七年级数学下册培优新帮手专题情境应用试题新版新人教版

合集下载

七年级数学下册 培优新帮手 专题07 整式的加减试题 (新版)新人教版

七年级数学下册 培优新帮手 专题07 整式的加减试题 (新版)新人教版

07 整式的加减阅读与思考整式的加减涉及许多概念,准确地把握这些概念并注意它们的区别与联系是解决有关问题的基础,概括起来就是要掌握好以下两点:1.透彻理解“三式”和“四数”的概念“三式”指的是单项式、多项式、整式;“四数”指的是单项式的系数、次数和多项式的系数、次数.2.熟练掌握“两种排列”和“三个法则”“两种排列”指的是把一个多项式按某一字母的升幂或降幂排列,“三个法则”指的是去括号法则、添括号法则及合并同类项法则.物以类聚,人以群分.我们把整式中那些所含字母相同、并且相同字母的次数也相同的单项式作为一类——称为同类项,一个多项式中的同类项可以合聚在一起——称为合并同类项.这样,使得整式大为简化,整式的加减实质就是合并同类项.例题与求解[例1] 如果代数式ax5+bx3+cx-5,当x=-2时的值是7,那么当x=7时,该式的值是______.(江苏省竞赛试题) 解题思路:解题的困难在于变元个数多,将x两个值代入,从寻找两个多项式的联系入手.[例2] 已知-1<b<0,0<a<1,那么在代数式a-b,a+b,a+b2,a2+b中,对于任意a,b对应的代数式的值最大的是( )A.a+b B.a-b C.a+b2 D.a2+b(“希望杯”初赛试题)解题思路:采用赋值法,令a=12,b=-12,计算四个式子的值,从中找出值最大的式子.[例3] 已知x=2,y=-4时,代数式ax2+12by+5=1997,求当x=-4,y=-12时,代数式3ax-24by3+4986的值.(北京市“迎春杯”竞赛试题) 解题思路:一般的想法是先求出a,b的值,这是不可能的.解本例的关键是:将给定的x,y 值分别代入对应的代数式,寻找已知与待求式子之间的联系,整体代入求值.[例4] 已知关于x的二次多项式a(x3-x2+3x)+b(2x2+x)+x3-5.当x=2时的值为-17,求当x=-2时,该多项式的值.(北京市“迎春杯”竞赛试题) 解题思路:解题的突破口是根据多项式降幂排列、多项式次数等概念挖掘隐含的关于a,b的等式.[例5] 一条公交线路上起点到终点有8个站.一辆公交车从起点站出发,前6站上车100人,前7站下车80人.问从前6站上车而在终点下车的乘客有多少人?(“希望杯”初赛试题) 解题思路:前7站上车总人数等于第2站到第8站下车总人数.本例目的是求第8站下车人数比第7站上车人数多出的数量.[例6] 能否找到7个整数,使得这7个整数沿圆周排列成一圈后,任3个相邻数的和等于29?如果,请举出一例;如果不能,请简述理由.(“华罗庚金杯”少年邀请赛试题) 解题思路:假设存在7个整数a1,a2,a3,a4,a5,a6,a7排成一圈后,满足题意,由此展开推理,若推出矛盾,则假设不成立.能力训练A级1.若-4x m-2y3与23x3y7-2n是同类项,m2+2n=______.(“希望杯”初赛试题)2.当x=1,y=-1时,ax+by-3=0,那么当x=-1,y=1时,ax+by-3=______.(北京市“迎春杯”竞赛试题) 3.若a+b<0,则化简|a+b-1|-|3-a-b|的结果是______.4.已知x2+x-1=0,那么整式x3+2x2+2002的值为______.5.设2332,4536,x y zx y z++=⎧⎨++=⎩则3x-2y+z=______.(2013年全国初中数学联赛试题)6.已知A=a2+b2-c2,B=-4a2+2b2+3c2,若A+B+C=0,则C=( ).A.5a2+3b2+2c2 B.5a2-3b2+4c2A.3a2-3b2-2c2 A.3a2+b2+4c27.同时都有字母a,b,c,且系数为1的7次单项式共有( ).A.4个 B.12个 C.15个 D.25个(北京市竞赛题)8.有理数a ,b ,c 在数轴上的位置如图所示:则代数式|a |-|a +b |+|c -a |+|b -c |化简后的结果是为( ). A .-a B .2a -2b C .2c -a D .a 9.已知a +b =0,a ≠b ,则化简b a (a +1)+ab(b +1)得( ). A .2a B .2b C .+2 D .-2 10.已知单项式0.25x b y c与单项式-0.125xm -1y 2n -1的和为0.625ax n y m,求abc 的值.11.若a ,b 均为整数,且a +9b 能被5整除,求证:8a +7b 也能被5整除.(天津市竞赛试题)B 级1.设a <-b <c <0,那么|a +b |+|b +c |-|c -a |+|a ||+b |+|c |=______.(“祖冲之杯”邀请赛试题)2.当x 的取值范围为______时,式子-4x +|4-7x |-|1-3x |+4的值恒为一个常数,这个值是______.(北京市“迎春杯”竞赛试题)3.当x =2时,代数式ax 3-bx +1的值等于-17,那么当x =-1时,代数式12ax -3bx 3-5的值等于______.4.已知(x +5)2+|y 2+y -6|=0,则y 2-15xy +x 2+x 3=______. (“希望杯”邀请赛试题)5.已知a -b =2,b -c =-3,c -d =5,则(a -c )(b -d )÷(a -d )=______.6.如果对于某一特定范围内x 的任意允许值,P =|1-2x |+|1-3x |+…+|1-9x |+|1-10x |的值恒为一个常数,则此值为( ).A .2B .3C .4D .5(安徽省竞赛试题)7.如果(2x -1)6=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,那么a 0+a 1+a 2+a 3+a 4+a 5+a 6等于______;a 0+a 2+a 4+a 6等于______.A .1,365B .0,729C .1,729D .1,0b a c第8题图(“希望杯”邀请赛试题)8.设b ,c 是整数,当x 依次取1,3,6,11时,某学生算得多项式x 2+bx +c 的值分别为3,5,21,93.经验证,只有一个结果是错误的,这个错误的结果是( ).A .当x =1时,x 2+bx +c =3 B .当x =3时,x 2+bx +c =5 C .当x =6时,x 2+bx +c =21 D .当x =11时,x 2+bx +c =93(武汉市选拔赛试题)9.已知y =ax 7+bx 5+cx 3+dx +e ,其中a ,b ,c ,d ,e 为常数,当x =2时,y =23;当x =-2时,y =-35,那么e 的值是( ).A .-6B .6C .-12D .12(吉林省竞赛试题)10.已知a ,b ,c 三个数中有两个奇数,一个偶数,n 是整数,如果s =(a +n +1)·(b +2n +2)(c +3n +3),那么( ).A .s 是偶数B .s 是奇数C .s 的奇偶性与n 的奇偶性相同D .s 的奇偶性不能确定(江苏省竞赛试题)11.(1)如图1,用字母a 表示阴暗部分的面积; (2)如图2,用字母a ,b 表示阴暗部分的面积;(3)如图3,把一个长方体礼品盒用丝带打上包装(图中虚线为丝带),打蝴蝶结的部分需丝带(x -y )cm ,打好整个包装需用丝带总长度为多少?12.将一个三位数abc 中间数码去掉,成为一个两位数ac ,且满足abc =9ac +4c ,如155=9×15+4×5.试求出所有这样的三位数.bab图2axy z 图3图1aa a07 整式的加减例1 -17例2 B例3 1998提示:由已知得4a-b=996,待求式=-3×(4a-b)+4986.例4 原多项式整理得:(a+1)x3+(2b-a)x3+(3a+b)x-5..又由题意知,该多项式为二次多项式,故a+1=0,得a=-1.把a=-1,a=2代入得:4(2 b+1)+2×(b-3)-5=-17.解得b=-1,故原多项式为-x2-4 x-5.当x=-2时,-x2-4 x-5=-4+8-5=-1.例5 设前7站上车的乘客数量依次为a1,a2,a3,a4,a5,a6,a7人,从第2站到第8站下车的乘客数量依次为b2,b3,b4,b5,b6,b7,b8人,则a1+a2+a3+a4+a5+a6+a7=b2+b3+b4+b5+b6+b7+b8.又∵a1+a2+a3+a4+a5+a6=100,∴b2+b3+b4+b5+b6+b7=80,即100+a7=80+b 8,前6站上车而在终点下车的人数为b8-a7=100-80=20(人).例6 如图,由题意得a1+a2+a3=29,a2+a3+a4=29,…a6+a7+a 1=29,a7+a1+a 2=29,将上述7式相加得,3(a1+a2+a3+a4+a5+a6+a7)=29×7.∴a1+a2+a3+a4+a5+a6+a7=6723.这与a1+a2+a3+a4+a5+a6+a7为整数矛盾.故不存在满足题设要求的7个整数.A级1. 292. -63. -24.20035. 10 提示:3 x-2 y+z=2×(2 x+y+3 z)-(x+4 y+5 z)=2×23-36=46-36=10.6. C7. C提示:设满足条件的单项式为a m b n c p的形式,其中m,n,p为自然数,且m+n+p=7.8. C 9. D10. 1.2 提示:由题意得b=m-1=n,c=2 n-1=0,0.625 a=0.25+(-0.125).11. 提示:8 a+7 b=8(a+9 b)-65 b.B级1. -a+b+c2. ≥471 提示:x的系数之和为零,须使4-7 x≤0且1-3 x≤0.3. 224. -94 提示:由(x+5)2+| y 2+y-6|=0得x=-5,y 2+y=6. y 2-15x y+x 2+x 3=y 2+y+(-5)2+(-5)3=6+25-125=-94.5. -1 26. B 提示:利用绝对值的几何意义解此题. x的取值范围在18与17之间7. A提示:令x=1,可得a0+a1+a2+a3+a4+a5+a6=[2×1-1] 6=1①令x=-1,可得a0-a1+a2-a3+a4-a5+a6=[2×(-1)-1] 6=3 6=729②①+②,得2(a0+a2+a4+a6)=730,即a0+a2+a4+a6=365.8. C 9. A10. A提示:原式=a+b+c+6n+6是偶数.11. 提示:(1)4.5πa2 S阴影=12(a+a+a)2=4.5πa2(2)12ab-12b2+14πb2 S阴影=12(a+a)b-(b2-14πb2)=12a b-12b 2+14πb2(3)3 x+3 y+2 z总长1=2 x+4 y+2 z+(x-y)=3 x+3 y+2 z.12. 因为abc=100 a+10 b+c,ac=10a+c.由题意得100a+10b+c=9(10a+c)+4c.化简得5(a+b)=6c(0≤a,b,c≤9,且a≠0)又∵5是质数,故5,6,ca b=⎧⎨+=⎩,从而1,2,3,4,5,6,5,4,3,2,1,0,ab=⎧⎨=⎩则符合条件的abc=155,245,335,425,515,605.。

