7年级数学培优新帮手241页

合集下载

七年级数学下册 培优新帮手 专题16 不等式试题 (新版)新人教版

七年级数学下册 培优新帮手 专题16 不等式试题 (新版)新人教版

16 不等式(组)阅读与思考客观世界与实际生活既存在许多相等关系,又包含大量的不等关系,方程(组)是研究相等关系的重要手段,不等式(组)是探求不等关系的基本工具,方程与不等式既有相似点,又有不同之处,主要体现在:1. 解一元一次不等式与解一元一次方程类似,但解题时要注意两者之间的重要区别;等式两边都乘(或除)以同一个数时,只要考虑这个数是否为零,而不等式两边都乘以(或除以)同一个数时,不但要考虑这个数是否为零,而且还要考虑这个数的正负性.2. 解不等式组与解方程组的主要区别是:解方程组时,我们可以对几个方程进行“代入”或“加减”式的加工,但在解不等组时,我们只能对某个不等式进行变形,分别求出每个不等式的解集,然后再求公共部分.通俗地说,解方程组时,可以“统一思想”,而解不等式组时只能“分而治之”.例题与求解【例1】已知关于x 的不等式组⎪⎩⎪⎨⎧<-+->-+x t x x x 235352恰好有5个整数解,则t 的取值范围是( )A 、2116-<<-tB 、2116-<≤-tC 、2116-≤<-tD 、2116-≤≤-t(2013 年全国初中数学竞赛广东省试题)解题思路:把x 的解集用含t 的式子表示,根据题意,结合数轴分析t 的取值范围. 【例2】如果关于x 的不等式71005)2(<>---x n m x n m 的解集为那么关于x 的不等式)0(≠>m n mx 的解集为 .(黑龙江省哈尔滨市竞赛试题)解题思路:从已知条件出发,解关于x 的不等式,求出m ,n 的值或m ,n 的关系. 【例3】已知方程组⎩⎨⎧=+=-62y mx y x 若方程组有非负整数解,求正整数m 的值.(天津市竞赛试题)解题思路:解关于x ,y 的方程组,建立关于m 的不等式组,求出m 的取值范围.【例4】已知三个非负数a ,b ,c 满足3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,求m 的最大值和最小值.(江苏省竞赛试题)解题思路:本例综合了方程组、不等式(组)的知识,解题的关键是用含一个字母的代数式表示m ,通过解不等式组,确定这个字母的取值范围,在约束条件下,求m 的最大值与最小值.【例6】设765,4321,,,,,x x x x x x x 是自然数,7654321x x x x x x x <<<<<<,654543432321,,,x x x x x x x x x x x x =+=+=+=+,2010,7654321765=++++++=+x x x x x x x x x x 又,求321x x x ++的最大值.(“希望杯”邀请赛试题)解题思路:代入消元,利用不等式和取整的作用,寻找解题突破口.【例6】已知实数a ,b 满足,10,41≤-≤≤+≤b a b a 且a -2b 有最大值,求8a +2003b 的值. 解题思路:解法一:已知a -b 的范围,需知-b 的范围,即可知a -2b 的最大值得情形. 解法二:设a -2b =m (a +b )+n (a -b )=(m +n )a +(m -n )b能力训练A 级1、已知关于x 的不等式4321432≥-≤+x mx x m 的解集是那么m 的值是 (“希望杯”邀请赛试题)2、不等式组⎩⎨⎧<->+5242b x a x 的解集是20<<x ,那么a +b 的值为(湖北省武汉市竞赛试题)3、若a +b <0,ab <0,a <b ,则b b a a --,,,的大小关系用不等式表示为(湖北省武汉市竞赛试题)4、若方程组⎩⎨⎧+=++=+36542m y x m y x 的解x ,y 都是正数,则m 的取值范围 是 (河南省中考试题)5、关于x 的不等式x a ax +>+33的解集为3-<x ,则a 应满足( ) A 、a >1 B 、a <1 C 、1≥a D 、1≤a(2013年全国初中数学竞赛预赛试题)6、适合不等式21414312-≥+->-x x x 的x 的取值的范围是( )7、已知不等式0)2)(1(>+-x mx 的解集23-<<-x 那么m 等于( ) A 、31 B 、31- C 、3 D 、-3 8、已知0≠a ,下面给出4个结论:①012>+a ;②012<-a ;③1112>+a ④1112<-a,其中,一定成立的结论有( )A 、1个B 、2个C 、3个D 、4个(江苏省竞赛试题)9、当k 为何整数值时,方程组 ⎩⎨⎧-=-=+ky x y x 3962有正整数解?(天津市竞赛试题)10、如果⎩⎨⎧==21y x 是关于x ,y 的方程08)12(2=+-+-+by ax by ax 的解,求不等式组⎪⎩⎪⎨⎧+<-+>-331413x ax bx a x 的解集11、已知关于x 的不等式组⎪⎩⎪⎨⎧<≥-203b x a x 的整数解有且仅有4个:-1,0,1,2那么,适合这个不等式组的所有可能的整数对(a ,b )共有多少个?(江苏省竞赛试题)B 级1、如果关于x 的不等式03≥+ax 的正整数解为1,2,3那么a 的取值范围是(北京市”迎春杯“竞赛试题)2、若不等式组⎩⎨⎧-≥-≥+2210x x a x 有解, 则a 的取值范围是___________.(海南省竞赛试题)3、已知不等式03≤-a x 只有三个正整数解,那么这时正数a 的取值范围为 .(”希望杯“邀请赛试题)4、已知1121<-<-x 则12-x的取值范围为 . (“新知杯”上海市竞赛试题)5、若正数a ,b ,c 满足不等式组 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<<+<<+<b c a b a c b a c b a c 4112535232611,则a ,b ,c 的大小关系是( )A 、a <b <cB 、 b <c <aC 、c <a <bD 、不确定(“祖冲之杯”邀请赛试题)6、一共( )个整数x 适合不等式99992000≤+-x xA 、10000B 、20000C 、9999D 、80000(五羊杯“竞赛试题)7、已知m ,n 是整数,3m +2=5n +3,且3m +2>30,5n +3<40,则mn 的值是( ) A 、70 B 、72 C 、77 D 、84 8、不等式5+>x x 的解集为( ) A 、25<x B 、25>x C 、25-<x D 、25->x (山东省竞赛试题)9、31,2351312++---≥--x x xx x 求已知的最大值和最小值. (北京市”迎春杯”竞赛试题)10、已知x ,y ,z 是三个非负有理数,且满足3x +2y +z =5,x +y -z =2,若s =2x +y -z ,求s 的取值范围.(天津市竞赛试题)11、求满足下列条件的最小正整数n ,对于n 存在正整数k 使137158<+<k n n 成立.12、已知正整数a ,b ,c 满足a <b <c ,且1111=++cb a ,试求a ,b ,c 的值.专题16 不等式(组)例1 C 提示:解不等式组得3220t x -<<,则5个整数解为x =19,18,17,16,15.结合数轴分析,应满足14≤3-2t <15,故-6<t ≤1162t -<≤-. 例2 1345x < 提示:(2)5m n x m n ->+,20m n -<,51027m n m n +=-,0m <,1345m n =.例3 1m =或3m = 提示:解方程组得81621x m m y m ⎧=⎪⎪+⎨-⎪=⎪+⎩,由,0x y ≥⎧⎨≥⎩得-1≤m ≤0 例4 提示:由已知条件得325213a b c a b c +=-⎧⎨+=+⎩ ,解得73711a c b c =-⎧⎨=-⎩,m=3c -2.由000a b c ≥⎧⎪≥⎨⎪≥⎩得73071100c c c -≥⎧⎪-≥⎨⎪≥⎩,解得37711c ≤≤,故m 的最大值为111-,最小值为57-例5先用x 1和x 2表示x 3,x 4,…,x 7,得312423125341264512756122233558x x x x x x x x x x x x x x x x x xx x x x x =+⎧⎪=+=+⎪⎪=+=+⎨⎪=+=+⎪=+=+⎪⎩,因此x 1+x 2+x 3+x 4+x 5+x 6+x 7= 2 010.于是得121201013113100()20220x x x -==+-.因为x 2是自然数,所以1113()220x -是整数,所以x 1是10的奇数倍.又因为x 1<x 2,故有三组解:x 1=10,x 2=94,或x 1=30,x 2=81,或x 1=50,x 2=68. 因此x 1+x 2的最大值为50+68=118,所以x 1+x 2 +x 3的最大值为2(x 1+x 2)=2×118=236. 例6解法一 :∵0≤a -b ≤1①,1≤a +b ≤4 ②,由②知-4≤-a -b ≤-1③, ①+③得-4≤-2b ≤0,即-2≤-b ≤0④,①+④得-2≤a -2b ≤1要使a —2b 最大,只有a -b =1且-b =0. ∴a =1 且b =0,此时8a +2003b =8. 解法二 :设a -2b=m(a+b)+n(a -b)=(m+n)a+ (m -n)b,知12m n m n +=⎧⎨-=-⎩,解得1232m n ⎧=-⎪⎪⎨⎪=⎪⎩.而()11222a b -≤-+≤-,()33022a b ≤-≤,∴a -2b=()12a b -++()32a b -∴-2≤a -2b ≤1当a —2b 最大时,a +b=1,a -b=1∴b=0,a=1,此时8a +2003b =8. A 级 1.9102.11. 1提示:原不等式组变形为4252x a b x >-+<由解集是0<x <2知40502a b -=⎧⎪⎨+=⎪⎩,解得21a b =⎧⎨=-⎩ 故a +b =2+(-1)=1 3.a <-b <b <-a 4.52<m <7 5.B 提示:由ax +3a >3+x ,得(a -1)(x +3)>0,.由不等式的解集为x <-3知x +3<0, 所以a -1<0,得a <1. 6.C 7.B 8.C 9.k =2或3.10. 提示:由非负数性质求得a =2,b =5,原不等式组的解集为x <-3.11.原不等式组等价于322a xb b x ⎧≥⎪⎪⎨⎪-<<⎪⎩,因为该不等式组的整数解一1,0,1,2不是对称地出现,所以其解不可能是22b b x -<<必有32a b x ≤<,由整数解的情况可知213a -<≤-,232b<≤得a =-5,-4,-3;b =5,6.故整数对(a ,b )共有2×3=6对. B 级1.314a -≤<- 提示:由题意可知:3x a ≤-.由正整数解为1,2,3知334a ≤-<-,解得314a -≤<-2.a ≥-1 提示:原不等式组变形为1x ax ≥-⎧⎨≤⎩由不等式组有解知-a ≤1,故a ≥-13. 9≤a <124.211x-> 5. B 提示:原不等式组变形为1736c a b c c ≤++<,5823a a b c a <++<,71524b a bc b <++<. 6. C 示:若x ≥2000,则(x -2000)+x ≤9999,即2000≤x ≤5999, 共有4 000个整数; 若0≤x <2000,则(x -2000)+x ≤9999.2000≤9999,恒成立,又有2000个整数适合 若x <0,则2000-x +(-x ) ≤9999即-3999.5≤x <0,共有3999个整数适合,故一共有 4000+2 000+3999 = 9 999个整数适合. 7. D 8.C 提示:由原不等式得x 2>(x +5)29.提示:解不等式,得711x ≤, 原式=()()()41223143x x x x -≥⎧⎪---≤<⎨⎪<-⎩,从而知最大值为4,最小值为3311-10.提示:s =x +2,2≤s ≤3 11.提示:由871513n n k <<+,得151387n k n +<<,即7687k n >> .又n 与k 是都是正整数,显然n >8,当n 取9,10,11,12,13,14时,k 都取不到整数. 当n =15时,9010578k <<,即61121378k << 此时是k =13故满足条件的最小正整数n =15,k =13. 12.由a b c <<得111a bc >>,故1113a b c a++<,即31,3a a ><,又因为1a >,故a=2,从而有1112b c +=,又11c b <,则212b >,即b <4,又b >a=2,得b=3,从而得c=6,故a=2,b=3,c=6即为所求.。

七年级数学下册 培优新帮手 专题11 设元的技巧试题 (新版)新人教版

七年级数学下册 培优新帮手 专题11 设元的技巧试题 (新版)新人教版

11 设元的技巧阅读与思考应用数学知识和方法解决实际问题是学习数学的重要目的之一.应用题联系实际,反映现实生活中的数量关系,通过解应用题可以培养运用数学知识去分析和解决问题的能力.列方程解应用题,一般有审题、设元、布列方程、解方程、作答等几个步骤.恰当地设元是列方程解应用题的关键步骤之一,常见的设元技巧有:1.直接设元题目要求什么量,就设什么量为未知数,或有几个要求的量,而设其中的某一个量为未知数. 2.间接设元即所没的不是所求的,适当地选择与题目要求的未知数有关的某个量为未知数,则易找出符合题意的数量关系,从而列出方程.3.辅助设元有些应用题中隐含一些未知的常量,这些量对于求解无直接联系,但如果不指明这些量的存在,则难求其解,因而需把这些未知的常量设为参数,作为桥梁帮助思考,这就是辅助设元. 4.整体设元有些应用题未知量太多而已知关系又少,如果在未知数的某一部分存在一个整体关系,可设这一部分为一个未知数,这样就减少了设元的个数,这就是整体设元.例题与求解【例1】某编辑用0~9这10个数字给一本书的各页标上页码,若共写了636个数字,则该书有____页.解题思路:依题意可知该书页码的数字组成有三种:一个数字、两个数字、三个数字.一共有636个数字,可设直接未知数,列方程求解.找出能够表示应用题全部含义的一个相等关系是列方程解应用题又一关键.寻找相等关系常用方法有:①从关键词中寻找相等关系;②利用基本公式寻找相等关系;③利用不变量寻找相等关系;④对一种“量”,从不同的角度进行表述(即计算两次),形成一种相等关系.行程问题、工程问题、劳力分配问题、浓度问题、数字问题等是列方程解应用题的基本类型,此外,还有趣味问题(如年龄、时钟等)、经济问题(如银行存款、销售利润等),尽管形式多变,但是解题实质未变,需要我们用数学观点,理清数量关系,恰当设未知数,准确列方程.【例2】某服装厂生产某种定型冬装,9月份销售冬装的利润(每件冬装的利润=出厂价一成本)是出厂价的25%,10月份将每件冬装的出厂价调低10%(每件冬装的成本不变),销售件数比9月份增加80%,那么该厂10月份销售这种冬装的利润总额比9月份的利润总额增长()。

