2009_duke math meet answer

合集下载

2009年中国第六届东南地区数学奥林匹克竞赛试题及解答(2009年7月28日)

2009年中国第六届东南地区数学奥林匹克竞赛试题及解答(2009年7月28日)

第一天(2009年7月28日上午8:00-12:00)江西·南昌1. 试求满足方程22-+=的所有整数对(,)21262009x xy yx y.(张鹏程供题)2. 在凸五边形ABCDE中,已知,,==≠,且,,,B C D EAB DE BC EA AB EA四点共圆.证明:,,,=.A B C D四点共圆的充分必要条件是AC AD(熊斌供题)3. 设,,x y z R+∈222=-=--;x y z y z x z x y(),(),()求证:2222()++≥++.a b c ab bc ca(唐立华供题)4. 在一个圆周上给定十二个红点;求n的最小值,使得存在以红点为顶点的n个三角形,满足:以红点为端点的每条弦,都是其中某个三角形的一条边.(陶平生供题)第二天(2009年7月29日 上午8:00-12:00) 江西·南昌 5.设1,2,,9 的所有排列129(,,,)X x x x = 的集合为A ;X A ∀∈,记1239()239f X x x x x =++++ ,{()}M f X X A =∈;求M . (其中M 表示集合M 的元素个数)(熊斌供题)6.已知O 、I 分别是ABC ∆的外接圆和内切圆;证明:过O 上的任意一点D ,都可以作一个三角形DEF ,使得O 、I 分别是DEF ∆的外接圆和内切圆.(陶平生供题)7. 设(2)(2)(2)(,,)131313x y z y z x z x y f x y z x y y z z x---=++++++++, 其中,,0x y z ≥ ,且1x y z ++=. 求(,,)f x y z 的最大值和最小值.(李胜宏供题)8.在8×8方格表中,最少需要挖去几个小方格,才能使得无法从剩余的方格表中裁剪出一片形状如下完整的T 型五方连块?(孙文先供题)第六届中国东南地区数学奥林匹克试题与解答第一天1. 试求满足方程2221262009x xy y -+=的所有整数对(,)x y . (张鹏程供题)解: 设整数对(,)x y 满足方程22212620090x xy y -+-= …(1),将其看作关于x 的一元二次方程,其判别式()2222441262009500(4)36y y y ∆=-⨯-=-+的值应为一完全平方数; 若224y >,则0∆<;若224y <,则2y 可取2220,1,2,3,相应的∆值分别为8036,7536,6036和3536 ,它们皆不为平方数;因此,仅当224y =时,()2225004366y ∆=-+=为完全平方数.若4=y ,方程(1)化为2870x x -+=, 解得1=x 或7x =;若4-=y ,方程(1)化为 2870x x ++=,解得1-=x 或7x =-.综上可知,满足原方程的全部整数对为:()()()()(),1,4,7,4,1,4,7,4x y =----. 2. 在凸五边形ABCDE 中,已知,,AB DE BC EA AB EA ==≠,且,,,B C D E 四点共圆.证明:,,,A B C D 四点共圆的充分必要条件是AC AD =. (熊斌供题)证明:必要性:若,,,A B C D 共圆,则由,AB DE BC EA ==,得BAC EDA ∠=∠,ACB DAE ∠=∠,所以ABC DEA ∠=∠,故得AC AD =;充分性:记BCDE 所共的圆为O ,若AC AD =,则圆心O 在CD 的中垂线AH 上,设点B 关于AH 的对称点为F ,则F 在O 上,且因AB EA ≠,即D E D F ≠,所以,E F不共点,且AFD ∆≌ABC ∆,又由,AB DE BC EA ==,知AED ∆≌CBA ∆,因此,AED ∆≌DFA ∆,故由AED DFA ∠=∠,得AEFD 共圆,即点A 在DEF 上,也即点A在O 上,从而,,,A B C D 共圆.3. 设,,x y z R +∈222(),(),()x y z y z x z x y =--=-;求证: 2222()a b c ab bc ca ++≥++.(唐立华供题)()()(),y z z x x y =-+--()()()z x x y y z =-+--,()()()x y y z z x =-+--.所以[]2()()()()()()0y z z x x y y z z x x y =-+++---≤, 于是 2222()()a b b c c a a b c ++-++=0≤, 故 2222()a b c a b b c c a++≥++. 4. 在一个圆周上给定十二个红点;求n 的最小值,使得存在以红点为顶点的n 个三角形,满足:以红点为端点的每条弦,都是其中某个三角形的一条边.(陶平生供题)解:设红点集为:{}1212,,,A A A A = ,过点1A 的弦有11条,而任一个含顶点1A 的三角形,恰含两条过点1A 的弦,故这11条过点1A 的弦,至少要分布于6个含顶点1A 的三角形中;同理知,过点(2,3,,12)i A i = 的弦,也各要分布于6个含顶点i A 的三角形中,这样就需要12672⨯=个三角形,而每个三角形有三个顶点,故都被重复计算了三次,因此至少需要72243=个三角形. 再说明,下界24可以被取到.不失一般性,考虑周长为12的圆周,其十二等分点为红点,以红点为端点的弦共有21266C =条.若某弦所对的劣弧长为k ,就称该弦的刻度为k ;于是红端点的弦只有6种刻度,其中,刻度为1,2,,5 的弦各12条,刻度为6的弦共6条;如果刻度为,,a b c (a b c ≤≤)的弦构成三角形的三条边,则必满足以下两条件之一:3或者a b c +=;或者12a b c ++=;于是红点三角形边长的刻度组(),,a b c 只有如下12种可能:()()()1,1,2,2,2,4,3,3,6,()()()()()()()()()2,5,5,1,2,3,1,3,4,1,4,5,1,5,6,2,3,5,2,4,6,3,4,5,4,4,4;下面是刻度组的一种搭配:取()()()1,2,3,1,5,6,2,3,5型各六个,()4,4,4型四个;这时恰好得到66条弦,且其中含刻度为1,2,,5 的弦各12条,刻度为6的弦共6条;今构造如下:先作()()()1,2,3,1,5,6,2,3,5型的三角形各六个,()4,4,4型的三角形 三个,再用三个()2,4,6型的三角形来补充.()1,2,3型六个:其顶点标号为:{}{}{}{}{}{}2,3,5,4,5,7,6,7,9,8,9,11,10,11,1,12,1,3; ()1,5,6型六个:其顶点标号为:{}{}{}{}{}{}1,2,7,3,4,9,5,6,11,7,8,1,9,10,3,11,12,5; ()2,3,5型六个:其顶点标号为:{}{}{}{}{}{}2,4,11,4,6,1,6,8,3,8,10,5,10,12,7,12,2,9;()4,4,4型三个:其顶点标号为:{}{}{}1,5,9,2,6,10,3,7,11;()2,4,6型三个:其顶点标号为:{}{}{}4,6,12,8,10,4,12,2,8.(每种情况下的其余三角形都可由其中一个三角形绕圆心适当旋转而得).