高中数学必修4(新人教A版)第二章《平面向量》测试(4)
(易错题)高中数学必修四第二章《平面向量》检测题(包含答案解析)(4)

一、选择题1.已知O 为正三角形ABC 内一点,且满足()10OA OB OC λλ+++=,若OAB 的面积与OAC 的面积之比为3,则λ=( ) A .12B .14C .34D .322.已知非零向量,a b 满足4,2a b ==,且a 在b 方向上的投影与b 在a 方向上的投影相等,则a b -等于( ) A .1B .25C .5D .33.在AOB ∆中,0,5,25,OA OB OA OB AB ⋅===边上的高为,OD D 在AB 上,点E 位于线段OD 上,若34OE EA ⋅=,则向量EA 在向量OD 上的投影为( ) A .12或32B .1C .1或12D .324.已知1a =,2b =,则a b a b ++-的最大值等于( )A .4B C .D .55.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( )A B .1C .2D .226.在ABC 中,D 为AB 的中点,60A ∠=︒且2AB AC AB CD ⋅=⋅,若ABC 的面积为AC 的长为( )A .B .3C .3D .7.在ABC 中,D 是BC 的中点,E 是AD 的中点,那么下列各式中正确的是( ) A .DB DC =B .2AD DE =C .2AB AC AD += D .AB AC BC -=8.在ABC 中,||:||:||3:4:5AB AC BC =,圆O 是ABC 的内切圆,且与BC 切于D 点,设AB a =,AC b =,则AD =( )A .2355a b +B .3255a b + C .2133a b +D .1233a b +9.在ABC ∆中,060BAC ∠=,5AB =,6AC =,D 是AB 上一点,且5AB CD ⋅=-,则BD 等于( )A .1B .2C .3D .410.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,AB =2BC =,13BE BC =,则( )A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+11.设O 是△ABC 20OB OC ++=,则∠BOC =( ) A .6π B .3π C .2π D .23π12.在ABC 中,D 是BC 边上的一点,F 是AD 上的一点,且满足2AD AB AC =+和20FD FA +=,连接CF 并延长交AB 于E ,若AE EB λ=,则λ的值为( ) A .12B .13C .14D .15二、填空题13.已知平面向量a ,b ,c ,d 满足1a b ==,2c =,0a b ⋅=,1c d -=,则2a b d ++的取值范围为______.14.记集合{|X x b a xc ==+且||||4}a b a b ++-=中所有元素的绝对值之和为(,)S a c ,其中平面向量a ,b ,c 不共线,且||||1a c ==,则(,)S a c 的取值范围是______________.15.已知向量1e ,2e 是平面α内的一组基向量,O 为α内的定点,对于α内任意一点P ,当12OP xe ye =+时,则称有序实数对(),x y 为点P 的广义坐标,若点A 、B 的广义坐标分别为()11,x y 、()22,x y ,对于下列命题: ① 线段A 、B 的中点的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭; ② A 、B 两点间的距离为(12x x -③ 向量OA 平行于向量OB 的充要条件是1221x y x y =; ④ 向量OA 垂直于向量OB 的充要条件是12120x x y y +=. 其中的真命题是________(请写出所有真命题的序号) 16.在ABC 中,AB AC =,E ,F 是边BC 的三等分点,若3AB AC AB AC +=-,则cos EAF ∠=_______________17.设10AB =,若平面上点P 满足对任意的R λ∈,28AP AB λ-≥,PA PB ⋅的最小值为_______.18.如图,设圆M 的半径为2,点C 是圆M 上的定点,A ,B 是圆M 上的两个动点,则CA CB ⋅的最小值是________.19.已知,a b 都是单位向量,且a 与b 的夹角是120,||a b -=_________________. 20.在ABC 中,2AB =,32AC =,135BAC ∠=︒,M 是ABC 所在平面上的动点,则w MA MB MB MC MC MA =⋅+⋅+⋅的最小值为________.三、解答题21.平面内给定三个向量(3,2),(1,2),(4,1)a b c ==-=. (1)求32a b c +-;(2)求满足a mb nc =+的实数m 和n ; (3)若()(2)a kc b a +⊥-,求实数k .22.在平面直角坐标系xOy 中,已知点()1,2A -,()1,1B ,()3,1C -. (Ⅰ)求AB 的坐标及AB ;(Ⅱ)当实数t 为何值时,()tOC OB AB +.23.已知在直角坐标系中(O 为坐标原点),()2,5OA =,()3,1OB =,(),3OC x =. (1)若A ,B ,C 共线,求x 的值;(2)当6x =时,直线OC 上存在点M 使MA MB ⊥,求点M 的坐标. 24.已知()3,2a =-,()2,1b =,O 为坐标原点.(1)若ma b +与2a b -的夹角为钝角,求实数m 的取值范围; (2)设OA a =,OB b =,求OAB 的面积.25.已知向量(1,2),(,2),(3,1)==-=-OA OB m OC ,O 为坐标原点. (1)若AB AC ⊥求实数m 的值; (2)在(1)的条件下,求△ABC 的面积.26.已知向量()3,1a =-,()1,2b =-,()n a kb k R =-∈. (1)若n 与向量2a b -垂直,求实数k 的值;(2)若向量()1,1c =-,且n 与向量kb c +平行,求实数k 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】分别取AC 、BC 的中点D 、E ,连接DE 、AE ,由平面向量的线性运算可得OD OE λ=-,进而可得13OAC AEC S S =△△,即可得解.【详解】分别取AC 、BC 的中点D 、E ,连接DE 、AE ,如图,所以DE 是ABC 的中位线,因为()10OA OB OC λλ+++=,所以()OA OC OB OC λ+=-+, 所以OD OE λ=-,所以D 、E 、O 三点共线,所以111363OAC OAB ABC AEC S S S S ===△△△△,所以13OD ED =即12OD OE =-,所以12λ-=-即12λ=.故选:A. 【点睛】本题考查了平面向量共线、线性运算及基本定理的应用,考查了运算求解能力与转化化归思想,属于中档题.2.B解析:B 【解析】因为a 在b 方向上的投影与b 在a 方向上的投影相等,设这两个向量的夹角为θ,则cos cos 4cos 2cos 2a b πθθθθθ===⇒=,又由2()a b a b -=-且4,2a b ==,所以222()225a b a b a a b b -=-=-⋅+=,故选B.3.A解析:A 【解析】Rt AOB 中,0OA OB ⋅=,∴2AOB π∠=,∵5OA =,25OB =|,∴225AB OA OB =+= , ∵AB 边上的高线为OD ,点E 位于线段OD 上,建立平面直角坐标系,如图所示; 则)5,0A、(025B ,、设(),D m n ,则OAD BAO ∽,∴OA ADAB OA=, ∴1AD =,∴15AD AB =, 即()(155,255m n =-,,求得45m =, ∴452555D ⎛ ⎝⎭;则45254525,,5555OE OD λλλ⎛⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 45255,55EA λλ⎛⎫=- ⎪ ⎪⎭;∵34OE EA ⋅=,∴235554λλ⎫⎛⎫⋅-=⎪ ⎪⎪ ⎪⎭⎝⎭, 解得34λ=或14λ=;∴向量EA 在向量OD上的投影为())1,155ED OD OE λλ⎛⎫=-=-- ⎪ ⎪⎝⎭,当34λ=时,15102ED ⎛⎫==⎪⎪⎝⎭;当14λ=时,35102ED ⎛== ⎝⎭. 即向量EA 在向量OD 上的投影为12或32,故选A. 4.C解析:C 【分析】利用基本不等式得到222a b a b a b a b ++-++-≤,然后利用平面向量数量积运算求解. 【详解】因为1a =,2b =,所以222222252a b a ba b a b a b ++-++-≤=+=,当且仅当a b a b +=-,即a b ⊥时取等号, 故选:C 【点睛】本题主要考查平面向量的数量积运算以及基本不等式的应用,属于中档题.5.B解析:B 【分析】作出图形,利用平面向量的线性运算以及数量积的运算性质可得出21P OP E PF =⋅-,求得OP 的最大值,由此可求得PE PF ⋅的最大值. 【详解】 如下图所示:由题可知正方形ABCD 的内切圆的半径为1,设该内切圆的圆心为O ,()()()()2221PE PF OE OP OF OP OP OE OP OE OP OE OP ⋅=-⋅-=-+⋅--=-=-,由图象可知,当点P 为ABCD 的顶点时,2OP 取得最大值2,所以PE PF ⋅的最大值为1.故选:B. 【点睛】本题考查平面向量数量积最值的计算,考查计算能力,属于中等题.6.B解析:B 【分析】设,,AB c AC b ==先化简2AB AC AB CD ⋅=⋅得3c b =,由ABC 的面积为316bc =,即得AC 的长. 【详解】设,,AB c AC b ==由题得2AB AC AB CD ⋅=⋅,所以2()AB AC AB AD AC AB AD AB AC ⋅=⋅-=⋅-⋅, 所以3,3cos cos0,332cAB AC AB AD c b c c b π⋅=⋅∴⨯⨯⨯=⨯⨯∴=. 因为ABC 的面积为431sin 43,1623b c bc π⨯⨯⨯=∴=. 所以24316,33b b =∴= 所以33AC =. 故选:B 【点睛】本题主要考查平面向量的数量积运算,考查三角形的面积的应用,意在考查学生对这些知识的理解掌握水平.7.C解析:C 【解析】依题意ABC 如图所示:∵D 是BC 的中点 ∴DB CD =,故A 错误 ∵E 是AD 的中点 ∴2AD ED =,故B 错误∵AB AD DB =+,AC AD DC =+∴2AB AC AD DB AD DC AD +=+++=,故C 正确∴()AB AC AD DB AD DC DB DC CB -=+-+=-=,故D 错误 故选C8.B解析:B 【分析】由题得三角形是直角三角形,设3,4,5AB AC BC ===,设,=,,DB BF x AD AE y EC CF z =====求出,,x y z ,再利用平面向量的线性运算求解.【详解】因为||:||:||3:4:5AB AC BC =,所以ABC 是直角三角形,设3,4, 5.AB AC BC ===如图,设,=,,DB BF x AD AE y EC CF z =====由题得34,2,1,35x yy z x y zx z+=⎧⎪+=∴===⎨⎪+=⎩,所以2232()5555 AD ABBD AB BC AB AC AB AB AC=+=+=+-=+3255a b=+.故选:B【点睛】本题主要考查平面向量的线性运算,意在考查学生对这些知识的理解掌握水平.9.C解析:C【解析】在ABC∆中,060BAC∠=,5,6AB AC==,D 是AB是上一点,且5AB CD⋅=-,如图所示,设AD k AB=,所以CD AD AC k AB AC=-=-,所以21()2556251552AB CD AB k AB AC k AB AB AC k k ⋅=⋅-=-⋅=-⨯⨯=-=-,解得25k=,所以2(1)35BD AB=-=,故选C.10.C解析:C【分析】先根据题意得1AD=,3CD=2AB DC=,再结合已知和向量的加减法运算求解即可得的答案.