2014广州调研(文数)【含答案--全WORD--精心排版】
广东省广州市2014届高三年级调研测试(文数)试卷及答案

7 8 994 4 6 4 7 3广州市2014届高三年级调研测试数学(文 科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:锥体体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高.一.选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数y =A .(),4-∞B .(],4-∞C .()4,+∞D .[)4,+∞2.命题“若12<x ,则11<<-x ”的逆否命题是A .若12≥x ,则11-≤≥x x ,或 B .若11<<-x ,则12<x C .若11-<>x x ,或,则12>x D .若11-≤≥x x ,或,则12≥x 3.如图1是2013年某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和众数依次为 A . 85,84 B . 84,85 C . 86,84D . 84,864.设1i z =-(i 是虚数单位),则复数22i z+的虚部是 A .i - B .1- C .i D .1图15.若集合,A B 满足{}|3A x x =∈<Z ,B ⊆N ,则A B 不可能...是 A .{0,1,2} B . {1,2} C . {1}- D .∅6.若实数x ,y 满足不等式组220,10,220,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则x y +的最大值为A .4B .5C .6D .7 7.执行如图2的程序框图,如果输入的N 的值是6,那么输出的p 的值是A .15B .105C .120D .7208.某几何体的三视图(如图3所示)均为边长为2的等腰直角三角 形,则该几何体的表面积是 A.4+ B. C.4+ D.8+9.若点(1,0)A 和点(4,0)B 到直线l 的距离依次为1和2,则这样的直线有A .1条B .2条C .3条D .4条10.函数()sin f x x =[)0,+∞内A .没有零点B .有且仅有1个零点C .有且仅有2个零点D .有且仅有3个零点二.填空题: 本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.若向量()1,2=m ,(),1x =n 满足⊥m n ,则||=n __________. 12.在等比数列{}n a 中,若1323a a a =⋅,则4a = .13.在边长为2的正方形ABCD 内部任取一点M ,则满足90>∠AMB 的概率为_______.图3正视图 侧视图(二)选做题(14~15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图4,AC 为⊙O 的直径,OB AC ⊥,弦BN 交AC 于点M .若OC =1OM =,则MN 的长为 .15.(坐标系与参数方程选讲选做题)若点(,)P x y 在曲线2cos sin x y θθ=-+⎧⎨=⎩(θ为参数,θ∈R )上,则y x 的取值范围是 .三.解答题: 本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c,且cos 2A C +=(1)求cos B 的值;(2)若3a =,b =c 的值.17.(本小题满分12分)某单位N 名员工参加“社区低碳你我他”活动.他们 的年龄在25岁至50岁之间.按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组 [40,45),第5组[45,50],得到的频率分布直方图如图5所示.下表是年龄的频率分布表.(1)求正整数a ,b ,N 的值;(2)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(3)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.ABCOM N图4图518.(本小题满分14分)如图6,在三棱锥P ABC -中,PA AC ⊥,PC BC ⊥,M 为PB 的中点,D 为AB 的中点,且△AMB 为正三角形.(1)求证:⊥BC 平面PAC ;(2)若4BC =,10PB =,求点B 到平面DCM 的距离.19.(本小题共14分)设数列{}n a 满足321212222n n a a a a n -++++= ,*n ∈N . (1)求数列{}n a 的通项公式; (2)设()()111nn n n a b a a +=--,求数列{}n b 的前n 项和n S .20.(本小题满分14分)在圆422=+y x 上任取一点P ,设点P 在x 轴上的正投影为点D .当点P 在圆上运动时,动点M 满足2=,动点M 形成的轨迹为曲线C . (1)求曲线C 的方程;(2)已知点()0,1E ,若B A ,是曲线C 上的两个动点,且满足EB EA ⊥,求⋅的取值范围. 21.(本小题满分14分)已知函数()()2ln 2f x x ax a x =-+-.(1)若()f x 在1x =处取得极值,求实数a 的值;(2)求函数()f x 在区间2[,]a a 上的最大值.参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一.选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分.二.填空题:本大题主要考查基本知识和基本运算.本大题共5小题,考生作答4小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题.1112.3 13.8π14.1 15.⎡⎢⎣⎦三.解答题: 本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 解:(1)在△ABC中,A B ++=π.………………………………………………………………1分所以co 22A CBπ+-= (2)分sin2B ==.………………………………………………………………………3分所以2co 2BB =- (5)分13=.………………………………………………………………………………………7分(2)因为3a =,b =1cos 3B =, 由余弦定理222c o s b a c a c=+-,………………………………………………………………9分得2210c c -+=.……………………………………………………………………………………11分 解得1c =. (12)分17.(本小题满分12分) 解:(1)由频率分布直方图可知,[25,30)与[30,35)两组的人数相同,所以25a =人.………………………………………………………………………………………1分且0.08251000.02b =⨯=人.……………………………………………………………………………2分总人数252500.025N ==⨯人.………………………………………………………………………3分(2)因为第1,2,3组共有25+25+100=150人,利用分层抽样在150名员工中抽取6人,每组抽取的人数分别为: 第1组的人数为2561150⨯=,…………………………………………………………………………4分 第2组的人数为2561150⨯=,…………………………………………………………………………5分 第3组的人数为10064150⨯=,………………………………………………………………………6分 所以第1,2,3组分别抽取1人,1人,4人.……………………………………………………7分 (3)由(2)可设第1组的1人为A ,第2组的1人为B ,第3组的4人分别为1234,,,C C C C ,则从6人中抽取2人的所有可能结果为: (,)A B ,1(,)A C ,2(,)A C ,3(,)A C ,4(,)A C ,1(,)B C ,2(,)B C ,3(,)B C ,4(,)B C ,12(,)C C ,13(,)C C ,14(,)C C ,23(,)C C ,24(,)C C ,34(,)C C ,共有15种.……………………………9分其中恰有1人年龄在第3组的所有结果为:1(,)A C ,2(,)A C ,3(,)A C ,4(,)A C ,1(,)B C ,2(,)B C ,3(,)B C ,4(,)B C ,共有8种.………………………………………………………11分所以恰有1人年龄在第3组的概率为815.…………………………………………………………12分18.(本小题满分14分) (1)证明:在正A MB ∆中,D是AB的中点,所以MD AB ⊥.……………………………………1分因为M 是PB 的中点,D 是AB 的中点,所以//MD PA ,故P A A B ⊥.……………………2分又PA AC ⊥,AB AC A = ,,AB AC ⊂平面ABC , 所以PA ⊥平面ABC .…………………………………4分 因为⊂BC 平面ABC ,所以PA BC ⊥.