数控雕刻机伺服驱动器分类

合集下载

雕刻机驱动系统

雕刻机驱动系统

雕刻机基本概念-驱动系统
上期讲完了雕刻机基本概念-控制系统,这一次要和大家分享一下雕刻机的驱动系统,目前国内的雕刻机驱动有几种:
1.步进驱动器+步进电机
步进系统是目前市面上使用最多的驱动系统,最受欢迎的是三相混合式步进电机,约占90%以上的市场份额,究其原因是价格便宜,配上雷赛高细分驱动器后效果良好。

但缺陷也比较明显,例如:共振、噪音、转速提高力矩降低、长时间工作容易丢步、电机温升过高等。

2.混合伺服驱动器+电机
混合伺服在国内的使用一直没有普及,究其原因有很多,国外的做混合伺服的厂家不多,而价格相对于交流伺服相比没有非常大的优势,只能在一些特殊的行业中使用。

改进有:提高高速性能、减少发热,减少共振。

3.交流伺服驱动器+交流伺服电机
交流伺服在雕刻机的使用还是比较少的,主要原因是价格比较高,另外交流伺服的应用对于机床的结构、电器、控制系统、传动系统都有一定的要求,就像木桶原理一样,最短的那块板决定了木桶盛水的量,因些交流伺服一般都是应用于高端的机型。

拓雕的S系列多头浮雕雕刻机、S系列木工雕刻机、S系列多头深浮雕雕刻机、S系列四轴立体雕刻机、五轴四联
动立体雕刻机都是应用了交流伺服驱动技术,交流伺服具有:响应快、力矩大、高转速、高精度、发热少,持续长时间工作,齐全的报警系统等。

缺点:不同的设备要用不同的伺服参数,调节参数要求高水平的技术工程师。

但目前的国内的交流伺服鱼目混珠、偷工减料,因此如何选择好的交流伺服是有很大的学问。

伺服驱动系统的分类

伺服驱动系统的分类

1.3 伺服驱动系统的分类1.3.1 开环、半闭环、闭环驱动(1)开环驱动及其特点无位置反馈装置的伺服驱动称为开环驱动,使用步进电机作为执行元件是开环伺服驱动最明显的特点。

在开环伺服驱动中,数控装置输出的脉冲经过步进机的环形分配器(或脉冲分配软件的处理)、电流调节器、功率放大后驱动电枢,最终控制步进电机的角位移,见图1-3.开环驱动的数控机床结构简单,制造成本低,不存在闭环系统的稳定性问题。

但是,由于系统对移动部件的实际位移量不进行检测,因而无法通过反馈进行误差的自动检测和校正;此外,步进电机的步距角误差、齿轮和丝杠等部件的传动误差,最终都将影响零件的加工精度,特别是在负载转矩超过电机输出转矩时,将导致步进电机的失步,使加工无法进行。

图1-3 开环驱动的组成原理图(2)半闭环驱动及其特点半闭环驱动的结构原理如图1-4所示,它需要伺服电机驱动。

半闭环驱动的特点是传动丝杠或伺服电机上装有角位移检测装置(如光电编码器等),通过编码器对丝杠或电机转角的检测,可以间接地反应移动部件的直线位移量。

图1-4 半闭环驱动的组成原理图(3)闭环驱动及其特点闭环驱动的结构原理图如图1-5所示,它不仅需要伺服电机或直线电机进行驱动,而且必须配备直线位移检测用的光栅。

全闭环控制系统可以对传动系统的全部间隙、磨损量进行自动补偿,其运动精度仅取决于检测装置的检测精度,它与机械传动的误差无关。

全闭环控制系统的结构特点决定了它对机械结构以及传动系统的要求比半闭环更高,传动系统的刚度、间隙、导轨的爬行等非线性因素将直接影响到系统的稳定性,严重时甚至产生振荡。

图1-5 闭环驱动的组成原理图1.3.2 模拟伺服与数字伺服驱动模拟伺服与数字伺服的比较(1)模拟伺服的所有控制量均为连续变化的模拟量,而数字伺服的所有控制量均为二进制形式的数字量。