【详解】由题意可求得1AD=,3CD=所以2AB DC=,又13BE BC=,则()1133AE AB BE AB BC AB BA AD DC=+=+=+++1111333AB AD DC ⎛⎫=-++ ⎪⎝⎭1111336AB AD AB ⎛⎫=-++ ⎪⎝⎭115116363AB AD AB AD ⎛⎫=-+=+ ⎪⎝⎭.故选:C. 【点睛】本题考查用基底表示向量,考查运算能力,是基础题.11.B解析:B 【分析】不妨设ABC 的外接圆的半径为1,作2=OF OB ,以,OC OF 为邻边作平行四边形COFE ,可得1,2,7===OC OF OE ,利用余弦定理,再利用两角和余弦公式可得3BOC π∠=【详解】不妨设ABC 的外接圆的半径为1,作2=OF OB ,以,OC OF 为邻边作平行四边形COFE ,+=OC OF OE ,所以1,2,7===OC OF OE 2221723cos sin 21777+-∠==∠=⨯⨯EOC EOC , 2273cos sin 2272727∠==∠=⨯⨯EOF EOF 3331cos cos()2727727∠=∠+∠==BOC COE EOF 3π∴∠=BOC故选:B 【点睛】本题考查了平面几何和向量的综合,考查了运算求解能力和逻辑推理能力,属于中档题目.12.C解析:C 【分析】首先过D 做//DG CE ,交AB 于G ,根据向量加法的几何意义得到D 为BC 的中点,从而得到G 为BE 的中点,再利用相似三角形的性质即可得到答案. 【详解】如图所示,过D 做//DG CE ,交AB 于G .因为2AD AB AC =+,所以D 为BC 的中点. 因为//DG CE ,所以G 为BE 的中点, 因为20FD FA +=,所以:1:2AF FD =.因为//DG CE ,所以::1:2AE EG AF FD ==,即12AE EG =. 又因为EG BG =,所以14AE EB =, 故14AE EB =. 故选:C 【点睛】本题主要考查了向量加法运行的几何意义,同时考查了相似三角形的性质,属于中档题.二、填空题13.【分析】用几何意义求解不妨设则在圆心在原点半径为2的圆上设则在以为圆心半径为1的圆上运动后形成的轨迹是圆心在原点大圆半径为3小圆半径为1的圆环表示圆环内的点与定点的距离由图形可得最大值和最小值【详解解析:53⎡⎤⎣⎦【分析】用几何意义求解.不妨设()1,0a =,()0,1b =,(),c x y =,则(,)C x y 在圆心在原点,半径为2的圆上,设(),d x y '=',则(,)D x y ''在以C 为圆心半径为1的圆上,C 运动后,D 形成的轨迹是圆心在原点,大圆半径为3,小圆半径为1的圆环,2a b d ++表示圆环内的点D 与定点()2,1P --的距离,由图形可得最大值和最小值. 【详解】令()1,0a =,()0,1b =,(),c x y =,设C 的坐标为(),x y ,C 的轨迹为圆心在原点,半径为2的圆上.设(),d x y '=',D 的坐标为(),x y '',D 的轨迹为圆心在原点,大圆半径为3,小圆半径为1的圆环上.()22,1a b d d ++=---表示D 与点()2,1P --的距离,由图可知,故2a b d ++的取值范围为0,53⎡⎤+⎣⎦. 故答案为:0,53⎡⎤+⎣⎦【点睛】本题考查向量模的几何意义,考查模的最值,解题关键是设()1,0a =,()0,1b =,(),c x y =,(),d x y '=',固定,a b 后得出了,C D 的轨迹,然后由模2a b d ++的几何意义得出最值.14.【分析】由条件有两边平方可得当时当时可得答案【详解】解:因为所以所以两边平方得化简得设向量的夹角为则当时当时所以集合中所有元素的绝对值之和为因为所以所以所以所以的取值范围为【点睛】关键点点睛:此题考 解析:[3,4)【分析】由条件有|2||||2|||4a xc xc a xc x ++=++=,两边平方可得3xa c x ⋅=-,当0x ≥时,32cos x θ=+,当0x <时,3cos 2x θ=-,可得答案【详解】解:因为||||4a b a b ++-=,b a xc =+,||||1a c == 所以|2||||2|||4a xc xc a xc x ++=++=, 所以|2|4||a xc x +=-,两边平方得,2244168xa c x x x +⋅+=-+,化简得,3xa c x ⋅=-,设向量,a c 的夹角为θ,(0,)θπ∈,则cos 32x x θ=-, 当0x ≥时,32cos x θ=+,当0x <时,3cos 2x θ=-,所以集合X 中所有元素的绝对值之和为233122cos 2cos 4cos θθθ+=+--, 因为(0,)θπ∈,所以20cos 1θ≤<, 所以234cos 4θ<-≤,所以212344cos θ≤<-, 所以(,)S a c 的取值范围为[3,4)【点睛】关键点点睛:此题考查向量数量积的性质的运用,解题的关键是由已知条件得到3xa c x ⋅=-,然后设出向量,a c 的夹角为θ,则当0x ≥时,32cos x θ=+,当0x <时,3cos 2x θ=-,从而可得集合X 中所有元素的绝对值之和为233122cos 2cos 4cos θθθ+=+--,再利用三角函数的有界性可求得结果,考查数学转化思想15.①③【分析】根据点的广义坐标分别为利用向量的运算公式分别计算①②③④得出结论【详解】点的广义坐标分别为对于①线段的中点设为M 根据=()=中点的广义坐标为故①正确对于②∵(x2﹣x1)A 两点间的距离为解析:①③ 【分析】根据点A 、B 的广义坐标分别为()11,x y 、()22,x y ,1112OA x e y e ∴=+,2122OB x e y e =+,利用向量的运算公式分别计算①②③④,得出结论.【详解】点A 、B 的广义坐标分别为()11,x y 、()22,x y ,1112OA x e y e ∴=+,2122OB x e y e =+,对于①,线段A 、B 的中点设为M ,根据OM =12(OA OB +)=12112211()()22x x e y y e +++ ∴中点的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭,故①正确.对于②,∵AB =(x 2﹣x 1)()1212e y y e +-,∴A 、B 两点间的距离为()()2222211212212112()()2x x e y y e x x y y e e -+-+--,故②不一定正确.对于③,向量OA 平行于向量OB ,则t OA OB =,即(11,x y )=t ()22,x y ,1221x y x y ∴=,故③正确.对于④,向量OA 垂直于向量OB ,则OA OB =0,221211221121220x x e x y x y e e y y e ∴+++=(),故④不一定正确.故答案为①③. 【点睛】本题在新情境下考查了数量积运算性质、数量积定义,考查了推理能力与计算能力,属于中档题.16.【分析】以ABAC 为邻边作平行四边形ABCD 根据得到再根据得到平行四边形ABCD 是菱形则设利用勾股定理分别求得的长度在中利用余弦定理求解【详解】如图所示:以ABAC 为邻边作平行四边形ABCD 则因为所解析:1314【分析】以AB ,AC 为邻边作平行四边形ABCD ,根据3AB AC AB AC +=-,得到3AD CB =, 再根据AB AC =,得到平行四边形ABCD 是菱形,则CB AD ⊥,设3CB =,利用勾股定理分别求得EF ,,AE AF 的长度,在AEF 中利用余弦定理求解. 【详解】 如图所示:以AB ,AC 为邻边作平行四边形ABCD ,则,AB AC AD AB AC CB +=-=, 因为3AB AC AB AC +=-,所以3AD CB =,设3CB =3AD =, 因为AB AC =,所以平行四边形ABCD 是菱形, 所以CB AD ⊥,所以AB AC EF ====,所以3AE AF ===,所以2222121113cos 214AE AF EF EAF AE AF +-+-∠===⋅. 故答案为:1314【点睛】本题主要考查平面向量的平行四边形法则以及余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.17.【分析】建立如图所示的坐标系则设则所以从而结合可得对任意恒成立则必然成立可得而从而可求得结果【详解】解:以线段的中点为原点以所在的直线为轴以其中垂线为轴建立直角坐标系则设则所以因为所以化简得由于上述 解析:9-【分析】建立如图所示的坐标系,则(5,0),(5,0)A B -,设(,)P x y ,则(5,),(10,0)AP x y AB =+=,所以2(21010,2)AP AB x y λλ-=+-,从而2(21010,2)AP AB x y λλ-=+-,结合28AP AB λ-≥,可得222100(20040)4404360x x x y λλ-+++++≥,对任意R λ∈恒成立,则0∆≤必然成立,可得4y ≥,而2225PA PB x y ⋅=+-216259x ≥+-≥-,从而可求得结果 【详解】解:以线段AB 的中点为原点,以AB 所在的直线为x 轴,以其中垂线为y 轴,建立直角坐标系,则(5,0),(5,0)A B -,设(,)P x y ,则(5,),(10,0)AP x y AB =+=, 所以2(21010,2)AP AB x y λλ-=+-,因为28AP AB λ-≥,所以22(21010)464x y λ+-+≥,化简得222100(20040)4404360x x x y λλ-+++++≥, 由于上述不等式对任意R λ∈恒成立,则0∆≤必然成立,222(20040)4100(440436)0x x x y ∆=+-⨯⨯+++≤,解得4y ≥,所以4y ≥或4y ≤-, 因为(5,),(5,)PA x y PB x y =---=--, 所以2225PA PB x y ⋅=+-, 因为x ∈R ,216y ≥,所以2222516259x y x +-≥+-≥-, 即9PA PB ⋅≥-,所以PA PB ⋅的最小值为9-, 故答案为:9-【点睛】此题考查向量的数量积运算,考查数形结合思想,考查计算能力,属于中档题18.【分析】延长BC 作圆M 的切线设切点为A1切线与BD 的交点D 结合数量积的几何意义可得点A 运动到A1时在上的投影最小设将结果表示为关于的二次函数求出最值即可【详解】如图延长BC 作圆M 的切线设切点为A1切 解析:2-【分析】延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,结合数量积的几何意义可得点A 运动到A 1时,CA 在CB 上的投影最小,设CP x =,将结果表示为关于x 的二次函数,求出最值即可. 【详解】 如图,延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,由数量积的几何意义,CA CB ⋅等于CA 在CB 上的投影与CB 之积,当点A 运动到A 1时,CA 在CB 上的投影最小; 设BC 中点P ,连MP ,MA 1,则四边形MPDA 1为矩形; 设CP =x ,则CD =2-x ,CB =2x ,CA CB ⋅=()()222224212x x x x x --⋅=-=--,[]02x ∈,, 所以当1x =时,CA CB ⋅最小,最小值为2-, 故答案为:2-. 【点睛】本题考查平面向量数量积的几何意义,考查了学生的作图能力以及分析问题解决问题的能力,属于中档题.19.【分析】根据数量积公式得出的值再由得出答案【详解】故答案为:【点睛】本题主要考查了由数量积求模长属于中档题 3【分析】根据数量积公式得出a b ⋅的值,再由2||()a b a b -=-得出答案. 【详解】111cos1202a b ⋅=⨯⨯︒=-22222||()2||2||1113a b a b a a b b a a b b ∴-=-=-⋅+=-⋅+=++=3【点睛】本题主要考查了由数量积求模长,属于中档题.20.【分析】以A 为原点AC 所在直线为x 轴建系如图所示根据题意可得ABC 坐标设可得的坐标根据数量积公式可得的表达式即可求得答案【详解】以A 为原点AC 所在直线为x 轴建立坐标系如图所示:因为所以设则所以=当时 解析:283-【分析】以A 为原点,AC 所在直线为x 轴,建系,如图所示,根据题意,可得A 、B 、C 坐标,设(,)M x y ,可得,,MA MB MC 的坐标,根据数量积公式,可得w 的表达式,即可求得答案.