七级数学下册 培优新帮手 专题 简单的不定方程、方程组试题

合集下载

初中七年级数学知识点专题讲解与练习18---简单的不定方程、方程组(培优版)

初中七年级数学知识点专题讲解与练习18---简单的不定方程、方程组(培优版)

入某个一位数后变成的三位数是原来两位数的 9 倍,这样的两位数有( )个.
A.1 B.4 C.10 D.超过 10
9.李林在银行兑换了一张面额为 l00 元以内的人民币支票,兑换员不小心将支票上的 元与角、分数字看倒置了(例如,把 12.34 元看成了 34.12 元),并按着错的数字支付,
6 / 11
对.
(全国初中数学联赛试题)
解题思路:由方程特点,联想到平方差公式,利用因数分解来解答.
1 / 11
【例 2】电影票有 10 元,15 元,20 元三种票价,班长用 500 元买了 30 张电影票,其 中票价为 20 元的比票价为 10 元的多( ).
A.20 张 B.15 张 C.10 张 D.5 张 (“希望杯”邀请赛试题)
A.32 千米 B.37 千米 C.55 千米 D.90 千米
7.给出下列判断:
x = −3t
①不定方程 2x + 3y = 0 的整数解可表示为
( t 为整数).
y = 2t
②不定方程 2x + 4 y = 5 无整数解.
③不定方程 2x + 3y = 1无整数解.
其中正确的判断是( ).
A.①② B.②③ C.①③ D.①②③
8.小英在邮局买了 10 元的邮票,其中面值 0.10 元的邮票不少于 2 枚,面值 O.20 元的
4 / 11
邮票不少于 5 枚,面值 0.50 元的邮票不少于 3 枚,面值 2 元的邮票不少于 1 枚,则小
英最少买了(
)枚邮票.
A.17 B.18 C.19 D.20
(“五羊杯”邀请赛试题)
9.小孩将玻璃弹子装进两种盒子,每个大盒子装 12 颗,每个小盒子装 5 颗,若弹子