七年级数学下册 培优新帮手 专题02 数的整除性试题 (新版)新人教版-(新版)新人教版初中七年级下

七年级数学下册 培优新帮手 专题02 数的整除性试题 (新版)新人教版-(新版)新人教版初中七年级下

02 数的整除性阅读与思考设a,b是整数,b≠0,如果一个整数q使得等式a=bq成立,那么称a能被b整除,或称b 整除a,记作b|a,又称b为a的约数,而a称为b的倍数.解与整数的整除相关问题常用到以下知识:1.数的整除性常见特征:①若整数a的个位数是偶数,则2|a;②若整数a的个位数是0或5,则5|a;③若整数a的各位数字之和是3(或9)的倍数,则3|a(或9|a);④若整数a的末二位数是4(或25)的倍数,则4|a(或25|a);⑤若整数a的末三位数是8(或125)的倍数,则8|a(或125|a);⑥若整数a的奇数位数字和与偶数位数字和的差是11的倍数,则11|a.2.整除的基本性质设a,b,c都是整数,有:①若a|b,b|c,则a|c;②若c|a,c|b,则c|(a±b);③若b|a,c|a,则[b,c]|a;④若b|a,c|a,且b与c互质,则bc|a;⑤若a|bc,且a与c互质,则a|b.特别地,若质数p|bc,则必有p|b或p|c.例题与求解【例1】在1,2,3,…,2 000这2 000个自然数中,有_______个自然数能同时被2和3整除,而且不能被5整除.(“五羊杯”竞赛试题) 解题思想:自然数n能同时被2和3整除,则n能被6整除,从中剔除能被5整除的数,即为所求.【例2】已知a,b是正整数(a>b),对于以下两个结论:①在a+b,ab,a-b这三个数中必有2的倍数;②在a+b,ab,a-b这三个数中必有3的倍数.其中 ( )A.只有①正确B.只有②正确C.①,②都正确D.①,②都不正确(某某省竞赛试题) 解题思想:举例验证,或按剩余类深入讨论证明.ab能被198整除,求a,b的值.【例3】已知整数13456(某某省竞赛试题)ab能被9,11整除,运用整除的相关特性建立a,b的解题思想:198=2×9×11,整数13456等式,求出a,b的值.【例4】已知a ,b ,c 都是整数,当代数式7a +2b +3c 的值能被13整除时,那么代数式5a +7b -22c 的值是否一定能被13整除,为什么?(“华罗庚金杯”邀请赛试题)解题思想:先把5a +7b -22c 构造成均能被13整除的两个代数式的和,再进行判断.【例5】如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如:把86放在415左侧,得到86 415能被7整除,所以称86为415的魔术数),求正整数n 的最小值,使得存在互不相同的正整数1a ,2a ,…,n a ,满足对任意一个正整数m ,在1a ,2a ,…,n a 中都至少有一个为m 的“魔术数”.(2013年全国初中数学竞赛试题)解题思想:不妨设7i i a k t =+(i =1,2,3,…,n ;t =0,1,2,3,4,5,6)至少有一个为m的“魔术数”.根据题中条件,利用10k i a m +(k 是m 的位数)被7除所得余数,分析i 的取值.【例6】一只青蛙,位于数轴上的点k a ,跳动一次后到达1k a +,已知k a ,1k a +满足|1k a +-k a |=1,我们把青蛙从1a 开始,经n -1次跳动的位置依次记作n A :1a ,2a ,3a ,…,n a .⑴ 写出一个5A ,使其150a a ==,且1a +2a +3a +4a +5a >0; ⑵ 若1a =13,2000a =2 012,求1000a 的值;⑶ 对于整数n (n ≥2),如果存在一个n A 能同时满足如下两个条件:①1a =0;②1a +2a +3a +…+n a =0.求整数n (n ≥2)被4除的余数,并说理理由.(2013年“创新杯”邀请赛试题)解题思想:⑴150a a ==.即从原点出发,经过4次跳动后回到原点,这就只能两次向右,两次向左.为保证1a +2a +3a +4a +5a >0.只需将“向右”安排在前即可.⑵若1a =13,2000a =2 012,从1a 经过1 999步到2000a .不妨设向右跳了x 步,向左跳了y 步,则1999132012x y x y +=⎧⎨+-=⎩,解得19990x y =⎧⎨=⎩可见,它一直向右跳,没有向左跳.⑶设n A 同时满足两个条件:①1a =0;②1a +2a +3a +…+n a =0.由于1a =0,故从原点出发,经过(k -1)步到达k a ,假定这(k -1)步中,向右跳了k x 步,向左跳了k y 步,于是k a =k x -k y ,k x +k y =k -1,则1a +2a +3a +…+n a =0+(22x y -)+(33x y -)+…(n n x y -)=2(1x +2x +…+n x )-[(22x y +)+(33x y +)+…+(n n x y +)]=2(2x +3x +…+n x )-()12n n -.由于1a +2a +3a +…+n a =0,所以n (n -1)=4(2x +3x +…+n x ).即4|n (n -1).能力训练A级1.某班学生不到50人,在一次测验中,有17的学生得优,13的学生得良,12的学生得及格,则有________人不及格.2.从1到10 000这1万个自然数中,有_______个数能被5或能被7整除.(某某市竞赛试题) 3.一个五位数398ab能被11与9整除,这个五位数是________.4.在小于1 997的自然数中,是3的倍数而不是5的倍数的数的个数是( )A.532 B.665 C.133 D.7985.能整除任意三个连续整数之和的最大整数是( )A.1 B.2 C.3 D.6(某某省竞赛试题) 6.用数字1,2,3,4,5,6组成的没有重复数字的三位数中,是9的倍数的数有( ) A.12个B.18个 C.20个 D.30个(“希望杯”邀请赛试题) 7.五位数abcde是9的倍数,其中abcd是4的倍数,那么abcde的最小值为多少?(黄冈市竞赛试题)8.1,2,3,4,5,6每个使用一次组成一个六位数字abcdef,使得三位数abc,bcd,cde,def能依次被4,5,3,11整除,求这个六位数.(某某市竞赛试题)9.173□是个四位数字,数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9,11,6整除.”问:数学老师先后填入的这3个数字的和是多少?(“华罗庚金杯”邀请赛试题)B级1.若一个正整数a被2,3,…,9这八个自然数除,所得的余数都为1,则a的最小值为_________,a的一般表达式为____________.(“希望杯”邀请赛试题) 2.已知m,n都是正整数,若1≤m≤n≤30,且mn能被21整除,则满足条件的数对(m,n)共有___________个.(某某市竞赛试题) 3.一个六位数1989x y能被33整除,这样的六位数中最大是__________.4.有以下两个数串1,3,5,7,,1991,1993,1995,1997,19991,4,7,10,,1987,1990,1993,1996,1999⎧⎨⎩同时出现在这两个数串中的数的个数共有( )个.A.333 B.334 C.335 D.3365.一个六位数1991a b能被12整除,这样的六位数共有( )个.A.4 B.6 C.8 D.126.若 1 059,1 417,2 312分别被自然数n除时,所得的余数都是m,则n-m的值为( ).A.15 B.1 C.164 D.1747.有一种室内游戏,魔术师要求某参赛者相好一个三位数abc,然后,魔术师再要求他记下五个数:acb,bac,bca,cab,cba,并把这五个数加起来求出和N.只要讲出N的大小,魔术师就能说出原数abc是什么.如果N=3 194,请你确定abc.(美国数学邀请赛试题)8.一个正整数N的各位数字不全相等,如果将N的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N,则称N为“拷贝数”,试求所有的三位“拷贝数”.(某某市竞赛试题)9.一个六位数,如将它的前三位数字与后三位数字整体互换位置,则所得的新六位数恰为原数的6倍,求这个三位数.(“五羊杯”竞赛试题)10.一个四位数,这个四位数与它的各位数字之和为1 999,求这个四位数,并说明理由.(某某市竞赛试题)11.从1,2,…,9中任取n 个数,其中一定可以找到若干个数(至少一个,也可以是全部),它们的和能被10整除,求n 的最小值.(2013年全国初中数学竞赛试题)专题02 数的整除性例1 267 提示:333-66=267.例2 C 提示:关于②的证明:对于a ,b 若至少有一个是3的倍数,则ab 是3的倍数.若a ,b 都不是3的倍数,则有:(1)当a =3m +1,b =3n +1时,a -b =3(m -n );(2)当a =3m +1,b =3n +2时,a +b =3(m +n +1);(3)当a =3m +2,b =3n +1时,a +b =3(m +n +1);(4)当a =3m +2,b =3n +2时,a -b =3(m -n ).例3a =8.b =0提示:由9|(19+a +b )得a +b =8或17;由11|(3+a -b )得a -b =8或-3.例4 设x ,y ,z ,t 是整数,并且假设5a +7b -22c =x (7a +2b +3c ) +13(ya +zb +tc ).比较上式a ,b ,c 的系数,应当有⎪⎩⎪⎨⎧-=+=+=+2213371325137t x z x y x ,取x =-3,可以得到y =2,z =1,t =-1,则有13 (2a +b -c )-3(7a +2b +3c )=5a +7b -22c .既然3(7a +2b +3c )和13(2a +b -c )都能被13整除,则5a +7b -22c 就能被13整除.例5 考虑到“魔术数”均为7的倍数,又a 1,a 2,…,a n 互不相等,不妨设a 1<a 2<…<a n ,余数必为1,2,3,4,5,6,0,设a i =k i +t (i =1,2,3,…,n ;t =0,1,2,3,4,5,6),至少有一个为m 的“魔术数”,因为a i ·10k+m (k 是m 的位数),是7的倍数,当i ≤b 时,而a i ·t 除以7的余数都是0,1,2,3,4,5,6中的6个;当i =7时,而a i ·10k除以7的余数都是0,1,2,3,4,5,6这7个数字循环出现,当i =7时,依抽屉原理,a i ·10k与m 二者余数的和至少有一个是7,此时a i ·10k+m 被7整除,即n =7.例6 (1)A 5:0,1,2,1,0.(或A 5:0,1,0,1,0) (2)a 1000=13+999=1 012. (3)n 被4除余数为0或1.A 级1.1 2.3 143 3.39 798 4.A 5.C 6.B7.五位数—abcde =10×—abcd +e .又∵——abcd 为4的倍数.故最值为1 000,又因为—abcde 为9的倍数.故1+0+0+0+e 能被9整除,所以e 只能取8.因此—abcde 最小值为 10 008.8.324 561提示:d +f -e 是11的倍数,但6≤d +f ≤5+6=11,1≤e ≤6,故0≤d +f -e ≤10,因此d +f -e =0,即5+f =e ,又e ≤d ,f ≥1,故f =l ,e =6,9.19 提示:1+7+3+□的和能被9整除,故□里只能填7,同理,得到后两个数为8,4.B 级1.2 521 a =2 520n +1(n ∈N +) 2.573.719 895提示:这个数能被33整除,故也能被3整除.于是,各位数字之和(x +1+9+8+9+y )也能被3整除,故x +y 能被3整除.4.B 5.B6.A 提示:两两差能被n 整除,n =179,m =164.7.由题意得—acb +—bac +—bca +—cab +—cba =3 194,两边加上—abc .得222(a +b +c )=3194+—abc ∴222(a +b +c ) =222×14+86+—abc .则—abc +86是222的倍数.且a +b +c >14.设——abc +86=222n 考虑到——abc 是三位数,依次取n =1,2,3,4.分别得出——abc 的可能值为136,358,580,802,又因为a +b +c >14.故——abc =358.8.设N 为所求的三位“拷贝数”,它的各位数字分别为a ,b ,c (a ,b ,c 不全相等).将其数码重新排列后,设其中最大数为——abc ,则最小数为——cba .故N =——abc -——cba =(100a +10b +c )- (100c +10b +a )=99(a -c ).word11 / 11 可知N 为99的倍数.这样的三位数可能是198,297,396,495,594,693,792,891,990.而这9个数中,只有954- 459=495.故495是唯一的三位“拷贝数”.9.设原六位数为———abcdef ,则6×———abcdef =———defabc ,即6×(1000×——abc +——def )=1000×——def +——abc ,所以994×——def -5 999×——abc ,即142×——def =857×——abc ,∵(142,857)=1,∴ 142|—abc ,857|——def ,而——abc ,——def 为三位数,∴—abc =142,——def =857,故———abcdef =142857.10.设这个数为——abcd ,则1 000a +100b +10c +d +a +b +c +d =1 999,即1 001a +101b +11c +2d=1 999,得a =1,进而101b +11c +2d =998,101b ≥998-117-881,有b =9,则11c +2d =89,而0≤2d ≤18,71≤11c ≤89,推得c =7,d =6,故这个四位数是1 976.11.当n =4时,数1,3,5,8中没有若干个数的和能被10整除.当n =5时,设a 1a 2,…,a 5是1,2,…,9中的5个不同的数,若其中任意若干个数,它们的和都不能被10整除,则125,,,a a a 中不可能同时出现1和9,2和8,3和7,4和6,于是125,,,a a a 中必定有一个为5,若125,,,a a a 中含1,则不含9,于是,不含4(45110)⨯++=,故含6;不含3(36110)⨯++=,故含7;不含2(21710)⨯++=,故含8;但是5+7+8=20是10的倍数, 矛盾. 若125,,,a a a 中含9, 则不含1, 于是不含6(69520),⨯++=故含4; 不含7(74920),⨯++=故含3; 不含8(89320),⨯++=故含2; 但是53210++=是10的倍数, 矛盾. 综上所述,n 的最小值为5。