七年级数学下册培优新帮手专题10多变的行程问题试题(新版)新人教版

七年级数学下册培优新帮手专题10多变的行程问题试题(新版)新人教版

10 多变的行程问题阅读与思考行程问题的三要素是:距离(s )、速度(v )、时间(t ),基本关系是:s vt =,s v t =,st v=. 行程问题按运动方向可分为相遇问题、追及问题;按运动路线可分为直线形问题、环形问题等.其中相遇问题、追及问题是最基本的类型,它们的特点与常用的等量关系如下:1.相遇问题其特点是:两人(或物)从两地沿同一路线相向而行,而最终相遇,一般地,甲行的路程+乙行的路程=两地之间的距离.2.追及问题其特点是:两人(或物)沿同一路线、同一方向运动,由于位置或者出发时间不同,造成一前一后,又因为速度的差异使得后者最终能追及前者.一般地,快者行的路程-慢者行的路程=两地之间的距离.例题与求解【例1】 在公路上,汽车A 、B 、C 分别以80千米/时,70千米/时,50千米/时的速度匀速行驶,A 从甲站开往乙站,同时,B 、C 从乙站开往甲站.A 在与B 相遇后两小时又与C 相遇,则甲、乙两站相距__________千米.(“希望杯”竞赛试题)解题思路:本例为直线上的相遇问题,可依据时间关系列方程.【例2】 如图,某人沿着边长为90来的正方形,按A →B →C →D →A …方向,甲从A 以65米/分的速度,乙从B 以72米/分的速度行走,当乙第一次追上甲时在正方形的( ).A .AB 边上B .DA 边上C .BC 边上D .CD 边上乙甲BCAD(安徽省竞赛试题)⨯=(米)处.解题思路:本例是一个特殊的环形追及问题,注意甲实际在乙的前面390270【例3】亚州铁人三项赛在徐州市风光秀丽的云龙湖畔举行.比赛程序是:运动员先同时下水游泳1.5千米到第一换项点,在第一换项点整理服装后,接着骑自行车40千米到第二换项点,再跑步10千米到终点.下表是亚洲铁人三项赛女子组(19岁以下)三名运动员在比赛中的成绩(游泳成绩即游泳所用时间,其他类推,表内时间单位为秒).(1)填空(精确到0.01):第191号运动员骑自行车的平均速度是__________米/秒;第194号运动员骑自行车的平均速度是__________米/秒;第195号运动员骑自行车的平均速摩是__________米/秒;(2)如果运动员骑自行车都是匀速的,那么在骑自行车的途中,191号运动员会追上195号或194号吗?如果会,那么追上时离第一换项点有多少米(精确到0.01)?如果不会,为什么?(3)如果运动员长跑也都是匀速的,那么在长跑途中这三名运动员有可能某人追上某人吗?为什么?(江苏省徐州市中考试题)解题思路:从表格中获取信息,注意速度、时间的比较是解本例的关键.【例4】一小船由A港到B港顺流需行6小时,由B港到A港逆流需行8小时.一天,小船从早晨6点由A港出发顺流行至B港时,发现一救生圈在途中掉落在水中,立刻返回,1小时后找到救生圈,问:(1)若小船按水流速度由A港漂流到B港时需多少小时?(2)救生圈是何时掉人水中的?(天津市中考试题)解题思路:要求小船按水流速度由A港漂流到B港时所需时间,需求两港间的距离及水流速度,考虑增设辅助未知数.【例5】某乡镇小学到县城参观,规定汽车从县城出发于上午7时到达学校后,接参观的师生立即出发去县城,由于汽车在赴校的途中发生故障,不得不停车修理,学校师生等到7时10分,仍未见汽车来接,就步行走向县城.在行进途中遇到了已经修理好的汽车,立即上车赶赴县城,结果比预定到达县城的时间晚了半小时,如果汽车的速度是步行速度的6倍,汽车在途中排除故障花了多少时间?(山东省中考试题)解题思路:从题中比原定时间晚到半小时入手,选好未知量,找出汽车所用时间与师生步赶所用时间之间的关系.依时间、速度和路程之间的关系列出方程.【例6】甲、乙两人分别从A,B两地同时出发,在距离B地6千米处相遇,相遇后两人又继续按原方向、原速度前进,当他们分别到达B地、A地后,立刻返回,又在距A地4千米处相遇,求A,B两地相距多少千米?(“祖冲之杯”邀请赛试题)解题思路:本例有多种解法,可借助图形辅助分析.能力训练A级1.某人以4千米/小时的速度步行由甲地到乙地,然后又以6千米/小时的速度从乙地返回甲地,那么某人往返一次的平均速度是__________千米/小时.2.汽车以每小时72千米的速度笔直地开向寂静的山谷,驾驶员按一声喇叭,4秒后听到回响,已知声音的速度是每秒340米,听到回响时汽车离山谷的距离是__________米.(江苏省竞赛试题)3.甲、乙两地相距70千米,有两辆汽车同时从两地相向出发,并连续往返于甲、乙两地,从甲地开出的为第一辆汽车,每小时行30千米,从乙地开出的为第二辆汽车,每小时行40千米.当从甲地开出的第一辆汽车第二次从甲地出发后与第二辆汽车相遇,这两辆汽车分别行驶了__________千米和__________千米.(武汉市选拔赛试题)4.上午9时整,时计与分针成直角,那么下一次时针与分针成直角的时间是().A.9时30分B.10时5分C.10时5511分D.9时83211分(“希望杯”竞赛试题)5.甲、乙两人同时从A地到B地,如果乙的速度v保持不变,而甲先用2v的速度到达中点,再用12v的速度到达B地,则下列结论中正确的是().A.甲、乙同时到达B地B.甲先到B地C.乙先到B地D.无法确定谁先到6.甲与乙比赛登楼,他俩从36层的长江大厦底层出发,当甲到达6楼时,乙刚到达5楼,按此速度,当甲到达顶层时,乙可到达().A.31层B.30层C.29层D.28层7.如图,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们的第2007次相遇在边()上.A.AB B.BC C.CD D.DA乙甲BAD(湖北省黄冈市竞赛试题)8.甲、乙两列火车同时从相距120千米的两地相向行驶,甲速为每小时84千米,乙速为每小时60千米,则当两车相距24千米时行驶的时间为( ).A .40分钟B .1小时C .1小时或20分钟D .40分钟或1小时9.有一个只允许单向通过的窄道口,通常情况下,每分钟可以通过9人,一天王老师到达道口时,发现由于拥挤,每分钟只能有3人通过道口,此时自己前面还有36人等待通过(假定先到的先过,王老师过道口的时间忽略不计).通过道口后,还需7分钟到达学校:(1)此时,若绕道而行,要15分钟到达学校,从节省时间考虑,王老师应绕道去学校,还是选择通过拥挤的道口去学校?(2)若在王老师等人的维持下,几分钟后,秩序恢复正常(维持秩序期间,每分钟仍有3人通过道口),结果王老师比拥挤的情况下提前了6分钟通过逬口,求维持秩序的时间.(江西省中考试题)10.某人从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开车时间迟到15分钟,现在此人打算在火车开车前10分钟到达火车站,求此人此时骑摩托车的速度应该是多少?(湖北省孝感市竞赛试题)11.铁路旁的一条平行小路上有一行人与一骑车人同时向东行进,行人速度为 3.6千米/小时,骑车人速度为16.8千米/小时,如果有一列火车从他们背后开过来,它通过行人用22秒,通过骑车人用26秒,问这列火车的车身长为多少米?(河北省竞赛试题)B 级1.甲、乙两人从两地同时出发,若相向而行,a 小时相遇;若同向而行,则b 小时甲追及乙,那么甲、乙两人的速度之比为__________.(江苏省竞赛试题)2.甲、乙两列客车的长分别为150米和200米,它们相向行驶在平行的轨道上,已知甲车上某乘客测得乙车在他窗口外经过的时间是10秒,那么乙车上的乘客看见甲车在他窗口外经过的时间是__________秒.(“希望杯”邀请赛试题)3.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船4小时,已知船在静水中的速度为每小时7.5千米,水流速度为每小时2.5千米,若A ,C 两地的距离为10千米,则A ,B 的距离为__________千米.(重庆市竞赛试题)4.某段公路由上坡、平坡、下坡三个等长的路段组成,已知一辆汽车在三个路段上行驶的平均速度分别为1v ,2v ,3v .则该汽车在这段公路上行驶的平均速度为( ).A .1233v v v ++ B .1231113v v v ++C .1231111v v v ++D .1233111v v v ++(天津市竞赛试题)5.静水中航行,甲船的速度比乙船快,在水流速度不为零的河流中,甲、乙两船同时从A 港出发,同向航行1小时后立即返航,那么( ).A .甲船先返回A 港B .乙船先返回A 港C.甲、乙两船同时返回A港D.不能确定哪条船先返回A港(《时代学习报》数学文化节试题)6.某商场有一部自动扶梯匀速由下而上运动,甲、乙二人都急于上楼办事,因此在乘扶梯的同时匀速登梯,甲登了55级后到达楼上,乙登梯速度是甲的2倍(单位时间内乙登楼级数是甲的2倍),他登了60级后到达楼上,那么,由楼下到楼上的自动扶梯级数为__________.(北京市竞赛试题)7.甲、乙两同学从400米的环形跑道上的某一点背向出发,分别以每秒2米和每秒3米的速度慢跑.6秒钟后,一只小狗从甲处以每秒6米的速度向乙跑,遇到乙后,又从乙处以每秒6米的速度向甲跑,如此往返直至甲、乙第一次相遇,那么小狗共跑了__________米.8.某风景区的旅游线路如右图所示,其中A为入口处,B,C,D为风景点,E为三岔路的交汇点,图中所给的数据为相应两点间的路程(单位:千米).某游客从A处出发,以每小时2千米的速度步行游览,每到一个景点逗留的时间均为半小时.(1)若该游客沿跨线“A→D→C→E→A”游览回到A处,共用去3小时,求C,E两点间的路程.(2)若该游客从A处出发,打算在最短时间内游完三个景点并返回A处(仍按上述步行速度和在景点的逗留时间,不考虑其他因素),请你为他设计一个步行路线,并对路线设计的合理性予以说明.1.311.20.41.1EDCBA(江苏省竞赛试题)9.某人沿电车路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来,假定此人和电车都是匀速前进,则电车是每隔多少分钟从起点站开出一辆?(湖北省黄冈市竞赛试题)10.如图,甲、乙两人分别在A,B两地同时相向而行,于E处相遇后,甲继续向B地行走,乙则休息了14分钟,再继续向A地行走,甲和乙到达B和A后立即折返,仍在E处相遇,已知甲每分钟行走60米,乙每分钟行走80米,则A和B两地相距多少千米?A BE乙(“华罗庚金杯”竞赛试题)专题 10 多变的行程问题例1 1950 提示:设甲乙两站相距S 千米,则280708050S S+=++,解得S=1950千米例2 B 提示:乙第一次追上甲用了2707分钟,270672736029077⨯=⨯+⨯ 例3 ⑴ 8.12 7.03 7.48⑵ 191号能追上194号,这时离第一换项点有24037.96米191号不会追上195号 ⑶ 从第二换项点出发时,195号比191号提前216秒,且长跑速度比191号快,所以195号在长跑时始 终在191号前面,而191号在长跑时始终在194前面,故在长跑时,谁也追不上谁.例4 ⑴设小船在静水中的速度为α,水流的速度为b ,由题意,得6(a +b )=8(a -b ),解得a =7b .故小船按水流速度由A 港漂流到B 港所需的时间为6()6(7)4848a b b b bb b b++===小时 ⑵ 设小船行驶x 小时后救生圈掉入水中,则小船找到救生圈即小船与救生圈相遇,他们行驶的路程如图所示:由题意得(6-x +1)b +(a -b )×1=(6-x )(a +b ),将a =7b 代入上式,解得x =5 故救生圈是在上午11点掉入水中的.例5 如图,设点A为县城所在地,点B为学校所在地,但C为师生途中与汽车相遇之处.汽车晚到的的半小时一方面是因晚出发了10分钟,另一方面是从B到C由于步行代替乘车而多花了20分钟.若设汽车从C到B需要X分钟,则师生从B到C应花(x+20)分钟,由于汽车由C到B与师生从B到C的路程相等由时间与速度成反比可得1206xx=+解得x=4故排除故障花的时间为4×2+30=38分钟例6 解法一:第一次相遇时,甲乙两人所走的路程之和,正好是AB两地相距的路程,即当甲乙合走完AB间的全部路程时,乙走了6千米.第二次相遇时,两人合走的路程恰为两地间距离的3倍(如图,图中实线表示甲走的路程,虚线表示乙走的路程),因此,这时乙走的路程应为1836=⨯千米.考虑到乙从B 地走到A 地后又返回了4千米,所以A,B 两地间的距离为18-4=14千米.解法二:甲、乙两人同时出发,相向而行,到相遇时两人所走时间相等,又因为两人都做匀速运动,应有:两人速度之比等于他们所走路程之比,且相同时间走过的路程亦成正比例.到第一次相遇,甲走了(全程-6)千米,乙走了6千米;到第二次相遇,甲走了(2×全程-4)千米,乙走了(全程+4)千米. 设全程为S ,则可列方程44266+-=-S S S . 解得01421==S S , (舍去).故A,B 两地相距14千米.解法三:设全程为S 千米,甲、乙两人速度分别为21,v v v, 则⎪⎪⎩⎪⎪⎨⎧+=-=-②①212144266v S v S v v S ②①÷得46426+=--S S S ,解得014==S S 或 (舍去) 故A,B 两地相距14千米.A 级1. 4.82.6403. 150 200提示:设第一辆车行驶了(140十x )千米,则第二辆车行驶了()⎪⎭⎫ ⎝⎛++=⨯+x x 34324614034140千米,由题意得 70343246=⎪⎭⎫ ⎝⎛++x x ,解得10=x . 4.D 提示:因为分针每分钟转 6,时针每分钟转⎪⎭⎫ ⎝⎛21,设两针从上午9时开始,x 分钟后两针成直角,由题意知3602190906=⎪⎭⎫ ⎝⎛-++x x ,解得11832=x .5.C6.C 提示:45==乙甲乙甲V V S S . 7. C 8. D 9.(1)因15197336>=+,故王老师应选择绕道去学校. (2)设维持秩序时间为t, 则69336336=⎪⎭⎫ ⎝⎛-+-t t ,解得t=3(分钟). 10.设此人从家里出发到火车开车的时间为x 小时,由题意得⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-601518601530x x ,解得x =1. 此人打算在火车前10分钟到达火车站,骑摩托车的速度应为276010160151306010601530=-⎪⎭⎫ ⎝⎛-⨯=-⎪⎭⎫ ⎝⎛-⨯x x 千米/时.11.设火车的速度为x 米/秒,由题意得()()263221⨯-=⨯-x x ,解得x =14.故火车的车身长为(14-1)×22=286米.B 级 1.ab a b -+ 2.7.5 提示:先求出甲、乙两车速度和为2010200=米/秒. 3. 20或320 4. D 提示:设三个等长路段的路程均为S ,则平均速度为⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛++=++321321321111311133v v v v v v S S v S v S v S S . 5.D 提示:考虑两船同时先顺水航行的情形,设想乙船在静水中的速度接近水流的速度,则它将迟迟难以返航.而甲先返回A 港,类似的可考虑两船同时先逆水航行的情形.6. 667. 4448. (1) CE=0.6千米.(2)基本的行走路线有两条:一是A→D→C→B→E→A(或A→E→B→C→D→A ),总时间为4小时;二是A→D→C→E→B→E→A(或A→E→B→E→C→D→A),总时间为3.9小时.9.设电车速度为v ,人速为x ,电车每隔t 分钟开出一辆,则每两辆电车之间的距离vt ,对于迎面来的电车,这个距离是人与电车共同走4分钟完成的,对于后面追上的电车,两辆电车之间的距离是电车在12分钟追上起始时的距离,由题意得x v vt x v 121244-==+,解得t =6分钟.10. AE:BE=60:80=3:4,设AE=3x , BE= 4x ,从而AB= 7x (米).由题意得1480376047++=+x x x x ,解得x =240,故AB=7x =7×240=1680米.。