【详解】以A 为原点,AC 所在直线为x 轴,建立坐标系,如图所示:因为2AB =,32AC =135BAC ∠=︒, 所以(0,0),(2,2),(32,0)A B C -,设(,)M x y ,则(,),(2,2),(32,)MA x y MB x y MC x y =--=---=--, 所以(2)(2)w MA MB MB MC MC MA x x y y =⋅+⋅+⋅=++22)(32)(2)(2)x x y y x x y -++-+=22222222834232263()3()333x x y x y -+--=-+--, 当222,33x y ==时,w 有最小值,且为283-, 故答案为:283- 【点睛】解题的关键是建立适当的坐标系,求得点坐标,利用数量积公式的坐标公式求解,考查分析理解,计算化简的能力,属基础题.三、解答题21.(1)6;(2)58,99m n ==;(3)1118k =-.【分析】(1)利用向量加法的坐标运算得到()320,6a b c +-=,再求模长即可;(2)先写mb nc +的坐标,再根据a mb nc =+使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可.【详解】解:(1)由(3,2),(1,2),(4,1)a b c ==-=,得3(9,6),(1,2),2(8,2)a b c ==-=∴()()32918,6220,6a b c +-=--+-=,∴23206a b c +-=+=;(2)()(),2,4,mb m m nc n n =-=, ∴()4,2mb nc n m m n +=-+,a mb nc =+,∴()4,2(3,2)a n m m n ==-+,故4322n m m n -=⎧⎨+=⎩,解得58,99m n ==;(3)(3,2),(4,)a kc k k ==,∴()34,2a kc k k +=++,(3,2),2(2,4)a b ==-,∴()25,2b a -=-,()()2a kc b a +⊥-,∴()()20a kc b a +⋅-=,即()()534220k k -+++=,解得1118k =-. 【点睛】 结论点睛:若()()1122,,,a x y b x y == ,则//a b 等价于12210x y x y -=;a b ⊥等价于12120x x y y +=.22.(Ⅰ)(2,1)AB =-,5AB =Ⅱ)3t = 【分析】(Ⅰ)根据点A ,B 的坐标即可求出(2,1)AB =-,从而可求出||AB ;(Ⅱ)可以求出(13,1)tOC OB t t +=-+,根据()//tOC OB AB +即可得出2(1)(1)(13)30t t t +---=-=,解出t 即可.【详解】(Ⅰ)∵()1,2A -,()1,1B ,∴(2,1)AB =- ∴2||25AB ==(Ⅱ)∵()3,1C -,∴(13,1)tOC OB t t +=-+. ∵()tOC OB AB +∴2(1)(1)(13)30t t t +---=-=,∴3t =【点睛】考查根据点的坐标求向量的坐标的方法,根据向量的坐标求向量长度的方法,以及平行向量的坐标关系. 23.(1)52x =;(2)()2,1或2211,55⎛⎫⎪⎝⎭. 【分析】(1)利用//AB BC ,结合向量共线的坐标表示列方程,解方程求得x 的值.(2)设M 点的坐标为()6,3λλ,利用MA MB ⊥,结合向量垂直的坐标表示列方程,解方程求得λ的值,进而求得M 点的坐标. 【详解】(1)()1,4AB OB OA =-=-;()3,2BC OC OB x =-=- ∵A 、B 、C 共线,∴//AB BC ∴()2430x +-= ∴52x =. (2)∵M 在直线OC 上,∴设()6,3OM OC λλλ== ∴()26,53MA OA OM λλ=-=--()36,13MB OB OM λλ=-=--∵MA MB ⊥∴()()()()263653130λλλλ--+--= 即:24548110λλ-+= 解得:13λ=或1115λ=. ∴()2,1OM =或2211,55OM ⎛⎫=⎪⎝⎭. ∴点M 的坐标为()2,1或2211,55⎛⎫⎪⎝⎭. 【点睛】本小题主要考查向量共线、垂直的坐标表示,属于中档题.24.(1)116,,225⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭;(2)72S =.【分析】(1)由题意,求得,2ma b a b +-的坐标,令()()20ma b a b +⋅-<,解得65m <,再由当12m =-时,得到2a b -与ma b +方向相反,求得12m ≠-,即可求解; (2)设AOB θ∠=,OAB 面积为S ,则1sin 2S a b θ=⋅,结合向量的夹角公式和向量的坐标运算,即可求解. 【详解】(1)由题意,向量()3,2a =-,()2,1b =,可得()32,21ma b m m +=+-+,()21,4a b -=--,令()()20ma b a b +⋅-<,即32840m m --+-<,解得65m <, 当12m =-时,12ma b a b +=-+, 此时2a b -与ma b +方向相反,夹角为π,不合题意,∴12m ≠-, 综上可得,实数m 的取值范围为116,,225⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭. (2)设AOB θ∠=,OAB 面积为S ,则1sin 2S a b θ=⋅, 因为222sin 1cos 1a b a b θθ⎛⎫⋅ ⎪=-=- ⎪⋅⎝⎭, 又由()3,2a =-,()2,1b =, 可得()22222224sin 651649S a b a b a bθ=⋅=-⋅=-=,解得72S =, 即OAB 的面积为72OAB S=. 【点睛】 本题主要考查了向量的角公式,向量的数量积的坐标运算的综合应用,其中解答中熟记向量的基本概念,以及向量的数量积和夹角公式的坐标运算是解答的关键,着重考查推理与运算能力.25.(1)1;(2)【分析】(1)根据向量(1,2),(,2),(3,1)==-=-OA OB m OC ,得到向量,AB AC ,再由AB AC ⊥,利用坐标运算求解.(2)由(1)得到 ,AB AC ,然后由12ABC S AB AC =⨯⨯求解. 【详解】(1)因为向量(1,2),(,2),(3,1)==-=-OA OB m OC ,所以向量(1,4),(4,1)AB m AC =--=--,又因为AB AC ⊥,所以4(1)40m --+=,解得 2m =.(2)由(1)知:(0,4),(4,1)AB AC =-=--,所以4,17AB AC ==所以11422ABC S AB AC =⨯⨯=⨯= 【点睛】本题主要考查平面向量的数量积的坐标运算,还考查了运算求解的能力,属于中档题. 26.(1)53-;(2)12-. 【分析】(1)求出()3,12n k k =--+,解方程(3)(7)(12)40k k --⨯-++⨯=即得解;(2)由已知得()1,21kb c k k +=+--,解方程(3)(21)(12)(1)k k k k --⋅--=+⋅+即得解.【详解】(1)由已知得()3,12n a kb k k =-=--+, ()27,4a b -=-, 所以()20n a b ⊥-=,即(3)(7)(12)40k k --⨯-++⨯=,解得53k =-; (2)由已知得()1,21kb c k k +=+--,因为()//n kb c +,所以(3)(21)(12)(1)k k k k --⋅--=+⋅+,解得12k =-. 【点睛】本题主要考查平面向量的线性运算,考查向量垂直平行的坐标表示,意在考查学生对这些知识的理解掌握水平.。
高中数学 第二章 平面向量 2.1向量的加法 新人教A版必修4-新人教A版高一必修4数学试题

§2 从位移的合成到向量的加法2.1 向量的加法,)1.问题导航(1)任意两个向量都可以应用向量加法的三角形法则吗?(2)向量加法的三角形法则与平行四边形法则的使用条件有何不同?2.例题导读教材P77例1,例2,P78例3.通过此三例的学习,熟悉向量加法运算,学会利用向量加法解决实际生活问题.试一试:教材P81习题2-2 B组T1,T2,T3你会吗?1.向量加法的定义及运算法则定义求两个向量和的运算,叫做向量的加法法则三角形法则前提已知向量a,b,在平面内任取一点A 作法作AB→=a,BC→=b,再作向量AC→结论向量AC→叫做a与b的和,记作a+b,即a+b=AB→+BC→=AC→图形平行四边形法则前提已知不共线的两个向量a,b,在平面内任取一点O 作法以同一点O为起点的两个已知向量a,b为邻边作▱OACB 结论对角线OC→就是a与b的和图形规定零向量与任一向量a的和都有a+0=0+a=a. 2.向量加法的运算律运算律交换律 a +b =b +a结合律 (a +b )+c =a +(b +c )1.判断正误.(正确的打“√”,错误的打“×”) (1)任意两个向量的和仍然是一个向量.( )(2)|a +b |≤|a |+|b |等号成立的条件是a ∥b .( )(3)任意两个向量的和向量不可能与这两个向量共线.( ) 解析:(1)正确.根据向量和的定义知该说法正确. (2)错误.条件应为a ∥b ,且a ,b 的方向相同.(3)错误.当两个向量共线时,两向量的和向量与这两个向量中的任意一个都共线. 答案:(1)√ (2)× (3)×2.若a ,b 为非零向量,则下列说法中不正确的是( )A .若向量a 与b 方向相反,且|a |>|b |,则向量a +b 与a 的方向相同B .若向量a 与b 方向相反,且|a |<|b |,则向量a +b 与a 的方向相同C .若向量a 与b 方向相同,则向量a +b 与a 的方向相同D .若向量a 与b 方向相同,则向量a +b 与b 的方向相同解析:选B.因为a 与b 方向相反,|a |<|b |,所以a +b 与a 的方向相反,故B 不正确. 3.化简下列各向量: (1)AB →+BC →=________. (2)PQ →+OM →+QO →=________.解析:根据向量加法的三角形法则及运算律得: (1)AB →+BC →=AC →.(2)PQ →+OM →+QO →=PQ →+QO →+OM →=PO →+OM →=PM →.答案:(1)AC → (2)PM →4.在△ABC 中,AB →=a ,BC →=b ,CA →=c ,则a +b +c =________.解析:由向量加法的三角形法则,得AB →+BC →=AC →,即a +b +c =AB →+BC →+CA →=0. 答案:01.对向量加法的三角形法则的四点说明 (1)适用X 围:任意向量.(2)注意事项:①两个向量一定首尾相连;②和向量的起点是第一个向量的起点,终点是第二个向量的终点. (3)方法与步骤:第一步,将b (或a )平移,使一个向量的起点与另一个向量的终点相连; 第二步:将剩下的起点与终点用有向线段相连,且有向线段的方向指向终点,则该有向线段表示的向量即为向量的和.也称“首尾相连,连首尾”.(4)图示:如图所示2.对向量加法的平行四边形法则的四点说明 (1)适用X 围:任意两个非零向量,且不共线.(2)注意事项:①两个非零向量一定要有相同的起点; ②平行四边形中的一条对角线所对应的向量为和向量.(3)方法与步骤:第一步:先把两个已知向量a 与b 的起点平移到同一点; 第二步:以这两个已知向量为邻边作平行四边形,则两邻边所夹的对角线所表示的向量即为a 与b 的和.(4)图示:如图所示已知向量作和向量如图,已知向量a ,b ,c 不共线,求作向量a +b +c .(教材P 81习题2-2 A 组T 3)[解] 法一:如图(1),在平面内作OA →=a ,AB →=b ,则OB →=a +b ;再作BC →=c ,则OC →=a +b +c .法二:如图(2),在平面内作OA →=a ,OB →=b ,以OA 与OB 为邻边作平行四边形OADB ,则OD →=a +b ;再作OC →=c ,以OD 与OC 为邻边作平行四边形ODEC ,则OE →=a +b +c .方法归纳已知向量求作和向量的方法(1)用三角形法则,在平面内任取一点,顺次作两个向量等于已知向量,从起点到终点的向量就是两个向量的和.(2)用平行四边形法则,在平面内任取一点,从此点出发分别作两个向量等于已知向量,以它们为邻边作平行四边形,共起点的对角线对应的向量就是这两个向量的和.1.