七年级数学下册培优新帮手专题10多变的行程问题试题(新版)新人教版

七年级数学下册培优新帮手专题10多变的行程问题试题(新版)新人教版

10 多变的行程问题阅读与思考行程问题的三要素是:距离(s )、速度(v )、时间(t ),基本关系是:s vt =,s v t =,st v=. 行程问题按运动方向可分为相遇问题、追及问题;按运动路线可分为直线形问题、环形问题等.其中相遇问题、追及问题是最基本的类型,它们的特点与常用的等量关系如下:1.相遇问题其特点是:两人(或物)从两地沿同一路线相向而行,而最终相遇,一般地,甲行的路程+乙行的路程=两地之间的距离.2.追及问题其特点是:两人(或物)沿同一路线、同一方向运动,由于位置或者出发时间不同,造成一前一后,又因为速度的差异使得后者最终能追及前者.一般地,快者行的路程-慢者行的路程=两地之间的距离.例题与求解【例1】 在公路上,汽车A 、B 、C 分别以80千米/时,70千米/时,50千米/时的速度匀速行驶,A 从甲站开往乙站,同时,B 、C 从乙站开往甲站.A 在与B 相遇后两小时又与C 相遇,则甲、乙两站相距__________千米.(“希望杯”竞赛试题)解题思路:本例为直线上的相遇问题,可依据时间关系列方程.【例2】 如图,某人沿着边长为90来的正方形,按A →B →C →D →A …方向,甲从A 以65米/分的速度,乙从B 以72米/分的速度行走,当乙第一次追上甲时在正方形的( ).A .AB 边上B .DA 边上C .BC 边上D .CD 边上乙甲BCAD(安徽省竞赛试题)⨯=(米)处.解题思路:本例是一个特殊的环形追及问题,注意甲实际在乙的前面390270【例3】亚州铁人三项赛在徐州市风光秀丽的云龙湖畔举行.比赛程序是:运动员先同时下水游泳1.5千米到第一换项点,在第一换项点整理服装后,接着骑自行车40千米到第二换项点,再跑步10千米到终点.下表是亚洲铁人三项赛女子组(19岁以下)三名运动员在比赛中的成绩(游泳成绩即游泳所用时间,其他类推,表内时间单位为秒).(1)填空(精确到0.01):第191号运动员骑自行车的平均速度是__________米/秒;第194号运动员骑自行车的平均速度是__________米/秒;第195号运动员骑自行车的平均速摩是__________米/秒;(2)如果运动员骑自行车都是匀速的,那么在骑自行车的途中,191号运动员会追上195号或194号吗?如果会,那么追上时离第一换项点有多少米(精确到0.01)?如果不会,为什么?(3)如果运动员长跑也都是匀速的,那么在长跑途中这三名运动员有可能某人追上某人吗?为什么?(江苏省徐州市中考试题)解题思路:从表格中获取信息,注意速度、时间的比较是解本例的关键.【例4】一小船由A港到B港顺流需行6小时,由B港到A港逆流需行8小时.一天,小船从早晨6点由A港出发顺流行至B港时,发现一救生圈在途中掉落在水中,立刻返回,1小时后找到救生圈,问:(1)若小船按水流速度由A港漂流到B港时需多少小时?(2)救生圈是何时掉人水中的?(天津市中考试题)解题思路:要求小船按水流速度由A港漂流到B港时所需时间,需求两港间的距离及水流速度,考虑增设辅助未知数.【例5】某乡镇小学到县城参观,规定汽车从县城出发于上午7时到达学校后,接参观的师生立即出发去县城,由于汽车在赴校的途中发生故障,不得不停车修理,学校师生等到7时10分,仍未见汽车来接,就步行走向县城.在行进途中遇到了已经修理好的汽车,立即上车赶赴县城,结果比预定到达县城的时间晚了半小时,如果汽车的速度是步行速度的6倍,汽车在途中排除故障花了多少时间?(山东省中考试题)解题思路:从题中比原定时间晚到半小时入手,选好未知量,找出汽车所用时间与师生步赶所用时间之间的关系.依时间、速度和路程之间的关系列出方程.【例6】甲、乙两人分别从A,B两地同时出发,在距离B地6千米处相遇,相遇后两人又继续按原方向、原速度前进,当他们分别到达B地、A地后,立刻返回,又在距A地4千米处相遇,求A,B两地相距多少千米?(“祖冲之杯”邀请赛试题)解题思路:本例有多种解法,可借助图形辅助分析.能力训练A级1.某人以4千米/小时的速度步行由甲地到乙地,然后又以6千米/小时的速度从乙地返回甲地,那么某人往返一次的平均速度是__________千米/小时.2.汽车以每小时72千米的速度笔直地开向寂静的山谷,驾驶员按一声喇叭,4秒后听到回响,已知声音的速度是每秒340米,听到回响时汽车离山谷的距离是__________米.(江苏省竞赛试题)3.甲、乙两地相距70千米,有两辆汽车同时从两地相向出发,并连续往返于甲、乙两地,从甲地开出的为第一辆汽车,每小时行30千米,从乙地开出的为第二辆汽车,每小时行40千米.当从甲地开出的第一辆汽车第二次从甲地出发后与第二辆汽车相遇,这两辆汽车分别行驶了__________千米和__________千米.(武汉市选拔赛试题)4.上午9时整,时计与分针成直角,那么下一次时针与分针成直角的时间是().A.9时30分B.10时5分C.10时5511分D.9时83211分(“希望杯”竞赛试题)5.甲、乙两人同时从A地到B地,如果乙的速度v保持不变,而甲先用2v的速度到达中点,再用12v的速度到达B地,则下列结论中正确的是().A.甲、乙同时到达B地B.甲先到B地C.乙先到B地D.无法确定谁先到6.甲与乙比赛登楼,他俩从36层的长江大厦底层出发,当甲到达6楼时,乙刚到达5楼,按此速度,当甲到达顶层时,乙可到达().A.31层B.30层C.29层D.28层7.如图,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们的第2007次相遇在边()上.A.AB B.BC C.CD D.DA乙甲BAD(湖北省黄冈市竞赛试题)8.甲、乙两列火车同时从相距120千米的两地相向行驶,甲速为每小时84千米,乙速为每小时60千米,则当两车相距24千米时行驶的时间为( ).A .40分钟B .1小时C .1小时或20分钟D .40分钟或1小时9.有一个只允许单向通过的窄道口,通常情况下,每分钟可以通过9人,一天王老师到达道口时,发现由于拥挤,每分钟只能有3人通过道口,此时自己前面还有36人等待通过(假定先到的先过,王老师过道口的时间忽略不计).通过道口后,还需7分钟到达学校:(1)此时,若绕道而行,要15分钟到达学校,从节省时间考虑,王老师应绕道去学校,还是选择通过拥挤的道口去学校?(2)若在王老师等人的维持下,几分钟后,秩序恢复正常(维持秩序期间,每分钟仍有3人通过道口),结果王老师比拥挤的情况下提前了6分钟通过逬口,求维持秩序的时间.(江西省中考试题)10.某人从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开车时间迟到15分钟,现在此人打算在火车开车前10分钟到达火车站,求此人此时骑摩托车的速度应该是多少?(湖北省孝感市竞赛试题)11.铁路旁的一条平行小路上有一行人与一骑车人同时向东行进,行人速度为 3.6千米/小时,骑车人速度为16.8千米/小时,如果有一列火车从他们背后开过来,它通过行人用22秒,通过骑车人用26秒,问这列火车的车身长为多少米?(河北省竞赛试题)B 级1.甲、乙两人从两地同时出发,若相向而行,a 小时相遇;若同向而行,则b 小时甲追及乙,那么甲、乙两人的速度之比为__________.(江苏省竞赛试题)2.甲、乙两列客车的长分别为150米和200米,它们相向行驶在平行的轨道上,已知甲车上某乘客测得乙车在他窗口外经过的时间是10秒,那么乙车上的乘客看见甲车在他窗口外经过的时间是__________秒.(“希望杯”邀请赛试题)3.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船4小时,已知船在静水中的速度为每小时7.5千米,水流速度为每小时2.5千米,若A ,C 两地的距离为10千米,则A ,B 的距离为__________千米.(重庆市竞赛试题)4.某段公路由上坡、平坡、下坡三个等长的路段组成,已知一辆汽车在三个路段上行驶的平均速度分别为1v ,2v ,3v .