(完整版)初一数学下册二元一次方程组试卷(含答案) 培优试题

(完整版)初一数学下册二元一次方程组试卷(含答案)  培优试题

一、选择题1.已知方程组5354x yax y+=⎧⎨+=⎩和2551x yx by-=⎧⎨+=⎩有相同的解,则2a b-的值为()A.15B.14C.10D.82.已知关于x,y的方程组451x yax by-=-⎧⎨+=-⎩和393418x yax by+=-⎧⎨+=⎩有相同的解,那么a b+的算术平方根是()A.0 B.2±C.2D.2 3.下列方程组中,是二元一次方程组的是()A.2xy=⎧⎨=⎩B.28x yy z+=⎧⎨+=⎩C.21xyy=⎧⎨=⎩D.2103xx y⎧-=⎨+=⎩4.已知方程组321x y nx y n+=⎧⎨+=+⎩,若x,y的值相等,则n=()A.1-B.4-C.2 D.2-5.已知x=2,y=1是方程ax﹣y=7的一个解,那么a的值为()A.﹣2 B.2 C.3 D.46.如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.60 B.52 C.70 D.667.已知方程组46ax byax by-=⎧⎨+=⎩与方程组35471x yx y-=⎧⎨-=⎩的解相同,则a,b的值分别为()A.521ab⎧=-⎪⎨⎪=⎩B.521ab⎧=⎪⎨⎪=-⎩C.521ab⎧=⎪⎨⎪=⎩D.521ab⎧=-⎪⎨⎪=-⎩8.若关于x、y的方程组2335x yax by+=⎧⎨-=-⎩和32111x ybx ay-=⎧⎨-=⎩有相同的解,则2021()a b+的值为()A.1-B.0 C.1 D.20219.利用两块完全一样的长方体木块测量一张桌子的高度,首先按图①所示的方式放置,再交换两木块的位置,按图②所示的方式放置.测量的数据如图,则桌子的高度等于()A.60cm B.65cm C.70cm D.75cm10.已知11xy=⎧⎨=-⎩是二元一次方程组2123ax byax by+=⎧⎨-=⎩的解,则3a b-的值为()A.-2 B.2 C.-4 D.4二、填空题11.为了改善城市绿化,南川区政府决定圈出一块地打造一片花园,花园中种植牡丹花、樱花、梅花供市民欣赏,经过一段时间,花园中已种植的牡丹花、樱花、梅花的面积之比为5:4:6,根据市民喜爱程度,将在花园余下空地继续种植这三种花,经过测算,需将余下空地面积的815种植梅花,则梅花种植的总面积将达到这三种花种植总面积的2345,为了使牡丹花种植总面积与樱花种植总面积之比达到4:5,则花园内种植樱花的总面积与种植梅花的总面积之比 ________.12.小红买了80分、120分的两种邮票,共花掉16元钱(两种邮票都买),则购买方案共有种.13.商场购进A、B、C 三种商品各100件、112件、60 件,分别按照25%、40%、60%的利润进行标价,其中商品C的标价为80元,为了促销,商场举行优惠活动:如果同时购买A、B 商品各两件,就免费获赠三件C商品.这个优惠活动实际上相当于这七件商品一起打了七五折.那么,商场购进这三种商品一共花了______元..14.三位先生A、B、C带着他们的妻子a、b、c到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A比b多买9件商品,先生B 比a多买7件商品.则先生A的妻子是__________.15.在“实践与探究”的数学活动中,让一组和二组分别用8个一样大小的长方形纸片进行拼图.一组拼成一个如图1所示的大长方形:二组拼成一个如图2所示的正方形,但中间留下一个边长为3cm的小正方形,据此计算出每个小长方形的面积是______2cm16.若关于x 、y 的二元一次方程组111222,a x b y c a x b y c +=⎧⎨+=⎩的解为3,2x y =⎧⎨=⎩,则关于x 、y 的二元一次方程组111222(1)2,(1)2a x b y c a x b y c ++=⎧⎨++=⎩的解为________.17.已知x =4,y =1和x =2,y =﹣1都是方程mx +ny =6的解,则m +n 的值为 ___. 18.某地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.今年元旦节,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过__________小时车库恰好停满.19.已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______. 20.某出租车起步价所包含的路程为02km ,超过2km 的部分按每千米另收费.小江乘坐这种出租车走了7km ,付了16元;小北乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元.根据题意,可列方程组为_________.三、解答题21.在平面直角坐标系中,若点P (x ,y )的坐标满足x ﹣2y +3=0,则我们称点P 为“健康点”:若点Q (x ,y )的坐标满足x +y ﹣6=0,则我们称点Q 为“快乐点”. (1)若点A 既是“健康点”又是“快乐点”,则点A 的坐标为 ;(2)在(1)的条件下,若B 是x 轴上的“健康点”,C 是y 轴上的“快乐点”,求△ABC 的面积;(3)在(2)的条件下,若P 为x 轴上一点,且△BPC 与△ABC 面积相等,直接写出点P 的坐标.22.如果3个数位相同的自然数m ,n ,k 满足:m +n =k ,且k 各数位上的数字全部相同,则称数m 和数n 是一对“黄金搭档数”.例如:因为25,63,88都是两位数,且25+63=88,则25和63是一对“黄金搭档数”.再如:因为152,514,666都是三位数,且152+514=666,则152和514是一对“黄金搭档数”.(1)分别判断87和12,62和49是否是一对“黄金搭档数”,并说明理由;(2)已知两位数s和两位数t的十位数字相同,若s和t是一对“黄金搭档数”,并且s与t 的和能被7整除,求出满足题意的s.23.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x yx y-=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为;(2)如何解方程组()()()()3523135237m nm n⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m+5,n+3看成一个整体,设m+5=x,n+3=y,很快可以求出原方程组的解为;(3)由此请你解决下列问题:若关于m,n的方程组722am bnm bn+=⎧⎨-=-⎩与351m nam bn+=⎧⎨-=-⎩有相同的解,求a、b的值.24.如图,已知∠a和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD//EF,AC AE⊥.(1)分别求∠a和β∠的度数;(2)请判断AB与CD的位置关系,并说明理由;(3)求C∠的度数.25.(1)阅读下列材料并填空:对于二元一次方程组4354{336x yx y+=+=,我们可以将x,y的系数和相应的常数项排成一个数表4354 () 1336,求得的一次方程组的解{x ay b==,用数表可表示为10)01ab(.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为x=,y=.(2)仿照(1)中数表的书写格式写出解方程组236{2x yx y+=+=的过程.26.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G 型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?请列出二元一次方程组解答此问题.(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.设原来每天安排x名工人生产G型装置,后来补充m名新工人,求x的值(用含m的代数式表示)27.一列快车长70米,慢车长80米,若两车同向而行,快车从追上慢车到完全离开慢车,所用时间为20秒.若两车相向而行,则两车从相遇到离开时间为4秒,求两车每秒钟各行多少米?28.我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用20两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.29.题目:满足方程组3512332x y kx y k+=+⎧⎨+=-⎩的x与y的值的和是2,求k的值.按照常规方法,顺着题目思路解关于x,y的二元一次方程组,分别求出xy的值(含有字母k),再由x+y=2,构造关于k的方程求解,从而得出k值.(1)某数学兴趣小组对本题的解法又进行了探究利用整体思想,对于方程组中每个方程变形得到“x+y”这个整体,或者对方程组的两个方程进行加减变形得到“x+y”整体值,从而求出k值请你运用这种整体思想的方法,完成题目的解答过程.(2)小勇同学的解答是:观察方程①,令3x=k,5y=1解得y =15,3x +y =2,∴x =95∴k =3×95=275把x =95,y =15代入方程②得k =﹣35所以k 的值为275或﹣35. 请诊断分析并评价“小勇同学的解答”.30.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究. (1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;(2)小葵在长方形内画出边长为a ,b 的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】联立不含a 与b 的方程组成方程组,求出方程组的解得到x 与y 的值,进而求出a 与b 的值,代入原式计算即可求出值. 【详解】 解:根据题意,则5325x y x y +=⎧⎨-=⎩①②, 由①×2+②得:11x =11, 解得:x =1,把x =1代入①得:5+y =3, 解得:y =-2;把x =1,y =-2代入5451ax y x by +=⎧⎨+=⎩,则104521a b -=⎧⎨-=⎩,解得:142a b =⎧⎨=⎩,∴2142210a b -=-⨯=. 故选:C . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.2.C解析:C 【分析】根据求解二元一次方程组求出a ,b ,求出a b +计算即可; 【详解】 解:由题意可知:4539x y x y -=-⎧⎨+=-⎩和13418ax by ax by +=-⎧⎨+=⎩有相同的解, 在4539x y x y -=-⎧⎨+=-⎩①②中, ①+②得:2x =-, 将2x =-代入①得:3y =-,∴方程组的解为23x y =-⎧⎨=-⎩,在13418ax by ax by +=-⎧⎨+=⎩①②中, ①×3得:333ax by +=-③, ②-③得:21by =, ∴7b =-, ∴11a =, ∴4a b +=, ∴2=,∴故选:C . 【点睛】本题主要考查了二元一次方程组的求解、算术平方根的计算,准确计算是解题的关键.3.A解析:A 【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程,据此逐一判断即可得答案. 【详解】A 、符合二元一次方程组的定义,故本选项正确;B 、本方程组中含有3个未知数,故本选项错误;C 、第一个方程式的xy 是二次的,故本选项错误;D 、x 2是二次的,故本选项错误. 故选:A . 【点睛】本题考查的是二元一次方程组的定义,掌握定义判断方程组是否是二元一次方程组是解题的关键.4.B解析:B 【分析】先根据方程组中x 、y 相等用y 表示出x 把原方程组化为关于y 、n 的二元一次方程组,再用n 表示出y 的值,代入方程组中另一方程求出n 的值即可. 【详解】解:∵方程组321x y nx y n +=⎧⎨+=+⎩中的x ,y 相等,∴原方程组可化为:4?31?y n y n =⎧⎨=+⎩①②,由①得,4n y =, 代入②得,314nn =+,解得n =-4, 故选择:B . 【点睛】本题考查的是解二元一次方程组,熟知解二元一次方程组的代入消元法是解答此题的关键.5.D解析:D 【分析】把x =2,y =1代入方程ax ﹣y =7,得出方程2a ﹣1=7,再求出方程的解即可得到答案. 【详解】∵x =2,y =1是方程ax ﹣y =7的一个解 ∴2a ﹣1=7 解得:a =4, 故选:D . 【点睛】本题考查了二元一次方程、一元一次方程的知识;解题的关键是熟练掌握二元一次方程、一元一次方程的性质,从而完成求解.6.C解析:C 【分析】设小长方形的长、宽分别为x 、y ,根据周长为34的矩形ABCD ,可以列出方程3x +y =17;根据图示可以列出方程2x =5y ,联立两个方程组成方程组,解方程组就可以求出矩形ABCD 的面积. 【详解】解:设小长方形的长、宽分别为x 、y ,依题意得: 25317x yx y =⎧⎨+=⎩ , 解得:52x y =⎧⎨=⎩,则矩形ABCD 的面积为7×2×5=70. 故选:C . 【点睛】考查了二元一次方程组的应用,此题是一个信息题目,首先会根据图示找到所需要的数量关系,然后利用这些关系列出方程组解决问题.7.C解析:C 【分析】先求出第二个方程组的解为21x y =⎧⎨=⎩,再代入方程组46ax by ax by -=⎧⎨+=⎩得出2426a b a b -=⎧⎨+=⎩,再求出方程组的解即可. 【详解】解:解方程组35471x y x y -=⎧⎨-=⎩得:21x y =⎧⎨=⎩,∵方程组46ax by ax by -=⎧⎨+=⎩与方程组35471x y x y -=⎧⎨-=⎩的解相同,∴把21x y =⎧⎨=⎩代入方程组46ax by ax by -=⎧⎨+=⎩得:2426a b a b -=⎧⎨+=⎩,解得:521a b ⎧=⎪⎨⎪=⎩,故选:C 【点睛】本题考查了方程组的解的定义和解二元一次方程组,理解方程组的解的意义并正确解二元一次方程组是解题关键.8.A解析:A 【分析】将方程组中不含,a b 的两个方程联立,求得,x y 的值,代入,含有,a b 的两个方程中联立求得,a b 的值,再代入代数式中求解即可. 【详解】 根据题意2333211x y x y +=⎧⎨-=⎩①②①⨯2+②⨯3得:3x = 将3x =代入①得:1y =-将31x y =⎧⎨=-⎩代入51ax by bx ay -=-⎧⎨-=⎩得:3531a b b a +=-⎧⎨+=⎩③④ ③-④⨯3得:1b = 将1b =代入④得:2a =- 当21a b =-=,时, 20212021(()1)1a b +=-=-故选A . 【点睛】本题考查了解二元一次方程组,乘方运算,理解题意中方程组有相同解的意义是解题的关键.9.D解析:D 【分析】设长方体木块长xcm ,宽ycm ,桌子的高为acm ,由题意列出方程组求出解即可得出结果. 【详解】解:设长方体木块长xcm ,宽ycm ,桌子的高为acm ,由题意,得9060a x y a y x +-=⎧⎨+-=⎩, 两式相加,得 2a =150, 解得 a =75,【点睛】本题考查了二元一次方程组的应用.解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程中求解.10.A解析:A【分析】把11x y =⎧⎨=-⎩代入二元一次方程组2123ax by ax by +=⎧⎨-=⎩并解方程组,再把a,b 代入3a b -. 【详解】把11x y =⎧⎨=-⎩代入二元一次方程组2123ax by ax by +=⎧⎨-=⎩,得 2123a b a b -=⎧⎨+=⎩ 解得11a b =⎧⎨=⎩所以3a b -=-2故选:A【点睛】本题考查了二元一次方程组的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.二、填空题11.110:207【分析】设该村已种花面积x ,余下土地面积为y ,还需种植樱花的面积为z ,则总面积为(x+y ),桃花已种植面积、樱花已种植面积,梅花已种植面积,依题意列出方程组,用y 的代数式分别表示x解析:110:207【分析】设该村已种花面积x ,余下土地面积为y ,还需种植樱花的面积为z ,则总面积为(x +y ),桃花已种植面积515x 、樱花已种植面积415x ,梅花已种植面积615x ,依题意列出方程组,用y 的代数式分别表示x 、z ,然后进行计算即可.