……………5分 又,,,PC BC PA PC P PA PC ⊥=⊂ 平面PAC , 所以⊥BC 平面PAC .………………………………7分 (2)解法1:设点B 到平面DCM 的距离为h ,………8分因为10PB =,M 是PB 的中点,所以5MB =. 因为A M ∆为正三角形,所以5AB MB ==.……………………………………………………9分因为4,BC BC AC =⊥,所以3AC =. 所以11422BCS S ∆∆==⨯⨯⨯=⨯⨯⨯=.…………………………………10分因为23525522=⎪⎭⎫⎝⎛-=MD ,由(1)知//MD PA ,所以DC MD ⊥. 在ABC ∆中,1522CD AB ==,所以8325252352121=⨯⨯=⨯⨯=∆CD MD S MCD .…………………………………………11分因为M B BC M V V --=, (12)分所以h S MD S MCD BCD ⋅=⋅∆∆3131,即11333h ⨯=.……………………………………………………………………13分所以512=h . 故点B到平面D C的距离为512.………………………………………………………………14分 解法2:过点B 作直线CD 的垂线,交CD 的延长线于点H ,…………………………………………8分由(1)知,PA ⊥平面ABC ,//MD PA , 所以MD ⊥平面ABC .因为BH ⊂平面ABC ,所以MD BH ⊥.因为CD MD D = ,所以BH ⊥平面DCM .所以BH 为点B 到平面DCM 的距离.………………9分因为10PB =,M 是PB 的中点,所以5MB =. 因为AMB ∆为正三角形,所以5AB MB ==.……10分因为D 为AB 的中点,所以52CD BD ==.以下给出两种求BH 的方法:方法1:在△BCD 中,过点D 作BC 的垂线,垂足为点E ,则1322DE AC ==.…………………………………………………………………………………11分因为1122CD BH BC DE ⨯⨯=⨯⨯, (12)分所以34122552BC DEBH CD⨯⨯===. 方法2:在Rt△BHD中,222254BH DH BD +==. ①…………………………11分 在Rt △BHC 中,因为4BC =,所以222BH CH BC +=,即225162BH DH ⎛⎫++= ⎪⎝⎭.②…………………………………12分由①,②解得125BH =. 故点B 到平面D C的距离为512.………………………………………………………………14分 19.(本小题满分14分) 解:(1)因为321212222n n a a a a n -++++= ,*n ∈N , ① 所以当1=n 时,12a =.……………………………………………………………………………1分当2≥n 时,()31212221222n n a a a a n --++++=- ,② …………………………………2分 ①-②得,122nn a -=.…………………………………………………………………………………4分 所以2n n a =. (5)分因为12a =,适合上式, 所以2n n a =()*n ∈N . (6)分(2)由(1)得2n n a =.所以()()111n n n n a b a a +=--()()122nn n +=--…………………………………………………8分1112121n n +=---.…………………………………………………………………………10分所以12n n S b b b =+++1111111113377152121n n +⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭………………………………12分11121n +=--.………………………………………………………………………………14分20.(本小题满分14分) (1)解法1:由MD PD 2=知点M为线段PD的中点.……………………………………………1分设点M的坐标是(,x y ,则点P的坐标是(),2x y .……………………………………………2分因为点P 在圆422=+y x 上, 所以()2224x y +=. (3)分所以曲线C的方程为1422=+y x .…………………………………………………………………4分 解法2:设点M 的坐标是(,)x y ,点P 的坐标是()00,y x ,由2=得,xx =0,y y 20=.……………………………………………………………1分因为点P ()00,y x 在圆422=+y x 上, 所以42020=+y x . ①………………………2分把x x =0,y y 20=代入方程①,得4422=+y x .……………………………………………3分所以曲线C 的方程为1422=+y x .…………………………………………………………………4分 (2)解:因为EB EA ⊥,所以0=⋅EB EA .…………………………………………………………5分所以()2EA EB EA EA BA EA =-⋅=⋅.……………………………………………………………7分设点()11,A x y ,则221114x y +=,即221114x y =-.………………………………………………8分 所以()222221*********x EA BA EA x y x x ⋅==-+=-++- 221113342224433x x x ⎛⎫ ⎪⎝⎭=-+=-+.……………………………………………………………10分因为点()11,A x y 在曲线C 上,所以122x -≤≤.………………………………………………11分所以2123934x ⎛⎫≤-+≤ ⎪⎝⎭.……………………………………………………………………13分所以⋅的取值范围为⎥⎦⎤⎢⎣⎡932,.………………………………………………………………14分21.(本小题满分14分)解:(1)因为2()ln (2)f x x ax a x =-+-,所以函数()f x 的定义域为(0,)+∞.………………………………………………………………1分 且1()2(2)f x ax a x'=-+-.………………………………………………………………………2分因为()f x 在1x =处取得极值,所以()()11220f a a '=-+-=.解得1a =-.…………………………………………………………………………………………3分 当1a =-时,1(21)(1)()23x x f x x x x--'=+-=, 当102x <<时,()0f x '>;当112x <<时,()0f x '<;当1x >时,()0f x '>. 所以1x =是函数()y f x =的极小值点. 故1a =-.……………………………………………………………………………………………4分(2)因为2a a <,所以01a <<.…………………………………………………………………………………………5分 由(1)知(21)(1)()x ax f x x-+'=-. 因为(0,)x ∈+∞,所以10ax +>. 当102x <<时,()0f x '>;当12x >时,()0f x '<. 所以函数()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增;在1,2⎛⎫+∞ ⎪⎝⎭上单调递减.………………………………7分 ①当102a <≤时,()f x 在2[,]a a 上单调递增, 所以[]32max ()()ln 2f x f a a a a a ==-+-. (9)分②当21,21.2a a ⎧>⎪⎪⎨⎪<⎪⎩即12a <<时,()f x 在21,2a ⎛⎫ ⎪⎝⎭上单调递增,在1,2a ⎛⎫ ⎪⎝⎭上单调递减, 所以[]ma 12()ln 21ln 22424a a a f x f -⎛⎫==--+=-- ⎪⎝⎭.……………………………………11分 ③当212a ≤,即12a ≤<时,()f x 在2[,]a a 上单调递减, 所以[]2ma ()f x ==.…………………………………………………13分 综上所述: 当102a <≤时,函数()f x 在2[,]a a 上的最大值是32ln 2a a a a -+-;当122a <<时,函数()f x 在2[,]a a 上的最大值是1ln 24a --;当12a ≤<时,函数()f x 在2[,]a a 上的最大值是5322ln 2a a a a -+-.…………………14分。
广东省广州市2014届高三调研测试数学文试题 PDF版含答案

2.命题“若 x 1 ,则 1 x 1 ”的逆否命题是 A.若 x 1 ,则 x 1,或x 1
2 2 C.若 x 1,或x 1 ,则 x 1
B.若 1 x 1 ,则 x 1
2
D.若 x 1,或x 1 ,则 x 1
2
3.如图 1 是 2013 年某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶统计图,去掉 一个最高分和一个最低分后,所剩数据的平均数和众数依次为 A. 85,84 C. 86,84 B. 84,85 D. 84,86
第 3 页(共 4 页)
18. (本小题满分 14 分) 如图 6,在三棱锥 P ABC 中, PA AC , PC BC ,
P
M 为 PB 的中点, D 为 AB 的中点,且△ AMB 为正三角形.