则该汽车在这段公路上行驶的平均速度为( ).A .1233v v v ++ B .1231113v v v ++C .1231111v v v ++D .1233111v v v ++(天津市竞赛试题)5.静水中航行,甲船的速度比乙船快,在水流速度不为零的河流中,甲、乙两船同时从A 港出发,同向航行1小时后立即返航,那么( ).A .甲船先返回A 港B .乙船先返回A 港C.甲、乙两船同时返回A港D.不能确定哪条船先返回A港(《时代学习报》数学文化节试题)6.某商场有一部自动扶梯匀速由下而上运动,甲、乙二人都急于上楼办事,因此在乘扶梯的同时匀速登梯,甲登了55级后到达楼上,乙登梯速度是甲的2倍(单位时间内乙登楼级数是甲的2倍),他登了60级后到达楼上,那么,由楼下到楼上的自动扶梯级数为__________.(北京市竞赛试题)7.甲、乙两同学从400米的环形跑道上的某一点背向出发,分别以每秒2米和每秒3米的速度慢跑.6秒钟后,一只小狗从甲处以每秒6米的速度向乙跑,遇到乙后,又从乙处以每秒6米的速度向甲跑,如此往返直至甲、乙第一次相遇,那么小狗共跑了__________米.8.某风景区的旅游线路如右图所示,其中A为入口处,B,C,D为风景点,E为三岔路的交汇点,图中所给的数据为相应两点间的路程(单位:千米).某游客从A处出发,以每小时2千米的速度步行游览,每到一个景点逗留的时间均为半小时.(1)若该游客沿跨线“A→D→C→E→A”游览回到A处,共用去3小时,求C,E两点间的路程.(2)若该游客从A处出发,打算在最短时间内游完三个景点并返回A处(仍按上述步行速度和在景点的逗留时间,不考虑其他因素),请你为他设计一个步行路线,并对路线设计的合理性予以说明.1.311.20.41.1EDCBA(江苏省竞赛试题)9.某人沿电车路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来,假定此人和电车都是匀速前进,则电车是每隔多少分钟从起点站开出一辆?(湖北省黄冈市竞赛试题)10.如图,甲、乙两人分别在A,B两地同时相向而行,于E处相遇后,甲继续向B地行走,乙则休息了14分钟,再继续向A地行走,甲和乙到达B和A后立即折返,仍在E处相遇,已知甲每分钟行走60米,乙每分钟行走80米,则A和B两地相距多少千米?A BE乙(“华罗庚金杯”竞赛试题)专题 10 多变的行程问题例1 1950 提示:设甲乙两站相距S 千米,则280708050S S+=++,解得S=1950千米例2 B 提示:乙第一次追上甲用了2707分钟,270672736029077⨯=⨯+⨯ 例3 ⑴ 8.12 7.03 7.48⑵ 191号能追上194号,这时离第一换项点有24037.96米191号不会追上195号 ⑶ 从第二换项点出发时,195号比191号提前216秒,且长跑速度比191号快,所以195号在长跑时始 终在191号前面,而191号在长跑时始终在194前面,故在长跑时,谁也追不上谁.例4 ⑴设小船在静水中的速度为α,水流的速度为b ,由题意,得6(a +b )=8(a -b ),解得a =7b .故小船按水流速度由A 港漂流到B 港所需的时间为6()6(7)4848a b b b bb b b++===小时 ⑵ 设小船行驶x 小时后救生圈掉入水中,则小船找到救生圈即小船与救生圈相遇,他们行驶的路程如图所示:由题意得(6-x +1)b +(a -b )×1=(6-x )(a +b ),将a =7b 代入上式,解得x =5 故救生圈是在上午11点掉入水中的.例5 如图,设点A为县城所在地,点B为学校所在地,但C为师生途中与汽车相遇之处.汽车晚到的的半小时一方面是因晚出发了10分钟,另一方面是从B到C由于步行代替乘车而多花了20分钟.若设汽车从C到B需要X分钟,则师生从B到C应花(x+20)分钟,由于汽车由C到B与师生从B到C的路程相等由时间与速度成反比可得1206xx=+解得x=4故排除故障花的时间为4×2+30=38分钟例6 解法一:第一次相遇时,甲乙两人所走的路程之和,正好是AB两地相距的路程,即当甲乙合走完AB间的全部路程时,乙走了6千米.第二次相遇时,两人合走的路程恰为两地间距离的3倍(如图,图中实线表示甲走的路程,虚线表示乙走的路程),因此,这时乙走的路程应为1836=⨯千米.考虑到乙从B 地走到A 地后又返回了4千米,所以A,B 两地间的距离为18-4=14千米.解法二:甲、乙两人同时出发,相向而行,到相遇时两人所走时间相等,又因为两人都做匀速运动,应有:两人速度之比等于他们所走路程之比,且相同时间走过的路程亦成正比例.到第一次相遇,甲走了(全程-6)千米,乙走了6千米;到第二次相遇,甲走了(2×全程-4)千米,乙走了(全程+4)千米. 设全程为S ,则可列方程44266+-=-S S S . 解得01421==S S , (舍去).故A,B 两地相距14千米.解法三:设全程为S 千米,甲、乙两人速度分别为21,v v v, 则⎪⎪⎩⎪⎪⎨⎧+=-=-②①212144266v S v S v v S ②①÷得46426+=--S S S ,解得014==S S 或 (舍去) 故A,B 两地相距14千米.A 级1. 4.82.6403. 150 200提示:设第一辆车行驶了(140十x )千米,则第二辆车行驶了()⎪⎭⎫ ⎝⎛++=⨯+x x 34324614034140千米,由题意得 70343246=⎪⎭⎫ ⎝⎛++x x ,解得10=x . 4.D 提示:因为分针每分钟转 6,时针每分钟转⎪⎭⎫ ⎝⎛21,设两针从上午9时开始,x 分钟后两针成直角,由题意知3602190906=⎪⎭⎫ ⎝⎛-++x x ,解得11832=x .5.C6.C 提示:45==乙甲乙甲V V S S . 7. C 8. D 9.(1)因15197336>=+,故王老师应选择绕道去学校. (2)设维持秩序时间为t, 则69336336=⎪⎭⎫ ⎝⎛-+-t t ,解得t=3(分钟). 10.设此人从家里出发到火车开车的时间为x 小时,由题意得⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-601518601530x x ,解得x =1. 此人打算在火车前10分钟到达火车站,骑摩托车的速度应为276010160151306010601530=-⎪⎭⎫ ⎝⎛-⨯=-⎪⎭⎫ ⎝⎛-⨯x x 千米/时.11.设火车的速度为x 米/秒,由题意得()()263221⨯-=⨯-x x ,解得x =14.故火车的车身长为(14-1)×22=286米.B 级 1.ab a b -+ 2.7.5 提示:先求出甲、乙两车速度和为2010200=米/秒. 3. 20或320 4. D 提示:设三个等长路段的路程均为S ,则平均速度为⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛++=++321321321111311133v v v v v v S S v S v S v S S . 5.D 提示:考虑两船同时先顺水航行的情形,设想乙船在静水中的速度接近水流的速度,则它将迟迟难以返航.而甲先返回A 港,类似的可考虑两船同时先逆水航行的情形.6. 667. 4448. (1) CE=0.6千米.(2)基本的行走路线有两条:一是A→D→C→B→E→A(或A→E→B→C→D→A ),总时间为4小时;二是A→D→C→E→B→E→A(或A→E→B→E→C→D→A),总时间为3.9小时.9.设电车速度为v ,人速为x ,电车每隔t 分钟开出一辆,则每两辆电车之间的距离vt ,对于迎面来的电车,这个距离是人与电车共同走4分钟完成的,对于后面追上的电车,两辆电车之间的距离是电车在12分钟追上起始时的距离,由题意得x v vt x v 121244-==+,解得t =6分钟.10. AE:BE=60:80=3:4,设AE=3x , BE= 4x ,从而AB= 7x (米).由题意得1480376047++=+x x x x ,解得x =240,故AB=7x =7×240=1680米.。