这样共得到24个三角形,且满足本题条件,因此,n 的最小值为24.第六届中国东南地区数学奥林匹克试题解答第二天5.设1,2,,9 的所有排列129(,,,)X x x x = 的集合为A ;X A ∀∈,记1239()239f X x x x x =++++ ,{()}M f X X A =∈;求M .(其中M 表示集合M 的元素个数).(熊斌供题)解:我们一般地证明,若4n ≥,对于前n 个正整数1,2,,n 的所有排列12(,,,)n n X x x x = 构成的集合A ,若123()23n n f X x x x nx =++++ ,{()}n M f X X A =∈,则366n n n M -+=.下面用数学归纳法证明:n M (1)(2)(1)(2)(1)(21),1,,666n n n n n n n n n ++++++⎧⎫=+⎨⎬⎩⎭.当4n =时,由排序不等式知,集合M 中的最小元素是{}()4,3,2,120f =,最大元素是{}()1,2,3,430f=.又,{}(){}(){}()3,4,2,121,3,4,1,222,4,2,1,323f f f ===,{}(){}(){}(){}()3,2,4,124,2,4,1,325,1,4,3,226,1,4,2,327f f f f ====, {}(){}()2,1,4,328,1,2,4,329ff ==,所以,4M ={}20,21,,30 共有11=34466-+个元素.因此,4n =时命题成立.假设命题在1n -(5n ≥)时成立;考虑命题在n 时的情况.对于1,2,,1n - 的任一排列1121(,,,)n n X x x x --= ,恒取n x n =,得到1,2,,n 的一个排列121,,,,n x x x n - ,则1nkk kx=∑121n k k n kx -==+∑.由归纳假设知,此时1nk k kx =∑取遍区间222(1)(1)(1)(21)(5)(1)(21),,6666n n n n n n n n n n n n n ⎡⎤-+--+++⎡⎤++=⎢⎥⎢⎥⎣⎦⎣⎦上所有整数. 再令1n x =,则11111(1)(1)2n n n k k k k k k n n kx n kx n k x --===-=+=+-+∑∑∑11(1)(1)2n k k n n k x -=+=+-∑, 再由归纳假设知,1nkk kx=∑取遍区间2(1)(1)(1)(1)(1)(21)(1)(2)2(2),,262666n n n n n n n n n n n n n n n ⎡⎤+-++--+++⎡⎤++=⎢⎥⎢⎥⎣⎦⎣⎦上的所有整数.因为222(2)(5)66n n n n ++≥,所以,1nk k kx =∑取遍区间(1)(2)(1)(21),66n n n n n n ++++⎡⎤⎢⎥⎣⎦ 上的所有整数.即命题对n 也成立.由数学归纳法知,命题成立.由于 3(1)(21)(1)(2)6666n n n n n n n n ++++-+-=,从而,集合n M的元素个数为366n n -+.特别是,当9n =时,9121M M ==.6.已知O 、I 分别是ABC ∆的外接圆和内切圆;证明:过O上的任意一点D ,都可作一个三角形DEF ,使得O 、I 分别是DEF ∆的外接圆和内切圆.(陶平生供题)证:如图,设OI d =,,R r 分别是ABC ∆的外接圆和内切圆半径,延长AI 交O 于K ,则2s in 2AK I K B R ==,sin 2r AI A =,延长OI 交O 于,M N ;则()()2R d R d IM IN AI KI Rr +-=⨯=⨯=,即222R d Rr -=;过D 分别作I 的切线,DE DF ,,E F 在O 上,连EF ,则DI 平分EDF ∠,只要证,EF 也与I 相切;设DI O P = ,则P 是 EF的中点,连PE ,则 2sin 2DPE R =,sin2r DI D =,()()22ID IP IM IN R d R d R d ⋅=⋅=+-=-,所以2222sin 2sin 22R d R d D DPI R PE DI r --==⋅==,N F由于I 在角D 的平分线上,因此点I 是DEF ∆的内心, (这是由于,()()0011180180222D E PEI PIE P F +∠=∠=-∠=-∠=,而 2D PEF ∠=,所以2EFEI ∠=,点I 是DEF ∆的内心). 即弦EF 与I 相切. 7.设(2)(2)(2)(,,)131313x y z y z x z x y f x y z x y y z z x---=++++++++, 其中,,0x y z ≥ ,且 1x y z ++=. 求(,,)f x y z 的最大值和最小值.(李胜宏供题)解:先证1,7f ≤当且仅当13x y z ===时等号成立. 因(31)121313x x y xf x y x y+-=∑=-∑++++ … ()*由哥西不等式:2()113(13)(13)x x x y x x y x x y ∑∑≥=++∑++∑++,因为7(13)(24)2.3x x y x x y z xy ∑++=∑++=+∑≤从而 3,137x x y ∑≥++3112,77f ≤-⨯=max 1,7f =当且仅当13x y z ===时等号成立. 再证0,f ≥当1,0x y z ===时等号成立.事实上,(2)(2)(2)(,,)131313x y z y z x z x y f x y z x y y z z x---=++++++++=2121()()13131313xy xz x y y z z x x y -+-++++++++21()1313yz y z z x+-++++ 77(13)(13)(13)(13)xyz xyz x y y z z x x y =+++++++++70(13)(13)xyzy z z x +≥++++ 故min 0f =,当1,0x y z ===时等号成立.另证:设{}min ,,z x y z =,若0z =,则22(,,0)0131242xy xy xy xyf x y x y y x y x y=-=-=+++++;下设,0x y z ≥>,由()*式,要证0f ≥,只要证,1132x x y ≤++∑ …①注意到12242x yx y x y =+++,于是①等价于 8()()()132413213241313z x x y y z x yz x x y x y x y y z x y x y y z≤-+-=++++++++++++++即 248131313x y x yz x x y y z+≤+++++++ …②而由柯西不等式,可得228(2)1313(13)(13)/2x y x y x y y z x x y y y z +=+++++++++ 222(2)24(3)(3)/213x y x yx x xy y y yz z x++≥=+++++++ 即②成立,从而0f ≥,故min 0f =,当1,0x y z ===时等号成立.8.在8×8方格表中,最少需要挖去几个小方格,才能使得无法从剩余的方格表中裁剪出一片形状如下完整的T 型五方连块?(孙文先供题)答:至少要如下图挖去14个小方格.如右图,将8×8棋盘切为五个区域.中央部份的区域至少要挖去2个小方格才能使T 形的五方块放不进去。