(2)模拟伺服中所使用的运算、调节件以集成运算放大器、电位器、电阻、电容等元器件为主,内部一般无微处理器,调节器所需要的比例(P)、积分、微分等运算功能通过模拟电子线路实现,其调节功能单一;而在数字伺服中,调节器以微处理器作为基本的控制器件,它可以通过各种算法实现多种调节运算功能,因此,不仅可以实现传统的PID控制,而且还可以实现现代理论控制中的状态观察器,坐标变换、矢量控制、模糊控制等功能,从而实现系统的最优控制。

数控技术数控机床伺服系统

数控技术数控机床伺服系统
数控技术数控机床伺服系统
(4)调速范围宽
目前数控机床一般要求进给伺服系统的调速范围是0~ 30m/min,有的已达到240m/min。除去滚珠丝杠和降速齿轮 的降速作用。伺服电动机要有更宽的调速范围。对于主轴电 动机,因使用无级调速,要求有(1:100)~(1:1000)范 围内的恒转矩调速以及1:10以上的恒功率调速。
数控技术数控机床伺服系统
(1)按调节理论分类 ➢ 开环伺服系统 ➢ 闭环伺服系统 ➢ 半闭环系统
数控技术数控机床伺服系统
(2)按使用的执行元件分类 ➢ 电液伺服控制系统 ➢ 电气伺服控制系统
(3)按被控对象分类 ➢ 进给伺服系统 ➢ 主轴伺服系统
数控技术数控机床伺服系统
6.1.2 伺服系统的基本要求
(7)惯性匹配 移动部件加速和降速时都有较大的惯量,由于要求系统 的快速响应性能好,因而电动机的惯量要与移动部件的惯量 匹配。通常要求电动机的惯量不小于移动部件惯量。
数控技术数控机床伺服系统
6.2 开环控制系统与步进电机
6.2.1 开环控制系统的组成 开环控制系统不存在反馈环节,系统输出只受输入的 控制。开环控制系统具有结构简单,比较经济的优 点,其缺点是控制精度和抑制干扰的能力较差,且 对系统参数的变动敏感。
数控技术数控机床伺服系统
步进电机的角位移量和输入的脉冲数成正比。在时间上 与输入的脉冲同步。
因此,只需要控制输入脉冲的数量、频率及电机绕组通 电相序,便可以获得所需要的转角、转速及转动方向。
在无脉冲输入时,步进电机在绕组电源激励下,气隙 磁场能使转子保持原有的位置而处于定位状态。
数控技术数控机床伺服系统
快速响应特性,即要求跟踪指令信号的响应要快。这就对伺 服系统的动态性能提出了两方面的要求:一方面,在伺服系 统处于频繁地起动、制动、加速、减速等动态过程中,为了 提高生产效率和保证加工质量,要求加、减速度足够大,以 缩短过渡过程时间,一般电动机速度由零到最大,或从最大 减少到零,时间应控制在200毫秒以下,甚至少于几十毫秒, 且速度变化不应有超调;另一方面,当负载突变时,过渡过 程恢复时间要短且无振荡,这样才能达到光滑的加工表面。

数控机床进给伺服系统的组成和分类

数控机床进给伺服系统的组成和分类

机床加工,大多是低速时进行切削,即在低速时进给驱动要有大的转矩输出。

二、进给伺服系统的组成如图所示为数控机床进给伺服系统的组成。

从图中可以看出,它是一个双闭环系统,内环是速度环,外环是位置环。

位置环的输入信号是计算机给出的指令信号和位置检测装置反馈的位置信号,这个反馈是一个负反馈,即与指令信号的相位相反。

指令信号是向位置环送去加数,而反馈信号向位置环送去减数。

位置检测装置通常有光电编码器、旋转变压器、光栅尺、感应同步器或磁栅尺等。

它们或者直接对位移进行检测,或者间接对位移进行检测。

开环伺服系统开环伺服系统是最简单的进给伺服系统,无位置反馈环节。

如图所示,这种系统的伺服驱动装置主要是步进电动机、功率步进电动机、电液脉冲电动机等。

由数控系统发出的指令脉冲,经驱动电路控制和功率放大后,使步进电动机转动,通过齿轮副与滚珠丝杠螺母副驱动执行部件。

闭环伺服系统闭环伺服系统原理图如图所示。

系统所用的伺服驱动装置主要是直流或交流伺服电动机以及电液伺服阀—液压马达。

与开环进给系统最主要的区别是:安装在执行部件上的位置检测装置,测量执行部件的实际位移量并转换成电脉冲,反馈到输入端并与输人位置指令信号进行比较,求得误差,依此构成闭环位置控制。