【精品资料】2019七年级数学下册 培优新帮手 专题20 情境应用试题 (新版)新人教版

【精品资料】2019七年级数学下册 培优新帮手 专题20 情境应用试题 (新版)新人教版

20 情景应用题阅读与思考强调数学应用,突出对应用意识的考查是现今各级考试的显著特点,随着社会不断进步,尤其是改革开放以来我国社会主义市场经济的蓬勃发展,许多应用题也烙上了时代的印迹.这些应用题高度关注社会热点,以丰富的生产、生活实践活动和多彩的市场经济为背景,具有鲜明的时代特点,常见的问题有储蓄利息、商品利润、股票交易、价格控制、经济预算、企业决策、人口环境等.解决这些问题须注意:1.理解相关词语的意义,熟悉基本关系式:①利率=×100%,利息=本金×利率×存期;本息和=本金+利息=本金×(1+利率×存期);;②利润率=×100%,利润=利润率×进货价;售出价=进货价+利润=进货价×(1+利润率);③总成本=固定成本+可变成本.2.在理解题意、理顺数量关系的基础上,用方程(组)、不等式(组)及相关数学知识解决问题.例题与求解【例1】某商店将某种超级DVD按进价提高35%,然后打出“九折酬宾,外送50元出租费”的广告,结果每台超级DVD仍获利208元,那么每台超级DVD的进价是元.(“希望杯”邀请赛试题) 解题思路:设未知数,利用售出价、进货价、利润之间的关系建立方程.【例2】某人将甲、乙两种股票卖出,其甲种股票卖价1200元,赢利20%,其乙种股票卖价也是1200元,但亏损20%,该人此次交易的结果是().A.不赔不赚B.赚100元C.赔100元D.赚90元(“祖冲之杯”邀请赛试题)解题思路:要判断此人交易的结果,关键是计算出该人购买甲、乙两种股票的进价.【例3】商业大厦购进某种商品1000件,销售价定为购进价的125%,现计划节日期间按原定售价让利10%售出至多100件商品,而在销售淡季按原定售价的60%大甩卖,为使全部商品售完后赢利,在节日和淡季之外要按原定价销售出至少多少件商品?(河北省竞赛试题)解题思路:恰当引元,解题的突破口是把“至多”“至少”“赢利”等词语转化为对应的数学关系式.【例4】某大型超市元旦假期举行促销活动,假定一次购物不超过100元的不给优惠,超过100元而不超过300元时,按该次购物金额9折优惠,超过300元的其中300元仍按9折优惠,超过部分按8折优惠,小美两次购物分别用了94.5元和282.8元.现小丽决定一次购买小美分两次购买的同样的物品,那么,小丽应该付款多少元?(海南省中考试题)解题思路:先求出小美第二次购物的原价,再分情况讨论.【例5】某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购.投资者可以在以下两种购铺方案中作出选择:方案一:投资者按商铺标价一次性付清铺款,每年可获得得租金为商铺标价的10%.方案二:投资者按商铺标价的八五折一次性付清铺款.2年后每年可获得租金为商铺标价的10%.但要缴纳租金的10%作为管理费用.⑴请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=×100%)⑵对同一标价的商铺,甲选择了购铺方案一、乙选择了购铺方案二.那么五年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?(江苏省无锡市中考试题)解题思路:在阅读理解的基础上,恰当地设未知数解决问题.【例6】某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表返还相应金额.注:300~400表示消费金额大于300且小于或等于400.其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为400元的商品,则消费金额为320元.获得优惠额为400×(1-80%)+30=110(元).⑴购买一件标价为1000元的商品,顾客获得的优惠额是多少?⑵如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价为多少元?(2013年江苏省南京市中考试题)解题思路:⑴根据标价商品按80%价格出售,求出消费金额,再根据金额所在的范围,求出优惠额.⑵先设商品的标价为元,根据购买标价不超过800元的商品,要使获得的优惠不少于226元,来列出不等式,再分类讨论,求出的取值范围,从而得到答案.能力训练A级1.某商店老板将一件进价为800元的商品先提价50%,再打八折卖出,则卖出这件商品所获利润为 .(黑龙江齐齐哈尔市中考题)2.某商品的标价比成本高,当该商品降价出售时,为了不亏损成本,售价的折扣(即降价的百分数)不得超过,则可用表示为 .3.某机关有三个部门,部门有公务员84人,部门有公务员56人,部门有公务员60人,如果每个部门按比例裁减人员,使这个机关仅留公务员150人,那么部门留下的公务员的人数是 .(山东省济南中考试题)4. 某商品降价20%后欲恢复原价,则提价的百分数为().A.18%B.20%C.25%D.30%(湖北省数学竞赛选拔赛试题)5. 某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有().A.5种B.6种C.7种D.8种(湖北省武汉市选拔赛试题)6. 某商店出售某种商品每件可获利元,利润率为20%.若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利元.则提价后的利润率为().A.25%B.20%C.16%D.12.5%7. 某商店经销一种商品,由于进价降低了5%,出售价不变,使得利润率由提高到,则值为().A.12B.10C.17D.148.某企业生产一种产品,每件成本价是400元,销售价为510元,本季度销售了件,为进一步扩大市场,该企业决定在降低销售价的同时降低生产成本.经过市场调研,预测下季度这种产品每件销售价降低4%,销量将提高10%,要使销售利润保持不变,该产品每件的成本应降低多少元?(陕西省中考试题)9.甲、乙两个仓库要向,A B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨水泥,B地需110吨水泥。

2020七年级数学下册 培优新帮手 专题17 不等式(组)的应用试题 (新版)新人教版

2020七年级数学下册 培优新帮手 专题17 不等式(组)的应用试题 (新版)新人教版

17 不等式(组)的应用阅读与思考许多数学问题和实际问题所求的未知量往往受到一些条件的限制,可以通过数量关系和分析,列出不等式(组),运用不等式的有关知识予以求解,不等式(组)的应用主要体现在: 1.作差或作商比较有理数的大小. 2.求代数式的取值范围. 3.求代数式的最大值或最小值. 4.列不等式(组)解应用题.列不等式(组)解应用题与列方程(组)解应用题的步骤相仿,关键是在理解题意的基础上,将一些词语转化为不等式.如“不大于”“不小于”“正数”“负数”“非正数”“非负数”等对应不等号:“≤”“≥”“>0”“<0”“≤0”“≥0”. 例题与求解【例1】如果关于x 的方程210m x x --=只有负根,那么m 的取值范围是_________.(辽宁省大连市“育英杯”竞赛试题)解题思路:由x <0建立关于m 的不等式.【例2】已知A =1998199920002001⨯-⨯,B =1998200019992001⨯-⨯,C =1998200119992000⨯-⨯,则有( ).A .A >B >C B .C >B >A C .B >A >CD .B >C >A(浙江省绍兴市竞赛试题)解题思路:当作差比较困难时,不妨考虑作商比较【例3】已知1a ,2a ,3a ,4a ,5a ,6a ,7a 是彼此不相等的正整数,它们的和等于159,求其中最小数1a 的最大值.(北京市竞赛试题)解题思路:设1a <2a <3a <···<7a ,则1a +2a +3a +···+7a =159,解题的关键是怎样把多元等式转化为只含1a的不等式.【例4】一玩具厂用于生产的全部劳力为450个工时,原料为400个单位,生产一个小熊玩具要使用15个工时、20个单位的原料,售价为80元;生产一个小猫玩具要使用10个工时、5个单位的原料,售价为45元.在劳力和原料的限制下合理安排生产小熊玩具、小猫玩具的个数,可以使小熊玩具和小猫玩具的总售价尽可能高.请用你所学过的数学知识分析,总售价是否可能达到2 200元.(“希望杯”邀请赛试题) 解题思路:列不等式的关键是劳力限制在450个工时,原料限制为400个单位.引入字母,把方程和不等式结合起来分析.【例5】某钱币收藏爱好者想把3.50元纸币兑换成1分,2分,5分的硬币,他要求硬币总数为150枚,且每种硬币不少于20枚,5分的硬币多于2分的硬币,请你据此设计兑换方案.(河北省竞赛试题) 解题思路:引入字母,列出含等式、不等式的混合组,把解方程组、解不等式组结合起来.【例6】已知n,k皆为自然数,且1<k<n.若123101n kn+++⋅⋅⋅+-=-,n k a+=.求a的值.(香港中学数学竞赛试题) 解题思路:此题可理解为在n个连续自然数中去除其中一个数k (且1<k<n,k是非两头的两个数),使剩余的数的平均数等于10,求n和k之和。