2009考研数学(二)真题及参考答案

2009考研数学(二)真题及参考答案

2009年研究生入学统一考试数学二试题与解析一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上.(1)函数()3sin x x f x nx-=的可去间断点的个数为( )()A 1.()B 2. ()C 3.()D 无穷多个.(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-.()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=(3)设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.(6)设函数()y f x =在区间[]1,3-上的图形为1 ()f x -2 0 2 3x-1O则函数()()0xF x f t dt =⎰的图形为( )()A .()B .()C .()D .(7)设A ,B 均为2阶矩阵,**A B ,分别为A ,B 的伴随矩阵.若23A B ==,,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为( )()A .**32O B A O ⎛⎫⎪⎝⎭()B .**23OB A O ⎛⎫⎪⎝⎭ ()C .**32O A BO ⎛⎫ ⎪⎝⎭()D .**23O A BO ⎛⎫⎪⎝⎭(8)设A P ,均为3阶矩阵,TP 为P 的转置矩阵,且100010002T P AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若1231223P Q ααααααα==+(,,),(,,),则TQ AQ 为( ) ()A .210110002⎛⎫⎪⎪ ⎪⎝⎭()B .110120002⎛⎫⎪⎪ ⎪⎝⎭()f x 0 2 3x1 -2-11()f x 02 3x1 -1 1()f x 02 3x1 -2-11()f x 0 2 3x1 -2 -11()C .200010002⎛⎫⎪⎪ ⎪⎝⎭()D .100020002⎛⎫⎪⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9)曲线2221-x=0ln(2)u t e du y t t -⎧⎪⎨⎪=-⎩⎰在(0,0)处的切线方程为 . (10)已知+1k xe dx ∞=-∞⎰,则k = .(11)1n lime sin x nxdx -→∞=⎰.(12)设()y y x =是由方程xy 1ye x +=+确定的隐函数,则22x yx=∂=∂ .(13)函数2x y x =在区间(]01,上的最小值为 .(14)设αβ,为3维列向量,T β为β的转置,若矩阵T αβ相似于200000000⎛⎫⎪⎪ ⎪⎝⎭,则T =βα .三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()[]401cos ln(1tan )limsin x x x x x→--+.(16)(本题满分10 分) 计算不定积分1ln(1)xdx x++⎰(0)x >. (17)(本题满分10分)设(),,z f x y x y xy =+-,其中f 具有2阶连续偏导数,求dz 与2z x y∂∂∂.(18)(本题满分10分)设非负函数()y y x = ()0x ≥满足微分方程20xy y '''-+=,当曲线()y y x = 过原点时,其与直线1x =及0y =围成平面区域D 的面积为2,求D 绕y 轴旋转所得旋转体体积. (19)(本题满分10分)计算二重积分()Dx y dxdy -⎰⎰,其中()()(){}22,112,D x y x y y x =-+-≤≥.(20)(本题满分12分)设()y y x =是区间-ππ(,)内过点-22ππ(,)的光滑曲线,当-0x π<<时,曲线上任一点处的法线都过原点,当0x π≤<时,函数()y x 满足0y y x ''++=.求()y x 的表达式. (21)(本题满分11分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(),a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-;(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.(22)(本题满分11分设111111042A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫⎪= ⎪ ⎪-⎝⎭. (Ⅰ)求满足22131,A A ξξξξ==的所有向量23,ξξ;(Ⅱ)对(Ⅰ)中的任一向量23,ξξ,证明:123,,ξξξ线性无关.(23)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+-(Ⅰ)求二次型f 的矩阵的所有特征值;(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值.2009年全国硕士研究生入学统一考试数学二试题答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上.(1)函数()3sin x x f x nx-=的可去间断点的个数为( )()A 1.()B 2. ()C 3.()D 无穷多个.【答案】C 【解析】()3s i n x x f x xπ-=则当x 取任何整数时,()f x 均无意义故()f x 的间断点有无穷多个,但可去间断点为极限存在的点,故应是30x x -=的解1,2,30,1x =±320032113211131lim lim sin cos 132lim lim sin cos 132lim lim sin cos x x x x x x x x x x x x x x x x x x x x x ππππππππππππ→→→→→-→---==--==--== 故可去间断点为3个,即0,1±(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=. 【答案】A【解析】2()sin ,()(1)f x x ax g x x ln bx =-=-为等价无穷小,则222200000()sin sin 1cos sin lim lim lim lim lim ()ln(1)()36x x x x x f x x ax x ax a ax a axg x x bx x bx bx bx→→→→→---==-⋅---洛洛230sin lim 166x a ax a b b axa→==-=-⋅ 36a b ∴=- 故排除,B C . 另外201cos lim3x a axbx→--存在,蕴含了1cos 0a ax -→()0x →故 1.a =排D .所以本题选A.(3)设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.【答案】 D【解析】因dz xdx ydy =+可得,z zx y x y∂∂==∂∂ 2222221,0,1z z z zA B C x x y y x y∂∂∂∂== === ==∂∂∂∂∂∂又在(0,0)处,0,0z zx y∂∂==∂∂ 210AC B -=>故(0,0)为函数(,)z f x y =的一个极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰【答案】C 【解析】222211(,)(,)xxdx f x y dy dy f x y dx +⎰⎰⎰⎰的积分区域为两部分:{}1(,)12,2D x y x x y =≤≤≤≤,{}2(,)12,4D x y y y x y =≤≤≤≤-将其写成一块{}(,)12,14D x y y x y =≤≤≤≤- 故二重积分可以表示为2411(,)ydy f x y dx -⎰⎰,故答案为C.(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.【答案】 B【解析】由题意可知,()f x 是一个凸函数,即''()0f x <,且在点(1,1)处的曲率322|''|12(1('))y y ρ==+,而'(1)1f =-,由此可得,''(1)2f =-在[1,2] 上,'()'(1)10f x f ≤=-<,即()f x 单调减少,没有极值点. 对于(2)(1)'()1(1,2)f f f ζζ-=<- , ∈ , (拉格朗日中值定理)(2)0f ∴ <而 (1)10f =>由零点定理知,在[1,2] 上,()f x 有零点. 