【详解】解:设该村已种花面积x ,余下土地面积为y ,还需种植樱花的面积为z ,则总面积为()x y +,牡丹花已种植面积515x 、樱花已种植面积415x ,梅花已种植面积615x ,6823()15154558()415154515x y x y x y y z x z ⎧+=+⎪⎪⎪⎨+--⎪=⎪+⎪⎩, 解得:5184675y x y z ⎧=⎪⎪⎨⎪=⎪⎩, ∴花园内种植樱花的面积是:41844184441567575675135y y y y x +=+=, 花园内种植梅花的面积是:5686846151575157y y y y x +=+=, ∴花园内种植樱花的总面积与种植梅花的总面积之比是:744110135467520yy =,故答案为110:207.【点睛】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键.12.6【分析】设80分的邮票购买x 张,120分的邮票购买y 张,根据题意列方程0.8x+1.2y=16,用含y 的代数式表示x 得,根据x 、y 都是整数取出x 与y 的对应值,得到购买方案.【详解】解:设8解析:6【分析】设80分的邮票购买x 张,120分的邮票购买y 张,根据题意列方程0.8x+1.2y=16,用含y 的代数式表示x 得3202x y =-,根据x 、y 都是整数取出x 与y 的对应值,得到购买方案. 【详解】解:设80分的邮票购买x 张,120分的邮票购买y 张,0.8x+1.2y=16, 解得3202x y =-, ∵x 、y 都是正整数,∴当y=2、4、6、8、10、12时,x=17、14、11、8、5、2,∴共有6种购买方案,故答案为:6.【点睛】此题考查一元二次方程的实际应用,根据题意只得到一个方程时,可将方程变形为用一个未知数表示另一个未知数的形式,然后根据未知数的要求得到对应值即可解决实际问题. 13.31800【分析】先求出商品的进价为50元.再设商品、的进价分别为元,元,表示出商品的标价为,商品的标价为元,根据“如果同时购买、商品各两件,就免费获赠三件商品.这个优惠活动,实际上相当于把这五解析:31800【分析】先求出商品C 的进价为50元.再设商品A 、B 的进价分别为x 元,y 元,表示出商品A 的标价为54x ,商品B 的标价为75y 元,根据“如果同时购买A 、B 商品各两件,就免费获赠三件C 商品.这个优惠活动,实际上相当于把这五件商品各打七五折”列出方程,进而求出1001126050x y ++⨯的值.【详解】解:由题意,可得商品C 的进价为:80(160%)50÷+=(元).设商品A 、B 的进价分别为x 元,y 元,则商品A 的标价为5(125%)4x x +=(元),商品B 的标价为7(140%)5y y +=(元), 由题意,得57572()[2()380]0.754545x y x y +=++⨯⨯, ∴5736045x y +=,5710011280()803602880045x y x y ∴+=+=⨯=, 100112605031800x y ∴++⨯=(元).答:商场购进这三种商品一共花了31800元.故答案为:31800.【点睛】本题考查了二元一次方程的应用,设商品A 、B 的进价分别为x 元,y 元,分别表示出商品A 与商品B 的标价,找到等量关系列出方程是解题的关键.本题虽然设了两个未知数,但是题目只有一个等量关系,根据问题可知不需要求出x 与y 的具体值,这是本题的难点.14.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且与有相同的奇偶性,即可得出关于x 、y的二元一次方程组,求出x 、y 的值,再找出符合和解析:c【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x y +与x y -有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合9x y -=和7x y -=的情况即可进行解答.【详解】设一对夫妻,丈夫买了x 件商品,则钱数为2x ,妻子买了y 件商品,则钱数为2y , 依题意有x 2-y 2=48,即()()48x y x y +-=,∵x 、y 都是正整数,且x y +与x y -有相同的奇偶性,又∵x y x y +>-,48=24×2=12×4=8×6,∴242x y x y +=⎧⎨-=⎩或124x y x y +=⎧⎨-=⎩或86x y x y +=⎧⎨-=⎩, 解得13x =,11y =或8x =,4y =或7x =,1y =,符合9x y -=的只有一种,可见A 买了13件商品,b 买了4件,同时符合7x y -=的也只有一种,可知B 买了8件,a 买了1件,∴C 买了7件,c 买了11件.由此可知三对夫妻的组合是:A 、c ;B 、b ;C 、a .故答案为:c .【点睛】本题考查了不定方程组的解及数的奇偶性,根据题意列出关于x 、y 的不定方程是解答此题的关键.15.135【分析】要求每个长方形的面积,就要先求出它们的长和宽,再利用面积公式计算.所以首先要设每个长方形的宽为,长为,根据题中的等量关系:①5个长方形的宽个长方形的长,②大矩形面积大正方形的面积,解析:135【分析】要求每个长方形的面积,就要先求出它们的长和宽,再利用面积公式计算.所以首先要设每个长方形的宽为xcm ,长为ycm ,根据题中的等量关系:①5个长方形的宽3=个长方形的长,②大矩形面积9+=大正方形的面积,列方程求解.【详解】解:设每个长方形的宽为xcm ,长为ycm ,那么可列出方程组为:5323x y x y =⎧⎨-=⎩, 解得:9{15x y ==.所以每个长方形的面积为()2·915135x y cm =⨯=. 故答案是:135.【点睛】本题主要考查了二元一次方程组的应用,解题的关键是注意图片给出的等量关系即,①5个长方形的宽3=个长方形的长,②大矩形面积9+=大正方形的面积,以此可得出答案. 16.【分析】把代入,结合所求的方程组即可得到关于,的方程,求解即可.【详解】解:把代入得:又∵∴故答案为:【点睛】本题主要考查了二元一次方程的解,结合两个方程组得到关于,的方程是解题的解析:21x y =⎧⎨=⎩ 【分析】把32x y =⎧⎨=⎩代入111222a xb yc a x b y c +=⎧⎨+=⎩,结合所求的方程组即可得到关于x ,y 的方程,求解即可. 【详解】解:把32x y =⎧⎨=⎩代入111222a x b y c a x b y c +=⎧⎨+=⎩得:1112223232a b c a b c +=⎧⎨+=⎩ 又∵111222(1)2,(1)2a x b y c a x b y c ++=⎧⎨++=⎩ ∴1322x y +=⎧⎨=⎩⇒21x y =⎧⎨=⎩故答案为:21x y =⎧⎨=⎩ 【点睛】本题主要考查了二元一次方程的解,结合两个方程组得到关于x ,y 的方程是解题的关键.17.0【分析】把x 、y 的值代入mx+ny =6,得出关于m 、n 的方程组,再求出方程组的解,最后求出m+n 即可得到答案.【详解】∵x =4,y =1和x =2,y =﹣1都是方程mx+ny =6的解,∴解析:0【分析】把x 、y 的值代入mx +ny =6,得出关于m 、n 的方程组,再求出方程组的解,最后求出m +n 即可得到答案.【详解】∵x =4,y =1和x =2,y =﹣1都是方程mx +ny =6的解,∴4626m n m n +=⎧⎨-=⎩①② ①+②,得6m =12解得:m =2,把m =2代入①,得8+n =6,解得:n =﹣2,∴m +n =2+(﹣2)=0,故答案为:0.【点睛】本题考查了二元一次方程及二元一次方程组的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.18.【分析】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,根据题意:如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.列出方程组求得x 、y ,进一步 解析:3215【分析】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,根据题意:如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.列出方程组求得x 、y ,进一步代入求得答案即可.【详解】解:设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,车位总数为a , 由题意得:8(23)75%2(32)75%x y a x y a-=⎧⎨-=⎩, 解得:316332x a y a ⎧=⎪⎪⎨⎪=⎪⎩, 早晨6点时的车位空置率变为60%,333260%(2)163215a a a ∴÷⨯-=(小时), 答:从早晨6点开始经过3215小时车库恰好停满. 故答案为:3215.【点睛】此题考查二元一次方程组的实际运用,找出题目蕴含的等量关系关系,列出方程组是解决问题的关键. 19.【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)解析:11x y =-⎧⎨=⎩ 【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m (x+2y-1)+x-y+2=0, 因为无论实数m 取何值,此二元一次方程都有一个相同的解,所以21020x y x y +-=⎧⎨-+=⎩, 解得:11x y =-⎧⎨=⎩. 故答案为:11x y =-⎧⎨=⎩. 【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.20.【分析】根据小江乘坐这种出租车走了,付了16元;小北乘坐这种出租车走了,付了28元,由车费是起步价与超过2km 部分收费之和,可列方程组.【详解】解:设这种出租车的起步价为元,超过后每千米收费解析:(72)16(132)28x y x y +-=⎧⎨+-=⎩【分析】根据小江乘坐这种出租车走了7km ,付了16元;小北乘坐这种出租车走了13km ,付了28元,由车费是起步价与超过2km 部分收费之和,可列方程组.【详解】解:设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,由题意得:(72)16(132)28x y x y +-=⎧⎨+-=⎩, 故填:(72)16(132)28x y x y +-=⎧⎨+-=⎩. 【点睛】本题考查由实际问题抽象出二元一次方程组,解题关键是理解题意,找到题目中的等量关系.三、解答题21.(1)(3,3);(2)272;(3)(32,0)或(152-,0) 【分析】(1)点A 既是“健康点”又是“快乐点”,则A 坐标应该满足x -2y +3=0和x +y -6=0,解23060x y x y -+=⎧⎨+-=⎩即可得答案; (2)设直线AB 交y 轴于D ,求出B 、C 、D 的坐标,根据S △ABC =S △BCD +S △ACD 即可求出答案;(3)设点P 的坐标为(n ,0),根据△PBC 的面积等于△ABC 的面积,即272,列出方程,解之即可.【详解】解:(1)点A 既是“健康点”又是“快乐点”,则A 坐标应该满足x -2y +3=0和x +y -6=0, 解23060x y x y -+=⎧⎨+-=⎩得:33x y =⎧⎨=⎩, ∴A 的坐标为(3,3);故答案为:(3,3);(2)设直线AB 交y 轴于D ,如图:∵B 是x 轴上的“健康点”,在x -2y +3=0中,令y =0得x =-3,∴B (-3,0),∵C 是y 轴上的“快乐点”,在x +y -6=0中,令x =0得y =6,∴C (0,6),在x -2y +3=0中,令x =0得y =32, ∴D (0,32), ∴CD =92, ∴S △ABC =S △BCD +S △ACD =12CD •|x B |+12CD •|x A | =1919332222⨯⨯+⨯⨯ =272; (3)设点P 的坐标为(n ,0),则BP =3n +,∵△BPC 与△ABC 面积相等,∴S △BPC =1362n ⨯+⨯=272, ∴932n +=, ∴32n =或152-, ∴点P 的坐标为(32,0)或(152-,0). 【点睛】本题考查三角形面积,涉及新定义、坐标轴上点坐标特征等知识,解题的关键是理解“健康点”、“快乐点”含义.22.(1)87和12是“黄金搭档数”,62和49不是“黄金搭档数”,理由见解析;(2)39或38【分析】(1)根据“黄金搭档数”的定义分别判断即可;(2)由已知设10,19,09,s x y x y =+≤≤≤≤x ,y 为整数,10,19,09,t x z x z =+≤≤≤≤ x ,z 为整数,表示出s t +,由s 和t 是一对“黄金搭档数”,并且s 与t 的和能被7整除,综合分析,列出方程组求解即可.【详解】(1)解:∵871299,+=∴87和12是一对“黄金搭档数”;∵6249111,+=∴111与62,49数位不相同,∴62和49不是一对“黄金搭档数”;故87和12是一对“黄金搭档数”,62和49不是一对“黄金搭档数”;(2)∵两位数s 和两位数t 的十位数字相同,∴设10,19,09,s x y x y =+≤≤≤≤x ,y 为整数,10,19,09,t x z x z =+≤≤≤≤ x ,z 为整数,∴20,s t x y z +=++∵s 和t 是一对“黄金搭档数”,∴s t +是一个两位数,且各个数位上的数相同,又∵s 与t 的和能被7整除,∴77s t +=,共有两种情况:①20707x y z =⎧⎨+=⎩, 解得 3.5x =,∵x 为整数,∴不合题意,舍去;②206017x y z =⎧⎨+=⎩, ∵,,x y z 都是整数,且19,09,09,x y z ≤≤≤≤≤≤∴解得398x y z =⎧⎪=⎨⎪=⎩或389x y z =⎧⎪=⎨⎪=⎩, 故s 为39或38.【点睛】本题考查三元一次方程组的整数解,解题关键是理解题目中的定义,根据已知条件列出方程组.23.(1)12x y =⎧⎨=⎩;(2)41m n =-⎧⎨=-⎩;(3)a =3,b =2. 【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x ,n+3=y ,则方程组化为(1)中的方程组,可求得x ,y 的值进一步可求出原方程组的解;(3)把am 和bn 当成一个整体利用已知条件可求出am 和bn ,再把bn 代入2m-bn=-2中求出m 的值,然后把m 的值代入3m+n=5可求出n 的值,继而可求出a 、b 的值.【详解】解:(1)两个方程相加得66x =,∴1x =,把1x =代入321x y -=-得2y =,∴方程组的解为:12x y =⎧⎨=⎩; 故答案是:12x y =⎧⎨=⎩; (2)设m +5=x ,n +3=y ,则原方程组可化为321327x y x y -=-⎧⎨+=⎩, 由(1)可得:12x y =⎧⎨=⎩, ∴m+5=1,n+3=2,∴m =-4,n =-1,∴41m n =-⎧⎨=-⎩, 故答案是:41m n =-⎧⎨=-⎩; (3)由方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解可得方程组71am bn am bn +=⎧⎨-=-⎩, 解得34am bn =⎧⎨=⎩, 把bn =4代入方程2m ﹣bn =﹣2得2m =2,解得m =1,再把m =1代入3m +n =5得3+n =5,解得n =2,把m =1代入am =3得:a =3,把n =2代入bn =4得:b =2,所以a =3,b =2.【点睛】本题主要考查二元一次方程组的解法,重点是考查整体思想及换元法的应用,解题的关键是理解好整体思想.24.(1)50130αβ︒︒⎧∠=⎨∠=⎩;(2)//AB CD ,理由详见解析;(3)40° 【分析】(1)利用加减消元法,通过解二元一次方程组可求出∠a 和β∠的度数;(2)利用求得的∠a 和β∠的度数可得到180αβ∠+∠=︒,于是根据平行线的判定可判断AB ∥EF ,然后利用平行的传递性可得到AB ∥CD ;(3)先根据垂直的定义得到90CAE ∠=︒,再根据平行线的性质计算C ∠的度数.【详解】解(1)解方程组223080αββα︒︒⎧+=⎨∠-∠=⎩①②, ①-②得:3150α∠=︒ ,解得:50α∠=︒把50α∠=︒代入②得:5080β∠-︒=︒解得:130β∠=︒;(2)//AB CD ,理由:∵50α∠=︒,130β∠=︒,180αβ︒∴∠+∠=,//AB EF ∴(同旁内角互补,两直线平行),又 CD//EF ,//AB CD ∴;(3)AC AE ⊥,90CAE ︒∴∠=//AB CD180C CAB ︒∴∠+∠=180905040C ︒∴∠=︒-︒-︒=.【点睛】本题考查了平行线的性质与判定、解二元一次方程组,熟练掌握平行线的性质和判定定理是解题关键.25.(1) 6,10;(2)02x y =⎧⎨=⎩。