(1)如图所示,已知向量a 和b ,求作a +b .(2)如图,已知a ,b ,c 三个向量,试求作和向量a +b +c .解:(1)法一:(三角形法则)如图所示.①在平面上任取一点O ,作OA →=a ,AB →=b ;②连接OB ,则OB →=a +b .法二:(平行四边形法则)如图所示.①在平面上任取一点O ,作OA →=a ,OB →=b ;②以OA ,OB 为邻边作平行四边形OACB ,则OC →=a +b .(2)作出来的和向量如图,首先在平面内任取一点O ,作向量OA →=a ,再作向量AB →=b ,则得向量OB →=a +b ,然后作向量BC →=c ,则向量OC →即为所求.向量的加法运算(1)下列等式不正确的是( )①a +(b +c )=(a +c )+b ;②AB →+BA →=0;③AC →=DC →+AB →+BD →. A .②③ B .② C .① D .③(2)设A ,B ,C ,D 是平面上任意四点,试化简: ①AB →+CD →+BC →; ②DB →+AC →+BD →+CA →.(教材P 81习题2-2A 组T 5(1)(2))[解] (1)选B.由向量的加法满足结合律知①正确;因为AB →+BA →=0,故②不正确;DC →+AB →+BD →=AB →+BD →+DC →=AC →成立,故③正确.(2)①AB →+CD →+BC →=(AB →+BC →)+CD →=AC →+CD →=AD →. ②DB →+AC →+BD →+CA →=(DB →+BD →)+(AC →+CA →)=0+0=0.方法归纳向量加法运算律的意义和应用原则 (1)意义向量加法的运算律为向量加法提供了变形的依据,实现恰当利用向量加法法则运算的目的.实际上,由于向量的加法满足交换律和结合律,故多个向量的加法运算可以按照任意的次序、任意的组合来进行.(2)应用原则利用代数方法通过向量加法的交换律,使各向量“首尾相连”,通过向量加法的结合律调整向量相加的顺序.2.(1)在平行四边形ABCD 中,O 是对角线的交点,下列结论正确的是( ) A.AB →=CD →,BC →=AD → B.AD →+OD →=DA → C.AO →+OD →=AC →+CD → D.AB →+BC →+CD →=DA → (2)化简下列各式: ①(AD →+MB →)+(BC →+CM →)=________. ②AB →+DF →+CD →+BC →+FA →=________.解析:(1)因为AO →+OD →=AD →,AC →+CD →=AD →,所以AO →+OD →=AC →+CD →.(2)①(AD →+MB →)+(BC →+CM →)=AD →+MB →+BM →=AD →+0=AD →. ②AB →+DF →+CD →+BC →+FA →=(AB →+BC →)+(DF →+FA →)+CD →=AC →+DA →+CD →=(AC →+CD →)+DA →=AD →+DA →=0.答案:(1)C (2)①AD →②0向量加法的应用(1)已知图中电线AO 与天花板的夹角为60°,电线AO 所受拉力|F 1|=24 N ;绳BO 与墙壁垂直,所受拉力|F 2|=12 N ,则F 1与F 2的合力大小为________N ;方向为________.(2)如图是中国象棋的部分棋盘,“马走日”是象棋中“马”的走法,如果不从原路返回,那么“马”从A 经过B 再走回到A 最少需几步?(教材P 77例1,例2,P 78例3) [解](1)如图,根据向量加法的平行四边形法则,得合力F 1+F 2=OC →.在△OAC 中,|F 1|=24,|AC →|=12,∠OAC =60°,所以∠OCA =90°,|OC →|=123, 所以F 1与F 2的合力大小为12 3 N ,方向为竖直向上.故填123和竖直向上.(2)如图,如果不从原路返回,那么所走路线为A →B →C →D →A ,即AB →+BC →+CD →+DA →=0,所以最少需四步.本例(2)条件不变,若不限步数,那么“马”从A 经过B 再走回A 时,所走的步数有什么特点?解:若不限步数,则“马”从A 经过B 再走回A 时,不论如何走,均需走偶数步,且不少于四步.方法归纳向量加法应用的关键及技巧(1)三个关键:一是搞清构成平面图形的向量间的相互关系;二是熟练找出图形中的相等向量;三是能根据三角形法则或平行四边形法则作出向量的和向量.(2)应用技巧:①准确画出几何图形,将几何图形中的边转化为向量;②将所求问题转化为向量的加法运算,进而利用向量加法的几何意义进行求解.3.(1)若a 表示向东走8 km ,b 表示向北走8 km ,则|a +b |=________km ,a +b 的方向是________.(2)如图所示,在某次抗震救灾中,一架飞机从A 地按北偏东35°的方向飞行800 km 到达B 地接到受伤人员,然后又从B 地按南偏东55°的方向飞行800 km 送往C 地医院,求这架飞机飞行的路程及两次位移的和.解:(1)设OA →=a ,OB →=b ,则OC →=a +b .又因为|OA →|=8,|OB →|=8,所以|OC →|=|a +b |=8 2. 又因为∠AOC =45°,所以a +b 的方向是北偏东45°.故填82和北偏东45°.(2)设AB →,BC →分别表示飞机从A 地按北偏东35°的方向飞行800 km ,从B 地按南偏东55°的方向飞行800 km ,则飞机飞行的路程指的是|AB →|+|BC →|;两次飞行的位移的和指的是AB →+BC →=AC →.依题意有|AB →|+|BC →|=800+800=1 600(km),又α=35°,β=55°,∠ABC =35°+55°=90°,所以|AC →|=|AB →|2+|BC →|2 =8002+8002=8002(km).易错警示未能正确理解向量加法致误小船以10 3 km/h 的静水速度按垂直于对岸的方向行驶,同时河水的流速为10km/h ,则小船实际航行速度的大小为________km/h.[解析] 如图,设船在静水中的速度为|v 1|=10 3 km/h ,河水的流速为|v 2|=10 km/h ,小船实际航行速度为v 0,则由|v 1|2+|v 2|2=|v 0|2,得(103)2+102=|v 0|2,所以|v 0|=20 km/h ,即小船实际航行速度的大小为20 km/h.[答案] 20[错因与防X] (1)解答本题,易将船的实际速度当成河水的流速与静水速度之和,导致得不到正确的实际航速关系式而出错.(2)①向量的和一般不能直接用模作和;要注意向量的方向的合成,如本例中用两个速度不能直接作和;②船在静水中的航行速度,水流的速度,船实际的航行速度三者间当航行方向与水流方向不共线时不能直接某某际航行速度,如本例中两个方向垂直,利用勾股定理求速度的大小.4.(1)一艘船以4 km/h 的速度沿着与水流方向成120°的方向航行,已知河水流速为2 km/h ,若船的实际航行方向与水流方向垂直,则经过3 h ,该船的实际航程为________km.(2)在静水中船的速度为20 m/min ,水流的速度为10 m/min ,如果船从岸边出发沿垂直于水流的航线到达对岸,求船行进的方向.解:(1)由题意,如图,OA →表示水流速度,OB →表示船在静水中的速度,则OC →表示船的实际速度.因为|OA →|=2,|OB →|=4,∠AOB =120°,则∠CBO =60°, 又因为∠AOC =∠BCO =90°,所以|OC →|=23,所以船的实际航行速度为2 3 km/h ,则实际航程为23×3=63(km).故填6 3. (2)作出图形,如图.船速v 船与岸的方向成α角,由图可知v 水+v 船=v 实际,结合已知条件,四边形ABCD 为平行四边形,在Rt △ACD 中, |CD →|=|AB →|=|v 水|=10 m/min , |AD →|=|v 船|=20 m/min ,所以cos α=|CD →||AD →|=1020=12,所以α=60°,从而船与水流方向成120°的角. 故船行进的方向是与水流的方向成120°角的方向.1.已知下面的说法:①如果非零向量a 与b 的方向相同或相反,那么a +b 的方向与a 或b 的方向相同;②在△ABC 中,必有AB →+BC →+CA →=0;③若AB →+BC →+CA →=0,则A ,B ,C 为一个三角形的三个顶点; ④若a ,b 均为非零向量,则|a +b |与|a |+|b |一定相等. 其中正确的个数为( ) A .0 B .1 C .2 D .3解析:选B.①当a +b =0时,不成立;②说法正确;③当A ,B ,C 三点共线时,也可以有AB →+BC →+CA →=0,故此说法不正确;④当a ,b 共线时,若a ,b 同向,则|a +b |=|a |+|b |;若a ,b 反向,则|a +b |=||a |-|b ||;当a ,b 不共线时,|a +b |<|a |+|b |,故此说法不正确.2.如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则下列等式中正确的是( )A.FD →+DA →=FA →B.FD →+DE →+FE →=0C.DE →+DA →=EB →D.DA →+DE →=FD →解析:选A.如题图,可知FD →+DA →=FA →, FD →+DE →+FE →=FE →+FE →≠0, DE →+DA →=DF →,故A 正确.3.化简(AB →+MB →)+(BO →+BC →)+OM →=________.解析:原式=(AB →+BO →)+(OM →+MB →)+BC →=AO →+OB →+BC →=AB →+BC →=AC →.答案:AC →, [学生用书单独成册])[A.基础达标]1.在四边形ABCD 中,若AC →=AB →+AD →,则( ) A .四边形ABCD 是矩形 B .四边形ABCD 是菱形 C .四边形ABCD 是正方形 D .四边形ABCD 是平行四边形解析:选D.由向量加法的平行四边形法则知四边形ABCD 是平行四边形.故选D.2.如图所示,在平行四边形ABCD 中,BC →+DC →+BA →=( )A.BD →B .DB → C.BC →D .CB →解析:选C.BC →+DC →+BA →=BC →+(DC →+BA →)=BC →+0=BC →.3.已知a ,b ,c 是非零向量,则(a +c )+b ,b +(a +c ),b +(c +a ),c +(a +b ),c +(b +a )中,与向量a +b +c 相等的个数为( )A .5B .4C .3D .2解析:选A.依据向量加法的交换律及结合律,每个向量式均与a +b +c 相等,故选A.4.如图所示的方格中有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+OQ →=( )A.OH → B .OG →C.FO →D .EO →解析:选C.设a =OP →+OQ →,以OP ,OQ 为邻边作平行四边形,则夹在OP ,OQ 之间的对角线对应的向量即为向量a =OP →+OQ →,则a 与FO →长度相等,方向相同,所以a =FO →.5.设a =(AB →+CD →)+(BC →+DA →),b 是任一非零向量,则在下列结论中,正确的为( ) ①a∥b ;②a +b =a ;③a +b =b ;④|a +b |<|a |+|b |; ⑤|a +b |=|a |+|b |. A .①② B .①③ C .①③⑤ D .③④⑤解析:选C.因为(AB →+CD →)+(BC →+DA →) =AB →+BC →+CD →+DA →=a =0. 所以a∥b ,a +b =b ,即①③正确,②错误,而a =0时,|a +b |=|b |=|a |+|b |,故④错误,⑤正确. 6.当非零向量a ,b 满足________时,a +b 平分以a 与b 为邻边的平行四边形的内角. 解析:由平面几何知识知,在平行四边形中,菱形的对角线平分其内角. 答案:|a |=|b |7.矩形ABCD 中,|AB |=3,|BC →|=1,则向量AB →+AD →+AC →的长度等于________. 解析:因为ABCD 为矩形,所以AB →+AD →=AC →,所以AB →+AD →+AC →=AC →+AC →,如图,过点C 作CE →=AC →,则AC →+AC →=AE →,所以|AB →+AD →+AC →|=|AE →|=2|AC →|=2|AB →|2+|BC →|2=4. 