(1)求证: BC 平面 PAC ; (2)若 BC 4 , PB 10 ,求点 B 到平面 DCM 的距离. A D 图6 B M C
19. (本小题共 14 分) 设数列 a n 满足 a1
a a2 a3 2 nn 2n , n N* . 1 2 2 2
(1)求数列 a n 的通项公式; (2)设 bn
an ,求数列 bn 的前 n 项 S n . an 1 an1 1
图3
10.函数 f ( x) sin x x 在区间 0, 内 A.没有零点 C.有且仅有 2 个零点 B.有且仅有 1 个零点 D.有且仅有 3 个零点
二.填空题: 本大题共 5 小题,考生作答 4 小题,每小题 5 分,满分 20 分. (一)必做题(11~13 题) 11.若向量 m 1, 2 , n x,1 满足 m n ,则 | n | __________. 12.在等比数列 {an } 中,若 a2 a3 3a1 ,则 a4 .
2014年高考(351)广东省广州市2014届高三年级调研测试

2014年高考(351)广东省广州市2014届高三年级调研测试广东省广州市2014届高三年级调研测试语文试题一、本大题4小题,每小题3分,共12分。
1.下列词语中加点的字,每对读音都不相同的一组是A.肄业/肆扰懈怠/亵渎押解/浑身解数B.聒躁/恬静咯血/炮烙中肯/一语中的C.戳穿/杀戮希冀/契约咀嚼/咬文嚼字D.国粹/荟萃悭吝/信笺拓本/落拓不羁2.下面语段中划线的词语,使用不恰当的一项是梁启超先生是一位百科全书式的人物。
他的学问涉及政治、经济、思想、文化等领域,真可以说是包罗万象。
他还是一个有赤子之心的人,没有成见,不执拗,只要对中国有好处,能促进中国发展的事物,他都能接受。
他系统地研究了中西优秀文化,提出的许多关于社会发展的见解,至今还被认为是不经之谈。
我们应该全面研究梁先生的思想,进而吸取其中的精髓,发扬光大。
A.包罗万象B.执拗C.不经之谈D.进而3.下列句子中,没有语病的一项是A.要杜绝中国式过马路的现象,除了重视宣传教育外,还需依靠加强行人过马路的设施、科学设置红绿灯间隔时间等措施,进行综合治理。
B.西方某些国家宣布,为防止官方通讯、私人通讯以及其他各类型通讯不再受其他国家的监听,他们将联合建立一个安全的电子通讯体系。
C.第九届中国音乐金钟奖的专家评委,对部分美声唱法和通俗唱法的选手赞不绝口,认为本届金钟奖竞赛水平高,选手的发展值得期待。
D.在建设美丽乡村的过程中,广州城区周边不少古村落引入现代城市管理模式,面貌焕然一新,但原本的乡土味也或多或少被冲淡了。
4.在文中横线处填入下列语句,衔接最恰当的一项是眼睛的近视可以用眼镜或手术来缓解,但是视野的近视并不是一个容易解决的问题。
,。
,那么总有一天你平静的生活就会被外界的变化打破。
我们这只井底之蛙,也就不得不因患了视野近视症而被社会淘汰。
只是这样的日子对外面世界变化的反应与感受也是极其微弱的周而复始、机械、单一的城市生活,让我们对世事发展变化缺少思考,患上了视野近视病这种视野的近视让我们自己成为了城市的井底之蛙都全然不知不管你愿不愿,外面的世界总是在不断的变化,这样的变化迟早会影响到你如果你不具备广阔的视野,提前解读社会的发展趋势,为自己的未来积极准备过井底之蛙的日子,是舒服且没有太多烦恼的A.B.C.D.二、本大题7小题,共35分。
2014广东省广州市调研测试语文试卷及参考答案

2014广东省广州市调研测试语文试卷及参考答案新高考新题目2014-01-06 1302广州市2014届高三年级调研测试语文来源2014.01本试卷共8页,六大题,共24小题,满分150分。
考试用时150分钟。
注意事项1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用2B铅笔在答题卡上的相应位置填涂考生号。
用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。
2. 选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4. 考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、本大题4小题,每小题3分,共12分。
1.下列词语中加点的字,每对读音都不相同....的一组是A.肄.业/肆.扰懈.怠/亵.渎押解./浑身解.数B.聒.躁/恬.静咯.血/炮烙.中.肯/一语中.的C.戳.穿/杀戮.希冀./契.约咀嚼./咬文嚼.字D.国粹./荟萃.悭.吝/信笺.拓.本/落拓.不羁2.下面语段中划线的词语,使用不恰当...的一项是梁启超先生是一位百科全书式的人物。
他的学问涉及政治、经济、思想、文化等领域,真可以说是包罗万象。
他还是一个有赤子之心的人,没有成见,不执拗,只要对中国有好处,能促进中国发展的事物,他都能接受。
他系统地研究了中西优秀文化,提出的许多关于社会发展的见解,至今还被认为是不经之谈。
我们应该全面研究梁先生的思想,进而吸取其中的精髓,发扬光大。
A.包罗万象 B.执拗 C.不经之谈 D.进而3.下列句子中,没有语病....的一项是A.要杜绝中国式过马路的现象,除了重视宣传教育外,还需依靠加强行人过马路的设施、科学设置红绿灯间隔时间等措施,进行综合治理。
2014年广东省高考语文数学(文...