七年级(下)数学竞赛试题精选不定方程(组)

七年级(下)数学竞赛试题精选不定方程(组)

七年级(下)数学竞赛试题精选不定方程(组)1.不定方程4x+7y=36的非负整数解是_____________。

2.已知p 为偶数,q 为奇数,方程组{199219933x y p x y q -=+=的解是整数,那么( )A.x 是奇数,y 是偶数.B .x 是偶数,y 是奇数.C .x 是偶数,y 是偶数.D .x 是奇数,y 是奇数.3.如果x ,y 只能取0,1,2,3,4,5,6,7,8,9中的数,并且3x-2y=1,那么代数式10x+y 可以取到( )不同的值.A .1个.B .2个.C .3个.D .多于3个的.4.若a ,b ,c ,d 为非负整数.且(a 2+b 2)(c 2+d 2)=1993.则a 2+b 2+c 2+d 2=______5.方程1995x+6y=420000的一组整数解(x 、y)是[ ]A .(61,48723).B .(62,48725).C .(63,48726).D(64,48720).6.若k 为整数,则使得方程(k -1999)x=2001—2000x 的解也是整数的k 值有( ).A .4个B .8个C .12个D .16个7.m 为正整数.已知二元一次方程组{210320mx y x y +=-=有整数解,即x,y 均为整数,则m 2= .8已知m 是整数且-60<m<-30,关于x ,y 的二元一次方程组{23537x y x y m +=-=有整数解,则m= x 2+y= .9.若正整数x ,y 满足2004x=15y ,则x+y 的最小值是_________;10.方程x +y +z =7的正整数解有( )(A )10组 (B )12组 (C )15组 (D )16组11.正整数x ,y 满足(2x-5)(2y-5)=25,则x+y 的值是( )A 、10;B 、18;C 、26;D 、10或18;12、已知正整数a ,b ,c (其中a ≠1)满足a b c=a b +30,则a+b+c 的最小值是 ;最大值是 ;13.方程24xy x +=的整数解有( )组A 、2B 、4C 、6D 、814.若a 、b 、c 都是正整数,且a +b +c =55,a -bc =-8,则abc 的最大值为 ,最小值为 .15.a.b.c 都是质数,且满足a+b+c+abc=99 . 则111111a b b c c a -+-+-=___ 16. 已知m.n 都是正整数 , 且463m m n -是整数,若m n的最大值是a, 最小值是b. 则a+b=17. 如图,十三个边长为正整数的正方形纸片恰好拼成一个大矩形(其中有三个小正方形的边长已标出字母x ,y ,z ).试求满足上述条件的矩形的面积最小值.。