故应选(B ). (6)设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt =⎰的图形为( )1 ()f x -2 0 2 3x-1O()A .()B .()C .()D .【答案】D【解析】此题为定积分的应用知识考核,由()y f x =的图形可见,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出几个方面的特征: ①[]0,1x ∈时,()0F x ≤,且单调递减. ②[]1,2x ∈时,()F x 单调递增. ③[]2,3x ∈时,()F x 为常函数.④[]1,0x ∈-时,()0F x ≤为线性函数,单调递增. ⑤由于F(x)为连续函数结合这些特点,可见正确选项为D .(7)设A ,B 均为2阶矩阵,**A B ,分别为A ,B 的伴随矩阵.若23A B ==,,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为( )()A .**32O B A O ⎛⎫⎪⎝⎭()B .**23OB A O ⎛⎫⎪⎝⎭ ()C .**32O A BO ⎛⎫ ⎪⎝⎭()D .**23O A BO ⎛⎫⎪⎝⎭()f x 0 2 3x1 -2-11()f x 02 3x1 -1 1()f x 02 3x1 -2-11()f x 0 2 3x1 -2 -11【答案】 B【解析】根据CC C E *=若111,C C C CC C*--*==分块矩阵00A B ⎛⎫⎪⎝⎭的行列式22012360A AB B⨯=-=⨯=()即分块矩阵可逆 111100066000100B BA A AB B BBAA A**---*⎛⎫ ⎪⎛⎫⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭10023613002BB AA ****⎛⎫ ⎪⎛⎫== ⎪ ⎪ ⎪⎝⎭⎪⎝⎭(8)设A P ,均为3阶矩阵,TP 为P 的转置矩阵,且100010002T P AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若1231223P Q ααααααα==+(,,),(,,),则TQ AQ 为( ) ()A .210110002⎛⎫⎪⎪ ⎪⎝⎭()B .110120002⎛⎫⎪⎪ ⎪⎝⎭()C .200010002⎛⎫⎪⎪ ⎪⎝⎭()D .100020002⎛⎫⎪⎪ ⎪⎝⎭【答案】 A【解析】122312312312100(,,)(,,)110(,,)(1)001Q E αααααααααα⎡⎤⎢⎥=+==⎢⎥⎢⎥⎣⎦,即:12121212122112(1)[(1)][(1)](1)[](1)100(1)010(1)002110100100210010010110110001002001002T T TT T Q PE Q AQ PE A PE E P AP E E E ===⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9)曲线2221-x=0ln(2)u t e du y t t -⎧⎪⎨⎪=-⎩⎰在(0,0)处的切线方程为 . 【答案】2y x =【解析】221222ln(2)22t dy t t t t dt t ==--⋅=--2(1)1(1)1t t dxe dt --==⋅-=- 所以 2dy dx= 所以 切线方程为2y x =.(10)已知+1k xe dx ∞=-∞⎰,则k = .【答案】2-【解析】1122lim bk xkxkxb e dx e dx e k +∞+∞-∞→+∞===⎰⎰因为极限存在所以0k <210k=-2k =-(11)1n lime sin x nxdx -→∞=⎰.【答案】0【解析】令sin sin cos x x xn I e nxdx e nx n e nxdx ---==-+⎰⎰2sin cos x xn e nx nenx n I --=---所以2cos sin 1xn n nx nx I e C n -+=-++即11020cos sin lim sin lim()1xx n n n nx nx e nxdx e n --→∞→∞+=-+⎰ 122cos sin lim()110n n n n ne n n -→∞+=-+++= (12)设()y y x =是由方程xy 1ye x +=+确定的隐函数,则22x yx=∂=∂ .【答案】3-【解析】对方程xy 1y e x +=+两边关于x 求导有''1y y xy y e ++=,得'1yyy x e -=+ 对''1y y xy y e ++=再次求导可得''''''22()0y y y xy y e y e +++=,得''2''2()yyy y e y x e +=-+ (*)当0x =时,0y =,'(0)0101y e -==,代入(*)得 ''20''032(0)((0))(0)(21)3(0)y y e y e +=-=-+=-+(13)函数2x y x =在区间(]01,上的最小值为 . 【答案】2ee-【解析】因为()22ln 2xy xx '=+,令0y '=得驻点为1x e =.又()22222ln 2xxy x x x x ''=++⋅,得21120e y e e -+⎛⎫''=> ⎪⎝⎭,故1x e=为2xy x =的极小值点,此时2e y e -=,又当10,x e ⎛⎫∈ ⎪⎝⎭时,()0y x '<;1,1x e ⎛⎤∈ ⎥⎝⎦时,()0y x '>,故y 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,1e ⎛⎫ ⎪⎝⎭上递增.而()11y =,()()002022ln limlim11lim 222ln 00lim lim 1x x x xx x xx xxx x x y x e eee++→→+→++--+→→======,所以2xy x =在区间(]01,上的最小值为21ey e e -⎛⎫= ⎪⎝⎭.(14)设αβ,为3维列向量,T β为β的转置,若矩阵T αβ相似于200000000⎛⎫ ⎪⎪ ⎪⎝⎭,则T =βα .【答案】2【解析】因为T αβ相似于200000000⎛⎫⎪⎪ ⎪⎝⎭,根据相似矩阵有相同的特征值,得到T αβ得特征值是2,0,0而T βα是一个常数,是矩阵T αβ的对角元素之和,则T 2002βα=++=三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()[]401cos ln(1tan )limsin x x x x x→--+.【解析】()[][]244001ln(1tan )1cos ln(1tan )2lim limsin sin x x x x x x x x x x→→-+--+= 22201ln(1tan )lim 2sin sin x x x x x x→-+=201ln(1tan )1lim 2sin 4x x x x →-+== (16)(本题满分10 分) 计算不定积分1ln(1)xdx x++⎰(0)x >. 【解析】 令1x t x+=得22212,1(1)tdtx dx t t -= =-- 22211ln(1)ln(1)1ln(1)11111x dx t d x t t dt t t t ++=+-+=---+⎰⎰⎰而22111112()11411(1)111ln(1)ln(1)2441dt dtt t t t t t t C t =---+-++--++++⎰⎰所以221ln(1)111ln(1)ln 1412(1)111ln(1)ln(1)2211111ln(1)ln(1)222x t t dx C x t t t x xx x x C x x x x x x x x x x C x ++++=+-+--++=++++-++++=+++++-++⎰ (17)(本题满分10分)设(),,z f x y x y xy =+-,其中f 具有2阶连续偏导数,求dz 与2zx y∂∂∂.【解析】123123zf f yf x zf f xf y∂'''=++∂∂'''=-+∂1231232111213212223331323331122331323()()1(1)1(1)[1(1)]()()z z dz dx dy x yf f yf dx f f xf dyzf f f x f f f x f y f f f x x yf f f xyf x y f x y f ∂∂∴=+∂∂''''''=+++-+∂'''''''''''''''''''=⋅+⋅-+⋅+⋅+⋅-+⋅++⋅+⋅-+⋅∂∂'''''''''''=+-++++-(18)(本题满分10分)设非负函数()y y x = ()0x ≥满足微分方程20xy y '''-+=,当曲线()y y x = 过原点时,其与直线1x =及0y =围成平面区域D 的面积为2,求D 绕y 轴旋转所得旋转体体积. 