2019开封中考一模数学真题

合集下载

开封市数学中考一模试卷

开封市数学中考一模试卷

开封市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·榆树期中) 下列运算正确的是()A . 3a-a=2B . -a2-a2=0C . 3a+a=4a2D . 2ab-ab=ab2. (2分) (2018九下·滨湖模拟) 下列运算正确的是()A . (a3)2=a6B . 2a+3a=5a2C . a8÷a4=a2D . a2·a3=a63. (2分)(2020·江阴模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (2分) (2018九下·滨湖模拟) 如图,一个由6个大小相同、棱长为1的正方体搭成的几何体,下列关于这个几何体的说法正确的是()A . 主视图的面积为6B . 左视图的面积为2C . 俯视图的面积为4D . 俯视图的面积为35. (2分) (2018九下·滨湖模拟) 如图,把等腰直角三角尺的直角顶点放在直尺的一边上,则∠1+∠2的度数为()A . 60°B . 90°C . 120°D . 135°6. (2分)(2020·江阴模拟) 某校春季运动会比赛中,八年级(1)班、(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分比为6 5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的方程组应为()A .B .C .D .7. (2分) (2018九下·滨湖模拟) 下列说法中,正确的是()A . 为检测我市正在销售的酸奶质量,应该采用普查的方式B . 若两名同学连续五次数学测试的平均分相同,则方差较大的同学数学成绩更稳定C . 抛掷一个正方体骰子,朝上的面的点数为奇数的概率是D . “打开电视,正在播放广告”是必然事件8. (2分) (2018九下·滨湖模拟) 随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为()A . 33元B . 36元C . 40元D . 42元9. (2分) (2018九下·滨湖模拟) 如图,在矩形纸片ABCD中,AB=3,BC=2,沿对角线AC剪开(如图①);固定△ADC,把△ABC沿AD方向平移(如图②),当两个三角形重叠部分的面积最大时,移动的距离AA′等于()A . 1B . 1.5C . 2D . 0.8或1.210. (2分)(2020·江阴模拟) 如图,在△AOB中,OC平分∠AOB,,反比例函数图像经过点A、C两点,点B在x轴上,若△AOB的面积为7,则k的值为()A .B .C .D .二、填空题 (共8题;共9分)11. (1分) (2017七上·杭州期中) a与b的两倍的差可表示为________.12. (1分)(2017·玉环模拟) 分解因式:3a2﹣12=________.13. (1分) (2018九下·滨湖模拟) 2017年,无锡全市实现地区生产总值约10500亿元,成为继苏州、南京之后,江苏第三个GDP破万亿元的城市.将10500亿元这个数据用科学记数法表示为________亿元.14. (1分) (2018九下·滨湖模拟) “微信发红包”是一种流行的娱乐方式,小红为了解家庭成员“除夕夜”使用微信发红包的情况,随机调查了15名亲戚朋友,结果如下表:平均每个红包的钱数(元)25102050人数74211则此次调查中平均每个红包的钱数的中位数为________元.15. (1分) (2018九下·滨湖模拟) 一个圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是________.16. (2分) (2020九上·东台期末) 如图,点G是的重心,AG的延长线交BC于点D,过点G作交AC于点E,如果,那么线段GE的长为________.17. (1分)(2020·江阴模拟) 如图,正方形OABC的边长为8,A、C两点分别位于x轴、y轴上,点P在AB 上,CP交OB于点Q,函数y=的图像经过点Q,若S△BPQ=S△OQC ,则k的值为________.18. (1分)(2020·江阴模拟) 如图,等边△AOB,点C是边AO所在直线上的动点,点D是x轴上的动点,在矩形CDEF中,CD=6,DE= ,则OF的最小值为________.三、解答题 (共10题;共73分)19. (10分)(2020·静安模拟) 计算:.20. (10分)(2020·白云模拟) 解不等式:,并在数轴上表示解集.21. (5分)(2020·江阴模拟) 如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点C作CE//AB,过点B作BE//CD,CE、BE相交于点E.求证:四边形BECD为菱形.22. (2分) (2019八下·江阴期中) 某市对即将参加中考的4000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和不完整的频数分布直方图.