七年级数学下册 培优新帮手 专题03 从算术到代数试题 (新版)新人教版-(新版)新人教版初中七年级

七年级数学下册 培优新帮手 专题03 从算术到代数试题 (新版)新人教版-(新版)新人教版初中七年级

03 从算术到代数阅读与思考算术与代数是数学中两门不同的分科,它们之间联系紧密,代数是在算术中“数”和“运算”的基础上发展起来的.字母表示数有如下特点:即字母可以表示任意的数.即虽然字母表示任意的数,但字母的取值必须使代数式或实际问题有意义.即在用字母表示的数中,如果字母取定某值,那么代数式的值也随之确定.即与具体的数值相比,用字母表示数具有更抽象的意义.例题与求解【例1】研究下列算式,你会发现什么规律:1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52…请将你找到的规律用代数式表示出来:_______________________________(某某某某地区中考试题) 解题思路:观察给定的几个简单的、特殊的算式,寻找数字间的联系,发现一般规律,然后用代数式表示.【例2】下列四个数中可以写成100个连续自然数之和的是()A.1627384950B. 2345678910C. 3579111300D. 4692581470(某某省竞赛试题)解题思路:设自然数从a+1开始,这100个连续自然数的和为(a+1)+(a+2)+…+(a+100)=100a+5050,从揭示和的特征入手.【例3】设A=221212222323223434+…+221003100410031004+221004100510041005,求A的整数部分.(市竞赛试题)解题思路:从分析A中第n项22(1)(1)n nn n的特征入手.【例4】现有a根长度相同的火柴棒,按如图①摆放时可摆成m个正方形,按如图②摆放时可摆成2n个正方形.(1)用含n的代数式表示m;(2)当这a根火柴棒还能摆成如图③所示的形状时,求a的最小值.(某某省竞赛试题)解题思路:由图①中有m个正方形、图②中有2n个正方形,可设图③中有3p个正方形,无论怎样摆放,火柴棒的总数相同,可建立含m,n,p的等式.【例5】 化简个个个n n n 9199999999+⨯. (某某省竞赛试题)解题思路:先考察n =1,2,3时的简单情形,然后作出猜想,这样,化简的目标更明确.【例6】观察按下列规律排成的一列数:11,12,21,13,22,31,14,23,32,41,15,24,33,42,51,16,…,(*) (1)在(*)中,从左起第m 个数记为F (m )=22001时,求m 的值和这m 个数的积.(2)在(*)中,未经约分且分母为2的数记为c ,它后面的一个数记为d ,是否存在这样的两个数c 和d ,使cd =2001000,如果存在,求出c 和d ;如果不存在,请说明理由.解题思路:解答此题,需先找到数列的规律,该数列可分组为(11),(12,21),(13,22,31),(14,23,32,41),(15,24,33,42,51),….能力训练A 级1.已知等式:2+23=22×23,3+38=32×38,4+415=42×415,…,,10 +a b =102×a b (a ,b均为正整数),则a+b=___________________.(某某省某某市竞赛试题)2.下面每个图案都是若干个棋子围成的正方形图案,它的每边(包括顶点)都有n(n≥2)个棋子,每个图案棋子总数为s,按此规律推断s与n之间的关系是______________.n=2 n=3 n=4s=4 s=8 s=12(某某省某某市中考试题)3.规定任意两个实数对(a,b)和(c,d),当且仅当a=c且b=d时,(a,b)=(c,d).定义运算“⊗”:(a,b)⊗(c,d)=(ac-bd,ad+bc).若(1,2)⊗(p,q)=(5,0),则p+q =________.(某某省某某市数学竞赛试题)4.用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖______块,第n个图形中需要黑色瓷砖______块(含n代数式表示).(某某省中考试题)-=a是一个三位数,现在把1放在它的右边得到一个四位数是()A.1000a+1B. 100a+1C.10a+1D.a+1(某某市竞赛试题)6.一组按规律排列的多项式:a+b,a2—b3,a3+b5,a4—b7,…,其中第十个式子是()A. a10+b19B. a10-b19C.a10-b17D.a10-b21(某某省眉山市竞赛试题)x 1,x 2,x 3;y 1,y 2,y 3;z 1,z 2,z 3,它们的平均数分别是a ,b ,c ,那么x 1+y 1-z 1,x 2+y 2-z 2,x 3+y 3-z 3的平均数是( )A.3a b c B. 3a b cC. a +b -cD. 3(a +b -c ) (希望杯邀请赛试题)8.为了绿化环境,美化城市,在某居民小区铺设了正方形和圆形两块草坪,如果两块草坪的周长相同,那么它们的面积S 1、S 2的大小关系是( )(东方航空杯竞赛试题)A . S 1>S 2B .S l <S 2C .S 1=S 2D .无法比较9.一个圆形纸板,根据以下操作把它剪成若干个扇形面:第一次将圆纸等分为4个扇形面;第二次将上次得到的一个扇形面再等分成4个小扇形;以后按第二次剪裁法进行下去.(1)请通过操作,猜想将第3、第4次,…,第n 次剪裁后扇形面的总个数填入下表;(2)请你推断,能否按上述操作剪裁出33个扇形面?为什么?(某某省某某市中考试题)10.某玩具工厂有四个车间,某周是质量检查周,现每个都原a (a >0)个成品,且每个每天都生产b (b >0)个成品,质检科派出若干名检验员星期一、星期二检验其中两个原的和这两天生产的所成品,然后,星期三至星期五检验另两个原的和本生产的所成品,假定每个检验员每天检验的成品数相同.(1)这若干名检验员1天检验多少个成品(用含a 、b 的代数式表示); (2)试求出用b 表示a 的关系式; (3)若1名质检员1天能检验54b 个成品,则质检科至少要派出多少名检验员? (某某省某某市中考试题)B 级1. 你能很快算出19952吗?为了解决这个问题,我们考察个位上的数字为5的自然数的平方,任意一个个位数为5的自然数可写成(10·n +5)(n 为自然数),即求(10·n +5)2的值(n 为自然数),分析n =1,n =2,n =3,…这些简单情况,从中探索其规律,并归纳猜想出结论(在下面的空格内填上你的探索结果). (1)通过计算,探索规律.152=225可写成100×1×(1+1)+25; 252=625可写成100×2×(2+1)+25; 352=1225可写成100×3×(3+1)+25; 452=2025可写成100×4×(4+1)+25; ...752=5625可写成______; 852=7225可写成______;(2)从第(1)题的结果,归纳猜想得(10n +5)2=______; (3)根据上面的归纳猜想,请算出19952=______.(某某省某某市中考试题)2+22+32+…+n 2=16n (n +1)(2n +1),计算: (1)112+122+…+192=_____________________;(2)22+42+…+502=__________________.n 是正整数,a n =1×2×3×4×…×n ,则13a a +24a a +…+20102012a a +20112013a a =_______________. (“希望杯”邀请赛训练题)4.已知17个连续整数的和是306,那么,紧接着这17个数后面的那17个整数的和为__________.(某某市竞赛试题)5.A ,B 两地相距S 千米,甲、乙的速度分别为a 千米/时、b 千米/时(a >b ),甲、乙都从A 地到B 地去开会,如果甲比乙先出发1小时,那么乙比甲晚到B 地的小时数是( )(1)s a b B .(1)ss ba C .(1)s s ab D .(1)ssba6.某商店经销一批衬衣,进价为每件m 元,零售价比高a %,后因市场的变化,该店把零售价调整原来零售价的b %出售,那么调价后的零售价是( )A .m (1+a %)(1-b %)元B .m a %(1-b %)元C .m (1+a %)b %元D .m (1+a %b %)元(某某省竞赛试题)a 名同学在b 小时内共搬运c 块砖,那么个以同样速度所需要的数是( )A .22c a bB .2c abC .2ab cD .22a b c(“希望杯”邀请赛试题)8.甲、乙两班的人数相等,各有一些同学参加课外天文小组,其中甲班参加天文小组的人数是乙班未参加人数的13,乙班参加天文小组的人数是甲班未参加人数的15.问甲班未参加的人数是乙班未参加人数的几分之几?9.将自然数1,2,3,…,21这21个数,任意地放在一个圆周上,证明:一定有相邻的三个数,它们的和不小于33.(某某市竞赛试题)10.有四个互不相同的正整数,从中任取两个数组成一组,并在同一组中用较大的数减去较小的数, 再将各组所得的数相加,其和恰好等于18.若这四个数的乘积是23100,求这四个数.(某某市竞赛试题)专题03 从算术到代数例1 2(2)1(1)n n n ++=+ 例2 A例3 原式=1111111112(1)2()2()2()2()223341003100410041005+-++-++-+++-++-=121004(1)1005⨯+-故其整数部分为2008 例4 设图③中含有3p 个正方形. (1)由3152m n +=+,得513n m +=(2) 由315273,a m n p =+=+=+得325177m n p --==,因,,m n p 均是正整数, 所以当17,10m n ==时,7,p =此时317152a =⨯+=例5解法1:1n =时,29919811910010⨯+=+==;2n =时, 49999199(1001)991999900991991000010⨯+=-⨯+=-+==,猜想:2999999199910n n n n ⨯+=个个个个,计算过程类似于2n =29999991999(101)9991999999000999199910n n n n n n n n n n n ⨯+=-⨯+=-+=个个个个个个个个个解法2: 1n =时,2991999109(999)1091010101010⨯+=⨯++=⨯++=⨯+=⨯=2n =时, 49999199999910099(999999)1009910010010010010⨯+=⨯++=⨯++=⨯+=⨯=猜想:原式210n = 验证如下:9999991999999999100099999999999910n n n n n n n n n n n ⨯+=⨯++=⨯++个个个个个个个个个个299910101010n n n n n =⨯=⨯=个反思结论必为一个数的平方形式,不妨设999n a =个,得另一种解法解法3: 原式22222(1)a 21(1)(10)10n n a a a a a =+++=++=+==例6 (1)(※)可分组为112123123412345(),(,),(,,),(,,,),(,,,,),,121321432154321可知各组数的个数依次为1,2,3,.按其规律22001应在第2002组1232002(,,,,)2002200120001中,该组前面共有123420012003001+++++=个数.故当2()2001F m =时,200300122003003m =+=. 又因各组的数积为1, 故这2003003个数的积为121200220012003001⨯=(2) 依题意,c 为每组倒数第2个数,d 为每组最后一个数, 设它们在第n组,别1,,21n nc d -==(1)20010002n n -∴=.即(1)400200020012000n n -==⨯,2001,n ∴=得20011200022c -==,20011d = A 级1. 100 提示:21010a ab b+=⨯中,根据规律可得210,10199,a b ==-=故1099109a b +=+= 2. 4(1)(2)s n n =-≥3.1-提示: 根据题中定义的运算可列代数式25,20p q q p -=+=,可得1,2,p q ==- 故1p q +=-4. 10 31n +5. C6. B7. B8. B9.(1) 10 13 31n + (2) 不能, 33不符合31n + 10. (1) 2a b +或2(5)3a b +或32b + (2) 由2(2)2(5)23a b a b ++=,得4a b = (3)2(2)47.5825a b b +÷=≈ B 级1. (1) 1007(71)25,1008(81)25⨯⨯++⨯⨯++(2) 100(1)25n n ⨯++ (3) 3980025 2. (1) 2085(2) 22100提示:原式2224(1225)=⨯+++3.20114026提示:由1234n a n =⨯⨯⨯⨯⨯可得,原式111112334452011201220122013=+++++⨯⨯⨯⨯⨯ 111111112011233420122013220134026=-+-++-=-=4. 595 提示: 设17个连续整数为,1,,16,m m m ++且(1)(16)306m m m +++++=,它后面紧接的17 个连续自然数应为17,18,19,,33m m m m ++++,可得它们之和为5955. D6. C7. D 提示: 每一名同学每小时所搬砖头为c ab块,c 名同学按此速度每小时所搬砖头为2c ab 块.8.用a ,b 分别表示甲、乙两班参加天文小组的人数,m ,n 分别表示甲、乙两班未参加天文小组的人数,由a +m =b +n 得m -b =n -a ,又a =13n ,b =15m ,故m -15m =n -13n ,56m n =.9.证明:设任意分法将圆周上的每相邻三个数分为一组,他们三个数的和分别为a 1,a 2,a 3,a 4,a 5,a 6,a 7(均为自然数),且a 1+a 2+a 3+a 4+a 5+a 6+a 7=()211212312⨯+=①.假设a 1,a 2,a 3,worda4,a5,a6,a7中没一个数都小于33,则有a1+a2+a3+a4+a5+a6+a7<231.与①矛盾,所以a1,a2,a3,a4,a5,a6,a7中至少有一个不小于33,即一定有相邻的三个数,它们的和不小于33.10.设四个不同整数为a1,a2,a3,a4(a1>a2>a3>a4),则(a1-a2)+(a1-a3)+(a1-a4)+(a2-a3)+(a2-a4)+(a3-a4)=18,即3(a1-a4)+(a2-a3)=18.又因3(a1-a4),18均为3的倍数,故a2-a3也是3的倍数,a2-a3<a1-a4,则a2-a3=3,a1-a4=5,a1-a2=1,a3-a4=1,又a1a2a3a4=23100=2×2×3×5×5×7×11.从而可得a1=15,a2=14,a3=11,a4=10.11 / 11。