答案:48.在平行四边形ABCD 中,若|BC →+BA →|=|BC →+AB →|,则四边形ABCD 是________(图形).解析:如图所示,BC →+BA →=BD →,BC →+AB →=AC →, 又|BC →+BA →|=|BC →+AB →|,所以|BD →|=|AC →|,则四边形ABCD 是矩形. 答案:矩形9.如图所示,P ,Q 是三角形ABC 的边BC 上两点,且BP =QC .求证:AB →+AC →=AP →+AQ →.证明:AB →=AP →+PB →,AC →=AQ →+QC →,所以AB →+AC →=AP →+PB →+AQ →+QC →.因为PB →与QC →大小相等,方向相反,所以PB →+QC →=0, 故AB →+AC →=AP →+AQ →+0=AP →+AQ →. 10.如图,在重300 N 的物体上拴两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为30°,60°,当整个系统处于平衡状态时,求两根绳子的拉力.解:如图,在平行四边形OACB 中,∠AOC =30°,∠BOC =60°,则在△OAC 中,∠ACO=∠BOC =60°,∠OAC =90°,设向量OA →,OB →分别表示两根绳子的拉力,则CO →表示物体的重力,|CO →|=300 N ,所以|OA →|=|CO →|cos 30°=150 3 N ,|OB →|=|CO →|cos 60°=150 N.所以与铅垂线成30°角的绳子的拉力是150 3 N ,与铅垂线成60°角的绳子的拉力是150 N.[B.能力提升] 1.设A 1,A 2,A 3,A 4是平面上给定的4个不同的点,则使MA 1→+MA 2→+MA 3→+MA 4→=0成立的点M 的个数为( )A .0B .1C .2D .4解析:选B.根据所给的四个向量的和是一个零向量,即MA 1→+MA 2→+MA 3→+MA 4→=0.当A 1,A 2,A 3,A 4是平面上给定的4个不同点确定以后,在平面上有且只有一个点满足使得四个向量的和等于零向量,故选B.2.已知|OA →|=3,|OB →|=3,∠AOB =60°,则|OA →+OB →|=( )A.3B .3C .23D .3 3解析:选D.在平面内任取一点O ,作向量OA →,OB →,以OA →,OB →为邻边作▱OACB ,则OC →=OA →+OB →.由题意知四边形OACB 为菱形,又∠AOB =60°,所以|OC →|=2×3×sin 60°=3 3.3.已知G 是△ABC 的重心,则GA →+GB →+GC →=________.解析:如图,连接AG 并延长交BC 于E ,点E 为BC 中点,延长AE 到D ,使GE =ED ,则GB →+GC→=GD →,GD →+GA →=0,所以GA →+GB →+GC →=0.答案:04.若|AB →|=10,|AC →|=8,则|BC →|的取值X 围是________.解析:如图,固定AB →,以A 为起点作AC →,则AC →的终点C 在以A 为圆心,|AC →|为半径的圆上,由图可见,当C 在C 1处时,|BC →|取最小值2,当C 在C 2处时,|BC →|取最大值18.答案:[2,18]5.一艘船在水中航行,水流速度与船在静水中航行的速度均为5 km/h.如果此船实际向南偏西30°方向行驶2 km ,然后又向西行驶2 km ,你知道此船在整个过程中的位移吗?解:如图,用AC →表示船的第一次位移,用CD →表示船的第二次位移,根据向量加法的三角形法则知AD →=AC →+CD →,所以AD →可表示两次位移的和位移.由题意知,在Rt △ABC 中,∠BAC =30°,所以BC =12AC =1,AB = 3. 在等腰△ACD 中,AC =CD =2, 所以∠D =∠DAC =12∠ACB =30°, 所以∠BAD =60°,AD =2AB =23,所以两次位移的和位移的方向是南偏西60°,位移的大小为2 3 km.6.(选做题)在四边形ABCD 中,对角线AC ,BD 交于点O ,且|AB →|=|AD →|=1,OA →+OC →=OB →+OD →=0,cos ∠DAB =12.求|DC →+BC →|与|CD →+BC →|.解:因为OA →+OC →=OB →+OD →=0,所以OA →=CO →,OB →=DO →,所以四边形ABCD 为平行四边形,又|AB →|=|AD →|=1,知四边形ABCD 为菱形.因为cos ∠DAB =12,∠DAB ∈(0,π), 所以∠DAB =π3,所以△ABD 为正三角形, 所以|DC →+BC →|=|AB →+AD →|=|AC →|=2|AO →|= 3.|CD →+BC →|=|BD →|=|AB →|=1.。
高中数学第二章平面向量2.2.3向量数乘运算及其几何意义课后习题新人教A版必修4

高中数学第二章平面向量223向量数乘运算及其几何意义课后习题新人教A 版必修4一、A 组1.已知非零向量 a, b 满足a +4b =0,则( )C a 与b 的方向相同D. a 与b 的方向相反解析:T a +4b =0,二 a =-4b, | a |= 4| b | ,且 a 与 b 的方向相反.答案:D1妙 4- BCA.1 -BA-BCB. Z:BA - BCC.--D.--I 1 IICD = -(CA + CB 解析:T 点D 是边AB 的中点,二).I~~TV 1I r^(CA + CB -BA + BC.•卫dg )=上.故选D .答案:D3.设a, b 不共线 J =a +k b, =n a +b(k ,m€ R),则A , B C 三点共线时有( )A.k=mB.km-仁0C km+1=0D.k+m=0i-1解析:若ABC 三点共线,则’共线,I I.存在唯一实数入,使二上=入“,.a +kb =X (m a +b),A. | a |+ 4| b |= 0B. a 与b 是相反向量2.如图所示1加=1*即 a +k b = Xm a + 入 b, •」几一/• km=1.即 km-1=0.答案:BA. △ ABC 的内部B. AC 边所在直线上C. AB 边所在直线上D. BC 边所在直线上4.如图,已知 lAB =a, AC =b,図/=3。
£,用a, b 表示眉D ,贝则4DA. a +Jb3 1B. 4a+4bC. ]a + ; b)5.已知P 是厶ABC 所在平面内的一点,池色=入卩月+PB ,其中入€ R 则点P —定在(上+解析:,兀入PP R, .UP R»PACB +•上P加••虽以共线.•••C P,A三点共线,故选B.答案:B6.化简:3(6a+»-^k 解析:原式=18a+3b-9a- 3b=9a.答案:9a7.如图,在平行四边形ABCD^ , E是CD的中点,且人月=a,4D=b,贝肖E = _____________________________________________________________________________I I I I I I解析:BE=BC^-CE = AD +答案—a+b &导学号08720054 在△ ABC中,点M为边AB的中点,若。
高中数学第二章平面向量2.2平面向量的线性运算2.2.1向量加法运算及其几何意义同步优化训练新人教A版必修4

2.2.1向量加法运算及其几何意义5分钟训练(预习类训练,可用于课前)1.如图2-2-1所示,在圆O中,向量OB、OC、AO是( )图2-2-1A.有相同起点的向量B.单位向量C.模相等的向量D.相等的向量解析:指定大小和方向后就可以确定一个向量,不能说某些向量是有相同起点的,A错;本题中没有给定向量的长度是1,所以不能说它们是单位向量,B错;这三个向量的方向是不同的,所以不是相等的向量,D错;这三个向量的模都是圆的半径,所以它们的模相等.答案:C2.(1)把平面上所有单位向量的起点平行移动到同一点P,则这些向量的终点构成的几何图形为_____________________.(2)把平行于直线l的所有单位向量的起点平行移动到直线l上的点P,这些向量的终点构成的几何图形为___________________.(3)把平行于直线l的所有向量的起点平行移动到直线l上的点P,这些向量的终点构成的几何图形为___________________.解析:向量是自由向量,根据向量相等,可以把向量的起点平移到同一点.(1)因为单位向量的模都是单位长度,所以同起点时,终点构成单位圆.应填:一个圆.(2)因为平行于直线l的所有单位向量只有两个方向,故这样的单位向量只有两个,起点为P,则终点应为:直线l上与P的距离相等的两个点.(3)因为平行于直线l的向量只有两个方向,但长度不同,任何长度都有,所以终点应为:直线l上的任意一点.答案:(1)一个圆.(2)直线l上与点P的距离相等的两个点.(3)直线l上的任意一点.3.如图2-2-2,试作出向量a与b的和a+b.图2-2-2解析:如图,首先作=a,再作=b,则=a+b.4.若a =“向北走8 km”,b =“向东走8 km”,则|a +b |=__________;a +b 的方向是___________. 解析:如图所示.答案:28 东北方向10分钟训练(强化类训练,可用于课中)1.如图2-2-3,正方形ABCD 的边长为1,则|+++|等于( )图2-2-3A.1B.2C.3D.22解析:|AD DC BC AB +++|=|AC 2|=2|AC |=22.答案:D2.如图2-2-4,四边形ABCD 为菱形,则下列等式中成立的是( )图2-2-4 A.=+ B.=+ C.=+ D.=+解析:由三角形法则和平行四边形法,可知AC BC AB =+,A 错;BC AC BA =+,B 错;DC AD CA =+,D 错.只有C 是正确的.答案:C3.已知向量a ∥b ,且|a |>|b |>0,则向量a +b 的方向( ).A.与向量a 方向相同B.与向量a 方向相反C.与向量b 方向相同D.与向量b 方向相反解析:已知a 平行于b ,如果a 和b 方向相同,则它们的和的方向应该与a 的方向相同;如果它们的方向相反,因为a 的模大于b 的模,所以它们的和仍然与a 的方向相同. 答案:A4.如图2-2-5所示,已知向量a ,b ,c ,d ,求向量a +b +c +d .图2-2-5解:在空间中任取一点O,作=a,=b,=c,=d,则=a+b+c+d.5.如图2-2-6所示,已知向量a、b、c,求作向量a+b+c.图2-2-6解:如图,首先作=b,再作=a,=c则=a+b+c.30分钟训练(巩固类训练,可用于课后)1.已知平行四边形ABCD,设(+)+(+)=a,而b是一非零向量,则下列结论正确的有( )①a∥b ②a+b=a ③a+b=b ④|a+b|<|a|+|b|A.①③B.②③C.②④D.①②解析:在平行四边形ABCD中,+=0,+=0,所以a为零向量,零向量和任何向量都平行,零向量和任意向量的和等于这个向量本身,所以①③正确.答案:A2.向量a、b都是非零向量,下列说法不正确的是( )A.向量a与b同向,则向量a+b与a的方向相同B.向量a与b同向,则向量a+b与b的方向相同C.向量a与b反向,且|a|<|b|,则向量a+b与a的方向相同D.向量a与b反向,且|a|>|b|,则向量a+b与a的方向相同解析:向量a与b反向,且|a|<|b|,则向量a+b的方向应该和模较大的向量相同,即和b 的方向相同,所以C错.答案:C3.a、b为非零向量,且|a+b|=|a|+|b|,则下列说法正确的是( )A.a∥b,且a与b方向相同B.a、b是共线向量C.a =-bD.a 、b 无论什么关系均可解析:当两个非零向量a 与b 不共线时,a +b 的方向与a 、b 的方向都不相同,且|a +b |<|a |+|b |;向量a 与b 同向时,a +b 的方向与a 、b 的方向都相同,且|a +b |=|a |+|b |;向量a 与b 反向且|a |<|b |时,a +b 的方向与b 的方向相同(与a 方向相反),且|a +b |=|b |-|a |.答案:A4.在平行四边形ABCD 中,下列式子: ①+=;②CD AC AD +=;③AC AB AD =+;④AC BC AB =+;⑤CD BC AB AD ++=;⑥CA DC AD +=.其中不正确的个数是( )A.1B.2C.4D.6 解析:=+,所以⑥错,其他各项都是正确的.答案:A5.