由于采用了位置检测反馈装置,所以闭环伺服系统的位移精度主要取决于检测装置的精度。

闭环伺服系统的定位精度一般可达±0.01mm~±0.005 mm。

半闭环伺服系统半闭环伺服系统如图所示。

将检测元件安装在中间传动件上,间接测量执行部件位置的系统称为半闭环系统。

闭坏系统可以消除机械传动机构的全部误差,而半闭环系统只能补偿系统环路内部分元件的误差,因此,半闭环系统的精度比闭环系统的精度要低一些,但是它的结构与凋试都比较简单。

全数字伺服系统随着微电子技术、计算机技术和伺服控制技术的发展,数控机床的伺服系统已经开始采用高速度、高精度的全数字伺服系统。

使伺服控制技术从模拟方式、混合方式走向全数字方式。

伺服驱动器的种类和特点

伺服驱动器的种类和特点

伺服驱动器的种类和特点伺服驱动器作为现代工业中广泛应用的控制系统之一,具有其独特的种类和特点。

在本文中,我们将介绍伺服驱动器的种类和各种驱动器的不同特点。

1. 直流伺服驱动器直流伺服驱动器是最早应用于伺服系统的一种驱动器,有着成熟的技术和广泛的应用。

它由电机、编码器、控制原理等构成。

直流伺服驱动器具有响应速度快、精度高、转矩平稳等特点,但其使用寿命短、易损件多、驱动器本身波动等问题也依然存在。

2. 交流伺服驱动器交流伺服驱动器是伺服驱动器的另一种类型,在应用中也十分广泛。

它由交流电机、编码器、控制原理等组成。

交流伺服驱动器具有控制精度高、结构简单、使用寿命长等特点。

而其缺点在于响应速度慢、抗干扰能力差等。

3. 基于步进电机的闭环伺服驱动器基于步进电机的闭环伺服驱动器,是在步进电机上进行改进后发展起来的一种伺服驱动器。

它将步进电机闭环反馈技术和伺服驱动器控制系统相结合,提高了步进电机的位置和速度控制精度,同时不需要专门的电机驱动器,构造简单,成本低,是一种比较重要的技术创新方向。