请根据图表信息回答下列问题:初中毕业生视力抽样调查频数分布表视力频数(人)频率4.0≤x<4.3200.14.3≤x<4.6400.24.6≤x<4.9700.354.9≤x<5.2a0.35.2≤x<5.510b(1)本次调查样本容量为________;(2)在频数分布表中,a=________,b=________,并将频数分布直方图补充完整________;(3)若视力在4.9以上(含4.9)均属标准视力,根据上述信息估计全区初中毕业生中达到标准视力的学生约有多少人?23. (6分) (2018九下·滨湖模拟) 2018无锡市体育中考男生项目分为速度耐力类、力量类和灵巧类,每位考生只能在三类中各选一项进行考试.其中速度耐力类项目有:50米跑、800米跑、50米游泳;力量类项目有:掷实心球、引体向上;灵巧类项目有:30秒钟跳绳、立定跳远、俯卧撑、篮球运球.男生小明“50米跑”是强项,他决定必选,其它项目在平时测试中成绩完全相同,他决定随机选择.(1)请用画树状图或列表的方法求“小明‘选50米跑、引体向上和立定跳远’”的概率;(2)小明所选的项目中有立定跳远的概率是________.24. (7分)(2020·江阴模拟) 如图,在由边长为1的小正方形组成的网格图中,有一个格点三角形ABC.(注:顶点均在网格线交点处的三角形称为格点三角形.)(1)△ABC是________三角形(填“锐角”、“直角”或“钝角”);(2)若P、Q分别为线段AB、BC上的动点,当PC+PQ取得最小值时,① 在网格中用无刻度的直尺,画出线段PC、PQ.(请保留作图痕迹.)(3)② 直接写出PC+PQ的最小值:________.25. (6分)(2020·江阴模拟) 如图,已知在⊙O中,AB是⊙O的直径,AC=8,BC=6.(1)求⊙O的面积;(2)若D为⊙O上一点,且△ABD为等腰三角形,直接写出CD的长为________.26. (10分) (2018九下·滨湖模拟) 无锡水蜜桃享誉海内外,老王用3000元购进了一批水蜜桃.第一天,很快以比进价高40% 的价格卖出150千克.第二天,他发现剩余的水蜜桃卖相已不太好,于是果断地以比进价低20%的价格将剩余的水蜜桃全部售出,本次生意老王一共获利750元.(1)根据以上信息,请你编制一个问题,并给予解答;(2)老王用3000元按第一次的价格又购进了一批水蜜桃.第一天同样以比进价高40% 的价格卖出150千克,第二天,老王把卖相不好的水蜜桃挑出,单独打折销售,售价为10元/千克,结果很快被一抢而空,其余的仍按第一天的价格销售,且当天全部售完.若老王这次至少获利1100元,请问打折销售的水蜜桃最多多少千克?(精确到1千克.)27. (15分)(2020·江阴模拟) 如图,抛物线交x轴于A、B两点(点A在点B的左侧),.(1)求抛物线的函数表达式;(2)如图①,连接BC,点P在抛物线上,且∠BCO= ∠PBA.求点P的坐标(3)如图②,M是抛物线上一点,N为射线CB上的一点,且M、N两点均在第一象限内,B、N是位于直线AM 同侧的不同两点,,点M到轴的距离为2L,△AMN的面积为5L,且∠ANB=∠MBN,请问MN的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.28. (2分) (2018九下·滨湖模拟) 如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,G是边AB的中点,平行于AB的动直线l分别交△ABC的边CA、CB于点M、N,设CM=m.(1)当m=1时,求△MNG的面积;(2)若点G关于直线l的对称点为点G′,请求出点G′ 恰好落在△ABC的内部(不含边界)时,m的取值范围;(3)△MNG是否可能为直角三角形?如果能,请求出所有符合条件的m的值;如果不能,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共73分)19-1、20-1、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、27-1、27-2、27-3、28-1、28-2、28-3、。

河南省开封市2019-2020学年中考数学一模考试卷含解析

河南省开封市2019-2020学年中考数学一模考试卷含解析

河南省开封市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,是轴对称图形的是()A.B.C.D.2.工人师傅用一张半径为24cm,圆心角为150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为()cm.A.119B.2119C.46D.1119 23.12的倒数是()A.﹣12B.2 C.﹣2 D.124.某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件x个,依题意列方程为()A.21021051.5x x-=B.21021051.5x x-=-C.21021051.5x x-=+D.2102101.55x=+5.如图,在平面直角坐标系xOy中,△A B C'''由△ABC绕点P旋转得到,则点P的坐标为()A.(0,1)B.(1,-1)C.(0,-1)D.(1,0)6.下列图形中,既是中心对称图形又是轴对称图形的是()A.正五边形B.平行四边形C.矩形D.等边三角形7.