下列命题①如果非零向量a 与b 的方向相同或相反,那么a +b 的方向必与a 、b 之一的方向相同; ②△ABC 中,必有++=0; ③若++=0,则A 、B 、C 为一个三角形的三个顶点;④若a 、b 均为非零向量,则|a +b |与|a |+|b |一定相等.其中真命题的个数为( )A.0B.1C.2D.3解析:①假命题.当a +b =0时,命题不成立;②真命题;③假命题.当A 、B 、C 三点共线时也可以有++=0;④假命题.只有当a 与b 同向时,相等,其他情况均为|a +b | >|a |+|b |. 答案:B6.如图2-2-7所示,在平行四边形ABCD 中,O 是对角线的交点.下列结论正确的是( )图2-2-7 A.=,= B.=+ C.CD AC OD AO +=+ D.DA CD BC AB =++解析:因为AD OD AO =+,AD CD AC =+,所以CD AC OD AO +=+.答案:C7.已知向量a 、b ,比较|a +b |与|a |+|b |的大小.解:(1)当a 、b 至少有一个为零向量时,有|a +b |=|a |+|b |;(2)当a 、b 为非零向量且a 、b 不共线时,有|a +b |<|a |+|b |;(3)当a 、b 为非零向量且a 、b 同向共线时,有|a +b |=|a |+|b |;(4)当a 、b 为非零向量且a 、b 异向共线时,有|a +b |<|a |+|b |.8.已知四边形ABCD ,对角线AC 与BD 交于点O ,且AO=OC ,DO=OB.求证:四边形ABCD 是平行四边形.证明:由已知得=,=.∵=+=+=,且A 、D 、B 、C 不在同一直线上.故四边形ABCD 是平行四边形.9.轮船从A 港沿东偏北30°方向行驶了40 n mile(海里)到达B 处,再由B 处沿正北方向行驶40 n mile 到达C 处.求此时轮船与A 港的相对位置.解:设、分别表示轮船的两次位移,则表示轮船的合位移,+=. 在Rt △ADB 中,∠ADB=90°,∠DAB=30°,||=40 n mile ,所以|DB |=20 n mile ,|AD |=320n mile.在Rt △ADC 中,∠ADC=90°,||=60 n mile ,所以|34060)320(22=+ n mile.因为|AC |=2||,所以∠CAD=60°.答:轮船此时位于A 港东偏北60 °,且距A 港340 n mile 的C 处.。
2021秋高中数学第二章平面向量2.3.1平面向量基本定理练习(含解析)新人教A版必修4

2.3.1 平面向量根本定理A 级 根底稳固一、选择题1.设e 1,e 2是平面内所有向量的一组基底,那么以下四组向量中,不能作为基底的是( )A .e 1+e 2和e 1-e 2B .3e 1-4e 2和6e 1-8e 2C .e 1+2e 2和2e 1+e 2D .e 1和e 1+e 2解析:B 中,因为6e 1-8e 2=2(3e 1-4e 2), 所以(6e 1-8e 2)∥(3e 1-4e 2),所以3e 1-4e 2和6e 1-8e 2不能作为基底. 答案:B2.在菱形ABCD 中,∠A =π3,那么AB →与AC →的夹角为( )A.π6B.π3C.5π6D.2π3解析:由题意知AC 平分∠BAD ,所以AB →与AC →的夹角为π6.答案:A3.在△ABC 中,点D 在BC 边上,且BD →=2DC →,设AB →=a ,AC →=b ,那么AD →可用基底a ,b 表示为( )A.12(a +b ) B.23a +13b C.13a +23b D.13(a +b ) 解析:因为BD →=2DC →, 所以BD →=23BC →.所以AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →=13a +23b .答案:C4.如图,在△OAB 中,P 为线段AB 上一点,OP →=xOA →+yOB →,且BP →=3PA →,那么( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14解析:由BP →=3PA →,得OP →-OB →=3(OA →-OP →),整理,得OP →=34OA →+14OB →,故x =34,y =14.答案:D5.(2021·全国卷Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,那么EB →=( ) A.34AB →-14AC → B.14AB →-34AC → C.34AB →+14AC → D.14AB →+34AC → 答案:A 二、填空题6.假设OP 1→=a ,OP 2→=b ,P 1P →=λPP 2→(λ≠-1),那么OP →=________.解析:因为OP →=OP 1→+P 1P →=OP 1+λPP 2→=OP 1→+λ(OP 2→-OP →)=OP 1→+λOP 2→-λOP →, 所以(1+λ)OP →=OP 1→+λOP 2→.所以OP →=11+λOP 1→+λ1+λOP 2→=11+λa +λ1+λb .答案:11+λa +λ1+λb 7.|a |=1,|b |=2,且a -b 与a 垂直,那么a 与b 的夹角为________.解析:如图,作向量OA →=a ,OB →=b ,那么BA →=a -b .由,得OA =1,OB =2,OA ⊥AB ,所以△OAB 为等腰直角三角形,所以∠AOB =45°,所以a 与b 的夹角为45°.答案:45°8.如果3e 1+4e 2=a ,2e 1+3e 2=b ,其中a ,b 为向量,那么e 1=________,e 2=________. 解析:由⎩⎪⎨⎪⎧a =3e 1+4e 2,b =2e 1+3e 2,解得⎩⎪⎨⎪⎧e 1=3a -4b ,e 2=3b -2a .答案:3a -4b 3b -2a 三、解答题9.如下图,平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,假设OC →=λOA →+μOB →(λ,μ∈R).求λ+μ的值.解:如下图,以OA ,OB 所在射线为邻边,OC 为对角线作平行四边形ODCE ,那么OC →=OD →+OE →.在直角△OCD 中,因为|OC →|=23,∠COD =30°,∠OCD =90°,所以|OD →|=4,|CD →|=2,故OD →=4OA →,OE →=2OB →,即λ=4,μ=2,所以λ+μ=6.10.如下图,▱ABCD 中,E ,F 分别是BC ,DC 的中点,G 为DE ,BF 的交点,假设AB →=a ,AD →=b ,试以a ,b 为基底表示DE →,BF →,CG →.解:DE →=AE →-AD →=AB →+BE →-AD →=a +12b -b =a -12b .BF →=AF →-AB →=AD →+DF →-AB →=b +12a -a =b -12a .如下图,连接DB ,延长CG ,交BD 于点O ,点G 是△CBD 的重心,故CG →=CE →+EG →=12CB →+EG →=12CB →+13ED →=-12b -13⎝ ⎛⎭⎪⎫a -12b =-13a -13b .B 级 能力提升1.如果e 1,e 2是平面α内两个不共线的向量,那么以下说法中不正确的选项是( ) ①λe 1+μe 2(λ,μ∈R)可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个;③假设向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,那么有且只有一个实数λ,使得λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2);④假设存在实数λ,μ使得λe 1+μe 2=0,那么λ=μ=0.A .①②B .②③C .③④D .②解析:由平面向量根本定理可知,①④是正确的;对于②,由平面向量根本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的;对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个.答案:B2.如图,向量BP →=14BA →,假设OP →=xOA →+yOB →,那么x -y =________.解析:因为OP →=OB →+BP →=OB →+14BA →=OB →+14(BO →+OA →)=14OA →+34OB →,所以x =14,y =34.所以x -y =-12.答案:-123.设e 1,e 2是不共线的非零向量,且a =e 1-2e 2,b =e 1+3e 2. (1)证明:a ,b 可以作为一组基底;(2)以a ,b 为基底,求向量c =3e 1-e 2的分解式; (3)假设4e 1-3e 2=λa +μb ,求λ,μ的值.(1)证明:假设a ,b 共线,那么存在λ∈R ,使a =λb , 那么e 1-2e 2=λ(e 1+3e 2).由e 1,e 2不共线得,⎩⎪⎨⎪⎧λ=1,3λ=-2,⇒⎩⎪⎨⎪⎧λ=1,λ=-23. 所以λ不存在,故a 与b 不共线,可以作为一组基底.(2)解:设c =ma +nb (m ,n ∈R),得3e 1-e 2=m (e 1-2e 2)+n (e 1+3e 2)=(m +n )e 1+(-2m +3n )e 2.所以⎩⎪⎨⎪⎧m +n =3,-2m +3n =-1,⇒⎩⎪⎨⎪⎧m =2,n =1.所以c =2a +b .(3)解:由4e 1-3e 2=λa +μb ,得4e 1-3e 2=λ(e 1-2e 2)+μ(e 1+3e 2)=(λ+μ)e 1+(-2λ+3μ)e 2.所以⎩⎪⎨⎪⎧λ+μ=4,-2λ+3μ=-3,⇒⎩⎪⎨⎪⎧λ=3,μ=1.故所求λ,μ的值分别为3和1.。
第二章 平面向量单元检测(人教A版)(解析版)

第二章 平面向量单元检测(人教A 版)单元测试【满分:100分 时间:80分钟】一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019年镇海区月考)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4)【答案】 A【解析】 法一:设C (x ,y ), 则AC →=(x ,y -1)=(-4,-3),所以⎩⎪⎨⎪⎧x =-4,y =-2,从而BC →=(-4,-2)-(3,2)=(-7,-4).故选A .法二:AB →=(3,2)-(0,1)=(3,1),BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4). 故选A .2.(2019年开福区月考)设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值等于( ) A .-32B .-53C .53D .32【答案】 A【解析】 c =a +k b =(1+k,2+k ),又b ⊥c ,所以1×(1+k )+1×(2+k )=0,解得k =-32.3.(2019年香洲区月考)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →=( ) A .-32a 2B .-34a 2C .34a 2D .32a 2【答案】 D【解析】 由已知条件得BD →·CD →=BD →·BA →=3a ·a cos 30°=32a 2,故选D .4.(2019年文峰区月考)对任意向量a ,b ,下列关系式中不恒成立....的是( ) A .|a·b |≤|a ||b | B .|a -b |≤||a |-|b || C .(a +b )2=|a +b |2 D .(a +b )·(a -b )=a 2-b 2 【答案】 B【解析】 根据a·b =|a||b|cos θ,又cos θ≤1,知|a·b|≤|a||b|,A 恒成立.当向量a 和b 方向不相同时,|a -b |>||a|-|b||,B 不恒成立.根据|a +b |2=a 2+2a·b +b 2=(a +b )2,C 恒成立.根据向量的运算性质得(a +b )·(a -b )=a 2-b 2,D 恒成立.5.(2019年吉林期末)已知非零向量a ,b 满足|b|=4|a|,且a ⊥(2a +b ),则a 与b 的夹角为( ) A .π3B .π2C .2π3D .5π6【答案】 C【解析】 ∵a ⊥(2a +b ),∴a ·(2a +b )=0, ∴2|a |2+a ·b =0,即2|a |2+|a||b|cos 〈a ,b 〉=0.