2020七年级数学下册 培优新帮手 专题17 不等式(组)的应用试题 (新版)新人教版

2020七年级数学下册 培优新帮手 专题17 不等式(组)的应用试题 (新版)新人教版

17 不等式(组)的应用阅读与思考许多数学问题和实际问题所求的未知量往往受到一些条件的限制,可以通过数量关系和分析,列出不等式(组),运用不等式的有关知识予以求解,不等式(组)的应用主要体现在: 1.作差或作商比较有理数的大小. 2.求代数式的取值范围. 3.求代数式的最大值或最小值. 4.列不等式(组)解应用题.列不等式(组)解应用题与列方程(组)解应用题的步骤相仿,关键是在理解题意的基础上,将一些词语转化为不等式.如“不大于”“不小于”“正数”“负数”“非正数”“非负数”等对应不等号:“≤”“≥”“>0”“<0”“≤0”“≥0”. 例题与求解【例1】如果关于x 的方程210m x x --=只有负根,那么m 的取值范围是_________.(辽宁省大连市“育英杯”竞赛试题)解题思路:由x <0建立关于m 的不等式.【例2】已知A =1998199920002001⨯-⨯,B =1998200019992001⨯-⨯,C =1998200119992000⨯-⨯,则有( ).A .A >B >C B .C >B >A C .B >A >CD .B >C >A(浙江省绍兴市竞赛试题)解题思路:当作差比较困难时,不妨考虑作商比较【例3】已知1a ,2a ,3a ,4a ,5a ,6a ,7a 是彼此不相等的正整数,它们的和等于159,求其中最小数1a 的最大值.(北京市竞赛试题)解题思路:设1a <2a <3a <···<7a ,则1a +2a +3a +···+7a =159,解题的关键是怎样把多元等式转化为只含1a的不等式.【例4】一玩具厂用于生产的全部劳力为450个工时,原料为400个单位,生产一个小熊玩具要使用15个工时、20个单位的原料,售价为80元;生产一个小猫玩具要使用10个工时、5个单位的原料,售价为45元.在劳力和原料的限制下合理安排生产小熊玩具、小猫玩具的个数,可以使小熊玩具和小猫玩具的总售价尽可能高.请用你所学过的数学知识分析,总售价是否可能达到2 200元.(“希望杯”邀请赛试题) 解题思路:列不等式的关键是劳力限制在450个工时,原料限制为400个单位.引入字母,把方程和不等式结合起来分析.【例5】某钱币收藏爱好者想把3.50元纸币兑换成1分,2分,5分的硬币,他要求硬币总数为150枚,且每种硬币不少于20枚,5分的硬币多于2分的硬币,请你据此设计兑换方案.(河北省竞赛试题) 解题思路:引入字母,列出含等式、不等式的混合组,把解方程组、解不等式组结合起来.【例6】已知n,k皆为自然数,且1<k<n.若123101n kn+++⋅⋅⋅+-=-,n k a+=.求a的值.(香港中学数学竞赛试题) 解题思路:此题可理解为在n个连续自然数中去除其中一个数k (且1<k<n,k是非两头的两个数),使剩余的数的平均数等于10,求n和k之和。

七年级数学下册培优新帮手专题06有理数的计算试题(新版)新人教版【含解析】

七年级数学下册培优新帮手专题06有理数的计算试题(新版)新人教版【含解析】

专题06 有理数的计算阅读与思考在小学我们已经学会根据四则运算法则对整数和分数进行计算,当引进负数概念后,数集扩大到了有理数范围,我们又学习了有理数的计算,有理数的计算与算术数的计算有很大的不同:首先,有理数计算每一步要确定符号;其次,代数与算术不同的是“字母代数”,所以有理数的计算很多是字母运算,也就是通常说的符号演算.数学竞赛中的计算通常与推理相结合,这不但要求我们能正确地算出结果,而且要善于观察问题的结构特点,将推理与计算相结合,灵活选用算法和技巧,提高计算的速度.有理数的计算常用的技巧与方法有: 1.利用运算律. 2.以符代数. 3.裂项相消. 4.分解相约. 5.巧用公式等.例题与求解【例1】 已知m ,n 互为相反数,a ,b 互为负倒数,x 的绝对值等于3,则2002200123)()()1(-ab x n m x ab n m x ++++++的值等于______________.(湖北省黄冈市竞赛试题)解题思路:利用互为相反数、互为倒数的两个有理数的特征计算.【例2】 已知整数d c b a ,,,满足25=abcd ,且d c b a >>>,那么d c b a +++等于( ) A . 0 B . 10 C .2 D .12(江苏省竞赛试题)解题思路:解题的关键是把25表示成4个不同的整数的积的形式.【例3】 计算: (1);100321132112111+⋅⋅⋅++++⋅⋅⋅++++++(“祖冲之杯”邀请赛试题)(2)199843277777+⋅⋅⋅++++;(江苏省泰州市奥校竞赛试题)(3)9019727185617424163015201941213652211+-+-+-+-. (“希望杯”邀请赛试题)解题思路:对于(1),若先计算每个分母值,则掩盖问题的实质,不妨先从考察一般情形入手;对于(2),由于相邻的后一项与前一项的比都是7,考虑用字母表示和式;(3)中裂项相消,简化计算.【例4】 n m ,都是正整数,并且)11)(11()311)(311)(211)(211(mm A +-⋅⋅⋅+-+-=, )11)(11()311)(311)(211)(211(nn B +-⋅⋅⋅+-+-=.(1)证明:m m A 21+=,n n B 21+=; (2)若261=-B A ,求m 和n 的值.(“华罗庚金杯”少年邀请赛试题)解题思路:(1)对题中已知式子进行变形.(2)把(1)中证明得到的式子代入,再具体分析求解.【例5】 在数学活动中,小明为了求n 2121212121432+⋅⋅⋅++++的值(结果用n 表示),设计了如图①,所示的几何图形.(1)请你用这个几何图形求n 2121212121432+⋅⋅⋅++++的值. (2)请你用图②,在设计一个能求n 2121212121432+⋅⋅⋅++++的值的几何图形.(辽宁省大连市中考试题)解题思路:求原式的值有不同的解题方法,二剖分图形面积是构造图形的关键.【例6】 记,令nS S S T nn +⋅⋅⋅++=21称n T 为n a a a ⋅⋅⋅,,21这列数的“理想数”,已知50021,,a a a ⋅⋅⋅的“理想数”为2004.求50021,,,8a a a ⋅⋅⋅的“理想数”.(安徽省中考试题)解题思路:根据题意可以理解为n S 为各项和,n T 为各项和的和乘以n1. 能力训练 A 级1.若y x ,互为相反数,n m ,互为倒数.1=a ,201220112)()(mn y x a -++-的值为____________.(湖北省武汉市调考试题)2.若21)1(22)1(1)1(32=+-⨯--⨯-+--M ,则M =___________.(“希望杯”邀请赛试题)3.计算:(1)199919971971751531⨯+⋅⋅⋅+⨯+⨯+⨯=________________; (2)()()()()[]⎪⎭⎫⎝⎛-÷-÷-+--⨯-243431622825.0=__________________.4.将1997减去它的21,再减去余下的31,再减去余下的41,再减去余下的51,⋅⋅⋅,依次类推,直至最后减去余下的19971,最后的答案是_______________.(“祖冲之杯”邀请赛试题)5.右图是一个由六个正方体组合而成的几何体,每个小正方体的六个面上都分别写着-1,2,3,-4,5,6六个数字,那么图中所有看不见的面上的数字和是___________.(湖北省仙桃市中考试题)6.如果有理数c b a ,,满足关系式c b a <<<0,那么代数式32-c ab acbc 的值( ) A . 必为正数 B .必为负数 C .可正可负 D .可能为0(江苏省竞赛试题)7.已知有理数z y x ,,两两不相等,则z y x -y -,x -z z -y ,y--x xz 中负数的个数是()A . 1个B . 2个C . 3个D .0个或2个(重庆市竞赛试题)8.若a 与)-(b 互为相反数,则abb a 199********2+=( )A . 0B . 1C . -1D .1997(重庆市竞赛试题)9.如果()-12001=+b a ,()1-2002=b a ,则20032003b a +的值是( )A .2B . 1C . 0D .-1(“希望杯”邀请赛试题)10.若d c b a ,,,是互为不相等的整数,且9=abcd ,则d c b a +++等于( ) A .0 B . 4 C . 8 D .无法确定 11. 把511,3.7,216,2.9,4.6分别填在图中五个Ο内,再在每个□中填上和它相连的三个Ο中的数的平均数,再把三个□中的平均数填在△中.找出一种填法,使△中的数尽可能小,并求这个数.(“华罗庚金杯”少年邀请赛试题)12.已知c b a ,,都不等于零,且abcabc c c b b a a +++的最大值为m ,最小值为n ,求)1(1998++n m 的值. B 级 1.计算:)9897983981()656361()4341(21+•••+++•••++++++=________________. (“五羊杯”竞赛试题)2.计算:109876543222-2-2-2-2-2-2-2-2+=________________.(“希望杯”邀请赛试题)3.计算:2)93186293142842421(nn n n n n ••+•••+××+×ו•+•••+××+××=____________________.4.据美国詹姆斯·马丁的测算,在近十年,人类的知识总量已达到每三年翻一翻,到2020年甚至要达每73翻番空前速度,因此,基础教育任务已不是“教会一切人一切知识,而是让一切人学会学习”.已知2000年底,人类知识总量a ,假入从2000年底2009年底每3年翻一翻;从2009年底到2019年底每1年翻一番;2020年是每73天翻一翻.(1)2009年底人类知识总量是:__________________; (2)2019年底人类知识总量是:__________________;(3)2020年按365天计算,2020年底类知识总量会是____________________.(北京市顺义区中考试题)5.你能比较20022001和20012002的大小吗?为了解决这个问题,我们首先写出它的一般形式,即比较1+n n与n n )1(+的大小(n 是自然数),然后我们从分析n=1,n=2,n=3…中发现规律,经归纳、猜想得出结论(1)通过计算,比较下列各组中两数的大小:(在横线上填写“>”“=”“<”) ①122__1,②233__2;③344__3;④455__4;⑤••••••566__5 (2)从第(1)题的结果中,经过归纳,可以猜想出1+n n与nn )1(+的大小关系是_____________________________________________________________________________; (3)根据以上归纳.猜想得到的一般结论,试比较下列两数的大小20022001_____20012002:.(福建省龙岩市中考试题)6.有2009个数排成一列,其中任意相邻的三个数中,中间的数总等于前后两数的和.若第一个数是1,第二个数是-1,则这个2009个数的和是( ) A . -2 B .-1 C .0 D .2(全国初中数学竞赛海南省试题)7.如果1332211=++t t t t t t ,那么321321t t t t t t 的值为( ) A . -1 B .1 C .1± D .不确定(河北省竞赛试题)8.三进位制数201可用十进制数表示为1910921303212=++×=+×+×;二进制数1011可用十进制法表示为1112081212021123=+++=+×+×+×.前者按3的幂降幂排列,后者按2的幂降幂排列,现有三进位制数221=a ,二进位制数10111=b ,则a 与b 的大小关系为( ). A .b a > B .b a = C .b a < D .不能确定(重庆市竞赛试题)9.如果有理数d c b a ,,,满足d c b a +>+,则( ) A .d c b a +>++11- B .2222d c b a +>+ C .3333d c b a +>+ D .4444d c b a +>+(“希望杯”邀请赛试题)10.有1998个互不相等的有理数,每1997个的和都是分母为3998的既约真分数,则这个1998个有理数的和为( ) A .1997999 B .1997997 C .1998998 D .1998999(《学习报》公开赛试题)11.观测下列各式:223214111××==, 22333241921××==+,22333434136321××==++ 22333354411004321××==+++... 回答下面的问题:(1)猜想33333)1-(321n n ++•••+++=______________.(直接写出你的结果) (2)利用你得到的(1)中的结论,计算3333310099321++•••+++的值. (3)计算①3333100991211++•••++的值; ②3333310098642++•••+++的值.专题 06 有理数的计算例1 28或-26例2 D 提示 :abcd=5×1×(-1)×(-5),a=-5,b=1,c=-1,d=-5.例3 (1)101200 提示:2)1(13211+-++++n n n=()12+n n =⎪⎭⎫ ⎝⎛+-1112n n .(2)6771999- 提示:设s=1998327777++++ ,则7s=1999327777++++(3)原式=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+56174217301520151213613211+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-90197219=1+1-1019191814131312121-+-++-+-+ =2-101=1091例4 (1)A=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-m m 1131121111311211 =m m m m 1342313221+⨯⨯⨯⨯-⨯⨯⨯ =m m 21+ 同理B=nn 21+由A-B=mm 21+-n n 21+=n m 2121-=261得13111=-n m∴m=n n +1313=13-n+⨯131313,又∵m ,n 均为正整数,∴13+n 为13×13的因数,∴13+n=213∴n156,m=12.例5 (1)原式=1-n21,(2)例6 由题意知 ()()()[]n n a a a a a a a a a nT ++++++++++=213212111,即()()[]n n n a a a n a n na n T +++-+-+=-13212311.又[]50049932150024984995005001a a a a a T +++++⨯= ∴5004993212498499500a a a a a +++++ =2004×500. 故8,1a ,2a ,…,5a 的“理想数“为[]500499321501249849950085015011a a a a a T ++++++⨯=””=[]500200485015011⨯+⨯⨯=2008. A 级1.2 提示:原式=()201220112201-+-=1+1=2.2.2 提示:M-1+21221=+--,解得 M=2.3.(1)5997998;(2)-8 4.1提示:设a=1997,由题意原式= -⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛---41623122a a a a a a =19961997342312⨯--⨯-*-⨯-a a a a a 5.-13 6.B 7.B 提示:不妨设x>y>z. 8.B 9.D 10.A 11.提示:设○内从右到左填的数分别为1a ,2a ,3a ,4a ,5a 则△内填的数为923254321a a a a a ++++.要使△中填的数尽可能小,则5113=a ,2a , 4a 分别为2,9,3,7,而剩下的两个为1a ,5a . 12.1998 提示 :1=x x 时,m=4;1-=xx时,n-4. B 级1.612.5 提示:倒叙相加. 2.6 提示:n n n 2221=-+3.72964 4.(1)a ∙32 (2)a ∙132 (3)a ∙182 5.(1)略 (2)当n<3时,()nn n n 11+<+;当n ≥3时,()nn n n 11+>+ (3)>001-00076. A 提示:先写出前面一些数:1,-1,-2,-1,1,2,1,-1,…,经观察发现每6个数为一次循环,又2009=334×6+5.而每一组中1+(-1)+(-2)+(-1)+1+2=0,故这2009个数的和,等于最后五个数之和.为1+(-1)+(-2)+(-1)+1=-2.7. A8. A9. A 10 A 11.(1)14×π2×(n +1)2(2)原式=14×1002×(100+1)2=25 502 500(3)①原式=14×100×(100+1)2-14×102×(10+1)2=25 499 475;②原式=23×(13+23+33+…+493+503)=23×14×502×(50+1)2=13 005 000.。

