。
2 1 2 1
rxy . z 是控制了z的条件下,x、y之间的偏相关系 数。 rxy 是变量x、y间的简单相关系数。
偏相关系数的检验
检验的零假设:两个变量间的偏相关系数为0。 使用t检验,公式如下:
n k 2 r t (1 r 2 )
r是相应的偏相关系数。n是观测个数,k是控 制变量的数目,n-k-2是自由度。 在SPSS的偏相关分析过程的输出中只给出偏 相关系数和假设成立的概率p值。
偏相关系数的计算
控制了变量z,变量x、y之间的偏相关系数和 控制了两个变量 z1 , z2 ,变量x、y之间的偏相 关系数分别为
rxy. z
rxy rxz ryz (1 rxz )(1 ryz )
2 2
; rxy. z z
1 2
rxy. z rxz ryz
1
2 2 (1 rxz . z )(1 ryz . z )
Spearman 秩相关系数
它和Pearson相关系数定义有些类似, 只不过在定义中把点的坐标换成各自样本 的秩(即样本点大小的“座次”)。
r
( R R )(S S ) (R R ) (S S )
i i 2 i i
2
1
6 d i2 n (n 1)
**. Correlation is significant at the 0.01 level (2-tailed).
本章内容
9.1 9.2 9.3 9.4 9.5 相关分析 偏相关分析 线性回归分析 曲线估计 二项Logistic回归