∵|b|=4|a|,∴2|a|2+4|a |2cos 〈a ,b 〉=0, ∴cos 〈a ,b 〉=-12,∴〈a ,b 〉=23π.6.(2019年上海)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( )A .|b |=1B .a ⊥bC .a ·b =1D .(4a +b )⊥BC →【答案】 D【解析】 在△ABC 中,由BC →=AC →-AB →=2a +b -2a =b ,得|b |=2.又|a |=1,所以a ·b =|a ||b |cos 120°=-1,所以(4a +b )·BC →=(4a +b )·b =4a ·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥BC →,故选D .7.(2019年广元模拟)已知向量a =(2,1),a·b =10,|a +b|=50,则|b|=( ) A .0 B .2 C .5 D .25【答案】 C【解析】 因为a =(2,1),则有|a|=5,又a·b =10, 又由|a +b|=50,所以|a|2+2a·b +|b|2=50, 即5+2×10+|b|2=50, 所以|b|=5.8.(2019年海南期末)已知AD ,BE 分别为△ABC 的边BC ,AC 上的中线,设AD →=a ,BE →=b ,则BC →等于( )图1A .43a +23bB .23a +43bC .23a -43bD .-23a +43b【答案】 B【解析】 BC →=2BD →=2⎝⎛⎭⎫23BE →+13AD → =43BE →+23AD →=23a +43b . 9.(2019年雁峰区月考)设非零向量a ,b ,c 满足|a|=|b|=|c|,a +b =c ,则向量a ,b 的夹角为( ) A .150° B .120° C .60° D .30°【答案】 B【解析】 设向量a ,b 夹角为θ, |c|2=|a +b|2=|a|2+|b|2+2|a||b|cos θ,则cos θ=-12,又θ∈[0°,180°],∴θ=120°.故选B .10.(2019年红谷滩新区月考)在矩形ABCD 中,AB =3,BC =1,E 是CD 上一点,且AE →·AB →=1,则AE →·AC →的值为( )A .3B .2C .32D .33【答案】 B【解析】 设AE →与AB →的夹角为θ,则AE →与AD →的夹角为π2-θ,又AD →∥BC →,故有AE →与BC →夹角为π2-θ,如图.∵AE →·AB →=|AE →|·|AB →|·cos θ=3|AE →|·cos θ=1, ∴|A E →|·cos θ=33, ∴AE →·BC →=|AE →|cos ⎝⎛⎭⎫π2-θ=|AE →|sin θ=1,∴AE →·AC →=AE →·(AB →+BC →)=AE →·AB →+AE →·BC →=1+1=2.二、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上) 11.(2019年海南期末)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________. 【答案】 -6【解析】 ∵a =(m,4),b =(3,-2),a ∥b , ∴-2m -4×3=0,∴m =-6.12.(2019年邵阳模拟)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n的值为________.【答案】 -3【解析】 ∵m a +n b =(2m +n ,m -2n ) =(9,-8),∴⎩⎪⎨⎪⎧ 2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5,∴m -n =2-5=-3. 13.(2019年湖南模拟)已知向量a =(1,-1),b =(6,-4).若a ⊥(t a +b ),则实数t 的值为________. 【答案】 -5【解析】 ∵a =(1,-1),b =(6,-4),∴t a +b =(t +6,-t -4). 又a ⊥(t a +b ),则a ·(t a +b )=0,即t +6+t +4=0,解得t =-5.14.(2019年平湖市模拟)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________.【答案】 12 -16【解析】 ∵AM →=2MC →,∴AM →=23AC →.∵BN →=NC →,∴AN →=12(AB →+AC →),∴MN →=AN →-AM →=12(AB →+AC →)-23AC →=12AB →-16AC →. 又MN →=xAB →+yAC →,∴x =12,y =-16.三、解答题(本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤)15.(2019年莲都区月考)(本小题满分10分)不共线向量a ,b 的夹角为小于120°的角,且|a|=1,|b|=2,已知向量c =a +2b ,求|c|的取值范围.【答案】 |c|2=|a +2b|2=|a|2+4a·b +4|b|2=17+8cos θ(其中θ为a 与b 的夹角). 因为0°<θ<120°, 所以-12<cos θ<1,所以13<|c|<5,所以|c |的取值范围为(13,5).16.(2019年大兴区月考)(本小题满分10分)设OA →=(2,-1),OB →=(3,0),OC →=(m,3). (1)当m =8时,将OC →用OA →和OB →表示;(2)若A ,B ,C 三点能构成三角形,求实数m 应满足的条件.【答案】 (1)m =8时,OC →=(8,3), 设OC →=λ1OA →+λ2OB →, ∴(8,3)=λ1(2,-1)+λ2(3,0) =(2λ1+3λ2,-λ1),∴⎩⎪⎨⎪⎧2λ1+3λ2=8,-λ1=3,解得⎩⎪⎨⎪⎧λ1=-3,λ2=143,∴OC →=-3OA →+143OB →.(2)若A ,B ,C 三点能构成三角形, 则有AB →与AC →不共线,又AB →=OB →-OA →=(3,0)-(2,-1)=(1,1), AC →=OC →-OA →=(m,3)-(2,-1)=(m -2,4), 则有1×4-(m -2)×1≠0, ∴m ≠6.17.(2019年西湖区期末)(本小题满分10分)已知a ,b ,c 在同一平面内,且a =(1,2). (1)若|c |=25,且c ∥a ,求c ; (2)若|b |=52,且(a +2b )⊥(2a -b ),求a 与b 的夹角. 【答案】 (1)∵c ∥a ,∴设c =λa , 则c =(λ,2λ). 又|c |=25,∴λ=±2, ∴c =(2,4)或(-2,-4). (2)∵(a +2b )⊥(2a -b ), ∴(a +2b )·(2a -b )=0. ∵|a |=5,|b |=52,∴a ·b =-52, ∴cos θ=a ·b|a ||b |=-1,又θ∈[0°,180°],∴θ=180°.。
人教A版高中数学必修4第二章 平面向量2.1 平面向量的实际背景及基本概念习题(4)

2.1平面向量的实际背景及基本概念一、选择题1.【题文】下列各量中不是向量的是( ) A .浮力 B .风速 C .位移D .密度2.【题文】在下列判断中,正确的是( )①长度为的向量都是零向量;②零向量的方向都是相同的;③单位向量的长度都相等; ④单位向量都是同方向;⑤任意向量与零向量都共线. A .①②③ B .②③④ C .①②⑤ D .①③⑤3.【题文】若AB AD =且BA CD =,则四边形ABCD 的形状为( ) A .平行四边形 B .矩形 C .菱形 D .等腰梯形4.【题文】已知:如图,D ,E ,F 依次是等边三角形ABC 的边AB ,BC ,CA 的中点,在以A ,B ,C ,D ,E ,F 为起点或终点的向量中,与向量AD 共线的向量有()A .个B .个C .个D .个5.【题文】下列说法正确的有( )①方向相同的向量叫相等向量;②零向量的长度为;③共线向量是在同一条直线上的向量;④零向量是没有方向的向量;⑤共线向量不一定相等;⑥平行向量方向相同. A .个 B .个 C .个 D .个6.【题文】给出下列说法:①AB 和BA 的模相等;②方向不同的两个向量一定不平行;③向量就是有向线段;④0=0;⑤AB CD >,其中正确说法的个数是( )A. B. C. D.7.【题文】若四边形ABCD 是矩形,则下列说法中不正确的是 ( ) A .AB 与CD 共线B .AC 与BD 共线C .AD 与CB 是相反向量 D .AB 与CD 的模相等8.【题文】下列说法正确的是( )A .有向线段AB 与BA 表示同一向量 B .两个有公共终点的向量是平行向量C .零向量与单位向量是平行向量D .对任一向量,aa是一个单位向量 二、填空题9.【题文】如图,正六边形ABCDEF 中,点O 为中心,以,,,,,,A B C D E F O 为起点与终点的向量中,与向量AB 平行的向量有个(含AB ).10.【题文】给出下列四个条件:①=a b ;②=a b ;③与的方向相反;④0=a 或0=b ,其中能使a b 成立的条件有________.11.【题文】下列说法中,正确的是 . ①向量AB 的长度与BA 的长度相等;②向量a与向量b平行,则a与b的方向相同或相反;③两个有共同起点的单位向量,其终点必相同;④向量AB与向量CD是相等向量,则A、B、C、D能构成平行四边形.三、解答题12.【题文】如图,D,E,F分别是△ABC的边AB,BC,CA的中点,在以A,B,C,D,E,F为起点和终点的向量中:(1)找出与向量EF相等的向量;(2)找出与向量DF相等的向量.13.【题文】如图,在△ABC中,D,E分别是边AB,AC的中点,F,G分别是DB,EC 的中点,求证:向量DE与FG共线.14.【题文】如图,EF是△ABC的中位线,AD是BC边上的中线,在以A,B,C,D,E,F为端点的有向线段表示的向量中请分别写出:(1)与向量CD共线的向量;(2)与向量DF的模相等的向量;(3)与向量DE相等的向量.2.1平面向量的实际背景及基本概念参考答案与解析一、选择题1.【答案】D【解析】根据向量的定义,从大小和方向两个方面考虑,可知密度不是向量.考点:平面向量的概念.【题型】选择题【难度】较易2.【答案】D【解析】由零向量与单位向量的概念知①③⑤正确.考点:零向量与单位向量.【题型】选择题【难度】较易3.【答案】C【解析】四边形ABCD中,∵BA CD=,∴BA CD,且BA CD=,∴四边形ABCD是平行四边形.又AB AD=,∴平行四边形ABCD是菱形.考点:相等向量.【题型】选择题【难度】较易4.【答案】C【解析】∵D,E,F分别为AB,BC,CA的中点,∴AD∥EF ,∴与向量AD共线的向量有AB,FE,EF,DA,BA,BD,DB,共7个.考点:共线向量.【题型】选择题【难度】较易5.【答案】A【解析】长度相等且方向相同的向量叫做相等向量,故①错误;长度为的向量叫零向量,故②正确;通过平移能够移到同一条直线上的向量叫共线向量,故③错误;零向量的方向是任意的,故④错误;共线向量方向相同或相反,⑤正确;平行向量方向相同或相反,故⑥错误,因此②与⑤正确,其余都是错误的,故选C.考点:相等向量,共线向量.【题型】选择题【难度】一般6.【答案】B【解析】①正确,AB与BA是方向相反、模相等的两个向量;②错误,方向不同包括共线反向的向量;③错误,向量用有向线段表示,但二者并不等同;④错误,是一个向量,而为一数量,应为0=0;⑤错误,向量不能比较大小.只有①正确,故选B.考点:向量的有关概念.【题型】选择题【难度】一般7.【答案】B【解析】∵四边形ABCD是矩形,∴AB CD且AB CD=,AD CB,∴AB 与CD共线,且模相等,AD与CB是相反向量,∵AC与BD相交,∴AC与BD不共线,故B错误.考点:共线向量,相等向量.【题型】选择题【难度】一般 8. 【答案】C【解析】向量AB 与BA 方向相反,不是同一向量;有公共终点的向量的方向不一定相同或相反;当=0a 时,aa无意义,故A 、B 、D 错误.零向量与任何向量都是平行向量,C 正确.考点:平行向量;单位向量. 【题型】选择题 【难度】较难二、填空题 9. 