2019七年级数学下册 培优新帮手 专题14 一次方程组试题 (新版)新人教版

2019七年级数学下册 培优新帮手 专题14 一次方程组试题 (新版)新人教版

14 一次方程组阅读与思考一次方程组是在一元一次方程的基础上展开的,解一次方程组的基本思想是“消元”,即通过消元将一次方程组转化为一元一次方程来解,常用的消元方法有代入法和加减法.解一些复杂的方程组(如未知数系数较大,方程个数较多等),需观察方程组的系数特点,从整体上思考问题,运用整体叠加、整体叠乘、辅助引元、换元等技巧.方程组的解是方程组理论中的一个重要概念,求解法、代解法是处理方程组解的基本方法. 对于含有字母系数的二元一次方程组,总可以化为⎩⎨⎧=+=+222111c y b x a c y b x a 的形式,方程组的解由222111,,,,,c b a c b a 的取值范围确定,当222111,,,,,c b a c b a 的取值范围未给出时,须讨论解的情况,基本思路是通过换元,将方程组的解的讨论转化为一元一次方程解的讨论.例题与求解【例1】 若m 使方程组⎩⎨⎧=+=-m y x y x 22的解x ,y 的和为6,则m =______________.(湖北黄冈市竞赛试题)解题思路:用含m 的式子分别表示x ,y ,利用x +y =6的关系式,求解m .【例2】 若4x -3y -6z =0,x +2y -7z =0(0≠xyz ).则代数式222222103225zy x z y x ---+的值等于 ( ) A .21-B .219- C .-15 D .-13 (全国初中数学竞赛试题)解题思路:把z 当作常数,解关于x ,y 的方程组. 【例3】 解下列方程组.(1)⎪⎩⎪⎨⎧-=-+==3432654z y x z y x(“缙云杯”邀请赛试题)(2)⎩⎨⎧=+=+798719951997598919971995y x y x(北京市竞赛试题)(3)⎩⎨⎧=++++=+=+==+=+=+1999119991998211999199819981997433221x x x x x x x x x x x x x x(“华罗庚金杯”竞赛试题)解题思路:根据方程组的特点,灵活运用不同的解题方法,或脱去绝对值符号,或设元引参,或整体叠加.【例4】 已知关于x ,y 的方程组⎩⎨⎧=-++=+3)1(2212y a x ay ax 分别求出a 为何值,方程组的解为:(1)有唯一一组解; (2)无解; (3)有无穷多组解.(湖北省荆州市竞赛试题)解题思路:通过消元,将方程组的解的情况讨论转化为一元一次方程解的情况讨论.【例5】已知正数a ,b ,c ,d ,e ,f 满足4=a bcdef ,9=b acdef ,16=c abdef ,41=d abcef , 91=e abcdf ,161=f abcde .求)()(f d b e b a ++-++的值. (“CADIO ”武汉市竞赛试题)解题思路:利用叠乘法求出abcdef 的值.【例6】已知关于x ,y 的二元一次方程(a -3)x +(2a -5)y +6-=0,当a 每取一个值时就有一个方程,这些方程有一个公共解.(1)求出这个公共解.(2)请说明,无论a 取何值,这个公共解都是二元一次方程(a -3)x +(2a -5)y +6-=0的解.(2013年“实中杯”数学竞赛试题)解题思路:分别令a 取两个不同的值,可得到二元一次方程组,求出公共解. 能力训练A 级1. 若243124953=+--++n m n m y x是关于x ,y 的二元一次方程,则nm的值等于______. (“希望杯”邀请赛试题)2. 方程组⎩⎨⎧=+=+572317631723y x y x ,的解为____________.(辽宁省中考试题)3. 已知方程组⎩⎨⎧-=-=+②24①155by x y ax 由于甲看错了方程①中的a 得到方程组的解为x =-3,y=-1;乙看错了方程②中的b 得到方程组的解为x =5,y =4.若按正确的a ,b 计算,则原方程组的解为___________.(四川省联赛试题)4. 已知关于x 的方程)1(5)13()3(+=++-x x b x a 有无穷多个解,则a = ,b =________.(“希望杯”邀请赛试题)5.已知0)223()423(22=+-+-+yx y x ,则有( ). A. x =2,y =3 B. x =-6,y =3 C. x =3,y =6 D. x =-3,y =66.如果方程组⎩⎨⎧=-=+223623y x y x 的解也是方程4x +y +2a =0的解,那么a 的值是 ( ).A.391-B. 691-C. -2D. 27.设非零实数a ,b ,c 满足⎩⎨⎧=++=++0432032c b a c b a ,则222c b a cabc ab ++++的值为( ). A.21-B.0C. 21D. 1(2013年全国初中数学竞赛试题)8.若方程组⎩⎨⎧=+=-9.30531332b a b a 的解为⎩⎨⎧==2.13.8b a 则方程组⎩⎨⎧=-++=--+9.30)1(5)2(313)1(3)2(2y x y x 的解为( ).A. ⎩⎨⎧==2.13.8y x B. ⎩⎨⎧==2.23.10y x C. ⎩⎨⎧==2.23.6y x D .⎩⎨⎧==2.03.10y x(山东省枣庄市中考试题)9.已知关于x ,y 的方程组⎩⎨⎧+=-+=+34231232k y x k y x 的解x ,y 的值的和为6,求k 的值.(上海市竞赛试题)10.解方程组. (1)⎩⎨⎧=+-=+102361463102463361y x y x(云南省昆明市竞赛试题)(2)⎪⎪⎩⎪⎪⎨⎧=-+-=-+-1121221136211y x y x(浙江省竞赛试题)(3)⎩⎨⎧-=-=+1327y x y x11.若1x ~5x 满足下列方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++++=++++=++++=++++=++++962482242122625432154321543215432154321x x x x x x x x x x x x x x x x x x x x x x x x x ,求5423x x +的值. (美国数学邀请赛试题)B 级1.已知对任意有理数a ,b ,关于x ,y 的二元一次方程b a y b a x b a +=+--)()(有一组公共解,则公共解为______.(江苏省竞赛试题)2.设⎩⎨⎧=++=++36542332z y x z y x ,则3x -2y +z = .(2013年全国初中数学竞赛试题)3.若关于x ,y 的方程组⎩⎨⎧=-=+03186y x my x 有自然数解,则整数m 可能的值是 .(2013年浙江省湖州市竞赛试题)4. 已知方程组⎩⎨⎧=+=+-by x y x a 5)1(,当a ,b 时,方程组有唯一一组解;当a ,b 时,方程组无解;当a ,b 时,方程组有无数组解.(“汉江杯”竞赛试题)5.“△”表示一种运算符号,其意义是a △b =2a -b ,如果x △(1△3)=2,则x = ( ).A.1B.21 C.23D .2 (江苏省竞赛试题)6.已知xz z y x +=+=531,则z y y x +-22的值为( ).A.1B.23 C. 23- D .41 (重庆市竞赛试题)7.已知关于x ,y 的两个方程组⎩⎨⎧=-=-7222y x by ax 和⎩⎨⎧=-=-113953y x by ax 具有相同的解,那么a ,b 的值是( ).A. ⎩⎨⎧==23b aB. ⎩⎨⎧==32b aC. ⎩⎨⎧-=-=32b a D .⎩⎨⎧-=-=23b a8.若a ,c ,d 是整数,b 是正整数,且满足a +b =c ,b +c =d ,c +d =a ,则a +b +c +d 的最大值是( ).A. -1B. -5C.0 D .1(全国初中数学联赛试题)9.解方程组(1)⎩⎨⎧=+=+321y x y x(江苏省竞赛试题)(2)⎪⎪⎪⎩⎪⎪⎪⎨⎧=====64321ea de cd bc ab(上海市竞赛试题)10.已知151=+b a ab ,171=+c b bc ,161=+a c ca ,求cabc ab abc++的值. (山西省太原市数学竞赛试题)11.已知1x ,2x ,3x ,…,n x 中每一个数值只能取-2,0,1中的一个,且满足求的值1x +2x +3x +…+n x =-17,21x +22x +23x +…+2n x =37.求31x +32x +…+3n x 的值.(“华罗庚金杯”邀请赛试题)12.已知k 是满足20101910<<k 的整数,并且使二元一次方程组⎩⎨⎧=+=-ky x y x 54745有整数解,问:这样的整数k 有多少个?(“华罗庚金杯”邀请赛试题)专题14 一次方程组例1 8 ②一①得3y=m-2,∴23m y -=.①×2+②得3x=4+m ,∴43m x +=.又由x+y=6得43m ++23m -=6,解得m=8. 例2 D 提示:由题意知43627x y z x y z -=⎧⎨+=⎩得32x zy z=⎧⎨=⎩代入原式中,得2222225(3)2(2)132(3)3(2)10z z z z z z+-=---. 例3 (1)121518x y z =⎧⎪=⎨⎪=⎩,提示:令456x y z k ===,则x=4k,y=5k,z=6k.(2) 12x y =⎧⎨=⎩,提示:将方程分别相加、相减得x+y =3,x-y=-1.(3)由题意可设x 1=x 3=x 5=…=x 1999=A,x 2=x 4=x 6=…=x 1998=B ,则110009991999A B A B +=⎧⎨+=⎩解得A=1 000,B=- 999,即x l = x 3 =x 5=…=x 1999=1 000,x 2 =x 4 =x 6=…=x 1998=-999.例4提示:由方程组得(2)(1)(2)(2)2(2)(1)2a a x a a a a y a -+=-+⎧⎨-+=-⎩(1)当(a-2)(a+1)≠o ,即a ≠2且a ≠-l 时,原方程组有唯一解;(2)当(a-2) (a+l) =0且(a-2) (a+2)与a-2中至少有一个不为0时,方程组无解,故当a= -1时,原方程组无解;(3)当(a-2)(a+l)=(a-2)(n+2)=(a-2)=0, 即a=2时,原方程组有无数组解.例5提示:依题意可得(abcdef)4=1即abcdef=1,从而414a =,故12a =,同理可得13b =,14c =,2d =,3e =,4f =,那么1117()()(3)(24)224312a c eb d f ++-++=++-++=-例6 (1)分别令a 取两个不同的值,可得到二元一次方程组,解出公共解为73x y =⎧⎨=-⎩.(2)把(a - 3)x+(2a-5)y+6-a=0可变形为(x+ 2y -1)a- 3x - 5y+6=0.依题意可得2103560x y x y +-=⎧⎨--+=⎩,解得73x y =⎧⎨=-⎩.∴无论a 取何值,这个公共解都是二元一次方程(a-3)x+(2a-5)y+6-a=0的解.A 级1. 3192. 21x y =⎧⎨=⎩3. 14295x y =⎧⎪⎨=⎪⎩4. 2 1 5.C 6.B7.A 提示:由已知得a+b+c=(2a+3b+4c)-(a+2b+3c) =0,故(a+b+c)2=0,于是ab+bc+ca 2221()2a b c -++,则原式的值为12-.8. C 提示:依题中方程组知28.31 1.2x y +=⎧⎨-=⎩解得 6.32.2x y =⎧⎨=⎩9. 5 提示:1611,1313x k =+231313y k =--.10. (1) 11x y =⎧⎨=-⎩(2) 73116x y ⎧=⎪⎪⎨⎪=⎪⎩提示:设11A x =-,121B y =-.(3) 1143x y =⎧⎨=⎩,2243x y =-⎧⎨=⎩,3343x y =⎧⎨=-⎩4443x y =-⎧⎨=-⎩ 11. 181 提示:将各个方程相加得x 1+x 2 +x 3 +x 4+x 5 =31.B 级1. ⎩⎨⎧-==10y x 提示:由a (x -y -1)-b (x +y +1)=0知⎩⎨⎧=++=--0101y x y x 2. 10 提示:3x -2y +z =2(2x +y +3z )-(x +4y +5z )=2×23-36=46-36=10 3. -1,0,1,4 提示:把y =3x 代入6x +m y =18中得6x +3my =18, 整理得x =26+m ,又因为x ,y 为自然数,故符合条件的m 取值为-1,0,1,4。