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A.B.C.D.8.我国“神七”在2008年9月26日顺利升空,宇航员在27日下午4点30分在距离地球表面423公里的太空中完成了太空行走,这是我国航天事业的又一历史性时刻.将423公里用科学记数法表示应为()米.A.42.3×104B.4.23×102C.4.23×105D.4.23×1069.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是610.如图,AB是⊙O的直径,弦CD⊥AB于E,∠CDB=30°,⊙O的半径为3,则弦CD的长为()A.32cm B.3cm C.23cm D.9cm11.魏晋时期的数学家刘徽首创割圆术.为计算圆周率建立了严密的理论和完善的算法.作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用正多边形的周长圆的直径来求得较为精确的圆周率.祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是()A.0.5 B.1 C.3 D.π12.如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值为A.1 B.22C.2D.31二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=______.14.如图,四边形是矩形,四边形是正方形,点在轴的负半轴上,点在轴的正半轴上,点在上,点在反比例函数(为常数,)的图像上,正方形的面积为4,且,则值为________.15.如图,在等边△ABC中,AB=4,D是BC的中点,将△ABD绕点A旋转后得到△ACE,连接DE交AC于点F,则△AEF的面积为_______.16.已知m=444153,n=44053,那么2016m﹣n=_____.17.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为_____度.18.如图△ABC 中,AB=AC=8,∠BAC=30°,现将△ABC 绕点A 逆时针旋转30°得到△ACD ,延长AD 、BC 交于点E ,则DE 的长是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,点O 和矩形CDEF 的边CD 都在直线l 上,以点O 为圆心,以24为半径作半圆,分别交直线l 于,A B 两点.已知: 18CD =,24CF =,矩形自右向左在直线l 上平移,当点D 到达点A 时,矩形停止运动.在平移过程中,设矩形对角线DF 与半圆»AB 的交点为P (点P 为半圆上远离点B 的交点).如图2,若FD 与半圆»AB 相切,求OD 的值;如图3,当DF 与半圆»AB 有两个交点时,求线段PD 的取值范围;若线段PD 的长为20,直接写出此时OD 的值.20.(6分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了 名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是 ;(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有 名.21.(6分)如图,已知点A 、O 在直线l 上,且6AO =,OD l ⊥于O 点,且6OD =,以OD 为直径在OD 的左侧作半圆E ,AB AC ⊥于A ,且60CAO ∠=︒.若半圆E 上有一点F ,则AF 的最大值为________;向右沿直线l 平移BAC ∠得到'''B A C ∠;①如图,若''A C 截半圆E 的GH u u u r 的长为π,求'A GO ∠的度数;②当半圆E 与'''B A C ∠的边相切时,求平移距离.22.(8分)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.23.(8分)如图,将△ABC 放在每个小正方形的边长为1的网格中,点A 、点B 、点C 均落在格点上. (I )计算△ABC 的边AC 的长为_____.(II )点P 、Q 分别为边AB 、AC 上的动点,连接PQ 、QB .当PQ+QB 取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段PQ 、QB ,并简要说明点P 、Q 的位置是如何找到的_____(不要求证明).24.(10分)已知点E 是矩形ABCD 的边CD 上一点,BF ⊥AE 于点F ,求证△ABF ∽△EAD.25.(10分)地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小刚和小亮谁说得对?请你判断并计算出正确的限制高度.(结果精确到0.1m,参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)26.(12分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BG⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=3,DH=1,∠OHD=80°,求∠BDE的大小.27.