2020七年级数学下册 培优新帮手 专题08 还原与对消试题 (新版)新人教版

2020七年级数学下册 培优新帮手 专题08 还原与对消试题 (新版)新人教版

08 还原与对消——方程的解与解方程阅读与思考解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、系数化为1、得方程的解.我们在解一元一次方程时,既要学会按部就班(严格按步骤)地解方程,又要能随机应变(灵活打乱步骤)地解方程.方程的解是方程理论中的一个重要概念,对于方程解的概念,要学会从两个方面去运用: 1.求解:通过解方程,求出方程的解,进而解决问题. 2.代解:将方程的解代入原方程进行解题.当方程中的未知数是用字母表示时,这样的方程叫含字母系数的方程,含字母系数的一元一次方程总可以化为ax =b 的形式,其方程的解由a ,b 的取值范围确定.字母a ,b 的取值范围确定或对解方程的过程并未产生实质性的影响,其解法同数字系数的一次方程解法一样;当字母a ,b 的取值范围未给出时,则需讨论解的情况,其方法是:(1)当a ≠0时,原方程有唯一解x =b a; (2)当a =0且b =0时,原方程有无数个解; (3)当a =0,b ≠0时,原方程无解; 例题与求解[例1] 已知关于x 的方程3[x -2(x -3a )]=4x 和312x a +-158x -=1有相同的解,那么这个解是______.(北京市“迎春杯”竞赛试题)解题思路:建立关于a 的方程,解方程. [例2] 已知a 是任意有理数,在下面各说法中(1)方程ax =0的解是x =1 (2)方程ax =a 的解是x =1 (3)方程ax =1的解是x =1a(4)方程|a |x =a 的解是x =±1 结论正确的个数是( ). A .0 B .1 C .2 D .3(江苏省竞赛试题)解题思路:给出的方程都是含字母系数的方程,注意a 的任意性.[例3] a 为何值时,方程3x +a =2x -16(x -12)有无数多个解?无解? 解题思路:化简原方程,运用方程ax =b 各种解的情况所应满足的条件建立a 的关系式. [例4] 如果a ,b 为定值时,关于x 的方程23kx a +=2+6x bk-,无论k 为何值时,它的根总是1,求a ,b 的值.(2013年全国初中数学竞赛预赛试题)解题思路:利用一元一次方程方程的解与系数之间的关系求解.[例5] 已知p ,q 都是质数,并且以x 为未知数的一元一次方程px +5q =97的解是1,求代数式p 2-q 的值.(北京市“迎春杯”竞赛试题)解题思路:用代解法可得到p ,q 的关系式,进而综合运用整数相关知识分析.[例6] (1)在日历中(如图①),任意圈出一竖列上相邻的三个数,设中间的一个为a ,则用含a 的代数式表示这三个数(从小到大排列)分别是______.(2)现将连续自然数1至2004按图中的方式排成一个长方形阵列,用一个正方形框出16个数(如图②).①图中框出的这16个数的和是______;②在右图中,要使一个正方形框出的16个数之和等于2000,2004,是否可能?若不可能,试说明理由;若有可能,请求出该正方形框出的16个数中的最小数和最大数.(湖北省黄冈市中考试题)解题思路:(1)等差数列,相邻两数相差7.(2)①经观察不难发现,在这个方框里的每两个关于中心对称的数之和都等于44.如31与13,11与33,17与27都成中心对称的.于是易算出这16个数之和.②设框出的16个数中最小的一个数为a ,用a 表示出16个数之和,若算出的a 为自然数,则成立;不为自然数,则不可能.能力训练图① 日一二三四五六 6 7 8 9 10 11 12 1 2 3 4 5 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 2003 200419971999 2000 2001 2002… … … (36)3738394041421996 29 30 31 32 33 34 35 22 23 24 25 26 27 28 15 16 17 18 19 20 21 8 9 10 11 12 13 14 1 2 3 4 5 6 7 图②A 级1.若关于x 的方程(k -2)x|k -1|+5k =0是一元一次方程,则k =______;若关于x 的方程(k +2)x 2+4kx -5k =0是一元一次方程,则方程的解x =______.2.方程x -34[x -14(x -37)]=316(x -37)的解是______. (广西赛区选拔赛试题)3.若有理数x ,y 满足(x +y -2)2+|x +2y |=0,则x 2+y 3=______.(“希望杯”邀请赛试题)4.若关于x 的方程a (2x +b )=12x +5有无数个解,则a =______,b =______.(“希望杯”邀请赛试题)5.已知关于x 的方程9x -3=kx =14有整数解,那么满足条件的所有整数k =______.(“五羊杯”竞赛试题)6.下列判断中正确的是( ).A .方程2x -3=1与方程x (2x -3)=x 同解B .方程2x -3=1与方程x (2x -3)=x 没有相同的解C .方程x (2x -3)=x 的解都是方程2x -3=1的解D .方程2x -3=1的解都是方程x (2x -3)=x 的解 7.方程12x ⨯+23x ⨯+…+19951996x ⨯=1995的解是( ). A .1995 B .1996 C .1997 D .1998 8.若关于x 的方程21x bx --=0的解是非负数,则b 的取值范围是( ). A .b >0 B .b ≥0 C .b ≠2 D .b ≥0且b ≠2(黑龙江省竞赛试题)9.关于x 的方程a (x -a )+b (x +b )=0有无穷多个解,则( ). A .a +b =0 B .a -b =0 C .ab =0 D .ab=0 10.已知关于x 的一次方程(3a +8b )x +7=0无解,则ab 是( ). A .正数 B .非正数 C .负数 D .非负数(“希望杯”邀请赛试题)11.若关于x 的方程kx -12=3x +3k 有整数解,且k 为整数,求符合条件的k 值.(北京市“迎春杯”训练题)12.已知关于x 的方程3x+a =||2a x -16(x -6),当a 取何值时,(1)方程无解?(2)方程有无穷多解?(重庆市竞赛试题)B 级1.已知方程2(x +1)=3(x -1)的解为a +2,则方程2[2(x +3)-3(x -a )]=3a 的解为______. 2.已知关于x 的方程2a x -=33bx -的解是x =2,其中a ≠0且b ≠0,则代数式b a -a b 的值是______.3.若k 为整数,则使得方程(k -1999)x =2001-2000x 的解也是整数的k 值有______个.(“希望杯”邀请赛试题)4.如果12+16+112+…+1(1)n n +=20032004,那么n =______. (江苏省竞赛试题)5.用※表示一种运算,它的含义是A ※B =1A B ++(1)(1)x A B ++,如果2※1=53,那么3※4=______.(“希望杯”竞赛试题)6.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是______克.(河北省中考试题)7.有四个关于x 的方程 ①x -2=-1 ②(x -2)+(x -1)=-1+(x -1) ③x =0④x -2+11x -=-1+11x - 其中同解的两个方程是( ).A .①与②B .①与③C .①与④D .②与④8.已知a 是不为0的整数,并且关于x 的方程ax =2a 3-3a 2-5a +4有整数解,则a 的值共有( ).A .1个B .3个C .6个D .9个50g 砝码(“希望杯”邀请赛试题)9.(1)当a 取符合na +3≠0的任意数时,式子23ma na -+的值都是一个定值,其中m -n =6,求m ,n 的值.(北京市“迎春杯”竞赛试题)(2)已知无论x 取什么值,式子35ax bx ++必为同一定值,求a b b +的值.(“华罗庚杯”香港中学竞赛试题)10.甲队原有96人,现调出16人到乙队,调出后,甲队人数是乙队人数的k (k 是不等于1的正整数)倍还多6人,问乙队原有多少人?(上海市竞赛试题)11.下图的数阵是由77个偶数排成:用一平行四边形框出四个数(如图中示例).(1)小颖说四个数的和是436,你能求出这四个数吗? (2)小明说四个数的和是326,你能求出这四个数吗?第11题图…………………………………… 142 144 146 148 150 152 1543032343638404216 18 20 22 24 26 28 2 4 6 8 10 12 1407 整式的加减例1 -17例2 B例3 1998提示:由已知得4a-b=996,待求式=-3×(4a-b)+4986.例4 原多项式整理得:(a+1)x3+(2b-a)x3+(3a+b)x-5..又由题意知,该多项式为二次多项式,故a+1=0,得a=-1.把a=-1,a=2代入得:4(2 b+1)+2×(b-3)-5=-17.解得b=-1,故原多项式为-x2-4 x-5.当x=-2时,-x2-4 x-5=-4+8-5=-1.例5 设前7站上车的乘客数量依次为a1,a2,a3,a4,a5,a6,a7人,从第2站到第8站下车的乘客数量依次为b2,b3,b4,b5,b6,b7,b8人,则a1+a2+a3+a4+a5+a6+a7=b2+b3+b4+b5+b6+b7+b8.又∵a1+a2+a3+a4+a5+a6=100,∴b2+b3+b4+b5+b6+b7=80,即100+a 7=80+b 8,前6站上车而在终点下车的人数为b8-a7=100-80=20(人).例6 如图,由题意得a1+a2+a3=29,a2+a3+a4=29,…a6+a7+a 1=29,a7+a1+a 2=29,将上述7式相加得,3(a1+a2+a3+a4+a5+a6+a7)=29×7.∴a1+a2+a3+a4+a5+a6+a7=67 .这与a1+a2+a3+a4+a5+a6+a7为整数矛盾.故不存在满足题设要求的7个整数.A级1. 292. -63. -24.20035. 10 提示:3 x-2 y+z=2×(2 x+y+3 z)-(x+4 y+5 z)=2×23-36=46-36=10.6. C7. C 提示:设满足条件的单项式为ambncp的形式,其中m,n,p为自然数,且m+n+p=7.8. C 9. D10. 1.2 提示:由题意得b=m-1=n,c=2 n-1=0,0.625 a=0.25+(-0.125).11. 提示:8 a+7 b=8(a+9 b)-65 b.B级1. -a+b+c2. ≥ 1 提示:x的系数之和为零,须使4-7 x≤0且1-3 x≤0.3. 224. -94 提示:由(x+5)2+| y 2+y-6|=0得x=-5,y 2+y=6. y 2- x y+x 2+x 3=y 2+y+(-5)2+(-5)3=6+25-125=-94.5. -6. B 提示:利用绝对值的几何意义解此题. x的取值范围在与之间7. A提示:令x=1,可得a0+a1+a2+a3+a4+a5+a6=[2×1-1] 6=1①令x=-1,可得a0-a1+a2-a3+a4-a5+a6=[2×(-1)-1] 6=3 6=729②①+②,得2(a0+a2+a4+a6)=730,即a0+a2+a4+a6=365.8. C 9. A10. A 提示:原式=a+b+c+6n+6是偶数.11. 提示:(1)4.5πa2 S阴影=(a+a+a)2=4.5πa2(2) ab- b2+πb2 S阴影=(a+a)b-(b2-πb2)= a b- b 2+πb2(3)3 x+3 y+2 z 总长1=2 x+4 y+2 z+(x-y)=3 x+3 y+2 z.12. 因为=100 a+10 b+c,=10a+c.由题意得100a+10b+c=9(10a+c)+4c.化简得5(a+b)=6c(0≤a,b,c≤9,且a≠0)又∵5是质数,故,从而则符合条件的=155,245,335,425,515,605.。

七年级数学下册培优新帮手专题27以形借数—借助图形思考试题(新版)新人教版

七年级数学下册培优新帮手专题27以形借数—借助图形思考试题(新版)新人教版

27 以形借数——借助图形思考阅读与思考数学是研究数量关系与空间形式的科学,数与形以及数和形的关联与转化,这是数学研究的永恒主题,就解题而言,数与形的恰当结合,常常有助于问题的解决,美国数学家斯蒂恩说:“如果一个特定的问题可以被转化为一个图形,那么思维就整体地把握了问题,并且能创造性地思考问题的解法”.将问题转化为一个图形,把问题中的条件与结论直观地、整体地表示出来,是一个十分重要的解题方法,现阶段借助图形思考是指以下两个方面:1.从给定的图形获取解题信息数学问题的表述方法很多,既有用文字叙述的,也有通过图形(如数轴、图表、平面图形等)来呈现的,善于从给定的图形获取解题信息是一个重要技能.2.有意地画图辅助解题图形能直观、形象地表示数量及关系,解题中有意地画图(如画直线图、列表、构造图形等)能帮助分析理顺复杂数量关系,使问题获得简解.阅读与思考【例1】如图,圆周上均匀地钉了9枚钉子,钉尖朝上,用橡皮筋套住其中的3枚,可套得一个三角形,所有可以套出来的三角形中,不同形状的共有____________种。

(“五羊杯”竞赛试题)x y z则解题思路:圆周长保持不变,设圆周长为9,套成的三角形三边所对应的弧长分别为,,,≤≤,借助图形分析,找出满足条件的整数解即可。

++=。

不妨设x y z9x y z【例2】一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为........y(km),图中的折线表示y与x之间的函数关系。