【解析】解微分方程20xy y '''-+=得其通解212122,y C x C x C C =++其中,为任意常数又因为()y y x =通过原点时与直线1x =及0y =围成平面区域的面积为2,于是可得10C =1112232220002()(2)()133C C y x dx x C x dx x x ==+=+=+⎰⎰从而23C =于是,所求非负函数223(0)y x x x =+ ≥又由223y x x =+ 可得,在第一象限曲线()y f x =表示为1131)3x y =+-(于是D 围绕y 轴旋转所得旋转体的体积为15V V π=-,其中552210051(131)9(23213)93918V x dy y dyy y dy ππππ==⋅+-=+-+=⎰⎰⎰395117518186V ππππ=-==. (19)(本题满分10分)计算二重积分()Dx y dxdy -⎰⎰,其中()()(){}22,112,D x y x y y x =-+-≤≥.【解析】由22(1)(1)2x y -+-≤得2(sin cos )r θθ≤+,32(sin cos )4()(cos sin )04Dx y dxdy d r r rdr πθθθθθπ+∴-=-⎰⎰⎰⎰332(sin cos )14(cos sin )034r d πθθθθθπ⎡+⎤=-⋅⎢⎥⎣⎦⎰ 2384(cos sin )(sin cos )(sin cos )34d πθθθθθθθπ=-⋅+⋅+⎰ 3384(cos sin )(sin cos )34d πθθθθθπ=-⋅+⎰3344438814(sin cos )(sin cos )(sin cos )3344d πππθθθθθθπ=++=⨯+⎰83=-.(20)(本题满分12分)设()y y x =是区间-ππ(,)内过点-22ππ(,)的光滑曲线,当-0x π<<时,曲线上任一点处的法线都过原点,当0x π≤<时,函数()y x 满足0y y x ''++=.求()y x 的表达式.【解析】由题意,当0x π-<<时,'xy y =-,即ydy xdx =-,得22y x c =-+, 又()22y ππ-=代入22y x c =-+得2c π=,从而有222x y π+=当0x π≤<时,''0y y x ++=得 ''0y y += 的通解为*12cos sin y c x c x =+ 令解为1y Ax b =+,则有00Ax b x +++=,得1,0A b =-=, 故1y x =-,得''0y y x ++=的通解为12cos sin y c x c x x =+- 由于()y y x =是(,)ππ-内的光滑曲线,故y 在0x =处连续于是由1(0),(0)y y c π-=± += ,故1c π=±时,()y y x =在0x =处连续 又当 0x π-<<时,有22'0x y y +⋅=,得'(0)0xy y-=-=, 当0x π≤<时,有12'sin cos 1y c x c x =-+-,得2'(0)1y c +=- 由'(0)'(0)y y -+=得210c -=,即 21c =故 ()y y x =的表达式为22,0cos sin ,0x x y x x x x ππππ⎧⎪-- -<<=⎨-+-≤<⎪⎩或22,0cos sin ,0x x y x x x x ππππ⎧⎪- -<<=⎨+-≤<⎪⎩,又过点,22ππ⎛⎫- ⎪⎝⎭,所以22,0cos sin ,0x x y x x x x ππππ⎧⎪- -<<=⎨+-≤<⎪⎩.(21)(本题满分11分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(),a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-;(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.【解析】(Ⅰ)作辅助函数()()()()()()f b f a x f x f a x a b aϕ-=----,易验证()x ϕ满足:()()a b ϕϕ=;()x ϕ在闭区间[],a b 上连续,在开区间(),a b 内可导,且''()()()()f b f a x f x b aϕ-=--.根据罗尔定理,可得在(),a b 内至少有一点ξ,使'()0ϕξ=,即'()f ξ'()()0,()()()()f b f a f b f a f b a b aξ--=∴-=--(Ⅱ)任取0(0,)x δ∈,则函数()f x 满足;在闭区间[]00,x 上连续,开区间()00,x 内可导,从而有拉格朗日中值定理可得:存在()()000,0,x x ξδ∈⊂,使得()0'()(0)x f x f fx ξ-=-……()* 又由于()'lim x f x A +→=,对上式(*式)两边取00x +→时的极限可得:()()000000'''0000()00lim lim ()lim ()0x x x x x f x f f f f A x ξξξ++++→→→-====- 故'(0)f +存在,且'(0)f A +=.(22)(本题满分11分设111111042A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫ ⎪= ⎪ ⎪-⎝⎭(Ⅰ)求满足22131,A A ξξξξ==的所有向量23,ξξ;(Ⅱ)对(Ⅰ)中的任一向量23,ξξ,证明:123,,ξξξ线性无关. 【解析】(Ⅰ)解方程21A ξξ=()1111111111111,111100000211042202110000A ξ---------⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭()2r A =故有一个自由变量,令32x =,由0Ax =解得,211,1x x =-= 求特解,令120x x ==,得31x =故21101021k ξ⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中1k 为任意常数解方程231A ξξ=2220220440A ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭()21111022012,2201000044020000A ξ-⎛⎫ ⎪-⎛⎫ ⎪ ⎪=--→ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭故有两个自由变量,令21x =-,由20A x =得131,0x x ==求特解21200η⎛⎫ ⎪ ⎪= ⎪ ⎪⎪⎝⎭故 321121000k ξ⎛⎫⎪⎛⎫ ⎪⎪=-+ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎝⎭ ,其中2k 为任意常数.(Ⅱ)证明:由于12121212122111121112(21)()2()(21)222210k k k k k k k k k k k k k -+--=+++-+-+-+102=≠ 故123,,ξξξ 线性无关.(23)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+- (Ⅰ)求二次型f 的矩阵的所有特征值;(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值. 【解析】(Ⅰ) 0101111a A aa ⎛⎫ ⎪=- ⎪ ⎪--⎝⎭0110||01()1111111aaaE A aa a a λλλλλλλλ-----=-=---+---+222()[()(1)1][0()]()[()(1)2]()[22]19(){[(12)]}24()(2)(1)a a a a a a a a a a a a a a a a a λλλλλλλλλλλλλλλλ=---+--+-=---+-=--++--=-+--=--+--123,2,1a a a λλλ∴==-=+(Ⅱ) 若规范形为2212y y +,说明有两个特征值为正,一个为0.则 1) 若10a λ==,则 220λ=-< ,31λ= ,不符题意2) 若20λ= ,即2a =,则120λ=>,330λ=>,符合3) 若30λ= ,即1a =-,则110λ=-< ,230λ=-<,不符题意 综上所述,故2a =.。