2014年广东省高考语文数学(文...2014年广东省高考真题及答案(word版)语文、数学、英语、政治、历史、地理、物理、化学、生物全科(10份)经典答案解析目录2014年广东省高考语文试卷及答案 (2)2014年广东省高考数学(文)试卷及答案 (16)2014年广东省高考数学(理)试卷及答案 (26)2014年广东省高考英语试卷及答案 (32)2014年广东省高考文综(政、史、地)试卷及答案 (41)2014年广东省高考理综(理、化、生)试卷及答案 (54)2014年广东省高考语文试卷及答案本试卷共8页,24小题,满分150分。
考试用时150分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己姓名和考生号、考场号、座位号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处。
”2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案信息号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、本大题4小题,每小题3分,共12分。
1.下列词语中加点的字,每对读音都不相同....的一组是A.驰骋./聘.请饶恕./夙.愿塞.翁失马/敷衍塞.责B.瑕.疵/遐.想遏.止/摇曳.是否./臧否.C.诽谤./磅.礴洗涤./嫡.亲累.积/劳累.D.渗.透/掺.杂俯.仰/辅.导屡见不鲜./鲜.为人知2.下面语段中画线的词语,使用不恰当...的一项是与连篇累牍的电视剧本身相比,剧中翻书的动作、人物的坐姿等,只是一些细节。
广东省广州市2014届高三调研测试语文试题 word版含答案

广东省广州市2014届高三调研测试语文试题 word 版含答案高考语文2014-01-11 1111(试卷类型:A广州市2014届高三年级调研测试语文2014.01本试卷共8页,六大题,共24小题,满分150分。
考试用时150分钟。
注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用2B铅笔在答题卡上的相应位置填涂考生号。
用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。
2. 选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4. 考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、本大题4小题,每小题3分,共12分。
1.下列词语中加点的字,每对读音都不相同的一组是A.赎罪/渎职犬吠/肺腑和面/曲高和寡B.啜泣/辍笔对峙/稚嫩揣度/度德量力C.纤细/阡陌彤云/憧憬抹布/转弯抹角D.烙印/落枕蓓蕾/胚芽商贾/余勇可贾2.下面语段中画线的词语,使用不正确的一项是《赛德克·巴莱》是一部反映赛德克族反抗日本殖民统治的电影,影片运用艺术的手法将众多的历史场景展现得淋漓尽致。
为拍好这部电影,导演专门聘请了赛德克人郭明正为历史顾问,经过十年的苦心经营,影片最终在台湾大获成功。
电影的取材来源于历史,故事既有演绎,也不乏虚构。
专家认为,观众如果想要更充分地了解台湾原住民这一悲悯的抗日史实,需要补充阅读其他文献资料。
A.淋漓尽致B.苦心经营C.演绎D.悲悯3.下列句子中,没有语病的一项是A.人们在充分享受网络带来的方便快捷的同时,也面临一些涉及隐私的个人信息被不法分子泄漏贩卖的危险,网络信息安全确实令人堪忧。
2014广东高考文科数学试卷及答案解析(word版)

2014年普通高等学校招生全国统一考试(广东卷)数学 (文科)一、选择题{}{}{}{}{}{}1.2,3,4,0,2,3,5,()..0,2.2,3.3,4.3,5M N M N A B C D ===已知集合则答案:B2.(34)25,()..34.34.34.34z i z z A i B iC iD i-==---+-+已知复数满足则答案:D 2525(34)25(34):=34,.34(34)(34)25i i z i D i i i ++===+--+提示故选 3.(1,2),(3,1),()..(2,1).(2,1).(2,0).(4,3)a b b a A B C D =-=--已知向量则答案:B284.,04,2().03.7.8.10.11x y x y x z x y y A B C D +≤⎧⎪≤≤=+⎨⎪≤≤⎩若变量满足约束条件则的最大值等于 答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10. 选C. 5.下列函数为奇函数的是( ).A.xx212-B.x x sin 3C.1cos 2+xD.xx 22+ 答案:A111:()2,(),()22(),222(),A .x xxx x x f x f x R f x f x f x --=--=-=-=-∴提示设则的定义域为且为奇函数故选6.1000,,40,()..50.40.25.20:1000:25.40A B C D C=为了解名学生的学习情况采用系统抽样的方法从中抽取容量为的样本则分段的间隔为答案提示分段的间隔为7.,,,,,,sin sin ().....::,,,sin ,sin ,sin sin .sin sin ABC A B C a b c a b A B A B C D Aa ba b A B a b A B A B∆≤≤=∴≤⇔≤在中角所对应的边分别为则“”是“”的充分必要条件充分非必要条件必要非充分条件非充分非必要条件答案提示由正弦定理知都为正数22228.05,11().165165....05,50,160,16(5)21(16)5,x y x y k k k k A B C D k k k k k k <<-=-=--<<∴->->+-=-=-+若实数满足则曲线与曲线的实半轴长相等虚半轴长相等离心率相等焦距相等答案:D提示:从而两曲线均为双曲线,又故两双曲线的焦距相等,选D.1234122334141414149.,,,,,//,,()...//..l l l l l l l l l l A l l B l l C l l D l l ⊥⊥⊥若空间中四条两两不同的直线满足则下列结论一定正确的是与既不垂直也不平行与的位置关系不确定答案:D1212122212310.,,=,,,,z z z ωωωωωωωω*对任意复数定义其中是的共轭复数对任意复数有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*; ③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( )A.1B.2C.3D.412312313231323123123123121312131231231231231231:()()()()()();()()()()()()();(),()()(),,;Bz z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====≠答案提示:①*===*+*,故①是真命题②**+*,②对③左边=*=右边*左边右边③错 ④左边=2122121,,,z z z z z z z ==≠*右边=*左边右边故④不是真命题.综上,只有①②是真命题,故选B.(一)必做题(11-13)''142511.53(0,2)_______.:520:5,5,25,520.12.,,,d,e ________.2:542:105x x x y e x y y e y y x x y a b c a C P C ==-+-++==-∴=-∴+=-++====曲线在点处的切线方程为答案提示所求切线方程为即从字母中任取两个不同字母,则取到字母的概率为答案提示13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.212223242525242322212152:5:log log log log log ,log log log log log ,25log ()5log 410,5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=答案提示设则2121214.()2cos sin cos =1.,,_____________.C C x C C ρθθρθ=坐标系与参数方程选做题在极坐标系中,曲线与的方程分别为与以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系则曲线与交点的直角坐标为2221212:(1,2):2cos sin 2cos =sin ,2,1,,(1,2).C y x C x C C ρθθρθρθ===∴答案提示由得()故的直角坐标方程为:的直角坐标方程为:交点的直角坐标为15.