【答案】10【解析】正六边形ABCDEF 中,点O 为中心,以,,,,,,A B C D E F O 为起点与终点的向量中,与向量AB 平行的向量有,,,,,,,,,AB BA OC CO OF FO CF FC DE ED ,共10个. 考点:平行向量. 【题型】填空题 【难度】较易 10.【答案】①③④【解析】因为与为相等向量,所以a b ,即①能够使a b 成立;=a b 并没有确定与的方向,即②不能够使ab 成立;与方向相反时,a b ,即③能够使a b 成立;因为零向量与任意向量共线,所以0=a 或0=b 时,a b 能够成立.故使a b 成立的条件是①③④.考点:平行向量. 【题型】填空题 【难度】一般11. 【答案】①【解析】对于①,向量AB 与BA 互为相反向量,长度相等,正确;对于②,因为零向量与任何向量平行,但零向量的方向是任意的,不能说方向相同或相反,所以②错误;对于③,两个有共同起点的单位向量,其终点不一定相同,因为方向不一定相同,所以③错误; 对于④,向量AB 与向量CD 是相等向量,则A 、B 、C 、D 可能在同一直线上,则A 、B 、C 、D 四点不一定能构成平行四边形,所以④错误.综上,正确的是①. 考点:平面向量的概念. 【题型】填空题 【难度】一般三、解答题 12.【答案】(1),BD DA (2),BE EC【解析】(1)∵E ,F 分别为BC ,AC 的中点, ∴EFBA ,且12EF BA =,又D 是BA 的中点, ∴EF BD DA ==,∴与向量EF 相等的向量是,BD DA .(2)∵D ,F 分别为BA ,AC 的中点, ∴DFBC ,且12DF BC =, 又E 是BC 的中点,∴DF BE EC ==, ∴与向量DF 相等的向量是,BE EC . 考点:共线向量.【题型】解答题【难度】较易13.【答案】详见解析【解析】证明:∵D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∴DE BC,∴四边形DBCE是梯形.又∵F,G分别是DB,EC的中点,∴FG是梯形DBCE的中位线,∴FG DE.∴向量DE与FG共线.考点:向量共线.【题型】解答题【难度】一般14.【答案】(1),,,,,,BD BC EF DB CB FE DC(2),,,,FD AE EA EB BE(3),CF FA【解析】根据三角形中位线的性质及共线向量及相等向量的概念即可得到:(1)与向量CD共线的向量为,,,,,,BD BC EF DB CB FE DC.(2)与向量DF的模相等的向量为,,,,FD AE EA EB BE.(3)与向量DE相等的向量为,CF FA.考点:相等向量,平行向量. 【题型】解答题【难度】一般。
高中数学必修四第二章平面向量课后习题Word版(2021年整理)

(完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改)的全部内容。
【必修4】 第二章平面向量2.1 练习1、画有向线段,分别表示一个竖直向上,大小为18N 的力和一个水平向左、大小为28N 的力(1cm 长表示10N ).2、非零向量AB 的长度怎样表示?非零向量BA 的长度怎样表示?这两个向量的长度相等吗?这两个向量相等吗?3、指出图中各向量的长度.4、(1)用有向线段表示两个相等的向量,如果有相同的起点,那么它们的终点是否相同?(2)用有向线段表示两个方向相同但长度不同的向量,如果有相同的起点,那么它们的终点是否相同?2.2.1 练习1、如图,已知b a ,,用向量加法的三角形法则作出b a 。
2、如图,已知b a ,,用向量加法的平行四边形法则作出b a +.3、根据图示填空:(1)________;=+d a(2).________=+b c4、根据图示填空:(1)________;=+b a(2)________;=+d c(3)________;=++d b a(4).________=++e d c2.2.2 练习1、如图,已知b a ,,求作.b a -2、填空:________;=- ________;=- ________;=-BA BC ________;=-OA OD .________=-3、作图验证:b a b)(a --=+-2.2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章《平面向量》测试(4)(新人教A 版必修4)
班级: 学号: 姓名: 得分:
一、选择题(5分×12=60分):
1.已知4||,6||==AC AB ,则||BC 的取值范围为( ) (A ))8,2((B )]8,2[(C ))10,2((D )]10,2[
2.设)3,1(A ,)3,2(--B ,)7,(x C 若AB ∥BC ,则x 的取值范围是( ) (A )0(B )3(C )15(D )18
3.与向量a=(-5,4)平行的向量是( ) A.(-5k,4k )
B.(-k
5,-k
4) C.(-10,2) D.(5k,4k)
4.若点P 分AB 所成的比为4
3,则A 分BP 所成的比是( )
A.
7
3 B.
3
7
C.-
3
7 D.-
7
3
5.设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是( )
A.(-∞,-1)
B.(-1,0)
C.(-∞,0)
D.(-
∞,-2
1)
6.设四边形ABCD 中,有DC =2
1AB ,且|AD |=|BC |,则这个四边形是( )
A.平行四边形
B.矩形
C.等腰梯形
D.菱形
7.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D 的坐标是( ) A.(2a,b)
B.(a-b,a+b)
C.(a+b,b-a)
D.(a-b,b-a)
8、如图.点M 是ABC ∆的重心,则MC MB MA -+为( )
A .0
B .4ME
C .4M
D D .4MF 9、已知ABC ∆的顶点)3,2(A 和重心)1,2(-G ,则BC 边上的中点坐标是( ) A .)3,2(- B .)9,2(- C .)5,2(- D .)0,2( 10、已知032),,(),3,4(),2,5(=+-=--=-=c b a y x c b a 若则c 等于
( )
(A )81,3⎛⎫ ⎪⎝⎭
(B )138,33⎛⎫
⎪⎝⎭
(C )134
,33
⎛⎫ ⎪⎝⎭
(D )134,3
3⎛⎫-
-
⎪⎝⎭
11、已知点A (2,3)、B (10,5),直线AB 上一点P 满足|PA|=2|PB|,则P 点坐标是( ) (A )2213,33⎛⎫
⎪⎝⎭
(B )(18,7)
(C )2213,33⎛⎫
⎪⎝⎭
或(18,7) (D )(18,7)或(-6,1)
12、已知向量a 与b 不共线,AB =a +k b ,AC =l a +b (k ,l ∈R ),则AB 与AC 共线的条件是( ).
(A )k +l =0 (B )k -l =0 (C )kl +1=0 (D )kl -1=0
二、填空题(4分×4=16分):
13、设向量a =(2,-1),向量b 与a 共线且b 与a 同向,b 的模为25,则b = 。
14、已知点)54
2,(),4,6(),2,4(---x C B A 三点共线,则C 点分AB 的比λ=____________,
x =______________.
15、已知向量a =(1,2),b =(3,1),那么向量2a -2
1b 的坐标是_________. 16、已知A (2,3),B (-1,5),且AC =3
1AB ,AD =-4
1AB ,则CD 中点的坐标是
________.
三、解答题(74分)
17、(12分)如图,ABCD 是一个梯形,AB ∥CD ,且AB=2CD ,M 、N 分别是DC 、AB 的中点,已知AB =a,AD =b,试用a 、b 分别表示DC 、BC 、MN 。
18、(12分)以原点O 和A (4,2)为两个顶点作等腰直角三角形OAB ,∠B=90°,求点B
的坐标和AB 。
19、(12分)已知ABC ∆的三个内角C B A ,,成等差数列,且C B A <<,
32tan tan +
=⋅C A 。
(1)求角C B A ,,的大小
(2)如果34=BC ,求ABC ∆的一边AC 长及三角形面积。
20、(12分)已知△ABC 的顶点坐标为A (1,0),B (5,8),C (7,-4),在边AB 上
有一点P,其横坐标为4,在边AC上求一点Q,使线段PQ把△ABC分成面积相等的两部分.
21.(本题满分14分)
已知向量OA → =3i -4j ,OB → =6i -3j ,OC →
=(5-m )i -(4+m )j ,其中i 、j 分别是直角坐标系内x 轴与y 轴正方向上的单位向量.
(1)若A 、B 、C 能构成三角形,求实数m 应满足的条件; (2)若ΔABC 为直角三角形,且∠A 为直角,求实数m 的值.
22、(12分)已知P 为△ABC 内一点,且3AP +4BP +5CP =0.延长AP 交BC 于点D ,
若AB=a,AC=b,用a、b表示向量AP、AD.
参考答案
一、选择题:
1-5:DBACA ;6-10:CCDAD ;11-12:CD 二、填空题:
13、(4,-2);14、4,4-;15、(2
1,3
2
1);16、(
8
15,
12
37)。
三、解答题:
17、[解] 连结AC
DC =
2
1AB =
2
1a,……
AC =AD +DC = b+21a,…… BC =AC -AB = b+
2
1a-a= b-2
1a,……
NM =ND +DM =NA +AD +DM = b-4
1a,……
MN =-NM =
4
1a-b 。
……
18、[解] 如图8,设B(x,y),
则OB =(x,y), AB =(x-4,y-2)。
∵∠B=90°,∴OB ⊥AB ,∴x(x-4)+y(y-2)=0,即x 2+y 2=4x+2y 。
① 设OA 的中点为C ,则C(2,1), OC =(2,1),CB =(x-2,y-1)
∵△ABO 为等腰直角三角形,∴OC ⊥CB ,∴2(x-2)+y-1=0,即2x+y=5。
② 解得①、②得⎩⎨⎧==3111y x 或⎩⎨⎧-==13
2
2y x
∴B(1,3)或B(3,-1),从而AB =(-3,1)或AB =(-1,-3)
19、(1)解:因为π=++C B A 和C A B +=2,故
120,60=+=C A B ,
因此,32tan tan ,3tan tan 1tan tan )tan(+
=-=-+=
+C A C
A C A C A ①
所以 33tan tan +=+C A ② 又由于C A <
由①②得,
75,4532tan ,1tan ==⇒+
==C A C A ;
(2)解:由正弦定理得,
,26||45
sin 3460
sin ||=⇒=
AC AC
所以,361875sin ||||2
1+==
∆
BC AC S ABC 。
20.设1
1211541,2,λλλλ++=
==则AC QA AB PA 4
31-
=∴λ
又
||
||
AC
AQ AB
AP S S ABC
APQ ⋅=∆∆3
2,02
1||4
3|,|4
3|||
|
2222-
=∴<=
=
=λλλλ又则
AC
QA AB
PA
设点Q 的坐标为(x Q ,y Q ), 则3
21)4()32(,3217
)32(1-
-⨯-
+=
-
⨯-
+=
Q Q y O x ,得)3
8
,5(,3
8,5-∴-==Q y x Q Q
21. (1)AB → =(3,1) ,AC → =(2-m ,-m ),AB → 与AC →
不平行则m ≠1 .
(2)AB → · AC →
=0 m =2
3
22、解:∵ BP =AP -AB =AP -a ,
CP =AP -AC =AP -b ,
又 3AP +4BP +5CP =0,
∴ 3AP +4(AP -a )+5(AP -b )=0, 化简,得AP =
3
1a +
12
5b .
设AD =t AP (t ∈R ),则 AD =
3
1t a +
12
5t b . ①
又设 BD =k BC (k ∈R ), 由 BC =AC -AB =b -a ,得
BD =k (b -a ).
而 AD =AB +BD =a +BD , ∴ AD =a +k (b -a )
=(1-k )a +k b ②
由①、②,得
⎪⎪⎩⎪⎪⎨
⎧=-=.
k t k t 12
513
1
解得 t =34. 代入①,有 AD =
9
4a +
9
5b .。