4. 串列伺服驱动器串列伺服驱动器是一种数字式的伺服驱动器,它具有响应速度快、定位精度高等特点。

该驱动器内部采用串列通信,可以通过上位机实现远程通信控制,广泛应用于机床、切割机、印刷机等设备中。

5. 多轴伺服驱动器多轴伺服驱动器是一种可以同时控制多个伺服驱动电机的设备。

多轴伺服驱动器一般由中央控制器、插补控制器、驱动板等构成,可以实现多个伺服电机的联动控制和同步运动。

在工业机器人、自动化生产线等领域中,多轴伺服驱动器被广泛使用,是未来智能制造的重要组成部分。

总之,伺服驱动器具有响应速度快、精度高、结构简单等明显特点,不同类型的伺服驱动器在控制精度、控制能力、适用范围等方面存在差异和特点。

在应用和选择时,需要根据具体需求进行选择和搭配,以便更好地发挥伺服驱动器在工业自动化和控制领域的作用。

伺服驱动器的类型和基本特点

伺服驱动器的类型和基本特点

伺服驱动器的类型和基本特点伺服驱动器是电气控制系统中常用的一种设备,用于控制和驱动伺服电机。

它能够精确地控制伺服电机的位置、速度和加速度,广泛应用于自动化领域的各种设备和机器人。

1. 伺服驱动器的类型1.1 位置伺服驱动器位置伺服驱动器是最常见的一种类型。

它通过接收来自控制器的位置指令,驱动伺服电机精确地到达指定的位置。

它通常使用编码器来反馈电机的位置信息,以保证准确的位置控制。

1.2 速度伺服驱动器速度伺服驱动器主要用于控制伺服电机的转速。

它接收来自控制器的速度指令,通过调整电机的输出电压和电流来实现精确的速度控制。

速度伺服驱动器通常还配备速度反馈装置,如霍尔传感器或编码器,以提供准确的速度反馈信息。

1.3 扭矩伺服驱动器扭矩伺服驱动器主要用于控制伺服电机的输出扭矩。

它接收来自控制器的扭矩指令,通过调整电机的输出电压和电流来实现精确的扭矩控制。

扭矩伺服驱动器通常还配备扭矩传感器,以提供准确的扭矩反馈信息。

2. 伺服驱动器的基本特点2.1 高精度控制伺服驱动器能够实现高精度的位置、速度和扭矩控制,可满足精密运动控制的需求。

2.2 快速响应伺服驱动器具有快速响应的特点,能够迅速调整电机的输出,实现高速工作和动态变化的控制。

2.3 良好的稳定性伺服驱动器具有良好的稳定性,能够稳定地控制电机的运动,避免因负载变化而产生的运动误差。

2.4 多种控制模式伺服驱动器支持多种控制模式,如位置控制、速度控制、扭矩控制等,可根据不同应用需求选择合适的模式。

2.5 保护功能伺服驱动器通常具备多种保护功能,如过流保护、过载保护、短路保护等,可保护电机和驱动器免受损坏。

总结:伺服驱动器有多种类型,包括位置伺服驱动器、速度伺服驱动器和扭矩伺服驱动器。

它们具有高精度控制、快速响应、良好的稳定性、多种控制模式和保护功能等基本特点,适用于各种自动化设备和机器人的控制和驱动。

数控机床伺服系统的分类

数控机床伺服系统的分类

数控机床伺服系统的分类数控机床伺服系统按用途和功能分为进给驱动系统和主轴驱动系统;按控制原理和有无检测反馈环节分为开环伺服系统、闭环伺服系统和半闭环伺服系统;按使用的执行元件分为电液伺服系统和电气伺服系统。

1.按用途和功能分:(1)进给驱动系统:是用于数控机床工作台坐标或刀架坐标的控制系统,控制机床各坐标轴的切削进给运动,并提供切削过程所需的力矩。

主要关心其力矩大小、调速范围大小、调节精度高低、动态响应的快速性。

进给驱动系统一般包括速度控制环和位置控制环。

(2)主轴驱动系统:用于控制机床主轴的旋转运动,为机床主轴提供驱动功率和所需的切削力。

主要关心其是否有足够的功率、宽的恒功率调节范围及速度调节范围;它只是一个速度控制系统。

2.按使用的执行元件分:(1)电液伺服系统其伺服驱动装置是电液脉冲马达和电液伺服马达。

其优点是在低速下可以得到很高的输出力矩,刚性好,时间常数小、反应快和速度平稳;其缺点是液压系统需要供油系统,体积大、噪声、漏油等。

(2)电气伺服系统其伺服驱动装置伺服电机(如步进电机、直流电机和交流电机等)。

其优点是操作维护方便,可靠性高。

其中,1)直流伺服系统其进给运动系统采用大惯量宽调速永磁直流伺服电机和中小惯量直流伺服电机;主运动系统采用他激直流伺服电机。

其优点是调速性能好;其缺点是有电刷,速度不高。

2)交流伺服系统其进给运动系统采用交流感应异步伺服电机(一般用于主轴伺服系统)和永磁同步伺服电机(一般用于进给伺服系统)。

优点是结构简单、不需维护、适合于在恶劣环境下工作;动态响应好、转速高和容量大。

3.按控制原理分(1)开环伺服系统系统中没有位置测量装置,信号流是单向的(数控装置→进给系统),故系统稳定性好。

开环伺服系统的特点:1. 一般以功率步进电机作为伺服驱动元件。

2. 无位置反馈,精度相对闭环系统来讲不高,机床运动精度主要取决于伺服驱动电机和机械传动机构的性能和精度。

步进电机步距误差,齿轮副、丝杠螺母副的传动误差都会反映在零件上,影响零件的精度。

机床使用中的多种驱动器概念

机床使用中的多种驱动器概念

机床使用中的多种驱动器概念我们通常不能仅仅通过观察就获悉机床使用的各种驱动技术细节。

原则上讲,如果想完成需要执行的动作,选择主驱动、进给驱动或者辅助驱动都有可能。

主驱动器:主驱动器主要采用闭环控制方式,大多会使用同步或异步电机。

实际应用包括车机、铣床和磨床以及加工中心所使用的配套电机(kit motor)或主电机(hou sed motor)。

带主电机的传统主轴驱动器是一种广泛使用的主驱动器,多数采用空气冷却。

如果考虑到间接或派生成本,这种方式较电机主轴系统的成本会低一些。

另一方面,在主轴中加入齿轮箱可以将角速度和转矩转化到机加工任务中,但是反过来,齿轮箱会产生多余的径向力、带来噪声并增加磨损。

同时,使用配套电机(带有集成主轴)的主驱动器在技术上日臻成熟。

由于可以不使用齿轮箱和离合器,这些驱动器能够在不受剪力的情况下进行绕心旋转运动;而由于可以长时期平滑运行且受到的磨损极小,这些驱动器得以脱颖而出,尤其是在进行高性能机加工时。