()1,,2,,___________.:3:, 3.ABCD E AB EB AE AC DE F CDF AEF CDF CD EB AECDFAEF AEF AE AE=∆=∆∆+∆∆∴===∆几何证明选讲选做题如图在平行四边形中点在上且与交于点的周长则的周长答案的周长提示显然的周长16.(本小题满分12分) 已知函数()sin(),3f x A x x R π=+∈,且5()122f π=(1) 求A 的值;(2)若()()(0,)2f f πθθθ--=∈,求()6f πθ-553:(1)()sin()sin 3.121234(2)(1):()3sin(),3()()3sin()3sin()333(sin cos cos sin )3(sin()cos cos()sin )33336sin cos3sin 3sin (0,),2f A A A f xx f f πππππππθθθθππππθθθθπθθπθθ=+==∴===+∴--=+--+=+--+-===∴=∈解由得又cos ()3sin()3sin()3cos 36632f θππππθθθθ∴=∴-=-+=-===17. 某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.:(1)2030,401921.-=解这名工人年龄的众数为极差为(2)茎叶图如下:()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)504132102011(121123412100)25212.62020+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为18.2,,,1, 2.3://,,,,,.(1):;(2).ABCD PD ABCD AB BC PC EF DC E F PD PC EF P AD M MF CF CF MDF M CDE ⊥===⊥⊥-如图四边形为矩形平面作如图折叠折痕其中点分别在线段上沿折叠后点叠在线段上的点记为并且证明平面求三棱锥的体积00:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2112,,2211.33CDE M CDE CDE CF DE PE S CD DE P CP MD V S MD ∆-∆=∴=∴==⋅=====∴=⋅=={}{}222119.,(3)3()0,.(1);(2);n n n n n n a n S S S n n S n n n N a a *-+--+=∈设各项均为正数的数列的前项和为且满足求的值求数列的通项公式1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 0(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣解令得即即由得从而当时12211222,221,2().313(3):,()(),221644111111(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)n k k n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++又解法一当时(1)1111111()()11111141223(1)444444111111().11434331(1)44111111:(),.(1)2(21)(21)(21)22121(:)n n k k a a n n n n a a k k k k k k +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-=<=-++-+-+解法二以下略注解法二的放缩没有解法一的精确,在使用中第一项不放缩时才能得到答案2222002222220.:1(0)(1);(2)(,),,.:(1)3,954,1.94(2),,4x yC a ba bCP x y C P C Pcc e a b a cax yCx y+=>>====∴==-=-=∴+=已知椭圆的一个焦点为求椭圆的标准方程若动点为椭圆外一点且点到椭圆的两条切线相互垂直求点的轨迹方程解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P共个002200222000022222000000(3,2),(3,2).(),(),194(94)18()9()40,,0,(18)()36()4(94)0,4()4y y k x xx yy k x x yk x k y kx x y kxk y kx y kx k y kx-±±-=-=-++=⎡⎤++-+--=∆=⎣⎦⎡⎤----+=--⎣⎦,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:依题意即:即2222200000122220022(94)0,4(9)240,,1,:1,913,(3,2),(3,2),13.kyx k x y k y k kxx yP x y+=-∴--+-=∴=-=--∴+=-±±∴+=两切线相互垂直即显然这四点也满足以上方程点的轨迹方程为3200121.()1().3(1)();111(2)0,(0,)(,1),()=().222f x x x ax a Rf xa x f x f=+++∈<∈已知函数求函数的单调区间当时试讨论是否存在使得3232000033220002000000200000111111(2):()()1()()()12332221111()()()3222111111()()()()()322422211111()()()(4236122122f x f x x ax a x x a x x x x x x a x x x x x a x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-解法一2000020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,0,,01,7x x a x f x f x x a a a a x x +++∴∈=+++=<∴∆=-+=->=>∴<<<若存在使得必须在上有解方程的两根为依题意即0000025711,492148121,,1212155,,,,24425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)(1212422a a a x a a x f x f a x f x ∴<-<-<<-=-≠-∴∈----∈=⎧⎫∈-∞---∈⎨⎬⎩⎭即得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1)().2f =00:0,10,()3,11,(1)()(0,1),111(0,)(,1),()=();222()30,()(0,1,(1,5111),()(0,),(,1),422a i a f x x f x f ii a f x a f x <∴-≤--∈-<<-+-+=-解法二若从而由知在区间上是减函数故此时不存在使得若则函数在区间上递减在区间上递增若则在上递减在上递增显然此时不存在满足题意的000000;512)3,11,,(14212525255(1)()0,0,,;222412124513)0,01,,(0,1421775(0)()0,0,,2224124x a x x a f f a a x a x x a f f a -<<-<-∈-+->+>>--<<--<<<-+∈-+->--><--若则若题意中的存在则故只需即则故时存在满足题意的若则若题意中的存在则故只需即则故000007.12:25557111(,)(,),(0,)(,1)()().1244122222575111(,][,0),(0,)(,1)()().12124222a x a x f x f a x f x f <<-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭时存在满足题意的综上所述当时存在唯一的满足当时不存在使。
2014年普通高等学校招生全国统一考试(广东卷)附参考答案