根据图像进行一下探究:信息读取(1)甲、乙两地之间的距离为___________km。

(2)请解释图中点B的实际意义。

图像理解(3)求慢车和快车的速度。

(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围。

问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同。

在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

能力训练A 级1.若,,,为整数,=1997,则=________.2.在1,2,3,…,这个自然数中,已知共有个质数,个合数,个奇数,个偶数,则(-)+(-)=__________.3.设,为自然数,满足1176=,则的最小值为__________.(“希望杯”邀请赛试题)4.已知是质数,并且+3也是质数,则-48的值为____________.(北京市竞赛试题)5.任意调换12345各数位上数字的位置,所得的五位数中质数的个数是 () A .4B .8C .12D .06.在2 005,2 007,2 009这三个数中,质数有 ( )A .0个B .1个C .2个D .3个(“希望杯”邀请赛试题)7.一个两位数的个位数字和十位数字变换位置后,所得的数比原来的数大9,这样的两位中,质数有()A .1个B .3 个C .5个D .6 个(“希望杯”邀请赛试题)8.设,,都是质数,并且+=,<.求.9.写出十个连续的自然数,使得个个都是合数.(上海市竞赛试题)10.在黑板上写出下面的数2,3,4,…,1 994,甲先擦去其中的一个数,然后乙再擦去一个数,如此轮流下去,若最后剩下的两个数互质,则甲胜;若最后剩下的两个数不互质,则乙胜,你如果想胜,应当选甲还是选乙?说明理由.(五城市联赛试题)a b c d ()()2222a b c d ++2222a b c d +++n n p q k m q m p k a b a 3b a p 6p 11p p q r p q r p q p(北京市竞赛试题)8.请同时取六个互异的自然数,使它们同时满足:⑴ 6个数中任意两个都互质;⑵ 6个数任取2个,3个,4个,5个,6个数之和都是合数,并简述选择的数符合条件的理由.9.已知正整数,都是质数,并且7+与+11也都是质数,试求的值.(湖北省荆州市竞赛试题)10. 41名运动员所穿运动衣号码是1,2,…,40,41这41个自然数,问:(l) 能否使这41名运动员站成一排,使得任意两个相邻运动员的号码之和是质数?(2) 能否让这41名运动员站成一圈,使得任意两个相邻运动员的号码之和都是质数?若能办到,请举出一例;若不能办到,请说明理由.p q p q pq q pp q专题02数的整除性阅读与思考设,是整数,≠0,如果一个整数使得等式=成立,那么称能被整除,或称整除,记作|,又称为的约数, 而称为的倍数.解与整数的整除相关问题常用到以下知识:1.数的整除性常见特征:①若整数的个位数是偶数,则2|;②若整数的个位数是0或5,则5|;③若整数的各位数字之和是3(或9)的倍数,则3|(或9|);④若整数的末二位数是4(或25)的倍数,则4|(或25|);⑤若整数的末三位数是8(或125)的倍数,则8|(或125|);⑥若整数的奇数位数字和与偶数位数字和的差是11的倍数,则11|.2.整除的基本性质设,,都是整数,有:①若|,|,则|;②若|,|,则|(±);③若|,|,则[,]|;④若|,|,且与互质,则|;⑤若|,且与互质,则|.特别地,若质数|,则必有|或|.例题与求解【例1】在1,2,3,…,2 000这2 000个自然数中,有_______个自然数能同时被2和3整除,而且不能被5整除.(“五羊杯”竞赛试题)解题思想:自然数能同时被2和3整除,则能被6整除,从中剔除能被5整除的数,即为所求.【例2】已知,是正整数(>),对于以下两个结论:①在+,,-这三个数中必有2的倍数;②在+,,-这三个数中必有3的倍数.其中 ( )A .只有①正确B .只有②正确C .①,②都正确D .①,②都不正确(江苏省竞赛试题)解题思想:举例验证,或按剩余类深入讨论证明.a b b q a bq a b b a b a b a a b a a a a a a a a a a a a a a a a b c a b b c a c c a c b c a b b a c a b c a b a c a b c bc a a bc a c a b p bc p b p c n n a b a b a b ab a b a b ab a b【例3】已知整数能被198整除,求,的值. (江苏省竞赛试题)解题思想:198=2×9×11,整数能被9,11整除,运用整除的相关特性建立,的等式,求出,的值.【例4】已知,,都是整数,当代数式7+2+3的值能被13整除时,那么代数式5+7-22的值是否一定能被13整除,为什么?(“华罗庚金杯”邀请赛试题)解题思想:先把5+7-22构造成均能被13整除的两个代数式的和,再进行判断.【例5】如果将正整数M 放在正整数左侧,所得到的新数可被7整除,那么称M 为的“魔术数”(例如:把86放在415左侧,得到86 415能被7整除,所以称86为415的魔术数),求正整数的最小值,使得存在互不相同的正整数,,…,,满足对任意一个正整数,在,,…,中都至少有一个为的“魔术数”.(2013年全国初中数学竞赛试题)解题思想:不妨设(=1,2,3,…,;=0,1,2,3,4,5,6)至少有一个为的“魔术数”.根据题中条件,利用(是的位数)被7除所得余数,分析的取值.13456ab a b 13456ab a b a b a b c a b c a b c a b c m m n 1a 2a n a m 1a 2a n a m 7i i a k t =+i n t m 10k i a m + k m i【例6】一只青蛙,位于数轴上的点,跳动一次后到达,已知,满足|-|=1,我们把青蛙从开始,经-1次跳动的位置依次记作:,,,…,.⑴ 写出一个,使其,且++++>0;⑵ 若=13,=2 012,求的值;⑶ 对于整数(≥2),如果存在一个能同时满足如下两个条件:①=0;②+++…+=0.求整数(≥2)被4除的余数,并说理理由.(2013年“创新杯”邀请赛试题)解题思想:⑴.即从原点出发,经过4次跳动后回到原点,这就只能两次向右,两次向左.为保证++++>0.只需将“向右”安排在前即可.⑵若=13,=2 012,从经过1 999步到.不妨设向右跳了步,向左跳了步,则,解得可见,它一直向右跳,没有向左跳.⑶设同时满足两个条件:①=0;②+++…+=0.由于=0,故从原点出发,经过(-1)步到达,假定这(-1)步中,向右跳了步,向左跳了步,于是=-,+=-1,则+++…+=0+()+()+…()=2(++…+)-[()+()+…+()]=2(++…+)-.由于+++…+=0,所以(-1)=4(++…+).即4|(-1).k a 1k a +k a 1k a +1k a +k a 1a n n A 1a 2a 3a n a 5A 150a a ==1a 2a 3a 4a 5a 1a 2000a 1000a n n n A 1a 1a 2a 3a n a n n 150a a ==1a 2a 3a 4a 5a 1a 2000a 1a 2000a x y 1999132012x y x y +=⎧⎨+-=⎩19990x y =⎧⎨=⎩n A 1a 1a 2a 3a n a 1a k k a k k x k y k a k x k y k x k y k 1a 2a 3a n a 22x y -33x y -n n x y -1x 2x n x 22x y +33x y +n n x y +2x 3x n x ()12n n -1a 2a 3a n a n n 2x 3x n x n n能力训练A 级1.某班学生不到50人,在一次测验中,有的学生得优,的学生得良,的学生得及格,则有________人不及格.2.从1到10 000这1万个自然数中,有_______个数能被5或能被7整除.(上海市竞赛试题)3.一个五位数能被11与9整除,这个五位数是________.4.在小于1 997的自然数中,是3的倍数而不是5的倍数的数的个数是()A .532B .665C .133D .7985.能整除任意三个连续整数之和的最大整数是()A .1B .2C .3D .6(江苏省竞赛试题)6.用数字1,2,3,4,5,6组成的没有重复数字的三位数中,是9的倍数的数有()A .12个B .18个C .20个D .30个(“希望杯”邀请赛试题)7.五位数是9的倍数,其中是4的倍数,那么的最小值为多少?(黄冈市竞赛试题)8.1,2,3,4,5,6每个使用一次组成一个六位数字,使得三位数,,,能依次被4,5,3,11整除,求这个六位数.(上海市竞赛试题)9.173□是个四位数字,数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9,11,6整除.”问:数学老师先后填入的这3个数字的和是多少?(“华罗庚金杯”邀请赛试题)171312398ab abcde abcd abcde abcdef abc bcd cde defB 级1.若一个正整数被2,3,…,9这八个自然数除,所得的余数都为1,则的最小值为_________,的一般表达式为____________.(“希望杯”邀请赛试题)2.已知,都是正整数,若1≤≤≤30,且能被21整除,则满足条件的数对(,)共有___________个. (天津市竞赛试题)3.一个六位数能被33整除,这样的六位数中最大是__________.4.有以下两个数串同时出现在这两个数串中的数的个数共有( )个.A .333B .334C .335D .3365.一个六位数能被12整除,这样的六位数共有()个.A .4B .6C .8D .126.若1 059,1 417,2 312分别被自然数除时,所得的余数都是,则-的值为(). A .15B .1C .164D .1747.有一种室内游戏,魔术师要求某参赛者相好一个三位数,然后,魔术师再要求他记下五个数:,,, ,,并把这五个数加起来求出和N .只要讲出的大小,魔术师就能说出原数是什么.如果N =3 194,请你确定.(美国数学邀请赛试题)8.一个正整数N 的各位数字不全相等,如果将N 的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N ,则称N 为“拷贝数”,试求所有的三位“拷贝数”.(武汉市竞赛试题)a a a m n m n mn m n 1989x y 1,3,5,7,,1991,1993,1995,1997,19991,4,7,10,,1987,1990,1993,1996,1999⎧⎨⎩ 1991ab n m n m abc acb bac bca cab cba N abc abc9.一个六位数,如将它的前三位数字与后三位数字整体互换位置,则所得的新六位数恰为原数的6倍,求这个三位数.(“五羊杯”竞赛试题)10.一个四位数,这个四位数与它的各位数字之和为1 999,求这个四位数,并说明理由.(重庆市竞赛试题)11.从1,2,…,9中任取个数,其中一定可以找到若干个数(至少一个,也可以是全部),它们的和能被10整除,求的最小值.(2013年全国初中数学竞赛试题)n n专题02 数的整除性例1 267 提示:333-66=267.例2 C 提示:关于②的证明:对于a ,b 若至少有一个是3的倍数,则ab 是3的倍数.若a ,b 都不是3的倍数,则有:(1)当a =3m +1,b =3n +1时,a -b =3(m -n );(2)当a =3m +1,b =3n +2时,a +b =3(m +n +1);(3)当a =3m +2,b =3n +1时,a +b =3(m +n +1);(4)当a =3m +2,b =3n +2时,a -b =3(m -n ).例3 a =8.b =0提示:由9|(19+a +b )得a +b =8或17;由11|(3+a -b )得a -b =8或-3.例4 设x ,y ,z ,t 是整数,并且假设5a +7b -22c =x (7a +2b +3c ) +13(ya +zb +tc ).比较上式a ,b ,c 的系数,应当有,取x =-3,可以得到y =2,z =1,t =-1,则有13 (2a +b -c )-3(7a +2b +3c )=5a +7b -22c .既然3(7a +2b +3c )和13(2a +b -c )都能被13整除,则5a +7b -22c 就能被13整除.例5 考虑到“魔术数”均为7的倍数,又a 1,a 2,…,a n 互不相等,不妨设a 1 <a 2<…<a n ,余数必为1,2,3,4,5,6,0,设a i =k i +t (i =1,2,3,…,n ;t =0,1,2,3,4,5,6),至少有一个为m 的“魔术数”,因为a i ·10k +m (k 是m 的位数),是7的倍数,当i ≤b 时,而a i ·t 除以7的余数都是0,1,2,3,4,5,6中的6个;当i =7时,而a i ·10k 除以7的余数都是0,1,2,3,4,5,6这7个数字循环出现,当i =7时,依抽屉原理,a i ·10k 与m 二者余数的和至少有一个是7,此时a i ·10k +m 被7整除,即n =7.例6 (1)A 5:0,1,2,1,0.(或A 5:0,1,0,1,0) (2)a 1000=13+999=1 012. (3)n 被4除余数为0或1.A 级1.1 2.3 143 3.39 798 4.A 5.C 6.B7.五位数abcde =10×abcd +e .又∵abcd 为4的倍数.故最值为1 000,又因为abcde 为9的倍数.故1+0+0+0+e 能被9整除,所以e 只能取8.因此abcde 最小值为 10 008.8.324 561提示:d +f -e 是11的倍数,但6≤d +f ≤5+6=11,1≤e ≤6,故0≤d +f -e ≤10,因此d +f -e =0,即5+f =e ,又e ≤d ,f ≥1,故f =l ,e =6,9.19 提示:1+7+3+□的和能被9整除,故□里只能填7,同理,得到后两个数为8,4.B 级1.2 521 a =2 520n +1(n ∈N +)2.573.719 895提示:这个数能被33整除,故也能被3整除.于是,各位数字之和(x +1+9+8+9+y )也能被3整除,故x +y 能被3整除.4.B5.B6.A 提示:两两差能被n 整除,n =179,m =164.7.由题意得acb +bac +bca +cab +cba =3 194,两边加上a bc .得222(a +b +c )=3194+a bc ∴222(a +b +c ) =222×14+86+a bc .则a bc +86是222的倍数.⎪⎩⎪⎨⎧-=+=+=+2213371325137t x z x y x且a +b +c >14.设abc +86=222n 考虑到abc 是三位数,依次取n =1,2,3,4.分别得出abc 的可能值为136,358,580,802,又因为a +b +c >14.故abc =358.8.设N 为所求的三位“拷贝数”,它的各位数字分别为a ,b ,c (a ,b ,c 不全相等).将其数码重新排列后,设其中最大数为abc ,则最小数为cba .故N = abc -cba =(100a +10b +c )- (100c +10b +a )=99(a -c ).可知N 为99的倍数.这样的三位数可能是198,297,396,495,594,693,792,891,990.而这9个数中,只有954- 459=495.故495是唯一的三位“拷贝数”.9.设原六位数为abcdef ,则6×abcdef =defabc ,即6×(1000×abc +def )=1000×def +abc ,所以994×def -5 999×abc ,即142×def =857×abc , ∵(142,857)=1,∴ 142|a bc ,857|def ,而abc ,def 为三位数,∴a bc =142,def =857,故abcdef =142857.10.设这个数为abcd ,则1 000a +100b +10c +d +a +b +c +d =1 999,即1 001a +101b +11c +2d =1 999,得a =1,进而101b +11c +2d =998,101b ≥998-117-881,有b =9,则11c +2d =89,而0≤2d ≤18,71≤11c ≤89,推得c =7,d =6,故这个四位数是1 976.11.