七年级数学下册培优新帮手专题08还原与对消试题(新版)新人教版

七年级数学下册培优新帮手专题08还原与对消试题(新版)新人教版

08 还原与对消——方程的解与解方程阅读与思考解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、系数化为1、得方程的解.我们在解一元一次方程时,既要学会按部就班(严格按步骤)地解方程,又要能随机应变(灵活打乱步骤)地解方程.方程的解是方程理论中的一个重要概念,对于方程解的概念,要学会从两个方面去运用: 1.求解:通过解方程,求出方程的解,进而解决问题. 2.代解:将方程的解代入原方程进行解题.当方程中的未知数是用字母表示时,这样的方程叫含字母系数的方程,含字母系数的一元一次方程总可以化为ax =b 的形式,其方程的解由a ,b 的取值范围确定.字母a ,b 的取值范围确定或对解方程的过程并未产生实质性的影响,其解法同数字系数的一次方程解法一样;当字母a ,b 的取值范围未给出时,则需讨论解的情况,其方法是:(1)当a ≠0时,原方程有唯一解x =b ; (2)当a =0且b =0时,原方程有无数个解; (3)当a =0,b ≠0时,原方程无解; 例题与求解[例1] 已知关于x 的方程3[x -2(x -3a )]=4x 和312x a +-158x -=1有相同的解,那么这个解是______.(北京市“迎春杯”竞赛试题)解题思路:建立关于a 的方程,解方程. [例2] 已知a 是任意有理数,在下面各说法中(1)方程ax =0的解是x =1 (2)方程ax =a 的解是x =1 (3)方程ax =1的解是x =1a(4)方程|a |x =a 的解是x =±1结论正确的个数是( ). A .0 B .1 C .2 D .3(江苏省竞赛试题)解题思路:给出的方程都是含字母系数的方程,注意a 的任意性.[例3] a 为何值时,方程x +a =x -1(x -12)有无数多个解?无解? 解题思路:化简原方程,运用方程ax =b 各种解的情况所应满足的条件建立a 的关系式. [例4] 如果a ,b 为定值时,关于x 的方程23kx a +=2+x bk -,无论k 为何值时,它的根总是1,求a ,b 的值.(2013年全国初中数学竞赛预赛试题)解题思路:利用一元一次方程方程的解与系数之间的关系求解.[例5] 已知p ,q 都是质数,并且以x 为未知数的一元一次方程px +5q =97的解是1,求代数式p 2-q 的值.(北京市“迎春杯”竞赛试题)解题思路:用代解法可得到p ,q 的关系式,进而综合运用整数相关知识分析.[例6] (1)在日历中(如图①),任意圈出一竖列上相邻的三个数,设中间的一个为a ,则用含a 的代数式表示这三个数(从小到大排列)分别是______.(2)现将连续自然数1至2004按图中的方式排成一个长方形阵列,用一个正方形框出16个数(如图②).①图中框出的这16个数的和是______;②在右图中,要使一个正方形框出的16个数之和等于2000,2004,是否可能?若不可能,试说明理由;若有可能,请求出该正方形框出的16个数中的最小数和最大数.(湖北省黄冈市中考试题)解题思路:(1)等差数列,相邻两数相差7.(2)①经观察不难发现,在这个方框里的每两个关于中心对称的数之和都等于44.如31与13,11与33,17与27都成中心对称的.于是易算出这16个数之和.②设框出的16个数中最小的一个数为a ,用a 表示出16个数之和,若算出的a 为自然数,则成立;不为自然数,则不可能.能力训练图① 日一二三四五六 6 7 8 9 10 11 12 1 2 3 4 5 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 2003 200419971999 2000 2001 2002… … … (36)3738394041421996 29 30 31 32 33 34 35 22 23 24 25 26 27 28 15 16 17 18 19 20 21 8 9 10 11 12 13 14 1 2 3 4 5 6 7 图②A 级1.若关于x 的方程(k -2)x|k -1|+5k =0是一元一次方程,则k =______;若关于x 的方程(k +2)x 2+4kx -5k =0是一元一次方程,则方程的解x =______.2.方程x -34[x -14(x -37)]=316(x -37)的解是______. (广西赛区选拔赛试题)3.若有理数x ,y 满足(x +y -2)2+|x +2y |=0,则x 2+y 3=______.(“希望杯”邀请赛试题)4.若关于x 的方程a (2x +b )=12x +5有无数个解,则a =______,b =______.(“希望杯”邀请赛试题)5.已知关于x 的方程9x -3=kx =14有整数解,那么满足条件的所有整数k =______.(“五羊杯”竞赛试题)6.下列判断中正确的是( ).A .方程2x -3=1与方程x (2x -3)=x 同解B .方程2x -3=1与方程x (2x -3)=x 没有相同的解C .方程x (2x -3)=x 的解都是方程2x -3=1的解D .方程2x -3=1的解都是方程x (2x -3)=x 的解 7.方程12x ⨯+23x ⨯+…+19951996x ⨯=1995的解是( ). A .1995 B .1996 C .1997 D .1998 8.若关于x 的方程21x b x --=0的解是非负数,则b 的取值范围是( ).A .b >0B .b ≥0C .b ≠2D .b ≥0且b ≠2(黑龙江省竞赛试题)9.关于x 的方程a (x -a )+b (x +b )=0有无穷多个解,则( ). A .a +b =0 B .a -b =0 C .ab =0 D .a b=0 10.已知关于x 的一次方程(3a +8b )x +7=0无解,则ab 是( ). A .正数 B .非正数 C .负数 D .非负数(“希望杯”邀请赛试题)11.若关于x 的方程kx -12=3x +3k 有整数解,且k 为整数,求符合条件的k 值.(北京市“迎春杯”训练题)12.已知关于x 的方程3x +a =||2a x -16(x -6),当a 取何值时,(1)方程无解?(2)方程有无穷多解?(重庆市竞赛试题)B 级1.已知方程2(x +1)=3(x -1)的解为a +2,则方程2[2(x +3)-3(x -a )]=3a 的解为______. 2.已知关于x 的方程2a x -=33bx -的解是x =2,其中a ≠0且b ≠0,则代数式b a -a b 的值是______.3.若k 为整数,则使得方程(k -1999)x =2001-2000x 的解也是整数的k 值有______个.(“希望杯”邀请赛试题)4.如果12+16+112+…+1(1)n n +=20032004,那么n =______.(江苏省竞赛试题)5.用※表示一种运算,它的含义是A ※B =1A B ++(1)(1)x A B ++,如果2※1=53,那么3※4=______.(“希望杯”竞赛试题)6.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是______克.(河北省中考试题)7.有四个关于x 的方程 ①x -2=-1 ②(x -2)+(x -1)=-1+(x -1) ③x =0④x -2+11x -=-1+11x -其中同解的两个方程是( ).A .①与②B .①与③C .①与④D .②与④8.已知a 是不为0的整数,并且关于x 的方程ax =2a 3-3a 2-5a +4有整数解,则a 的值共有( ).A .1个B .3个C .6个D .9个第6题图(“希望杯”邀请赛试题)9.(1)当a 取符合na +3≠0的任意数时,式子23ma na -+的值都是一个定值,其中m -n =6,求m ,n 的值.(北京市“迎春杯”竞赛试题)(2)已知无论x 取什么值,式子35ax bx ++必为同一定值,求a b b +的值.(“华罗庚杯”香港中学竞赛试题)10.甲队原有96人,现调出16人到乙队,调出后,甲队人数是乙队人数的k (k 是不等于1的正整数)倍还多6人,问乙队原有多少人?(上海市竞赛试题)11.下图的数阵是由77个偶数排成:用一平行四边形框出四个数(如图中示例).(1)小颖说四个数的和是436,你能求出这四个数吗? (2)小明说四个数的和是326,你能求出这四个数吗?第11题图…………………………………… 142 144 146 148 150 152 1543032343638404216 18 20 22 24 26 28 2 4 6 8 10 12 1407 整式的加减例1 -17例2 B例3 1998提示:由已知得4a-b=996,待求式=-3×(4a-b)+4986.例4 原多项式整理得:(a+1)x3+(2b-a)x3+(3a+b)x-5..又由题意知,该多项式为二次多项式,故a+1=0,得a=-1.把a=-1,a=2代入得:4(2 b+1)+2×(b-3)-5=-17.解得b=-1,故原多项式为-x2-4 x-5.当x=-2时,-x2-4 x-5=-4+8-5=-1.例5 设前7站上车的乘客数量依次为a1,a2,a3,a4,a5,a6,a7人,从第2站到第8站下车的乘客数量依次为b2,b3,b4,b5,b6,b7,b8人,则a1+a2+a3+a4+a5+a6+a7=b2+b3+b4+b5+b6+b7+b8.又∵a1+a2+a3+a4+a5+a6=100,∴b2+b3+b4+b5+b6+b7=80,即100+a 7=80+b 8,前6站上车而在终点下车的人数为b8-a7=100-80=20(人).例6 如图,由题意得a1+a2+a3=29,a2+a3+a4=29,…a6+a7+a 1=29,a7+a1+a 2=29,将上述7式相加得,3(a1+a2+a3+a4+a5+a6+a7)=29×7.∴a1+a2+a3+a4+a5+a6+a7=67 .这与a1+a2+a3+a4+a5+a6+a7为整数矛盾.故不存在满足题设要求的7个整数.A级1. 292. -63. -24.20035. 10 提示:3 x-2 y+z=2×(2 x+y+3 z)-(x+4 y+5 z)=2×23-36=46-36=10.6. C7. C 提示:设满足条件的单项式为ambncp的形式,其中m,n,p为自然数,且m+n+p=7.8. C 9. D10. 1.2 提示:由题意得b=m-1=n,c=2 n-1=0,0.625 a=0.25+(-0.125).11. 提示:8 a+7 b=8(a+9 b)-65 b.B级1. -a+b+c2. ≥ 1 提示:x的系数之和为零,须使4-7 x≤0且1-3 x≤0.3. 224. -94 提示:由(x+5)2+| y 2+y-6|=0得x=-5,y 2+y=6. y 2- x y+x 2+x 3=y 2+y+(-5)2+(-5)3=6+25-125=-94.5. -6. B 提示:利用绝对值的几何意义解此题. x的取值范围在与之间7. A提示:令x=1,可得a0+a1+a2+a3+a4+a5+a6=[2×1-1] 6=1①令x=-1,可得a0-a1+a2-a3+a4-a5+a6=[2×(-1)-1] 6=3 6=729②①+②,得2(a0+a2+a4+a6)=730,即a0+a2+a4+a6=365.8. C 9. A10. A 提示:原式=a+b+c+6n+6是偶数.11. 提示:(1)4.5πa2 S阴影=(a+a+a)2=4.5πa2(2) ab- b2+πb2 S阴影=(a+a)b-(b2-πb2)= a b- b 2+πb2(3)3 x+3 y+2 z 总长1=2 x+4 y+2 z+(x-y)=3 x+3 y+2 z.12. 因为=100 a+10 b+c,=10a+c.由题意得100a+10b+c=9(10a+c)+4c.化简得5(a+b)=6c(0≤a,b,c≤9,且a≠0)又∵5是质数,故,从而则符合条件的=155,245,335,425,515,605.。