2020七年级数学下册 培优新帮手 专题18 简单的不定方程、方程组试题 (新版)新人教版

2020七年级数学下册 培优新帮手 专题18 简单的不定方程、方程组试题 (新版)新人教版

18 简单的不定方程、方程组阅读与思考如果方程(组)中,未知数的个数多于方程的个数,那么解往往有无穷多个,不能唯一确定,这样的方程(组)称为不定方程(组).对于不定方程(组),我们常常限定只求整数解,甚至只求正整数解.加上这类限制后,解可能唯一确定,或只有有限个,或无解.这类问题有以下两种基本类型: 1.判定不定方程(组)有无整数解或解的个数; 2.如果不定方程(组)有整数解,求出其全部整数解.二元一次不定方程是最简单的不定方程,一些不定方程(组)常常转化为二元一次不定方程求其整数解.解不定方程(组),没有固定的方法可循,需具体问题具体分析,经常用到整数的整除、奇数偶数、因数分解、不等式分析、穷举、分离整数、配方等知识与方法.根据方程(组)的特点进行适当变形,并灵活运用相关知识与方法是解不定方程(组)的基本思路.例题与求解【例1】满足222219981997m n +=+ (0<m <n <1 998)的整数对(m ,n )共有_______对.(全国初中数学联赛试题)解题思路:由方程特点,联想到平方差公式,利用因数分解来解答.【例2】电影票有10元,15元,20元三种票价,班长用500元买了30张电影票,其中票价为20元的比票价为10元的多( ).A .20张B .15张C .10张D .5张(“希望杯”邀请赛试题)解题思路:设购买10元,15元,20元的电影票分别为x ,y ,z 张.根据题意列方程组,整体求出的z -x 值.【例3】某人家中的电话号码是八位数,将前四位数组成的数与后四位数组成的数相加得14 405,将前三位数组成的数与后五位数组成的数相加得16 970,求此人家中的电话号码.(湖北省武汉市竞赛试题)解题思路:探索可否将条件用一个式子表示,从问题转换入手.【例4】一个盒子里装有不多于200粒棋子,如果每次2粒,3粒,4粒或6粒地取出,最终盒内都剩一粒棋子;如果每次11粒地取出,那么正好取完,求盒子里共有多少粒棋子?(重庆市竞赛试题)解题思路:无论怎样取,盒子里的棋子数不变。

七年级数学下册 培优新帮手 专题18 简单的不定方程、方程组试题 (新版)新人教版

七年级数学下册 培优新帮手 专题18 简单的不定方程、方程组试题 (新版)新人教版

18 简单的不定方程、方程组阅读与思考如果方程(组)中,未知数的个数多于方程的个数,那么解往往有无穷多个,不能唯一确定,这样的方程(组)称为不定方程(组).对于不定方程(组),我们常常限定只求整数解,甚至只求正整数解.加上这类限制后,解可能唯一确定,或只有有限个,或无解.这类问题有以下两种基本类型: 1.判定不定方程(组)有无整数解或解的个数; 2.如果不定方程(组)有整数解,求出其全部整数解.二元一次不定方程是最简单的不定方程,一些不定方程(组)常常转化为二元一次不定方程求其整数解.解不定方程(组),没有固定的方法可循,需具体问题具体分析,经常用到整数的整除、奇数偶数、因数分解、不等式分析、穷举、分离整数、配方等知识与方法.根据方程(组)的特点进行适当变形,并灵活运用相关知识与方法是解不定方程(组)的基本思路.例题与求解【例1】满足222219981997m n +=+ (0<m <n <1 998)的整数对(m ,n )共有_______对.(全国初中数学联赛试题)解题思路:由方程特点,联想到平方差公式,利用因数分解来解答.【例2】电影票有10元,15元,20元三种票价,班长用500元买了30张电影票,其中票价为20元的比票价为10元的多( ).A .20张B .15张C .10张D .5张(“希望杯”邀请赛试题)解题思路:设购买10元,15元,20元的电影票分别为x ,y ,z 张.根据题意列方程组,整体求出的z -x 值.【例3】某人家中的电话号码是八位数,将前四位数组成的数与后四位数组成的数相加得14 405,将前三位数组成的数与后五位数组成的数相加得16 970,求此人家中的电话号码.(湖北省武汉市竞赛试题)解题思路:探索可否将条件用一个式子表示,从问题转换入手.【例4】一个盒子里装有不多于200粒棋子,如果每次2粒,3粒,4粒或6粒地取出,最终盒内都剩一粒棋子;如果每次11粒地取出,那么正好取完,求盒子里共有多少粒棋子?(重庆市竞赛试题)解题思路:无论怎样取,盒子里的棋子数不变。

数学七下解方程组练习题

数学七下解方程组练习题

数学七下解方程组练习题解方程组是数学中的重要内容之一,通过解方程组可以找到多个未知数的值。

在数学七下的学习中,我们会遇到一些解方程组的练习题,让我们来看几个例子。

1. 题目一:已知方程组:2x + 3y = 74x - y = 1要求解出方程组的解。

解析:首先,我们可以通过消元法来解这个方程组。

将第二个方程的系数乘以2,得到:8x - 2y = 2现在我们有两个方程:2x + 3y = 78x - 2y = 2接下来,我们可以通过相减消元法来求解。

将第一个方程的两倍减去第二个方程,可以消去x的项:(2x + 3y) - (8x - 2y) = 7 - 22x + 3y - 8x + 2y = 5-6x + 5y = 5我们得到一个新的方程:-6x + 5y = 5现在我们有两个方程:-6x + 5y = 54x - y = 1继续使用消元法,将第一个方程的系数乘以4,得到:-24x + 20y = 20现在我们有两个方程:-24x + 20y = 204x - y = 1再次使用相减消元法,可以消去y的项:(-24x + 20y) - (4x - y) = 20 - 1-24x + 20y - 4x + y = 19-28x + 21y = 19我们得到一个新的方程:-28x + 21y = 19现在我们有两个方程:-28x + 21y = 194x - y = 1继续使用消元法,将第一个方程的系数乘以7,得到:-196x + 147y = 133现在我们有两个方程:-196x + 147y = 1334x - y = 1再次使用相减消元法,可以消去y的项:(-196x + 147y) - (28x - 7y) = 133 - 7-196x + 147y - 28x + 7y = 126-224x + 154y = 126我们得到一个新的方程:-224x + 154y = 126现在我们有两个方程:-224x + 154y = 1264x - y = 1继续使用消元法,将第一个方程的系数乘以7,得到:-1568x + 1078y = 882现在我们有两个方程:-1568x + 1078y = 8824x - y = 1再次使用相减消元法,可以消去y的项:(-1568x + 1078y) - (28x - 7y) = 882 - 7-1568x + 1078y - 28x + 7y = 875-1596x + 1085y = 875我们得到一个新的方程:-1596x + 1085y = 875现在我们有两个方程:-1596x + 1085y = 8754x - y = 1继续使用消元法,将第一个方程的系数乘以7,得到:-11172x + 7595y = 6125现在我们有两个方程:-11172x + 7595y = 61254x - y = 1再次使用相减消元法,可以消去y的项:(-11172x + 7595y) - (28x - 7y) = 6125 - 7-11172x + 7595y - 28x + 7y = 6118-11184x + 7602y = 6118我们得到一个新的方程:-11184x + 7602y = 6118现在我们有两个方程:-11184x + 7602y = 61184x - y = 1继续使用消元法,将第一个方程的系数乘以11184,得到:-125209856x + 85072248y = 68445512现在我们有两个方程:-125209856x + 85072248y = 684455124x - y = 1再次使用相减消元法,可以消去y的项:(-125209856x + 85072248y) - (28x - 7y) = 68445512 - 7-125209856x + 85072248y - 28x + 7y = 68445505-125209884x + 85072255y = 68445505我们得到一个新的方程:-125209884x + 85072255y = 68445505现在我们有两个方程:-125209884x + 85072255y = 684455054x - y = 1继续使用消元法,将第一个方程的系数乘以1,得到:-125209884x + 85072255y = 68445505现在我们有两个方程:-125209884x + 85072255y = 684455054x - y = 1将第二个方程中的y用4x - 1代替,得到:-125209884x + 85072255(4x - 1) = 68445505-125209884x + 340289020x - 85072255 = 68445505 214079136x = 253117760x ≈ 1.182将x的值代入第二个方程,得到:4(1.182) - y = 14.728 - y = 1-y = 1 - 4.728y ≈ 3.728所以,方程组的解为:x ≈ 1.182y ≈ 3.7282. 题目二:已知方程组:3x + 4y = 105x - y = 7要求解出方程组的解。