2009年全国高中数学联合竞赛试题及解答.

2009年全国高中数学联合竞赛试题及解答.

2009年全国高中数学联合竞赛一试一、填空题:本大题共8个小题,每小题7分,共56分。

2009*1、函数21)(x x x f +=,且fn n x f f f f x f个)]]([[)()(=,则=)1()99(f◆答案:101★解析:由题意得2)1(1)()(xxx f x f+==,2)2(21)]([)(xx x f f x f+==,······2)99(991)(x x x f +=.故 101)1()99(=f .2009*2、已知直线09:=-+y x L 和圆018822:22=---+y x y x M ,点A 在直线L 上,点C B ,为圆M 上两点,在ABC ∆中,045=∠BAC ,直线AB 过圆心M ,则点A 横坐标的取值范围为 ◆答案:[]6,3★解析:设A (a ,9-a ),则圆心M 到直线AC 的距离d =AM sin ︒45,由直线AC 与圆M 相交,得 234≤d .解得 63≤≤a .2009*3、在坐标平面上有两个区域M 和N ,M 为⎪⎩⎪⎨⎧-≤≤≥x y x y y 20,N 是随t 变化的区域,它由不等式1+≤≤t x t 所确定,t 的取值范围是10≤≤t ,则M 和N 的公共面积是函数=)(t f◆答案:212++-t t ★解析:由题意知阴影部分面积s t f =)( =BEF OCD AOB S S S ∆∆∆--=212++-t t2009*4、若不等式3120071212111<++++++n n n 对一切正整数n 都成立,则最小正整数a 的值为 ◆答案:2009 ★解析:设121...2111)(++++++=n n n n f .显然)(n f 单调递减.则由)(n f 的最大值312007)1(-<a f ,可得2009=a .2009*5、椭圆12222=+by a x (0>>b a )上任意两点Q P ,,若OQ OP ⊥,则OQ OP ⋅的最小值为◆答案:.22222ba b a + ★解析:设)sin ,cos (θθOP OP P ,)).2sin(),2cos((πθπθ±±OQ OQ Q由Q P 、在椭圆上,有22222sin cos 1b a OP θθ+=(1), 22222cos sin 1b a OQθθ+=(2) (1)+(2)得.11112222b a OQOP+=+于是当 22222ba b a OQ OP +==时,OQ OP 达到最小值.22222b a b a +2009*6、若关于x 的方程)1lg(2lg +=x kx 仅有一个实根,则实数k 的取值范围为 ◆答案:0<k 或4=k★解析:由题意,方程等价于⎪⎩⎪⎨⎧+=>+>2)1(010x kx x kx ,当且仅当 0>kx (1);01>+x (2);01)2(2=+-+x k x (3) 对(3)由求根公式得]42[21,221k k k x x -±-= (4)又0042≤⇒≥-=∆k k k 或4≥k)(i 当0<k 时,由(3)得⎩⎨⎧>=<-=+01022121x x k x x ,所以21x x 同为负根。