配套K12七年级数学下册 培优新帮手 专题14 一次方程组试题 (新版)新人教版

配套K12七年级数学下册 培优新帮手 专题14 一次方程组试题 (新版)新人教版

14 一次方程组阅读与思考一次方程组是在一元一次方程的基础上展开的,解一次方程组的基本思想是“消元”,即通过消元将一次方程组转化为一元一次方程来解,常用的消元方法有代入法和加减法.解一些复杂的方程组(如未知数系数较大,方程个数较多等),需观察方程组的系数特点,从整体上思考问题,运用整体叠加、整体叠乘、辅助引元、换元等技巧.方程组的解是方程组理论中的一个重要概念,求解法、代解法是处理方程组解的基本方法. 对于含有字母系数的二元一次方程组,总可以化为⎩⎨⎧=+=+222111c y b x a c y b x a 的形式,方程组的解由222111,,,,,c b a c b a 的取值范围确定,当222111,,,,,c b a c b a 的取值范围未给出时,须讨论解的情况,基本思路是通过换元,将方程组的解的讨论转化为一元一次方程解的讨论.例题与求解【例1】 若m 使方程组⎩⎨⎧=+=-m y x y x 22的解x ,y 的和为6,则m =______________.(湖北黄冈市竞赛试题)解题思路:用含m 的式子分别表示x ,y ,利用x +y =6的关系式,求解m .【例2】 若4x -3y -6z =0,x +2y -7z =0(0≠xyz ).则代数式222222103225zy x z y x ---+的值等于 ( ) A .21-B .219-C .-15D .-13(全国初中数学竞赛试题)解题思路:把z 当作常数,解关于x ,y 的方程组. 【例3】 解下列方程组.(1)⎪⎩⎪⎨⎧-=-+==3432654z y x zy x(“缙云杯”邀请赛试题)(2)⎩⎨⎧=+=+798719951997598919971995y x y x(北京市竞赛试题)(3)⎩⎨⎧=++++=+=+==+=+=+1999119991998211999199819981997433221x x x x x x x x x x x x x x(“华罗庚金杯”竞赛试题)解题思路:根据方程组的特点,灵活运用不同的解题方法,或脱去绝对值符号,或设元引参,或整体叠加.【例4】 已知关于x ,y 的方程组⎩⎨⎧=-++=+3)1(2212y a x ay ax 分别求出a 为何值,方程组的解为:(1)有唯一一组解; (2)无解; (3)有无穷多组解.(湖北省荆州市竞赛试题)解题思路:通过消元,将方程组的解的情况讨论转化为一元一次方程解的情况讨论.【例5】已知正数a ,b ,c ,d ,e ,f 满足4=a bcdef ,9=b acdef ,16=cabdef ,41=d abcef ,91=e abcdf ,161=f abcde .求)()(f d b e b a ++-++的值. (“CADIO ”武汉市竞赛试题)解题思路:利用叠乘法求出abcdef 的值.【例6】已知关于x ,y 的二元一次方程(a -3)x +(2a -5)y +6-=0,当a 每取一个值时就有一个方程,这些方程有一个公共解.(1)求出这个公共解.(2)请说明,无论a 取何值,这个公共解都是二元一次方程(a -3)x +(2a -5)y +6-=0的解.(2013年“实中杯”数学竞赛试题)解题思路:分别令a 取两个不同的值,可得到二元一次方程组,求出公共解. 能力训练A 级1. 若243124953=+--++n m n m y x是关于x ,y 的二元一次方程,则nm的值等于______. (“希望杯”邀请赛试题)2. 方程组⎩⎨⎧=+=+572317631723y x y x ,的解为____________.(辽宁省中考试题)3. 已知方程组⎩⎨⎧-=-=+②24①155by x y ax 由于甲看错了方程①中的a 得到方程组的解为x =-3,y =-1;乙看错了方程②中的b 得到方程组的解为x =5,y =4.若按正确的a ,b 计算,则原方程组的解为___________.(四川省联赛试题)4. 已知关于x 的方程)1(5)13()3(+=++-x x b x a 有无穷多个解,则a = ,b =________.(“希望杯”邀请赛试题)5.已知0)223()423(22=+-+-+yx y x ,则有( ). A. x =2,y =3 B. x =-6,y =3 C. x =3,y =6 D. x =-3,y =66.如果方程组⎩⎨⎧=-=+223623y x y x 的解也是方程4x +y +2a =0的解,那么a 的值是 ( ).A.391-B. 691-C. -2D. 27.设非零实数a ,b ,c 满足⎩⎨⎧=++=++0432032c b a c b a ,则222c b a cabc ab ++++的值为( ). A.21-B.0C. 21D. 1(2013年全国初中数学竞赛试题)8.若方程组⎩⎨⎧=+=-9.30531332b a b a 的解为⎩⎨⎧==2.13.8b a 则方程组⎩⎨⎧=-++=--+9.30)1(5)2(313)1(3)2(2y x y x 的解为( ).A. ⎩⎨⎧==2.13.8y x B. ⎩⎨⎧==2.23.10y x C. ⎩⎨⎧==2.23.6y x D .⎩⎨⎧==2.03.10y x(山东省枣庄市中考试题)9.已知关于x ,y 的方程组⎩⎨⎧+=-+=+34231232k y x k y x 的解x ,y 的值的和为6,求k 的值.(上海市竞赛试题)10.解方程组. (1)⎩⎨⎧=+-=+102361463102463361y x y x(云南省昆明市竞赛试题)(2)⎪⎪⎩⎪⎪⎨⎧=-+-=-+-1121221136211y x y x(浙江省竞赛试题)(3)⎩⎨⎧-=-=+1327y x y x11.若1x ~5x 满足下列方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++++=++++=++++=++++=++++962482242122625432154321543215432154321x x x x x x x x x x x x x x x x x x x x x x x x x ,求5423x x +的值. (美国数学邀请赛试题)B 级1.已知对任意有理数a ,b ,关于x ,y 的二元一次方程b a y b a x b a +=+--)()(有一组公共解,则公共解为______.(江苏省竞赛试题)2.设⎩⎨⎧=++=++36542332z y x z y x ,则3x -2y +z = .(2013年全国初中数学竞赛试题)3.若关于x ,y 的方程组⎩⎨⎧=-=+03186y x my x 有自然数解,则整数m 可能的值是 .(2013年浙江省湖州市竞赛试题)4. 已知方程组⎩⎨⎧=+=+-by x y x a 5)1(,当a ,b 时,方程组有唯一一组解;当a ,b 时,方程组无解;当a ,b 时,方程组有无数组解.(“汉江杯”竞赛试题)5.“△”表示一种运算符号,其意义是a △b =2a -b ,如果x △(1△3)=2,则x = ( ).A.1B.21 C.23D .2 (江苏省竞赛试题)6.已知xz z y x +=+=531,则z y y x +-22的值为( ).A.1B.23 C. 23- D .41 (重庆市竞赛试题)7.已知关于x ,y 的两个方程组⎩⎨⎧=-=-7222y x by ax 和⎩⎨⎧=-=-113953y x by ax 具有相同的解,那么a ,b 的值是( ).A. ⎩⎨⎧==23b aB. ⎩⎨⎧==32b aC. ⎩⎨⎧-=-=32b a D .⎩⎨⎧-=-=23b a8.若a ,c ,d 是整数,b 是正整数,且满足a +b =c ,b +c =d ,c +d =a ,则a +b +c +d 的最大值是( ).A. -1B. -5C.0 D .1(全国初中数学联赛试题)9.解方程组(1)⎩⎨⎧=+=+321y x y x(江苏省竞赛试题)(2)⎪⎪⎪⎩⎪⎪⎪⎨⎧=====64321ea de cd bc ab(上海市竞赛试题)10.已知151=+b a ab ,171=+c b bc ,161=+a c ca ,求cabc ab abc++的值. (山西省太原市数学竞赛试题)11.已知1x ,2x ,3x ,…,n x 中每一个数值只能取-2,0,1中的一个,且满足求的值1x +2x +3x +…+n x =-17,21x +22x +23x +…+2n x =37.求31x +32x +…+3n x 的值.(“华罗庚金杯”邀请赛试题)12.已知k 是满足20101910<<k 的整数,并且使二元一次方程组⎩⎨⎧=+=-ky x y x 54745有整数解,问:这样的整数k 有多少个?(“华罗庚金杯”邀请赛试题)专题14 一次方程组例1 8 ②一①得3y=m-2,∴23m y -=.①×2+②得3x=4+m ,∴43mx +=.又由x+y=6得43m ++23m -=6,解得m=8. 例2 D 提示:由题意知43627x y z x y z -=⎧⎨+=⎩得32x zy z=⎧⎨=⎩代入原式中,得2222225(3)2(2)132(3)3(2)10z z z z z z +-=---.例3 (1)121518x y z =⎧⎪=⎨⎪=⎩,提示:令456x y z k ===,则x=4k,y=5k,z=6k.(2) 12x y =⎧⎨=⎩,提示:将方程分别相加、相减得x+y =3,x-y=-1.(3)由题意可设x 1=x 3=x 5=…=x 1999=A,x 2=x 4=x 6=…=x 1998=B ,则110009991999A B A B +=⎧⎨+=⎩解得A=1 000,B=- 999,即x l = x 3 =x 5=…=x 1999=1 000,x 2 =x 4 =x 6=…=x 1998=-999.例4提示:由方程组得(2)(1)(2)(2)2(2)(1)2a a x a a a a y a -+=-+⎧⎨-+=-⎩(1)当(a-2)(a+1)≠o ,即a ≠2且a ≠-l 时,原方程组有唯一解;(2)当(a-2) (a+l) =0且(a-2) (a+2)与a-2中至少有一个不为0时,方程组无解,故当a= -1时,原方程组无解;(3)当(a-2)(a+l)=(a-2)(n+2)=(a-2)=0, 即a=2时,原方程组有无数组解. 例5提示:依题意可得(abcdef)4=1即abcdef=1,从而414a =,故12a =,同理可得13b =,14c =,2d =,3e =,4f =,那么1117()()(3)(24)224312a c eb d f ++-++=++-++=-例6 (1)分别令a 取两个不同的值,可得到二元一次方程组,解出公共解为73x y =⎧⎨=-⎩.(2)把(a - 3)x+(2a-5)y+6-a=0可变形为(x+ 2y -1)a- 3x - 5y+6=0.依题意可得2103560x y x y +-=⎧⎨--+=⎩,解得73x y =⎧⎨=-⎩.∴无论a 取何值,这个公共解都是二元一次方程(a-3)x+(2a-5)y+6-a=0的解.A 级1. 3192. 21x y =⎧⎨=⎩3. 14295x y =⎧⎪⎨=⎪⎩4. 2 1 5.C 6.B7.A 提示:由已知得a+b+c=(2a+3b+4c)-(a+2b+3c) =0,故(a+b+c)2=0,于是ab+bc+ca 2221()2a b c -++,则原式的值为12-.8. C 提示:依题中方程组知28.31 1.2x y +=⎧⎨-=⎩解得 6.32.2x y =⎧⎨=⎩9. 5 提示:1611,1313x k =+231313y k =--.10. (1) 11x y =⎧⎨=-⎩(2) 73116x y ⎧=⎪⎪⎨⎪=⎪⎩提示:设11A x =-,121B y =-. (3) 1143x y =⎧⎨=⎩,2243x y =-⎧⎨=⎩,3343x y =⎧⎨=-⎩4443x y =-⎧⎨=-⎩ 11. 181 提示:将各个方程相加得x 1+x 2 +x 3 +x 4+x 5 =31.B 级1. ⎩⎨⎧-==10y x 提示:由a (x -y -1)-b (x +y +1)=0知⎩⎨⎧=++=--0101y x y x 2. 10 提示:3x -2y +z =2(2x +y +3z )-(x +4y +5z )=2×23-36=46-36=10 3. -1,0,1,4 提示:把y =3x 代入6x +m y =18中得6x +3my =18, 整理得x =26+m ,又因为x ,y 为自然数,故符合条件的m 取值为-1,0,1,4。