(12分)如图,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于点A(-1,0),点B(3,0),与y轴交于点C,线段BC与抛物线的对称轴交于点E、P为线段BC上的一点(不与点B、C重合),过点P作PF∥y轴交抛物线于点F,连结DF.设点P的横坐标为m.(1)求此抛物线所对应的函数表达式.(2)求PF的长度,用含m的代数式表示.(3)当四边形PEDF为平行四边形时,求m的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.B【解析】分析:直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.详解:由题意可得圆锥的母线长为:24cm,设圆锥底面圆的半径为:r,则2πr=15024180π⨯,解得:r=10,222410=2119-(cm).故选B.点睛:此题主要考查了圆锥的计算,正确得出圆锥的半径是解题关键.3.B【解析】【分析】根据乘积是1的两个数叫做互为倒数解答.【详解】解:∵12×1=1∴12的倒数是1.故选B.【点睛】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.4.A【解析】【分析】设原计划每天生产零件x个,则实际每天生产零件为1.5x个,根据提前5天完成任务,列方程即可.【详解】设原计划每天生产零件x个,则实际每天生产零件为1.5x个,由题意得,21021051.5x x-=故选:A.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可.5.B【解析】试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.试题解析:由图形可知,对应点的连线CC′、AA′的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心. 故旋转中心坐标是P(1,-1)故选B.考点:坐标与图形变化—旋转.6.C【解析】分析:根据中心对称图形和轴对称图形对各选项分析判断即可得解.详解:A. 正五边形,不是中心对称图形,是轴对称图形,故本选项错误.B. 平行四边形,是中心对称图形,不是轴对称图形,故本选项错误.C. 矩形,既是中心对称图形又是轴对称图形,故本选项正确.D. 等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.故选C.点睛:本题考查了对中心对称图形和轴对称图形的判断,我们要熟练掌握一些常见图形属于哪一类图形,这样在实际解题时,可以加快解题速度,也可以提高正确率.7.C【解析】【分析】【详解】从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,故选C.8.C【解析】423公里=423 000米=4.23×105米.故选C.9.D【解析】【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为2≈0.67>0.16,故A选项不符合题意,3从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为1327≈0.48>0.16,故B选项不符合题意,掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是12=0.5>0.16,故C选项不符合题意,掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是16≈0.16,故D选项符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.10.B【解析】【详解】解:∵∠CDB=30°,∴∠COB=60°,又∵OC=3,CD⊥AB于点E,∴3sin603︒==,解得CE=32cm,CD=3cm.故选B.考点:1.垂径定理;2.圆周角定理;3.特殊角的三角函数值.11.C【解析】【分析】连接OC、OD,根据正六边形的性质得到∠COD=60°,得到△COD是等边三角形,得到OC=CD,根据题意计算即可.【详解】连接OC、OD,∵六边形ABCDEF是正六边形,∴∠COD=60°,又OC=OD,∴△COD是等边三角形,∴OC=CD,正六边形的周长:圆的直径=6CD:2CD=3,故选:C.【点睛】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式是解题的关键.12.C【解析】作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,连接OA′,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN∧的中点,∴∠BON=30 °,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴2∴2故选:C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.240.