2009复旦 高校自主招生数学试题及解答

2009复旦 高校自主招生数学试题及解答

2009复旦一、选择题1.若x>y>1,0<a<b<1,则下列各式中一定成立的是________.A.abx y> B.a bx y< C.x ya b> D.x ya b<2.设a>0,a ≠1,函数f(x)=log a11xx-+在(1,+∞)上单调递减,则f(x)_________.A.在(-∞,−1)上单调递减,在(−1,1)上单调递增B.在(-∞,−1)上单调递增,在(−1,1)上单调递减C.在(-∞,−1)上单调递增,在(−1,1)上单调递增D.在(-∞,−1)上单调递减,在(−1,1)上单调递减3.若要求关于x 的函数y=lg(2112log 2ax bx ++)的定义域是(-∞,+∞),则a ,b 的取值范围是________.A.∅B.a<0C.2b−4a<0D.a=b=04.设Q 是有理数集,集合2b ,a ,b ∈Q,x ≠0},在下列集合中(1){2x|x ∈X };(2)2|x ∈X};(3){1x|x ∈X };(4){x 2|x ∈X }中和X 相同的集合有________个. A.4个B.3个C.2个D.1个5.设x,y,z>0满足xyz+y+z=12,则422loglog log x y z ++的最大值是________.A.3B.4C.5D.66.定义全集X 的子集A ⊂X 的特征函数为f A (x)=1,,0,,X x A x A ∈⎧⎨∈⎩ð,这里,X A ð表示在A 在X 中的补集,那么,对A,B ⊂X ,下列命题中不准确的是_________A.AB.(x)=1−,C.(x)=,D.(x)=+,7.如果一个函数f(x)在其定义区间对任意x,y 都满足()()22x y f x f y f ++⎛⎫≤⎪⎝⎭,则称这个函数是下凹函数,下列函数(1)f(x)=2x (2)f(x)=x 3(3)f(x)=(x>0)(4)f(x)=,0,2,0,x x x x <⎧⎨>⎩中是下凹函数的有_______.A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)8.若实数x 满足对任意正数a>0,均有x 2<1+a,则x 的取值范围是________.A.(−1,1)B.[−1,1]C.(−)D.不能确定9.设函数y=210x 的图象是曲线C ,曲线C 1和C 2关于直线x=1对称,曲线C 2和C 1关于直线y=x 对称,则C 2是下列哪个函数的图象?A.y=1−2lg xB.y=2−2lg xC.y=2lg x+1D.y=2lg x+210.下列曲线中哪一条拿住两端后不打结?________.A. B. C. D.11.用同样大小的一种正多边形平铺整个平面(没有重叠),有几种正多边形可以铺满整个平面而不留缝隙?A.2种B.3种C.4种D.5种12.一个菱形边长与其内切圆的直径之比为k:1(k>1),则这个菱形的一个小于2π的内角等于__________.A.arctan(k -13.设a,b 是实常数,则二元一次方程组1,2,ax by x y a b +=⎧⎨-=--⎩无解的充分必要条件是______.A.2a+b=0且aB.2a+b=0且a+b −1C.a=1,b=−2或a=−1,b=2D.2a+b=014.已知关于x 的方程+22cos2x=a 在区间(0,2π)内有两个不同的根,则常数a 的取值范围是________.A.(−1,3)B.(−1,2)(2,3)C.[−1,3]D.[−1,2)2,3]15.设X={0,1,2,3,4,5,6,7,8,9},定义X 上的运算符如下:对任意m,nm n 等于m+n 除以10的余数,给定初值n 0X,记n 1=n 0n 0,n k =n k−1n 0,k=1,2,3……,则使得数列{n k }取遍X 中所有元素的初值n 0的集合是_______.A.B.XC.{1,3,9}D.{1,3,7,9}16.“要使函数f(x)成立,只要x 不在区间[a,b]内就可以了”的意思是_________. A.如果f(x),则x [a,b]B.如果x [a,b],则f(x)<0C.如果x [a,b],则f(x)D.前面三个解释都不准确17.实轴R 中的集合X 如果满足:任意非空开区间都含有X 中的点,则称X 在R 中稠密,那么,“R 中集合X 在R 中不稠密”的充分必要条件是_________.A.任意非空开区间都不含有X 中的点B.存在非空开区间不含有X 中的点C.任意非空开区间都含有X 的补集中的点D.存在非空开区间含有X 的补集的点18.某种细胞如果不能分裂而死亡,并且一个细胞死亡和分裂为两个细胞的概率都为1/2,现在有两个这样的细胞,则两次分裂后还有细胞存活的概率是________.A.3964B.2564C.3164D.296419.设有n+1个不同颜色的球,放入n 个不同的盒子中,要求每个盒子至少有一个球,则不同的放法有_______.A.(n+1)!种B.n(n+1)!种C.12(n+1)!种 D.12n(n+1)!种20.设X 是含n(n>2)个元素的集合,A,B 是X 中的两个互不相交的子集,分别含有m,k(m,k )个元素,则X 中既不包含A 也不包含B 的子集个数是_________.A. B.C.D.21.三棱柱ABC−A’B’C’的底是边长为1的正三角形,高AA’=1,在AB 上取一点P ,设三角形PA ’C’与底的二面角为,三角形PB’C’与底的二面角为,则tan()的最小值为_______.A.334-B.6315-C.8313-D.538-22.半径为R 的球的内部装有4个有相同半径r 的小球,则小球半径r 可能的最大值是________.R.B.RR23.平面上三条直线x−2y+2=0,x−2=0,x+ky=0,如果这三条直线将平面划分成六个部分,则k 可能的取值情况是_________.A.只有唯一值B.可取两个不同值C.可取三个不同值D.可取无穷多个值24.设三角形ABC 的三边之比AB:BC:CA=3:2:4,已知顶点A 的坐标是(0,0),B 的坐标是(a,b),则C 的坐标一定是_______.A.715715,6666a b a ⎛⎫± ⎪ ⎪⎝⎭B.715715,8888a b b ⎛⎫± ⎪ ⎪⎝⎭C.715715,6666a b ⎛⎫±± ⎪⎪⎝⎭D.715715,8888a b b ⎛⎫±± ⎪⎪⎝⎭25.设实数a,b,c 0,,,bc ca aba b c成等差数列,则下列不等式一定成立的是______. A.|b||ac|B.b 2|ac|C.a 2D.|b|||||2a c +≤26.已知x 2−(tan)x+1=0(0<<π),且满足x+x 3+…+x 2n+1+…=32,则的值是______.A.5,66ππB,63ππ C.2,33ππ D.25,,,3366ππππ27.设a>0,极坐标方程,0),它在直角坐标系中所表示的曲线大致是______28.设数列{a n },{b n }满足b n =a n −a n−1,n=1,2,3…,如果a 0=0,a 1=1,且{b n }是公比为2的等比数列,又设S n =a 1+a 2+…+a n ,则limnn nS a →∞=__________.A.0B.12C.1D.229.复平面上点z o =1+2i 关于直线l :|z−2−2i|=|z|的对称点的复数表示是_______.A.−iB.1−iC.1+iD.i 30.设实数r>1,如果复平面上的动点z 满足|z|=r,则动点w=z+的轨迹是________.A.焦距为4的椭圆B.焦距为4r 的椭圆 C.焦距为2的椭圆 D.焦距为2r的椭圆31.给定一组向量a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),c=(c 1,c 2,c 3),如果存在不全为0的实数k 1,k 2,k 3,使得k 1a +k 2b +k 3c =0 ,则称向量组a ,b ,c 是线性相关的,下面各组向量中,哪一组向量a ,b ,c是线性相关的?___________.A.a =(1,2,1),b =(−1,3,2),c=(3,1,0) B.a =(1,2,1),b =(−1,3,2),c=(0,1,−1)C.a =(1,2,0),b =(−1,3,2),c=(0,1,−1) D.a =(1,2,1),b =(−1,0,2),c=(0,1,−1)32.设向量x=(cos cos),y =cos sin ,333θψθψθ⎫⎪⎭,其中02πθ≤≤,如果|x |=|y |,则向量x 和y夹角的最大值是_________.A.2π B.3π C.23π D.6π##Answer##1.BD 2.A 3.BC4.【简解】⑴={y|2y∈2b}=X,同理⑵⑶⑷全等于X ,选A 5.【简解】422log log log x y z ++=12222log log log x y z ++=2log )12=xyz+y+z ≥⇔yz ≤8⇔2log )≤3等号成立当且仅当xyz=y=z ⇔y=z=1x=4.选B 6.【简解】对A ⊂B,x ∈A 时,()A f x =1=()B f x ;x ∉A 但x ∈B 时,()A f x =0<1=()B f x ;x ∈X B ð,()A f x =0=()B f x ,故A 正确;1-()A f x =0,1,X x Ax A∈⎧⎨∉⎩ð=()XA f x ð,B 正确;()A f x ()B f x =1,0,x x A B A B ∈⋂⎧⎨∉⋂⎩=()A B f x ⋂,C 正确;()A f x +()B f x =2,1,()0,()A B Xx A Bx A B x A B ⋃∈⋂⎧⎪∈⋂⎨⎪∈⋃⎩ðð≠()A B f x ⋃.选D7.D 8.B 9.B 10.A11.【简解】正多边形的内角必须是360°的因数,只有正三角形、正方形、正六边形,选B12.【简解】不妨设内切圆半径为1,菱形的一个锐角为2β,则菱形的边长为2k ,有cot β+tan β=2k sin2β=1k ,tan2βD13.【简解】D=12ab -=-2a-b=0且x D =12ba b ---≠0,选A14.6π)=12a -,设t=x+6π∈(6π,136π),作出y=sint 的图象,根据图象,要有两个交点,-1<12a -<1且12a -≠12,选D15.【简解】检验知n 0取值集合为{1,3,9}时满足条件,故包含它的集合都可以,选BCD16.BC 17.BC18.【简解】两次分裂无活细胞概率:第一次两个细胞均死时212⎛⎫ ⎪⎝⎭=14,第一次两细胞均活时241124⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=164,第一次一死2×412⎛⎫ ⎪⎝⎭=1/8。

2009-2011年全国大学生高等数学竞赛真题及答案(非数学类).

2009-2011年全国大学生高等数学竞赛真题及答案(非数学类).