目前,产生更高力矩需要的成本依然很高,因为这意味着必须在机轴中集成行星齿轮或选择更大功率的电机。

为了实现定期检修和维修,将监视传感器集成到主轴上以便获得测量数据将成为一种标准。

而利用油、空气或乙二醇进行冷却也依然必不可少。

进给驱动器:进给驱动技术的选择主要集中在机电或液压系统之间。

为了进行正确的抉择,有必要仔细考虑两系统所特有的优缺点。

在机电式进给驱动器中,装配滚珠丝杠的伺服电机目前处于主导地位,它能够将旋转运动转换为线性运动。

在这里,同步主电机成为首选,因为它们能够满足进给驱动器较主驱动器对定位、同步操作以及动力学等方面提出的更高要求。

由于进给驱动器系统具有很高的静态刚度,因而适用于多种应用场合,而且也一直被人们视为传统选择。

但是它有一个缺点,那就是易磨损。

根据安装条件和所需力矩强度的不同,伺服电机可以直接或间接(例如通过同步传动带)连接到主轴。

虽然直线电机原理早在19世纪就已经面世,但是该技术直到90年代初才得以进入机床工具应用领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数控雕刻机伺服驱动器分类
前言:精威石材雕刻机,专业生产数控雕刻机的高薪企业, 主要从事石材雕刻机的研发、制造、销售。

官方网址:。

1、用途和功能分进给驱动与主轴驱动
进给驱动是用于数控机床工作台或刀架坐标的控制系统,控制机床各坐标轴的切削进给运动,并提供切削过程所需的转矩。

主轴驱动控制机床主轴的旋转运动,为机床主轴提供驱动功率和所需的切削力。

一般地,对于进给驱动系统,主要关心它的转矩大小、调节范围的大小、调节精度的高低,以及动态响应速度的快慢。

对于主轴驱动系统,主要关心其是否具有足够的功率、宽的恒功率调节范围及速度调节范围。

2、按控制原理分开环控制和闭环控制
石材雕刻机伺服驱动系统按有无位置反馈分两种基本的控制结构,济南雕刻机即开环控制和闭环控制,由此形成位置开环控制系统和位置闭环控制系统。

闭环控制系统又可根据位置检测装置在机床上安装的位置不同,进一步分为半闭环伺服驱动控制系统和全闭环伺服驱动控制系统。

若位置检测装置安装在机床的工作台上,构成的伺服驱动控制系统为全闭环控制系统;浮雕雕刻机若位置检测装置安装在机床丝杠上,构成的伺服驱动控制系统则为半闭环控制系统。

现代数控机床的伺服驱动多采用闭环控制系统。

开环控制系统常用于经济型数控或老设备的改造。

3、按驱动执行元件的动作原理分直流伺服驱动与交流伺服驱动
70年代和80年代初,数控雕刻机多采用直流伺服驱动。

直流大惯量伺服电机具有良好的宽调速性能,输出转矩大,过载能力强,而且,由于电机惯性与机床传动部件的惯量相当,构成闭环后易于调整。

而直流中小惯量伺服电机及其大功率晶体管脉宽调制驱动装置,比较适应数控机床对频繁启动、制动,以及快速定位、切削的要求。

但直流电机一个最大的特点是具有电刷和机械换向器,这限制了它向大容量、高电压、高速度方向的发展,使其应用受
到限制。

进入80年代,在电机控制领域交流电机调速技术取得了突破性进展,交流伺服驱动系统大举进入电气传动调速控制的各个领域。

交流伺服驱动系统的最大优点是交流电机容易维修,制造简单,易于向大容量、高速度方向发展,适合于在较恶劣的环境中使用。

同时,从减少伺服驱动系统外形尺寸和提高可靠性角度来看,采用交流电机比直流电机将更合理。

相关文档
最新文档