当n =4时,数1,3,5,8中没有若干个数的和能被10整除.当n =5时,设a 1a 2,…,a 5是1,2,…,9中的5个不同的数,若其中任意若干个数,它们的和都不能被10整除,则中不可能同时出现1和9,2和8,3和7,4和6,于是中必定有一个为5,若中含1,则不含9,于是,不含,故含6;不含,故含7;不含,故含8;但是5+7+8=20是10的倍数, 矛盾. 若中含9, 则不含1, 于是不含故含4; 不含故含3; 不含故含2; 但是是10的倍数, 矛盾. 综上所述,n 的最小值为5125,,,a a a 125,,,a a a 125,,,a a a 4(45110)⨯++=3(36110)⨯++=2(21710)⨯++=125,,,a a a 6(69520),⨯++=7(74920),⨯++=8(89320),⨯++=53210++=专题03 从算术到代数阅读与思考算术与代数是数学中两门不同的分科,它们之间联系紧密,代数是在算术中“数”和“运算”的基础上发展起来的.用字母表示数是代数的一个重要特征,也是代数与算术的最显著的区别.在数学发展史上,从确定的数过渡到用字母表示数经历了一个漫长的过程,是数学发展史上的一个飞跃.用字母表示数有如下特点:1.任意性即字母可以表示任意的数.2.限制性即虽然字母表示任意的数,但字母的取值必须使代数式或实际问题有意义.3.确定性即在用字母表示的数中,如果字母取定某值,那么代数式的值也随之确定.4.抽象性即与具体的数值相比,用字母表示数具有更抽象的意义.例题与求解【例1】研究下列算式,你会发现什么规律:1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52…请将你找到的规律用代数式表示出来:___________________________________(山东菏泽地区中考试题)解题思路:观察给定的几个简单的、特殊的算式,寻找数字间的联系,发现一般规律,然后用代数式表示.【例2】下列四个数中可以写成100个连续自然数之和的是( )A.1627384950B. 2345678910C. 3579111300D. 4692581470(江苏省竞赛试题)解题思路:设自然数从a +1开始,这100个连续自然数的和为(a +1)+(a +2)+ …+(a +100)=100a +5050,从揭示和的特征入手.【例3】设A =+…++,求A 的整数部分.(北京市竞赛试题)解题思路:从分析A 中第n 项的特征入手.221212++⨯222323++⨯223434+⨯221003100410031004+⨯221004100510041005+⨯22(1)(1)n n n n ++⨯+【例4】现有a 根长度相同的火柴棒,按如图①摆放时可摆成m 个正方形,按如图②摆放时可摆成2n 个正方形.(1)用含n 的代数式表示m ;(2)当这a 根火柴棒还能摆成如图③所示的形状时,求a 的最小值.(浙江省竞赛试题)解题思路:由图①中有m 个正方形、图②中有2n 个正方形,可设图③中有3p 个正方形,无论怎样摆放,火柴棒的总数相同,可建立含m ,n ,p 的等式.【例5】 化简.(江苏省竞赛试题)解题思路:先考察n =1,2,3时的简单情形,然后作出猜想,这样,化简的目标更明确.【例6】观察按下列规律排成的一列数:,,,,,,,,,,,,,,,,…,(*)(1)在(*)中,从左起第m 个数记为F (m )= 时,求m 的值和这m 个数的积.(2)在(*)中,未经约分且分母为2的数记为c ,它后面的一个数记为d ,是否存在这样的两个数c 和d ,使cd =2001000,如果存在,求出c 和d ;如果不存在,请说明理由.解题思路:解答此题,需先找到数列的规律,该数列可分组为(),(,),(,,),(,,,),(,,,,),…. 个个个n n n 9199999999+⨯1112211322311423324115243342511622001111221132231142332411524334251能力训练A 级1.已知等式:2+=22×,3+=32×,4+=42×,…,,10 +=102×(a ,b 均为正整数),则a +b =___________________.(湖北省武汉市竞赛试题)2.下面每个图案都是若干个棋子围成的正方形图案,它的每边(包括顶点)都有n (n ≥2)个棋子,每个图案棋子总数为s ,按此规律推断s 与n 之间的关系是______________.n =2n =3 n =4 s =4 s =8 s =12(山东省青岛市中考试题)3.规定任意两个实数对(a ,b )和(c ,d ), 当且仅当a =c 且b =d 时,(a ,b )=(c ,d ).定义运算“⊗”:(a ,b )⊗(c ,d )=(ac -bd ,ad +bc ).若(1,2)⊗(p ,q )=(5,0),则p +q =________.(浙江省湖州市数学竞赛试题)4.用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖______块,第n 个图形中需要黑色瓷砖______块(含n 代数式表示).(广东省中考试题)-=5.如果a 是一个三位数,现在把1放在它的右边得到一个四位数是()A.1000a +1B. 100a +1C. 10a +1D. a +1 (重庆市竞赛试题)6.一组按规律排列的多项式:a +b ,a 2—b 3,a 3+b 5,a 4—b 7,…,其中第十个式子是( )A. a 10+b 19B. a 10-b 19C. a 10-b 17D. a 10-b 21(四川省眉山市竞赛试题)7.有三组数x 1,x 2,x 3;y 1,y 2,y 3;z 1,z 2,z 3,它们的平均数分别是a ,b ,c ,那么x 1+y 1-z 1,x 2+y 2-z 2,x 3+y 3-z 3的平均数是( )A. B. C. a +b -c D. 3(a +b -c )(希望杯邀请赛试题)8.为了绿化环境,美化城市,在某居民小区铺设了正方形和圆形两块草坪,如果两块草坪的周长相同,那么它们的面积S 1、S 2的大小关系是( )(东方航空杯竞赛试题)A . S 1>S 2B .S l <S 2C .S 1=S 2D .无法比较9.一个圆形纸板,根据以下操作把它剪成若干个扇形面:第一次将圆纸等分为4个扇形面;第二次23233838415415a b a b3a b c ++3a b c +-将上次得到的一个扇形面再等分成4个小扇形;以后按第二次剪裁法进行下去.(1(2)请你推断,能否按上述操作剪裁出33个扇形面?为什么?(山东省济南市中考试题)10.某玩具工厂有四个车间,某周是质量检查周,现每个都原a (a >0)个成品,且每个每天都生产b (b >0)个成品,质检科派出若干名检验员星期一、星期二检验其中两个原的和这两天生产的所成品,然后,星期三至星期五检验另两个原的和本生产的所成品,假定每个检验员每天检验的成品数相同.(1)这若干名检验员1天检验多少个成品(用含a 、b 的代数式表示);(2)试求出用b 表示a 的关系式;(3)若1名质检员1天能检验b 个成品,则质检科至少要派出多少名检验员?(广东省广州市中考试题)B 级1. 你能很快算出19952吗?为了解决这个问题,我们考察个位上的数字为5的自然数的平方,任意一个个位数为5的自然数可写成(10·n +5)(n 为自然数),即求(10·n +5)2的值(n 为自然数),分析n =1,n =2,n =3,…这些简单情况,从中探索其规律,并归纳猜想出结论(在下面的空格内填上你的探索结果).(1)通过计算,探索规律.152=225可写成100×1×(1+1)+25;252=625可写成100×2×(2+1)+25;352=1225可写成100×3×(3+1)+25;452=2025可写成100×4×(4+1)+25;...752=5625可写成______;852=7225可写成______;(2)从第(1)题的结果,归纳猜想得(10n +5)2=______;(3)根据上面的归纳猜想,请算出19952=______.(福建省三明市中考试题)542.已知12+22+32+…+n 2=n (n +1)(2n +1),计算:(1)112+122+…+192=_____________________;(2)22+42+…+502=__________________.3.已知n 是正整数,a n =1×2×3×4×…×n ,则++…++=_______________.(“希望杯”邀请赛训练题)4.已知17个连续整数的和是306,那么,紧接着这17个数后面的那17个整数的和为__________.(重庆市竞赛试题)5.A ,B 两地相距S 千米,甲、乙的速度分别为a 千米/时、b 千米/时(a >b ),甲、乙都从A 地到B 地去开会,如果甲比乙先出发1小时,那么乙比甲晚到B 地的小时数是( )原来零售价的b %出售,那么调价后的零售价是( )A .m (1+a %)(1-b %)元B .m a %(1-b %)元C .m (1+a %)b %元D .m (1+a %b %)元(山东省竞赛试题)7.如果用a 名同学在b 小时内共搬运c 块砖,那么个以同样速度所需要的数是( )A .B .C .D .(“希望杯”邀请赛试题)8.甲、乙两班的人数相等,各有一些同学参加课外天文小组,其中甲班参加天文小组的人数是乙班未参加人数的,乙班参加天文小组的人数是甲班未参加人数的.问甲班未参加的人数是乙班未参加人数的几分之几?9.将自然数1,2,3,…,21这21个数,任意地放在一个圆周上,证明:一定有相邻的三个数,它们的和不小于33.(重庆市竞赛试题)10.有四个互不相同的正整数,从中任取两个数组成一组,并在同一组中用较大的数减去较小的数, 再将各组所得的数相加,其和恰好等于18.若这四个数的乘积是23100,求这四个数.(天津市竞赛试题)1613a a 24a a 20102012a a 20112013a a 22c a b 2c ab 2ab c 22a b c1315专题03 从算术到代数例1 例2 A例3 原式= = 故其整数部分为2008例4 设图③中含有个正方形. (1) 由,得(2) 由得,因均是正整数, 所以当时,此时例5解法1: 时,;时, ,猜想: 个, 计算过程类似于解法2: 时,时, 猜想: 原式验证如下:反思结论必为一个数的平方形式, 不妨设,得另一种解法解法3: 原式例6 (1)(※) 可分组为可知各组数的个数依次为.按其规律应在第组中, 该组前面共有2(2)1(1)n n n ++=+1111111112(1)2()2()2(2()223341003100410041005+-++-++-+++-++- 121004(1)1005⨯+-3p 3152m n +=+513n m +=315273,a m n p =+=+=+325177m n p --==,,m n p 17,10m n ==7,p =317152a =⨯+=1n =29919811910010⨯+=+==2n =49999199(1001)991999900991991000010⨯+=-⨯+=-+==2999999199910n n n n ⨯+=个个个2n =29999991999(101)9991999999000999199910n nn n n n n n n n n ⨯+=-⨯+=-+=个个个个个个个个个1n =2991999109(999)1091010101010⨯+=⨯++=⨯++=⨯+=⨯=2n =49999199999910099(999999)1009910010010010010⨯+=⨯++=⨯++=⨯+=⨯=210n =9999991999999999100099999999999910n n n n n n n n n n n ⨯+=⨯++=⨯++个个个个个个个个个个299910101010n n n nn =⨯=⨯=个999n a =个22222(1)a 21(1)(10)10n na a a a a =+++=++=+==112123123412345(,,,),(,,,),(,,,,),,1213214321543211,2,3, 2200120021232002(,,,,2002200120001个数. 故当时,. 又因各组的数积为1, 故这2003003个数的积为(2) 依题意, 为每组倒数第2个数, 为每组最后一个数, 设它们在第n 组, 别.即,得,A 级1. 100 提示: 中, 根据规律可得故2.3. 提示: 根据题中定义的运算可列代数式,可得故4. 105. C6. B7. B8. B9.(1) 1013 (2) 不能, 33不符合10. (1) 或或 (2) 由,得(3)B 级1. (1) (2) (3)2. (1) (2) 提示: 原式3.提示: 由可得, 123420012003001+++++= 2()2001F m =200300122003003m =+=121200220012003001⨯=c d 1,,21n n c d -==(1)20010002n n -∴=(1)400200020012000n n -==⨯2001,n ∴=20011200022c -==20011d =21010a ab b+=⨯210,10199,a b ==-=1099109a b +=+=4(1)(2)s n n =-≥1-25,20p q q p -=+=1,2,p q ==-1p q +=-31n +31n +31n +2a b +2(5)3a b +32b +2(2)2(5)23a b a b ++=4a b =2(2)47.5825a b b +÷=≈1007(71)25,1008(81)25⨯⨯++⨯⨯++100(1)25n n ⨯++39800252085221002224(1225)=⨯+++ 201140261234n a n =⨯⨯⨯⨯⨯原式4. 595 提示: 设17个连续整数为且,它后面紧接的17个连续自然数应为,可得它们之和为5955. D6. C7. D 提示: 每一名同学每小时所搬砖头为块,名同学按此速度每小时所搬砖头为块.8.用a ,b 分别表示甲、乙两班参加天文小组的人数,m ,n 分别表示甲、乙两班未参加天文小组的人数,由a +m =b +n 得m -b =n -a ,又a =n ,b =m ,故m -m =n -n ,.9.证明:设任意分法将圆周上的每相邻三个数分为一组,他们三个数的和分别为a 1,a 2,a 3,a 4,a 5,a 6,a 7(均为自然数),且a 1+a 2+a 3+a 4+a 5+a 6+a 7=①.假设a 1,a 2,a 3,a 4,a 5,a 6,a 7中没一个数都小于33,则有a 1+a 2+a 3+a 4+a 5+a 6+a 7<231.与①矛盾,所以a 1,a 2,a 3,a 4,a 5,a 6,a 7中至少有一个不小于33,即一定有相邻的三个数,它们的和不小于33.10.设四个不同整数为a 1,a 2,a 3,a 4(a 1>a 2>a 3>a 4),则(a 1-a 2)+(a 1-a 3)+(a 1-a 4)+(a 2-a 3)+(a 2-a 4)+(a 3-a 4)=18,即3(a 1-a 4)+(a 2-a 3)=18.又因3(a 1-a 4),18均为3的倍数,故a 2-a 3也是3的倍数,a 2-a 3<a 1-a 4,则a 2-a 3=3,a 1-a 4=5,a 1-a 2=1,a 3-a 4=1,又a 1a 2a 3a 4=23100=2×2×3×5×5×7×11.从而可得a 1=15,a 2=14,a 3=11,a 4=10.111112334452011201220122013=+++++⨯⨯⨯⨯⨯ 111111112011233420122013220134026=-+-++-=-= ,1,,16,m m m ++ (1)(16)306m m m +++++= 17,18,19,,33m m m m ++++ cabc 2c ab 1315151356m n =()211212312⨯+=专题4 初识非负数阅读与思考绝对值是初中代数中的一个重要概念,引入绝对值概念之后,对有理数、相反数以及后续要学习的算术根可以有进一步的理解;绝对值又是初中代数中的一个基本概念,在求代数式的值、代数式的化简、解方程与解不等式时,常常遇到含有绝对值符号的问题,理解、掌握绝对值概念应注意以下几个方面:1.去绝对值符号法则2.绝对值的几何意义从数轴上看,即表示数的点到原点的距离,即代表的是一个长度,故表示一个非负数,表示数轴上数、数的两点间的距离.3.绝对值常用的性质① ② ③ ④⑤ ⑥例题与求解【例1】已知,且,那么 .