2014年普通高等学校招生全国统一考试(广东卷) 数学 (文科)一、选择题{}{}{}{}{}{}1.2,3,4,0,2,3,5,()..0,2.2,3.3,4.3,5M N M N A B C D ===已知集合则答案:B2.(34)25,()..34.34.34.34z i z z A iB iC iD i-==---+-+已知复数满足则答案:D 2525(34)25(34):=34,.34(34)(34)25i i z i D i i i ++===+--+提示故选 3.(1,2),(3,1),()..(2,1).(2,1).(2,0).(4,3)a b b a A B C D =-=--已知向量则答案:B284.,04,2().03.7.8.10.11x y x y x z x y y A B C D +≤⎧⎪≤≤=+⎨⎪≤≤⎩若变量满足约束条件则的最大值等于 答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10. 选C.5.下列函数为奇函数的是( ).A. B. C. D. 答案:A111:()2,(),()22(),222(),A .x xxx x xf x f x R f x f x f x --=--=-=-=-∴提示设则的定义域为且为奇函数故选xx212-x x sin 31cos 2+x xx 22+6.1000,,40,()..50.40.25.20:1000:25.40A B C D C=为了解名学生的学习情况采用系统抽样的方法从中抽取容量为的样本则分段的间隔为答案提示分段的间隔为7.,,,,,,sin sin ().....::,,,sin ,sin ,sin sin .sin sin ABC A B C a b c a b A B A B C D Aa ba b A B a b A B A B∆≤≤=∴≤⇔≤在中角所对应的边分别为则“”是“”的充分必要条件充分非必要条件必要非充分条件非充分非必要条件答案提示由正弦定理知都为正数22228.05,11().165165....05,50,160,16(5)21(16)5,x y x y k k k k A B C D k k k k k k <<-=-=--<<∴->->+-=-=-+若实数满足则曲线与曲线的实半轴长相等虚半轴长相等离心率相等焦距相等答案:D提示:从而两曲线均为双曲线,又故两双曲线的焦距相等,选D.1234122334141414149.,,,,,//,,()...//..l l l l l l l l l l A l l B l l C l l D l l ⊥⊥⊥若空间中四条两两不同的直线满足则下列结论一定正确的是与既不垂直也不平行与的位置关系不确定答案:D1212122212310.,,=,,,,z z z ωωωωωωωω*对任意复数定义其中是的共轭复数对任意复数有如下四个命题:① ②;③④; 则真命题的个数是( )A.1B.2C.3D.41231323()()();z z z z z z z +*=*+*1231213()()()z z z z z z z *+=*+*123123()();z z z z z z **=**1221z z z z *=*12312313231323123123123121312131231231231231231:()()()()()();()()()()()()();(),()()(),,;Bz z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====≠答案提示:①*===*+*,故①是真命题②**+*,②对③左边=*=右边*左边右边③错 ④左边=2122121,,,z z z z z z z ==≠*右边=*左边右边故④不是真命题.综上,只有①②是真命题,故选B.二、填空题(一)必做题(11-13)''142511.53(0,2)_______.:520:5,5,25,520.12.,,,d,e ________.2:542:105x x x y e x y y e y y x x y a b c a C P C ==-+-++==-∴=-∴+=-++====曲线在点处的切线方程为答案提示所求切线方程为即从字母中任取两个不同字母,则取到字母的概率为答案提示13.等比数列的各项均为正数,且,则________.212223242525242322212152:5:log log log log log ,log log log log log ,25log ()5log 410,5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=答案提示设则2121214.()2cos sin cos =1.,,_____________.C C x C C ρθθρθ=坐标系与参数方程选做题在极坐标系中,曲线与的方程分别为与以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系则曲线与交点的直角坐标为{}n a 154a a =2122232425log +log +log +log +log =a a a a a2221212:(1,2):2cos sin 2cos =sin ,2,1,,(1,2).C y x C x C C ρθθρθρθ===∴答案提示由得()故的直角坐标方程为:的直角坐标方程为:交点的直角坐标为15.()1,,2,,___________.:3:, 3.ABCD E AB EB AE AC DE F CDF AEF CDF CD EB AECDFAEF AEF AE AE=∆=∆∆+∆∆∴===∆几何证明选讲选做题如图在平行四边形中点在上且与交于点的周长则的周长答案的周长提示显然的周长三、解答题16.(本小题满分12分) 已知函数,且 (1) 求的值;(2) 若,求553:(1)()sin()sin 3.121234(2)(1):()3sin(),3()()3sin()3sin()333(sin cos cos sin )3(sin()cos cos()sin )33336cos sin 31cos ,()336f A A A f x x f f f πππππππθθθθππππθθθθπθθπθθ=+==∴===+∴+-=++-+=++-+-===∴=∴-=解由得1sin()3sin()3cos 3 1.6323πππθθθ-+=-==⨯=()sin(),3f x A x x R π=+∈5()12f π=A ()()(0,)2f f πθθθ--=∈()6f πθ-17. 某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.:(1)2030,401921.-=解这名工人年龄的众数为极差为 (2)茎叶图如下:()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)50413210201(121123412100)2012522012.6+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 018.2,,,1, 2.3://,,,,,.(1):;(2).ABCD PD ABCD AB BC PC EF DC E F PD PC EF P AD M MF CF CF MDF M CDE ⊥===⊥⊥-如图四边形为矩形平面作如图折叠折痕其中点分别在线段上沿折叠后点叠在线段上的点记为并且证明平面求三棱锥的体积00:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2112,,2211.33CDE M CDE CDE CF DE PE S CD DE P CP MD V S MD ∆-∆=∴=∴==⋅=====∴=⋅=={}{}222119.,(3)3()0,.(1);(2);n n n n n n a n S S S n n S n n n N a a *-+--+=∈设各项均为正数的数列的前项和为且满足求的值求数列的通项公式 (3)证明:对一切正整数,有n ()()().311111112211<+++++n n a a a a a a221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣解令得即即由得从而当时12211222,221,2().313(3),()(),221644111111113(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)(n k k n n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++又当时1)1111111()()11111141223(1)444444111111().11434331(1)44n n n n n +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-2222002222220.:1(0)(1);(2)(,),,.:(1)3,954,1.94(2),,4x yC a ba bCP x y C P C Pcc e a b a cax yCx y+=>>====∴==-=-=∴+=已知椭圆的一个焦点为求椭圆的标准方程若动点为椭圆外一点且点到椭圆的两条切线相互垂直求点的轨迹方程解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P共个002200222000022222000000(3,2),(3,2).