部编版2020七年级数学下册 培优新帮手 专题15 一次方程的应用试题 (新版)新人教版

部编版2020七年级数学下册 培优新帮手 专题15 一次方程的应用试题 (新版)新人教版

15 一次方程组的应用阅读与思考1、求代数式的值一些表面与方程组无关的问题,借助相关概念、性质、对题意的理解等将问题转化为解方程组而获解2、列方程组解应用题不同的应用问题应采用不同的解决手段或方法,对于含有多个未知量的问题,利用方程组求解常常比单设一个未知数建立一元方程容易,列方程组解应用题的步骤与列一元方程应用题的步骤类似,他们的不同之处在于:首先,列方程所解决的应用题中含有多个未知量,须设多个未知数,而列方程只能设一个未知数,其他未知量只能用这一个未知数的代数式表示;其次,列方程组解应用题应列出彼此独立的方程来组成方程组,而列方程解应用题只需列出一个方程.例题与求解【例1】小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车,假设每辆18路公交车行驶速度相同,并且18路公交车总站每间隔固定时间发一辆车,那么发车间隔的时间是__________分钟.(2013年“《数学周报》杯竞赛试题)解题思路:根据同向行驶的相邻两车的间距保持不变,且小王行走速度和公交车行驶速度是固定的,列方程组分析.【例2】如图,用8块相同的长方形地砖拼成一个矩形,则每个长方形地砖的面积为()A、200平方厘米B、300平方厘米C、600平方厘米D、2400平方厘米(黑龙江中考试题)解题思路:设每块长方形地砖的长为x厘米,宽为y厘米,则根据图形可列出关于x,y的二元一次方程组.【例3】某班进行个人投篮比赛,下表记录了在规定时间内投进几个球人数分布情况.同时,已知进球3个或3个以上的人平均每人投进3.5个球,进球4个或4个以下的人平均每人投进2.5个球,问投进3个球和4个球的各有多少人?(上海市中考试题)解题思路:已知两种进球情况下的人均进球数,根据平均每人投进的球数=投进总球数/总人数列出方程组.【例4】某工程由甲、乙两队合作6天完成,厂家需支付甲、乙两队共8700元;乙、丙两队合作10天完成,厂家需支付乙、丙两队共9500元;甲、丙两队合作5天完成全部工程的2/3,厂家需支付甲、丙两队共5500元.(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若工期要求不超过15天完成全部工程,问可由哪队单独完成此项工程花钱最少?请说明理由.(天津市中考试题)【例5】有甲、乙、丙三种规格的钢条,已知甲种2根,乙种1根,丙种3根,共长23米;甲种1根,乙种4根,丙种5根,共长36米,问甲种1根、乙种2根、丙种3根,共长多少米?(天津市竞赛试题)解题思路:三个未知量却只有两个等量关系,需运用相关的解方程组的技巧,如视某个变量为常量、整体思想等.【例6】星期天,妈妈带着小丁去买了2斤苹果核6斤橘子,共用去12元,妈妈说:”上星期天也是买了2斤苹果核6斤橘子,也是花了12元,可是今天的苹果价格下调了,橘子价格上涨了,并且上涨和下调的幅度相同.”试求上星期天苹果核橘子每斤的价格.(2013年七年级数学应用与创新竞赛试题)解题思路:设上星期天苹果每斤x元,橘子每斤y元,价格调整的幅度为m,列出方程组.能力训练A级1、若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买4支圆珠笔、4本日记本需要________元.(浙江省绍兴市中考试题)2、全国足球甲A联赛前12轮(场)的比赛后,前三名比赛成绩如下表,则每队胜乙场、平一场、负一场分布的_________分(江苏省南京市中考试题)3、若x +2y +3z =14,4x +3y +2z =15,则x +y +z = .4、如图,在长方形ABCD 中,放入六个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分的面积为 .5、已知nm nm nm y x yx+--+-17324是同类项,则m ,n 的值分别为( ) A. m =-1,n =-7 B. m =3,n =1 C. m =1029,n =56 D. m =45,n =-26、某商店出售甲、乙两种商品,售价都是1800元,其中,甲商品能盈利20%,乙商品将亏损20%,如果同时售出甲、乙商品个一件,那么( )A 、共盈利150元B 、共亏损150元C 、不盈利也不亏损D 、以上答案都不对(山东省竞赛试题)7、方程1132=+++--y x y x 的整数解得个数是( )A 、1个B 、2个C 、3个D 、4个 8、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么( ) A 、甲比乙大5岁 B 、 甲比乙大10岁 C 、 乙比甲大10岁 D 、乙比甲大5岁(全国初中数学联赛试题)9、某纸品加工厂为了制作甲、乙两种无盖的长方体小盒(如图错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(河北省竞赛试题)
解题思路:恰当引元,解 题的突破口是把“至多”“至少”“赢利”等词语转化为对应的数学关系式.
【例4】某大型超市元旦假期举行促销活动,假定一次购物不超过100元的不给优惠,超过100元而不超过300元时,按该次购物金额9折优惠,超过300元的其中300元仍按9折优惠,超过部分按8折优惠,小美两次购物分别用了94.5元和282.8元.现小丽决定一次购买小美分两次购买的同样的物品,那么,小丽应该付款多少元?
(黑龙江齐齐哈尔市中考题)
2.某商品的标价比成本高,当该商品降价出售时,为了不亏损成本,售价的折扣(即降价的百分数)不得超过,则可用表示为.
3.某机关有三个部门, 部门有公务员84人,部门有公务员56人,部门有公务员60人,如果每个部门按比例裁减人员,使这个机关仅留公务员150人,那么部门留下的公务员的人数是.
七年级数学下册-培优新帮手-专题-情境应用试题-(新版)新人教版
———————————————————————————————— 作者:
———————————————————————————————— 日期:
20 情景应用题
阅读与思考
强调数学应用,突出对应用意识的考查是现今各级考试的显著特点,随着社会不断进步,尤其是改革开放以来我国社会主义市场经济的蓬 勃发展,许多应用题也烙上了时代的印迹.这些应用题高度关注社会热点,以丰富的生产、生活实践活动和多彩的市场经济为背景,具有鲜明的时代特点,常见的问题有储蓄利息、商品利润、股票交易、价格控制、经济预算、企业决策、人口环境等.解决这些问题须注意:
A.5种 B.6种 C.7种 D.8种
(湖北省武汉市选拔赛试题)
6. 某商店出售某种商品每件可获利元,利润率为20%.若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利元.则提价后的利润 率为( ).
A. 25% B.20% C.16% D.12.5%
7. 某商店经销一种商品,由于进价降低 了5%,出售价不变,使得利润率由提高到,则值为( ).
A.不赔不赚 B.赚100元 C.赔100元 D.赚90元
(“祖冲之杯 ”邀请赛试题)
解题思路:要判断此人交易的结果,关键是计算出该人购买甲、乙两种股票的进价.
【例3】商业大厦购进某种商品1000件,销售价定为购进价的125%,现计划节日期间按原定售价让利10%售出至多100件商品,而在销售淡季按原定售价的 60%大甩卖,为使全部商品售完后赢利,在节日和淡季之外要按原定价销售出至少多少件商品?
1.理解相关词语的意义,熟悉基本关系式:
①利率=×100%,利息=本金×利率×存期;
本息和=本 金+利息=本金×(1+利率×存期);;
②利润率=×100%,利润=利润率×进货价;
售出价=进货价+利润=进货价×(1+利润率);
③总成本=固定成本+可变成本.
2.在理解题意、理顺数量关系的基础上,用方程(组)、不等式(组)及相关数学知识解决问题.
例题与求解
【例1】某商店将某种超级DVD按进价提高35%,然后打出“九折酬宾,外送50元出租费”的广告,结果每台超级DVD仍获利208元,那么每台超级DVD的进价是元.
(“希望杯”邀请赛试题)
解题思路:设未知数,利用售出价、进货价、利润之间的关系建立方程.
【例2】某人将甲、乙两种股票卖出,其甲种股票卖价1200元,赢利20%,其乙种股票卖价也是1200元,但亏损20%,该人此次交易的结果是( ).
(海南省中考试题)
解题思路:先求出小美第二次购物的原价,再分情况讨论.
【例5】某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为 租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购.投资者可以在以下两种购铺方案中作出选择:
方案一:投资者按商铺标价一次性付清铺款,每年可获得得租金为商铺标价的10%.
(江苏省无锡市中考试题)
解题思路:在阅读理解的基础上,恰当地设未知数解决问题.
【例6】某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表返还相应金额.
消费金额(元)
300~400
400~500
500~600
600~700
700~800

返还金额(元)
3
方案二:投资者按商铺标价的八五折一次性付清铺款.2年后每年可获得租金为商铺标价的10%.但要缴纳租金的10%作为管理费用.
⑴请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=×100%)
⑵对同一标价的商铺,甲选择了购铺方案一、乙选择了购铺方案二.那么五年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?
(山东省济南中考试题)
4. 某商品降价20%后欲恢复原价,则提价的百% D.30%
(湖北省数学竞赛选拔赛试题)
5. 某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有().
(2013年江苏省南京市中考试题)
解题思路:⑴根据标价商品按80%价格出售,求出消费金额,再根据金额所在的范围,求出优惠额.
⑵先设商品的标价为元,根据购买标价不超过800元的商品,要使获得的优惠不少于226元,来列出不等式,再分类讨论,求出的取值范围,从而得到答案.
能力训练
A级
1.某商店老板将一件进价为800元的商品先提价50%,再打 八折卖出,则卖出这件商品所获利润为.
A.12 B.10 C.17 D.14
8.某企业生产一种产 品,每件成本价是400元,销售价为510元,本季度销售了件,为进一步扩大市场,该企业决定在降低销售价的同时降低生产成本.经过市场调研,预测下季度这种产品每件销售价降低4%,销量将提高10%,要使销售利润保持不变,该产品每件的成本应降低多少元?
0

注:300~400表示消费金额大于300且小于或等于400.其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为400元的商品,则消费金额为320元.获得优惠额为400×(1-80%)+30=110(元).
⑴购买一件标价为1000元的商品,顾客获得的优惠额是多少?
⑵如果顾客购买标价不超过800 元的商品,要使获得的优惠额不少于226元,那么该商品的标价为多少元?
相关文档
最新文档