华师大版七年级下册二元一次方程组培优试题

华师大版七年级下册二元一次方程组培优试题

二元一次方程组培优试题(1)1. 若已知方程()()()221153a x a x a y a -+++-=+,则当a = 时,方程为一元一次方程; 当a = 时,方程为二元一次方程.2. 方程3x+y=8的正整数解是_______.3. 已知二元一次方程组⎩⎨⎧=+=+8272y x y x ,那么x+y= ,=-y x4. 为的代数式表示用含已知y x t y t x ⎩⎨⎧-=-=144( )5. 巧解方程组: ①2320235297x y x y y --=⎧⎪-+⎨+=⎪⎩②()()()()⎩⎨⎧=-++=--+1534332y x y x y x y x6. 当a 为何值时,方程组⎩⎨⎧-=+=-1872253a y x a y x 的解x 、y 互为相反数,求a 的值.5.已知m 是整数,方程组⎩⎨⎧=+=-266634my x y x 有整数解,求m 的值。

6.在解方程组278ax by cx y +=⎧⎨-=⎩时,一同学把c 看错而得到22x y =-⎧⎨=⎩,而正确的解是32x y =⎧⎨=-⎩,求a ,b ,c 的值.7.如果关于x 、y 的方程组62x y ax y b -=⎧⎨+=⎩的解与38x ay x y +=⎧⎨+=⎩的解相同,求a 、b 的值.8.选择一组a,c 值使方程组⎩⎨⎧=+=+cy ax y x 275 1.有无数多解, 2.无解, 3.有唯一的解9.若关于x 、y 的方程组⎩⎨⎧=-=+1293y x y ax 无解,求a 的值。

附加题:已知方程组的解。

求方程组的解为⎩⎨⎧=-++=--+⎩⎨⎧==⎩⎨⎧=+=-9.30)1(5)2(313)1(3)2(2,2.13.89.30531332y x y x b a b a b a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18 简单的不定方程、方程组阅读与思考如果方程(组)中,未知数的个数多于方程的个数,那么解往往有无穷多个,不能唯一确定,这样的方程(组)称为不定方程(组).对于不定方程(组),我们常常限定只求整数解,甚至只求正整数解.加上这类限制后,解可能唯一确定,或只有有限个,或无解.这类问题有以下两种基本类型: 1.判定不定方程(组)有无整数解或解的个数; 2.如果不定方程(组)有整数解,求出其全部整数解.二元一次不定方程是最简单的不定方程,一些不定方程(组)常常转化为二元一次不定方程求其整数解.解不定方程(组),没有固定的方法可循,需具体问题具体分析,经常用到整数的整除、奇数偶数、因数分解、不等式分析、穷举、分离整数、配方等知识与方法.根据方程(组)的特点进行适当变形,并灵活运用相关知识与方法是解不定方程(组)的基本思路.例题与求解【例1】满足222219981997m n +=+ (0<m <n <1 998)的整数对(m ,n )共有_______对.(全国初中数学联赛试题)解题思路:由方程特点,联想到平方差公式,利用因数分解来解答.【例2】电影票有10元,15元,20元三种票价,班长用500元买了30张电影票,其中票价为20元的比票价为10元的多( ).A .20张B .15张C .10张D .5张(“希望杯”邀请赛试题)解题思路:设购买10元,15元,20元的电影票分别为x ,y ,z 张.根据题意列方程组,整体求出的z -x 值.【例3】某人家中的电话号码是八位数,将前四位数组成的数与后四位数组成的数相加得14 405,将前三位数组成的数与后五位数组成的数相加得16 970,求此人家中的电话号码.(湖北省武汉市竞赛试题)解题思路:探索可否将条件用一个式子表示,从问题转换入手.【例4】一个盒子里装有不多于200粒棋子,如果每次2粒,3粒,4粒或6粒地取出,最终盒内都剩一粒棋子;如果每次11粒地取出,那么正好取完,求盒子里共有多少粒棋子?(重庆市竞赛试题)解题思路:无论怎样取,盒子里的棋子数不变。

恰当设未知数,把问题转化为求不定方程的正整数解.【例5】 甲组同学每人有28个核桃,乙组同学每人有30个核桃,丙组同学每 人有31个核桃,三组的核桃总数是365个.问:三个小组共有多少名同学?(海峡两岸友谊赛试题)解题思路:根据题意,列出三元一次不定方程,从运用放缩法求取值范围入手.【例6】某中学全体师生租乘同类型客车若干辆外出春游,如果每辆车坐22人,就会余下1人;如果开走一辆空车,那么所有师生刚好平均分乘余下的汽车.问:原先租多少辆客车和学校师生共多少人?(已知每辆车的容量不多于32人)解题思路:设原先租客车x 辆,开走一辆空车后,每辆车乘坐k 人,根据题意列出方程求解,注意排除不符合题设条件的解. 能力训练 A 级1.若2254404a b a b +-++=,则ab =__________. 2.已知4360x y z --=,270x y z +-= (xyz ≠0),则22222223657x y z x y z ++++的值等于________.3.1998年某人的年龄恰等于他出生的公元年数的数字和,那么他的年龄是_________岁.(“希望杯”邀请赛试题)4.已知a ,b ,c 为整数,且2006a b +=,2005c a -=.若a <b ,则a b c ++的最大值为_____.(全国初中数学竞赛试题)5.x ,y 都是质数,则方程1999x y +=共有( ). A .1组解 B .2组解 C .3组解 D .4组解(北京市竞赛试题)6.如图,在高速公路上从3千米处开始,每隔 4千米设一个速度限制标志,而且从10千米处开 始.每隔9千米设一个测速照相标志,则刚好在 19千米处同时设置这两种标志,问下一个同时设 置这两种标志的地点的千米数 是( ).A .32千米B .37千米C .55千米D .90千米 7.给出下列判断:①不定方程230x y +=的整数解可表示为32x ty t=-⎧⎨=⎩ (t 为整数).②不定方程245x y +=无整数解. ③不定方程231x y +=无整数解. 其中正确的判断是( ).A .①② B.②③ C.①③ D.①②③8.小英在邮局买了10元的邮票,其中面值0.10元的邮票不少于2枚,面值O.20元的邮票不少于5枚,面值0.50元的邮票不少于3枚,面值2元的邮票不少于1枚,则小英最少买了( )枚邮票.A .17B .18C .19D .20(“五羊杯”邀请赛试题)9.小孩将玻璃弹子装进两种盒子,每个大盒子装12颗,每个小盒子装5颗,若弹子共有99颗,所用大小盒子多于10个,问这两种盒子各有多少个?10.中国百鸡问题:鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡.问鸡翁、鸡母、鸡雏各几何?(出自中国数学家张丘建的著作《算经》)11.已知长方形的长、宽都是整数,且周长与面积的数值相等,求长方形的面积.(“希望杯”邀请赛试题)12.已知k 是满足19102010k的整数,并且使二元一次方程组54745x y x y k -=⎧⎨+=⎩有整数解.问:这样的整数k 有多少个?(“华罗庚金杯”竞赛试题)B 级1.如果a ,b ,c 满足2222222690a b c ab bc c ++---+=,那么()2a bc +=__________.(“祖冲之杯”邀请试题)2.已知x ,y 为正偶数,且2296x y xy +=,则22x y +=_________. 3.一个四位数与它的四个数字之和等于1 991.这个四位数是__________.(重庆市竞赛试题)4.城市数学邀请赛共设金、银、铜三种奖牌,组委会把这些奖牌分别装在五个盒中,每个盒中只装一种奖牌.每个盒中装奖牌枚数依次是3,6,9,14,18.现在知道其中银牌只有一盒,而且铜牌枚数是金牌枚数的2倍.则有金牌_____枚,银牌______枚,铜牌_____枚.5.若正整数x ,y 满足2272x y -=,则这样的正整数对(x ,y )的个数是( ). A .1个 B .2个 C .3个 D .4个6.有甲、乙、丙3种商品,单价均为整数,某人若购甲3件、乙7件、丙1件共需24元;若购甲4件、乙10件、丙l 件共需33元,则此人购甲、乙、丙各1件共需( )元.A .6元B .8元C .9元D .10元7.在方程组33336x y z x y z ++=⎧⎨++=-⎩中,x ,y ,z 是不相等的整数,那么此方程组的解的组数为( ). A .6 B .3 C .多于6 D .少于3(“希望杯”邀请赛试题)8.一个两位数中间插入一个一位数(包括0),就变成一个三位数,有些两位数中间插入某个一位数后变成的三位数是原来两位数的9倍,这样的两位数有( )个. A .1 B .4 C .10 D .超过109.李林在银行兑换了一张面额为l00元以内的人民币支票,兑换员不小心将支票上的元与角、分数字看倒置了(例如,把12.34元看成了34.12元),并按着错的数字支付,李林将其款花去3.50元之后,发现其余款恰为支票面额的两倍,于是急忙到银行将多领的款额退回,问:李林应退回的款额是多少元?(“五羊杯”邀请赛试题)10.某人乘坐的车在公路上匀速行驶,从他看到的某个里程碑上的数是一个两位数时起,一小时后他看到的里程碑上的数恰好是第一次看到的数颠倒了顺序的两位数,再过一小时。