2009年第一届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(每小题5分,共20分)(x+y)ln(1+yxdy=____________,其中区域D由直线x+y=1与两) 1.计算⎰⎰D-x-y坐标轴所围成三角形区域.⎛0解令x+y=u,x=v,则x=v,y=u-v,dxdy=det 1⎝(x+y)ln(1+y)ulnu-ulnvD1⎫⎪dudv=dudv,⎪-1⎭⎰⎰D-x-yxdy=⎰⎰10-uudv==⎰(⎰10ulnu-uulnu-uu22⎰udv-u-u-u⎰ulnvdv)du-u(ulnu-u)du=⎰-udu (*)令t=-u,则u=1-t2,du=-2tdt,u2=1-2t2+t4,u(1-u)=t2(1-t)(1+t),24(*)=-2⎰(1-2t+t)dt=2⎰102315⎤16⎡24(1-2t+t)dt=2⎢t-t+t⎥=3515⎣⎦02.设f(x)是连续函数,且满足f(x)=3x2-解令A=A=⎰20f(x)dx-2, 则f(x)=____________.⎰20f(x)dx,则f(x)=3x-A-2,2⎰20(3x-A-2)dx=8-2(A+2)=4-2A,2解得A=432。

因此f(x)=3x-103。

3.曲面z=x22+y-2平行平面2x+2y-z=0的切平面方程是__________.x22解因平面2x+2y-z=0的法向量为(2,2,-1),而曲面z=2+y-2在2(x0,y0)处的法向量为(zx(x0,y0),zy(x0,y0),-1),故(zx(x0,y0),zy(x0,y0),-1)与(2,2,-1)平行,因此,由zx=x,zy=2y知2=zx(x0,y0)=x0,2=zy(x0,y0)=2y0,即x0=2,y0=1,又z(x0,y0)=z(2,1)=5,于是曲面2x+2y-z=0在(x0,y0,z(x0,y0))处的切平面方程是2(x-2)+2(y-1)-(z-5)=0,即曲面z=2x+2y-z=0的切平面方程是2x+2y-z-1=0。

2009年数学三真题答案解析

2009年数学三真题答案解析

lim e(1 cos x)
x0
1 x2
e 1 x2
lim x0
2 1 x2
3e. 2
3
3
(10)设 z (x e y )x ,则 z
.
x (1,0)
【答案】 2 ln 2 1 .
【解析】由 z x e y x ,故 z x, 0 x 1x
dz dx
x
1x
'
e xln(1x)
O
6
O 1 A A
1 B
B
O
O
6
1 2
A
1 B 3 O
O 3 A
2B
O
故答案为(B).
1 0 0
(6)设
A,
P
均为
3
阶矩阵,
PT

P
的转置矩阵,且
PT
AP
0
1
0

0 0 2
若 P (1,2,3),Q (1 2,2,3) ,则 QT AQ 为
2 1 0
(A)
1
1
0
(C)
2
B*
. O
O 2A*
(D)
3B*
. O
【答案】B.
【解析】根据 CC C E ,若 C C C 1,C 1 1 C C
O
分块矩阵
B
A
O
O
的行列式
B
A (1)22 A B 2 3 6 ,即分块矩阵可逆 O
-3-
O
B
A
O
O B
A O
O
B
A1
O
6
O A1
B
1
lim x0

2009考研数学(一)试题及详细答案解析

2009考研数学(一)试题及详细答案解析

2 B 0
(7)设随机变量 X 的分布函数为 F x 0.3 x 0.7 态分布函数,则 EX
x 1 ,其中 x 为标准正 2
A 0 .
【答案】 C
B 0.3 .
C 0.7 .
D 1.
n
A 当 bn 收敛时, anbn 收敛.
n 1 n 1


B 当 bn 发散时, anbn 发散.
n 1 n 1


C 当 bn
n 1

收敛时,
a b
n 1
2 2 n n
收敛.
D 当 bn
n 1
发散时,
a b
n 1
【答案】A 【解析】因为 1 ,2 , 的过渡矩阵。
1 2 0 B 0 2 3 . 1 0 3
1 6 1 . 6 1 6 1 2 1 D 4 1 6 1 2 1 4 1 6 1 2 1 . 4 1 6
① x 0,1 时, F ( x) 0 ,且单调递减。 ② x 1, 2 时, F ( x) 单调递增。
考研学子网倾情提供,更多免费资料在:
③ x 2,3 时, F ( x) 为常函数。 ④ x 1,0 时, F ( x) 0 为线性函数,单调递增。 ⑤由于 F(x)为连续函数 结合这些特点,可见正确选项为 D 。 (4)设有两个数列 an , bn ,若 lim an 0 ,则
(2)如图,正方形

x, y x 1, y 1 被其对角线划分为

1
四个区域 Dk k 1, 2,3, 4 , I k 则 max I k

2009中国女子数学奥林匹克参考答案

2009中国女子数学奥林匹克参考答案

1, 2,5,3, 4 ,这样 3, 4,5 变成了 5,3, 4 ,而不影响其余元素的位置.这样就实现了 3 元环
的调整,即将 3 个连续的元素任意排序. 利用 3 元环的调整,首先利用 V1 及其后面的三个元素,将 V1 调整到目标位置;再依次 将 V2 , V3 ,..., Vn 2 调整到目标位置.若 Vn 1 , Vn 恰好是正确的顺序,则调整完毕;否则对 4 元 环 Vn 3 , Vn 2 , Vn , Vn 1 轮换调整为 Vn 1 , Vn 3 , Vn 2 , Vn , 再对 3 元环 Vn 1 , Vn 3 , Vn 2 进行调整即可. 综上所述,至少需要连接 n 1条线段.
)2 2(4(n 1) 6) 8n 4 .对 y 轴上的点类似讨论,可得
4 n 1 i 1
(y y
2 )2 8n 4 .故 ( PP i i 1 ) 2(8n 4) 16n 8 ,命题得证.
4.设平面上有 n 个点 V1, V2 , …, Vn (n≥4) ,任意三点不共线,某些点之间连有线段. 把 标号分别为 1, 2, …, n 的 n 枚棋子放置在这 n 个点处,每个点处恰有一枚棋子.现对这 n 枚 棋子进行如下操作: 每次选取若干枚棋子, 将它们分别移动到与自己所在点有线段相连的另 一个点处;操作后每点处仍恰有一枚棋子,并且没有两枚棋子在操作前后交换位置.若一种 连线段的方式使得无论开始时如何放置这 n 枚棋子, 总能经过有限次操作后, 使每个标号为 k 的棋子在点 Vk 处,k=1, 2, … , n,则称这种连线段的方式为“和谐的” ,求在所有和谐的连 线段的方式中,线段数目的最小值. 解: n 1. 将平面上的点看作图论中的顶点, 将有线段相连的两点之间连一条边. 允许的操作方法 是将图中某个环上的顶点依次轮换.由于开始时放置 n 枚棋子的方法共有 n! 种,我们必须 能通过有限次轮换达到这 n! 种状态. 假设只有 n 条线段, 则图中只存在一个环,至多只能形成 n 种不同状态, 显然不满足 n! 种的需要. 下面证明 n 1条线段是可行的. 连接顶点 VV (下标 mod n 考虑) , i i 1 (i 1, 2,..., n) 和 V1V4 就存在一个 n 元环和一个 4 元环.我们可以先将 4 个顶点沿 n 元环转动到 4 元环的位置,再 沿着 4 元环轮换调整, 再将 n 元环反向转动回去, 由此可以轮换调换任意 4 个元素的位置而 不影响其他元素. 对于 5 元环 1, 2,3, 4,5 ,按照下列方法轮换调整: 1, 2,3, 4,5 3, 4,1, 2,5 3,1, 2,5, 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档