(),(),194(94)18()9()40,,0,(18)()36()4(94)0,4()4y y k x xx yy k x x yk x k y kx x y kxk y kx y kx k y kx-±±-=-=-++=⎡⎤++-+--=∆=⎣⎦⎡⎤----+=--⎣⎦,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:依题意即:即2222200000122220022(94)0,4(9)240,,1,:1,913,(3,2),(3,2),13.kyx k x y k y k kxx yP x y+=-∴--+-=∴=-=--∴+=-±±∴+=两切线相互垂直即显然这四点也满足以上方程点的轨迹方程为3200121.()1().3(1)();111(2)0,(0,)(,1),()=().222f xx x ax a Rf xa x f xf=+++∈<∈已知函数求函数的单调区间当时试讨论是否存在使得'22'2'':(1)()2,20:44,1,0,()0,()(,).1,201(,1,()0,(),(11),()0,(),(1)f x x x a x x a aa f x f xa x x ax f x f xx f x f xx=++++=∆=-∴≥∆≤∴≥-∞+∞<++=-±∈-∞-->∴∈---+<∈-++∞解方程的判别式当时此时在上为增函数当时方程的两根为当时此时为增函数当时此时为减函数当时',()0,(),,1,()(,),1,()(,11),()(11).f x f xa f xa f xf x>≥-∞+∞<-∞--++∞---+此时为增函数综上时在上为增函数当时的单调递增区间为的单调递减区间为323200003322000200000020000200111111(2)()()1()()()12332221111()()()3222111111()()()()()3224222111()()23612211()(4122f x f x x ax a x x a x x x x x x a x x x x x a x x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-+00020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,0,,01,74x a x f x f x x a a a a x x ++∴∈=+++=<∴∆=-+=->=>∴-<<<<若存在使得必须在上有解方程的两根为依题意即0000025711,492148121,,1212155=,,,,424425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)()(1212422a a a x a a x f x f a x f x f ∴<-<-<<--=-≠-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭即又由得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1).2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广州市2014届高三年级调研测试数 学(文 科)一.选择题: 1.函数y =)A .(),4-∞B .(],4-∞C .()4,+∞D .[)4,+∞2.命题“若12<x ,则11<<-x ”的逆否命题是( )A .若12≥x ,则11-≤≥x x ,或 B .若11<<-x ,则12<x C .若11-<>x x ,或,则12>x D .若11-≤≥x x ,或,则12≥x 3.如图1是2013年某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和众数依次为( )A .85,84B .84,85C .86,84D .84,864.设1i z =-(i 是虚数单位),则复数22i z +的虚部是( ) A .i - B .1- C .i D .1 5.若集合,A B 满足{}|3A x x =∈<Z ,B ⊆N ,则AB 不可能...是( ) A .{0,1,2} B . {1,2} C . {1}- D .∅6.若实数x ,y 满足不等式组220,10,220,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则x y +的最大值为( )A .4B .5C .6D .7 7.执行如图2的程序框图,如果输入的N 的值是6,那么输出的p 的值是( ) A .15 B .105 C .120 D .7208.某几何体的三视图(如图3所示)均为边长为2的等腰直角三角形,则该几何体的表面积是( ) A.4+ B. C.4 D.8+9.若点(1,0)A 和点(4,0)B 到直线l 的距离依次为1和2,则这样的直线有( ) A .1条 B .2条 C .3条 D .4条 10.函数()sin f x x =[)0,+∞内( )A .没有零点B .有且仅有1个零点C .有且仅有2个零点D .有且仅有3个零点 7 8 994 4 6 4 73图111.若向量()1,2=m ,(),1x =n 满足⊥m n ,则||=n __________. 12.在等比数列{}n a 中,若1323a a a =⋅,则4a = .13.在边长为2的正方形ABCD 内部任取一点M ,则满足90>∠AMB 的概率为_______. (二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图4,AC 为⊙O 的直径,OB AC ⊥,弦BN 交AC 于点M.若OC ,1OM =,则MN 的长为 .15.(坐标系与参数方程选讲选做题)若点(,)P x y 在曲线2cos sin x y θθ=-+⎧⎨=⎩(θ为参数,θ∈R )上,则yx的取值范围是 . 三.解答题: 本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c,且cos 2A C +=(1)求cos B 的值;(2)若3a =,b =c 的值.17.(本小题满分12分)某单位N 名员工参加“社区低碳你我他”活动.他们 的年龄在25岁至50岁之间.按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分(1)求正整数,,的值;(2)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人, 则年龄在第1,2,3组的人数分别是多少? (3)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率. ABCOM N图4图518.(本小题满分14分)如图6,在三棱锥P ABC -中,PA AC ⊥,PC BC ⊥,M 为PB 的中点,D 为AB 的中点,且△AMB 为正三角形.(1)求证:⊥BC 平面PAC ;(2)若4BC =,10PB =,求点B 到平面DCM 的距离.19.(本小题共14分)设数列{}n a 满足321212222n n a a a a n -++++=,*n ∈N . (1)求数列{}n a 的通项公式;(2)设()()111nn n n a b a a +=--,求数列{}n b 的前n 项和n S .20.(本小题满分14分)在圆422=+y x 上任取一点P ,设点P 在x 轴上的正投影为点D .当点P 在圆上运动时,动点M 满足MD PD 2=,动点M 形成的轨迹为曲线C .(1)求曲线C 的方程;(2)已知点()0,1E ,若B A ,是曲线C 上的两个动点,且满足EB EA ⊥,求BA EA ⋅的取值范围.21.(本小题满分14分)已知函数()()2ln 2f x x ax a x =-+-.(1)若()f x 在1x =处取得极值,求实数a 的值;(2)求函数()f x 在区间2[,]a a 上的最大值.广州市2014届高三年级调研测试数学(文科)试题参考答案及评分标准50分.二.填空题:1112.3 13.8π14.115.⎡⎢⎣⎦三.