(祖冲之杯邀请赛试题)解题思路:由已知求出、的值,但要注意条件的制约,这是解本题的关键.【例2】已知、、均为整数,且满足,则( )A .1B .2C .3D .4(全国初中数学联赛试题)解题思路:≥0,≥0,又根据题中条件可推出,中一个为0,一个为1.()()()0000<=>⎪⎩⎪⎨⎧-=a a a a a a a a a a b a -a b 0≥a 222a a a==b a ab ⋅=()0≠=b ba b ab a b a +≤+ba b a -≥-3,5==b a a b b a -=-=+b a a b a b b a -=-a b c 11010=-+-ca ba =-+-+-a c cb b a 10b a -10c a -b a -c a -【例3】已知+++…++=0,求代数式…-的值.解题思路:运用绝对值、非负数的概念与性质,先求出…,的值,注意的化简规律.【例4】设、、是非零有理数,求的值.解题思路:根据、、的符号的所有可能情况讨论,化去绝对值符号,这是解本例的关键.(希望杯邀请赛试题)【例5】设是六个不同的正整数,取值于1,2,3,4,5,6.记,求S 的最小值.(四川省竞赛试题)解题思路:利用绝对值的几何意义建立数轴模型.【例6】已知,且,求的值.(北京市迎春杯竞赛试题)解题思路:由知,即,代入原式中,得,再对的取值,分情况进行讨论.11-x 22-x 33-x 20022002-x 20032003-x ---321222x x x 2003200222x x +,,,321x x x 20032002,x x nn 221-+a b c abcabcbc bc ac ac ab ab c c b b a a ++++++a b c 654321,,,,,x x x x x x ||||||||||||166554433221x x x x x x x x x x x x S -+-+-+-+-+-=55)(2+=+++b b b a 012=--b a ab 012=--b a 012=--b a 12-=a b 4242)13(2+=++-a a a 13-aA 级1.若为有理数,那么,下列判断中:(1)若,则一定有;(2)若,则一定有;(3)若,则一定有;(4)若,则一定有;正确的是 .(填序号)2.若有理数满足,则.3.若有理数在数轴上的对应的位置如下图所示,则化简后的结果是 .4.已知正整数满足,,且,则的值是 .(四川省竞赛试题)5.已知且,那么 .6.如图,有理数在数轴上的位置如图所示:则在中,负数共有( )A .3个 B .1个 C .4个 D .2个(湖北省荆州市竞赛试题)7. 若,且,那么的值是( )A .3或13B .13或-13C .3或-3D .-3或-138.若是有理数,则一定是( )A .零B .非负数C .正数D .负数9.如果,那么的取值范围是( )n m ,n m =n m =n m >n m >n m <n m <n m =22)(n m -=p n m ,,1=++pp nn mm =mnpmnp22c b a ,,b a c a c -+-+-1b a ,022=-+-b b 0=-+-b a b a b a ≠ab ,3,2,1===c b a c b a >>()=-+2c b a b a ,4,2,,,2,--+---+b a b a a b a b b a 5,8==b a 0>+b a b a -m m m -022=-+-x x xA .B .C .D .10.是有理数,如果,那么对于结论(1)一定不是负数;(2)可能是负数,其中( )A .只有(1)正确B .只有(2)正确C .(1)(2)都正确D .(1)(2)都不正确(江苏省竞赛试题)11.已知是非零有理数,且,求的值.12.已知是有理数,,且,求的值.(希望杯邀请赛试题)B 级1.若,则代数式的值为 .2.已知 ,那么的值为 .3.数在数轴上的位置如图所示,且,则 .(重庆市竞赛试题)4.若,则的值等于(五城市联赛试题)2>x 2<x 2≥x 2≤x b a ,b a b a +=-a b c b a ,,0=++c b a ac a c cb c b ba b a ++d c b a ,,,16,9≤-≤-d c b a 25=+--d c b a c d a b ---52<<x xx xx x x +-----22550212=-+-ab a )2002)(2002(1)2)(2(1)1)(1(11++++++++++b a b a b a aba 21=+a =+73a 0>ab abab bb aa -+5.已知,则 .(希望杯邀请赛试题)6.如果,那么代数式在≤≤15的最小值( ) A .30 B .0 C .15 D .一个与有关的代数式7.设k 是自然数,且,则等于( ) A .3 B .2 C . D .(创新杯邀请赛试题)8.已知,那么的最大值等于( )A .1B .5C .8D .9(希望杯邀请赛试题)9.已知都不等于零,且,根据的不同取值,有( )A .唯一确定的值 B .3种不同的值 C .4种不同的值 D .8种不同的值10.满足成立的条件是( )A .B .C .D .(湖北省黄冈市竞赛试题)11.有理数均不为0,且,设,试求代数式的值.(希望杯邀请赛训练题)06)5(22=-+++y y x =++-32251x x xy y 150<<p 1515--+-+-p x x p x p x p 0=+b ka 21-+-ba b ak 33+k22-40≤≤a a a -+-32c b a ,,abcabcc c b b a a x +++=c b a ,,x b a b a +=-0≥ab 1>ab 0≤ab 1≤ab c b a ,,0=++c b a ba c bc b cb a x +++++=20009919+-x x专题04 初识非负数例1 -2或-8例2 B 提示:|a -b |,|a -c |中必有一个为0,一个为1,不妨设|a -b |=0,|a -c |=1,则a =b ,|b -c |=1,原式=0+1+1=2.例3 6 提示:由题意得x 1=1,x 2=1,…,x 2003=2003,原式=2-22-23-…-22002-22003=22003-22002-…-23-22+2=22002(2-1)-22001-…-22+2=22002-22001-…-22+2=…=24-23-22+2=23(2-1)-22+2=23-22+2=6.例4 -1或7 提示:分下列四种情形讨论:(1)若a ,b ,c 均为正数,则ab >0,ac >0,bc >0,原式==7;(2)若a ,b ,c 中恰有两个正数,不失一般性,可设a >0,b >0,c <0,则ab >0,ac <0,bc <0,abc <0,则原式=-1;(3)若a ,b ,c 中只有一个正数,不失一般性,可设a >0,b <0,c <0,则ab <0,ac <0,bc >0,abc >0,则原式=-1;(4)若a ,b ,c 均为负数,则ab >0,bc >0,ac >0,abc <0,原式=-1.例5 根据绝对值的几何意义,题意可理解为“从数轴上点1出发,每次走一个整点,分别到达点2,点3,点4,点5,点6,最后回到点1,最少路程为多少?”为避免重复,从左到右走到6,再从右到左走到1为最短路线,取x 1=1,x 2=2,x 3=3,x 4=4,x 5=5,x 6=6,则S =1+1+1+1+1+5=10,(也可以取x 1=1,x 2=4,x 3=6,x 4=5,x 5=3,x 3=2). 例6 根据|2a -b -1|=0知2a -b -1=0,即b =2a -1.代人原式中,得(3a -1)2+|2a +4|=2a +4.对3a -1的取值分情况讨论为:(1)当3a -1>0,即a >时,∵(3a -1)2>0,|2a +4|>0,2a +4>0.∴(3a -1)2+|2a+4|>2a +4,矛盾.(2)当3a -1<0,即a <时,①若2a +4≤0,而(3a -1)2+|2a +4|>0,矛盾.②若2a +4>0,则(3a -1)2+|2a +4|>2a +4,矛盾.(3)当3a -1=0,即时,(3a -1)2+|2a +4|=2a +4成立,得b =-.综上可知a =,b =-,ab =-.A 级1.(4) 2.-3.1-2c +b 提示:-1<c <0<a <b ∴c -1<0,a -c >0,a -b <0.∴原式=1-c +a -c +b -a =1-2c +b .4.2 提示:原式变形为|b -2|=2-b ,|a -b |=b -a .∴b -2≤0,a -b ≤0.又∵a ≠b ,∴a <b ≤2.又∵a ,b 为正整数,故a =1,b =2.5.4 6.A 7.A 8.B 9.D 10.A11.-1 提示:a ,b ,c 中不能全为正值,也不能全为负数,只能是一正二负或二正一负,原式值都为-1.12.∵|a -b |<9,|c -d |≤16,故|a -b |+|c -d |<25.又∵25=|a -b -c +d |=|(a -b )+(d -c )|≤|a -b |+|c -d |<25,∴|a -b |=9,|c -d |=16,故原式=9-16=-7.B 级1.1 2. 3.2 4.1或-3 5.-946.C 提示:利用绝对值的几何意义,结合数轴进行分析,当x 取15时,原式有最小值15.131313a 1313131923200320047.A 提示:b =-ka 且k >0.故|b | =k |a |,代人原式中,原式=.当a >0时,原式=;当a <0时,原式=.故原式=3.8.B 提示:分0≤a ≤2,2<a ≤3,3<a ≤4三种情况讨论.9.B 10.C11.提示:a ,b ,c 中不能全同号,必一正二负或二正一负,得a =-(b +c ),b =-(c +a ),c =-(a+b ),即,,,∴,,中必有两个同号,另一个符号与其相反,即其值为两个+1,一个-1或两个-1,一个+1,1=1,原式=1902.|a -k |a ||+||a |+2ka |k |a ||(1)|+|(2+1)|(1)+(2+1)==3k a k a k a k a ka ka--|(1)|+|(21)|(1)(21)==3k a k a k a k a ka ka+--+----1a b c =-+1b a c =-+1c b a =-+||a b c +||b a c +||c b a+1 a+bAB=BC专题05 数与形的第一次联姻例1 12 提示:点A 表示数为3或-3,满足条件的点B 共有4个.例2 B 提示:由数轴知a <-1<0<b <c <1.∴abc <0,故①正确;由绝对值的几何意义知②正确;a -b <0,b -c <0,c -a >0,故(a -b )(b-c )(c -a )>0,③正确;|a |>1,1-bc <1,|a |>1-bc ,④不正确.例3 原点O 在线段AC 上.例4 ①3,3,4 ②|x +1| 1或-3 ③-1≤x ≤2 ④997 002例5 如图,用A ,B ,C ,D ,E 点顺时针排列依次表示一至五所小学,且顺次向邻校调给,,,,台电脑.依题意得:7+-=11+-=3+-=14+-=15+-=10.得=-3,=-2,=-9,=-5.本题要求y =||+||+||+||+||的最小值,依次代入,可得y =||+|-3|+|-2|+|-9|+|-5|.由绝对值几何意义可知,当=3时,y 有最小值12.此时有=0,=1,=-6,=-2.所以,一小向二小调出3台,三小向四小调出1台,五小向四小调出6台,一小向五小调出2台,这样调动的电脑总台数最小为12台.例6 (1)A ,B ,C 三点在数轴上同时向正方向运动.当点A 运动到点C 左侧时,∵线段AC =6,∴6+6t =30+18+3t ,解得t =14.当点A 运动到点C 右侧时,∵线段AC -6,∴6t -6=30+18+3t ,解得t =18.综上可知,t 为14或18时,线段AC =6.(2)当点A ,B ,C 三个点在数轴上同时向正方向运动t 秒后,点A ,B ,C 在数轴上表示的数分别为:6t -30,10+3t ,18+3t .(3)∵P ,M ,N 分别为OA ,OB ,OC 的中点.∴P ,M ,N 三个点在数轴上表示的数分别为:,,.且点M 始终在点N 左1x 2x 3x 4x 5x 1x 2x 2x 3x 3x 4x 4x 5x 5x 1x 2x 1x 3x 1x 4x 1x 5x 1x 1x 2x 3x 4x 5x 1x 1x 1x 1x 1x 1x 2x 3x 4x 5x 2306-t 2310t +2318t +侧.①若点P 在M ,N 左边,则PM =-=20-1.5t ,PN =-=24-1.5t .∵2PM -PN =2,∴2(20-1.5t )-(24-1.5t )=2,∴t =.②若点P 在M ,N 之间,则PM =-=-20+1.5t ,PN =-=24-1.5t .∵2PM -PN =2,∴2(-20+1.5t )-(24-1.5t )=2,∴t =.③若点P 在M ,N 右边,则PM =-=-20+1.5t ,PN =-=-24+1.5t .∵2PM -PN =2,∴2(-20+1.5t )-(-24+1.5t )=2,∴t =12.但此时PM =-20+1.5t <0,所以此情况不成立 .综上可知,t =或时符合题意.A 级1.2m 2.2或83., 提示:AB 的长为=,对应的数为3-=,点A 移动的距离为-(-3)=.4.b <-a <a <|b | 5.C 6.B 7.C 8.C 9. 510.-30.06 提示:设点表示的有理数为x ,则,,…,点所表示的有理数分别为x -1,x -1+2,x -1+2-3,…,x -1+2-3+4-…-99+100.由题意得x -1+2-3+4-…-99+100=19.94.2310t +2306-t 2318t +2306-t 3282306-t 2310t +2318t +2306-t 3442306-t 2310t +2306-t 2318t +32834447419()221--⎪⎭⎫ ⎝⎛-25A '2521⨯47474190K 1K 2K 100K11.(1)M 点对应的数为=40. (2)相遇时间为=12秒,C 点对应的数为100-12×6=28. (3)追击时间为60秒,D 点对应的数为-260.B 级1.-2 2.3.24或40. 提示:设N 点对应的数为x .根据绝对值的几何意义可知|x |=4|x -30|.对x 分情况讨论得出x =24或x =40.4.b ≤x ≤a 5.A 6.C 7.D 8.C9.原式化为|x +2|+|1-x |+|y -5|+|1+y |=9.∵|x +2|+|1-x |≥3,当-2≤x ≤1时等号成立;|y -5|+|1+y |≥6,当-1≤y ≤5时等号成立.∴x +y 的最大值=1+5=6;x +y 的最小值=-2-1=-3.10.调运后各仓库的存货量都相等,应为×(50+84+80+70+55+45)=64吨.设A 库运往B 库吨,B 库运往C 库吨,C 库运往D 库吨,D 库运往E 库吨,E 库运往F库吨,F 库运往A 库吨,故有:50+-=84+-=80+-=70+-=55+-=45+-=64.所以,=-14,=+20=+6,=+16=+22,=+6=+28,=-9=+19.若使调运量最小,则有y =||+||+||+||+||+||=||+|-14|+|+6|+|+22|+|+28|+|+19|取最小值.而-28<-22<-19<-6<0<14,所以,当-19≤-6时,y 有最小值,此时,-33-20,-130,316,922,013.当=-19时,=-33, =-13,=3, =9, =0.即A 库运往B 库-33吨,亦即B 库运往A 库33吨.B 库运往C 库-13吨,亦即C 库运往B 库13吨.C 库运往D 库3吨,D 库运往E 库9吨,E 库运往F 库0吨,F 库运往A 库19吨,总调运量为77吨.11.首先注意8个连续的点,例如0,1,2,3,4,5,6,7.从中可取前4个点0,1,2,3,其中任210020+-46120+311-61B x C x D x E x F x A x A x B x B x C x C x D x D x E x E x F x F x A x B x A x C x B x A x D x C x A x E x D x A x F x E x A x A x B x C x D x E x F x A x A x A x A x A x A x ≤A x ≤≤B x ≤≤C x ≤≤D x ≤≤E x ≤≤F x A x B x c x D x E x F x。

相关文档
最新文档