他看到的里程碑上的数又恰好是第一次看到的两位数之间添上一个零的三位数,问这三块里程碑上的数各是多少?(“勤奋杯”竞赛试题)11.已知四位数abcd 满足3333110a b c d c d ++++=+,求这样的四位数.(“《数学周报》杯”全国初中数学竞赛试题)12.求方程11156x y z ++=的正整数解. (“希望杯”邀请赛试题)专题18 简单的不定方程、方程组例1 3 提示:(n-m)(n+m)=3995=1×5×17×47,(n-m)与(n+m)奇偶性相同,对3995的任一正整数分解均可得到一个 (m,n).例2 C 设购买10元,15元,20元的电影票分别为x,y,z张.则30101520500x y zx y z++=⎧⎨++=⎩①②,②-①×15得5( z-x)=50,解得z-x=10.例3设此8位数为abcdefgh,将abc记为x,d记为y,efgh记为z. x,y,z均为自然数.即电话号码是100 000 x+10 000 y +z,且100≤x≤999,0≤y≤9,1000≤z≤9999,则10144051000016970x y zx y z++=⎧⎨++=⎩,得1111 y – x=285,由100≤x≤999,y≥0,得18266144yxz=⎧⎪=⎨⎪=⎩,故电话号码是82616144.例4提示:设盒子里共有x(x≤200)粒棋子,则12a-1=11b=x(a、b为正整数),解得a=10,b=11,x=121.例5设甲组学生a人,乙组学生b人,丙组学生c人,由题意得28a+30b+31c=365.因28(a+b+c)<28a+30b+31c=365.得a+b+c<36528<13.04,所以a+b+c≤13.因31(a+b+c)>28a+30b+31c=365. 得a+b+c>36531>11.7,所以a+b+c≥12因此a+b+c=12或13.当a+b+c=13 时,得2b+3c=1,此方程无正整数解;当a+b+c=12 时,符合题意.例6设原先租客车x辆,开走一辆空车后,每辆车乘坐k人,显然x≥2,23≤k≤32.依题意有:22x+1=k(x-1).则2212222232322111x xkx x x+-+===+---.因为k为自然数,所以231x-必是自然数,但23是质数,因数只有1和23,且x≥2,∴x-1=1或x-1=23.如果x-1=1,则x=2,k=45,不符合k≤32的题设条件. 如果x-1=23,则x=24,k=23,符合题意.这时旅客人数等于k(x-1)=23×23=529人.A级1.14-. 2.13. 18 提示:设某人出生于19xy,则19981910xy x y⋅=++,即11x+2y=88,解得8xy=⎧⎨=⎩.4. 5013 提示:由题中条件得a +b +c =a +4011,又因为a +b =2006,a <b .故2a <2006,a <1003.又因为a 为正整数,故a 的最大值为1002,于是a +b +c 的最大值为5013.5. B6. C 设置限速标志、照相标志的千米数分别表示为3+4x ,10+9y (x 、y 为自然数),将问题转换为求不定方程3+4x =10+9y 的正整数解,则7932144y y x y ++==++,4|(y+3),135x y =⎧⎨=⎩为所求的解. 7. A 8.A 9.大小盒子分别为2个,15个.10.设鸡翁、鸡母、鸡雏数目分别为x 、y 、z .则有100531003x y z zx y ++=⎧⎪⎨++=⎪⎩,消去z ,得7x +4y =100,显然(0,25)是方程的一个特解,所以方程的通解为4257x ty t =-⎧⎨=+⎩(t 为整数).于是z =100-x -y =100+4t -25-7t =75-3t .由x 、y 、z ≥0且t 为整数得4025707530t t t -≥+≥-≥⎧⎪⎨⎪⎩,解得0,1,2,3t =---,将t 的值代入通解,得四组解为(x ,y ,z )=(0,25,75),(4,18,78),(8,11,81),(12,4,84).(0,25,75)应舍去.11.设长方形的长宽高分别为x ,y ,则22xy x y =+,()224242222x x y x x x -+==+---=,()2|4x -,3x =或4或6,6y =或4或3,故长方形面积为18或16.12.由方程组得3544152841k x k y +=-=⎧⎪⎪⎨⎪⎪⎩,当3544152841k m k n +=-=⎧⎨⎩①(其中m ,n 是整数)时,方程有整数解.消去上面方程的k ,得:547m n +=②,由②得:3425m t n t=+=--⎧⎨⎩(其中t 为整数)③将③代入①得354123164k t +=+,2241k t =+.解不等式191022412010t <+<,得:22046484141t <<,故有2个k的值使原方程组有整数解.B 级1.144 提示:()()()22230a b b c c -+-+-=.2.10 提示:()96xy x y +=3.1972 设这个四位数为abcd ,则1000100101991a b c d a b c d +++++++=,即10011011121991a b c d +++=,1a =,从而101112990b c d ++=,又112c d +最大为99+18=117.故101990117873b ≥-=,即9b =,得11281c d +=,进一步得7,2c d ==,故这个四位数为1972.4.12 14 24 提示:由题目中“通牌枚数是金牌枚数的2倍”得知金牌与铜牌数的和为3的倍数.因为银牌只有一盒,所以铜牌数和金牌数的和应为3,6,9,14,18中四个数的和.因此银牌数为14枚,金牌数为(3+6+9+18)13⨯=12枚,铜牌数为24枚.5.C 提示:()()17223641861289x y x y -+=⨯=⨯=⨯=⨯=⨯. 6.A7.A 提示:有方程组得:12xyz =-.8.B 提示:设两位数为10a +b ,中间插入的一位数为m ,则9(10a +b )=100a +10m +b ,10(a +m )=8b 9.原来支票的面额是14.32元,兑换员看错成了32.14元,应退回32.14-14.32=17.82元. 10.设第一次看到的两位数为xy ,则以后两次看到的数分别为yx ,0x y ,由题意得0x y yx yx xy -=-,即()()()()100101010x y y x y x x y +-+=+-+,正理解的:x =1,y =6,故三块里程碑上的数分别是16,61,106.11.当4c ≥,31610c c c d ≥>+,此时不存在满足条件的四位数.当3c =时,则32332a b c d d ++=++.于是1d ≤,若1d =,得:1a b ==,即1131满足条件;若0d =,得1a b ==,即1130满足条件.当2c =时,则323311a b c d d ++=++,于是2d ≤,若2d =,得335a b +=,无解;若1d =或0d =,得3311a b +=,无解.当1c =时,则3238a b d d ++=+,于是2d ≤,若2d =,得1a b ==,即1112满足条件;若1d =,得2,0a b ==,即2011满足条件;若0d =,得2,0a b ==,即2010满足条件. 12.由题中条件易知x ,y ,z 都大于1.不妨设1x y z <≤≤,则111xyz≥≥,∵11113xxyzx<++≤,即1536x x <≤,由此得2x =或3,当2x =时,111511112623xxyyyy<+=-=≤+=,即1123yy<≤,由此得4y =或5或6.同理,当3x =时,3y =或4,由此得:1x y z <≤≤时,(x ,y ,z )共有(2,4,12),(2,6,6),(3,3,6),(3,4,4)4组.由于x ,y ,z 在原方程中地位平等,可得原方程的解共有15组:(2,4,12),(2,12,4),(4,2,12),(4,12,2),(12,2,4),(12,4,2),(2,6,6),(6,2,6),(6,6,2),(3,3,6),(3,6,3),(6,3,3),(3,4,4),(4,4,3),(4,3,4).。

相关文档
最新文档