解答题:本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)解:(1)在△ABC中,A B C++=π.…………1分,所以cos cos22A C Bπ+-=…………2分sin2B==.…………3分,所以2cos12sin2BB=-…………5分,13=.…………7分(2)因为3a=,b=1cos3B=,由余弦定理2222cosb ac ac B=+-,…………9分得2210c c-+=.…………11分,解得1c=.…………12分17.(本小题满分12分)解:(1)由频率分布直方图可知,[25,30)与[30,35)两组的人数相同,所以25a=人.…………1分且0.08251000.02b=⨯=人.…………2分,总人数252500.025N==⨯人.…………3分(2)因为第1,2,3组共有25+25+100=150人,利用分层抽样在150名员工中抽取6人,每组抽取的人数分别为:第1组的人数为2561150⨯=,…………4分,第2组的人数为2561150⨯=,…………5分第3组的人数为10064150⨯=,…………6分,所以第1,2,3组分别抽取1人,1人,4人.…………7分(3)由(2)可设第1组的1人为A,第2组的1人为B,第3组的4人分别为1234,,,C C C C,则从6人中抽取2人的所有可能结果为:(,)A B,1(,)A C,2(,)A C,3(,)A C,4(,)A C,1(,)B C,2(,)B C,3(,)B C,4(,)B C,12(,)C C,13(,)C C,14(,)C C,23(,)C C,24(,)C C,34(,)C C,共有15种…………9分其中恰有1人年龄在第3组的所有结果为:1(,)A C,2(,)A C,3(,)A C,4(,)A C,1(,)B C,2(,)B C,3(,)B C,4(,)B C,共有8种…………11分,所以恰有1人年龄在第3组的概率为815…………12分18.(本小题满分14分)(1)证明:在正AMB∆中,D是AB的中点,所以MD AB⊥……1分因为M是PB的中点,D是AB的中点,所以//MD PA,故PA AB⊥…………2分,又PA AC⊥,AB AC A=,,AB AC⊂平面ABC,所以PA⊥平面ABC…………4分因为⊂BC平面ABC,所以PA BC⊥…………5分所以⊥BC 平面PAC …………7分(2)解法1:设点B 到平面DCM 的距离为h …………8分,因为10PB =,M 是PB 的中点,所以5MB =. 因为AMB ∆为正三角形,所以5AB MB ==…………9分,因为4,BC BC AC =⊥,所以3AC =. 所以1111143322222BCD ABC S S BC AC ∆∆==⨯⨯⨯=⨯⨯⨯=…………10分 因为23525522=⎪⎭⎫⎝⎛-=MD ,由(1)知//MD PA ,所以DC MD ⊥.在ABC ∆中,1522CD AB ==,所以8325252352121=⨯⨯=⨯⨯=∆CD MD S MCD …………11分,因为MCD B BCD M V V --=…………12分 所以h S MD S MCD BCD ⋅=⋅∆∆3131,即11333h ⨯=…………13分,所以512=h . 故点B 到平面DCM 的距离为512…………14分 解法2:过点B 作直线CD 的垂线,交CD 的延长线于点H …………8分 由(1)知,PA ⊥平面ABC ,//MD PA ,所以MD ⊥平面ABC .因为BH ⊂平面ABC ,所以MD BH ⊥. 因为CD MD D =,所以BH ⊥平面DCM .所以BH 为点B 到平面DCM 的距离.………………9分因为10PB =,M 是PB 的中点,所以5MB =.因为AMB ∆为正三角形,所以5AB MB ==.……10分 因为D 为AB 的中点,所以52CD BD ==. 方法1:在△BCD 中,过点D 作BC 的垂线,垂足为点E ,则12DE AC =因为1122CD BH BC DE ⨯⨯=⨯⨯…………12分,所以34122552BC DE BH CD ⨯⨯===. 方法2:在Rt △BHD 中,222254BH DH BD +==.①…………11分在Rt △BHC 中,因为4BC =,所以222BH CH BC +=,即225162BH DH ⎛⎫++= ⎪⎝⎭.②…………12分由①,②解得125BH =.故点B 到平面DCM 的距离为512…………14分19.(本小题满分14分)解:(1)因为321212222nn a a a a n -++++=,*n ∈N , ① 所以当1=n 时,12a =…………1分,当2≥n 时,()31212221222n n a a a a n --++++=-,②…………2分 ①-②得,122n n a-=……4分,所以2n n a =……5分,因为12a =,适合上式,所以2n n a =()*n ∈N ……6分所以12n n S b b b =+++1111111113377152121n n +⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭…12分11121n +=--…14分20.(本小题满分14分)(1)解法1:由2=知点M 为线段PD 的中点…………1分 设点M 的坐标是(,)x y ,则点P 的坐标是(),2x y …………2分 因为点P 在圆422=+y x 上,所以()2224x y +=………3分,所以曲线C 的方程为1422=+y x ………4分解法2:设点M 的坐标是(,)x y ,点P 的坐标是()00,y x ,由2=得,x x =0,y y 20=…………1分 因为点P ()00,y x 在圆422=+y x 上, 所以42020=+y x . ①…………2分把x x =0,y y 20=代入方程①,得4422=+y x ………3分,所以曲线C 的方程为1422=+y x ………4分 (2)解:因为EB EA ⊥,所以0=⋅………5分,所以()2EA EB EA EA BA EA =-⋅=⋅………7分设点()11,A x y ,则221114x y +=,即221114x y =-…………8分 所以()222221111112114x EA BA EA x y x x ⋅==-+=-++-221113342224433x x x ⎛⎫ ⎪⎝⎭=-+=-+…………10分 因为点()11,A x y 在曲线C 上,所以122x -≤≤…………11分,所以21234293433x ⎛⎫≤-+≤ ⎪⎝⎭…………13分所以⋅的取值范围为⎥⎦⎤⎢⎣⎡932,…………14分21.(本小题满分14分)解:(1)因为2()ln (2)f x x ax a x =-+-,所以函数()f x 的定义域为(0,)+∞…………1分且1()2(2)f x ax a x'=-+-…………2分,因为()f x 在1x =处取得极值,所以()()11220f a a '=-+-=. 解得1a =-…………3分,当1a =-时,1(21)(1)()23x x f x x x x--'=+-=,当102x <<时,()0f x '>;当112x <<时,()0f x '<;当1x >时,()0f x '>.所以1x =是函数()y f x =的极小值点.故1a =-…………4分(2)因为2a a <,所以01a <<…………5分,由(1)知(21)(1)()x ax f x x-+'=-.(0,)x ∈+∞10ax +>10x <<()0f x '>1x >()0f x '<所以函数()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增;在1,2⎛⎫+∞ ⎪⎝⎭上单调递减…………7分 ①当102a <≤时,()f x 在2[,]a a 上单调递增,所以[]32max ()()ln 2f x f a a a a a ==-+-…………9分 ②当21,21.2a a ⎧>⎪⎪⎨⎪<⎪⎩即12a <<时,()f x 在21,2a ⎛⎫ ⎪⎝⎭上单调递增,在1,2a ⎛⎫ ⎪⎝⎭上单调递减,所以[]max 12()ln 21ln 22424a a a f x f -⎛⎫==--+=-- ⎪⎝⎭…………11分③当212a ≤1a ≤<时,()f x 在2[,]a a 上递减,所以[]2532max ()()2ln 2f x f a a a a a ==-+-……13分综上所述:当102a <≤时,函数()f x 在2[,]a a 上的最大值是32ln 2a a a a -+-;当122a <<时,函数()f x 在2[,]a a 上的最大值是1ln 24a --;当12a ≤<时,函数()f x 在2[,]a a 上的最大值是5322ln 2a a a a -+-…………14分。