【解析】【详解】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.14.-1【解析】试题分析:∵正方形ADEF的面积为4,∴正方形ADEF的边长为2,∴BF=2AF=4,AB=AF+BF=2+4=1.设B点坐标为(t,1),则E点坐标(t-2,2),∵点B、E在反比例函数y=的图象上,∴k=1t=2(t-2),解得t=-1,k=-1.考点:反比例函数系数k的几何意义.15.33 2【解析】【分析】首先,利用等边三角形的性质求得3△ADE为等边三角形,则DE=AD,便可求出EF和AF,从而得到△AEF的面积.【详解】解:∵在等边△ABC中,∠B=60º,AB=4,D是BC的中点,∴AD⊥BC,∠BAD=∠CAD=30º,∴AD=ABcos30º=4×33根据旋转的性质知,∠EAC=∠DAB=30º,AD=AE,∴∠DAE=∠EAC+∠CAD=60º,∴△ADE的等边三角形,∴3,∠AEF=60º,∵∠EAC=∠CAD∴EF=DF=132DE ,AF⊥DE∴AF=EFtan60º3×3,∴S△AEF=12EF×AF=12×3×33.故答案为:33 2.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,熟记各性质并求出△ADE是等边三角形是解题的关键.16.1【解析】【分析】根据积的乘方的性质将m 的分子转化为以3和5为底数的幂的积,然后化简从而得到m=n ,再根据任何非零数的零次幂等于1解答.【详解】解:∵m=444153=4?444353=44053, ∴m=n ,∴2016m-n =20160=1.故答案为:1【点睛】本题考查了同底数幂的除法,积的乘方的性质,难点在于转化m 的分母并得到m=n.17.130【解析】分析:n 边形的内角和是()2180n -⋅︒,因而内角和一定是180度的倍数.而多边形的内角一定大于0,并且小于180度,因而内角和除去一个内角的值,这个值除以180度,所得数值比边数要小,小的值小于1.详解:设多边形的边数为x ,由题意有(2)1802750x o o ,-⋅= 解得51718x =, 因而多边形的边数是18,则这一内角为()1821802750130.-⨯-=o o o故答案为130点睛:考查多边形的内角和公式,熟记多边形的内角和公式是解题的关键.18.4【解析】【分析】过点C 作CH AE ⊥于H ,根据三角形的性质及三角形内角和定理可计算ACB 75∠=︒再由旋转可得,CAD BAC 30∠∠==︒,根据三角形外角和性质计算E 45∠=︒,根据含30︒角的直角三角形的三边关系得CH 和AH 的长度,进而得到DH 的长度,然后利用E 45∠=︒得到EH 与CH 的长度,于是可得DE EH DH =-.【详解】如图,过点C 作CH AE ⊥于H ,∵AB AC 8==, ∴()()11B ACB 180BAC 180307522∠∠∠==︒=︒︒=︒﹣﹣. ∵将ABC V 绕点A 逆时针旋转,使点B 落在点C 处,此时点C 落在点D 处,∴AD AB 8==, CAD BAC 30,∠∠==︒∵ACB CAD E ,∠∠∠=+∴E 753045.∠=︒-︒=︒在Rt ACH V 中,∵CAH 30∠=︒,∴1CH AC 42==, AH 3CH 43==, ∴DH AD AH 843=-=-,在Rt CEH V 中,∵E 45∠=︒,∴EH CH 4==,∴()DE EH DH 4843434=-=--=-.故答案为434-. 【点睛】本题考查三角形性质的综合应用,要熟练掌握等腰三角形的性质,含30︒角的直角三角形的三边关系,旋转图形的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)30OD =;(2)144185PD <…;(3)8512或8512 【解析】【分析】(1)如图2,连接OP ,则DF 与半圆相切,利用△OPD ≌△FCD (AAS ),可得:OD=DF=30;(2)利用cos DH CD ODP OD FD∠==,求出72HD 5=,则144DP 2HD 5==;DF 与半圆相切,由(1)知:PD=CD=18,即可求解;(3)设PG=GH=m ,则:22OG 24m ,DG 20m,=-=-OG tan FDC DG ∠=22424m 320m-==-,求出64245m 5±=,利用DG OD cos α=,即可求解. 【详解】(1)如图,连接OP ∵FD 与半圆相切,∴OP FD ⊥,∴90OPD ︒∠=,在矩形CDEF 中,90FCD ∠=o ,∵18,24CD CF ==,根据勾股定理,得2222182430FD CD CF =+=+=在OPD ∆和FCD ∆中,9024OPD FCD ODP FDC OP CF ︒⎧∠=∠=⎪∠=∠⎨⎪==⎩∴OPD FCD ≅∆V∴30OD DF ==(2)如图,当点B 与点D 重合时,过点O 作OH DF ⊥与点H ,则2DP HD =∵cos DH CD ODP OD FD ∠== 且18,24CD OD ==,由(1)知:30DF = ∴182430DH =,∴725DH =, ∴14425DP HD DH === 当FD 与半圆相切时,由(1)知:18PD CD ==,∴144185PD <… (3)设半圆与矩形对角线交于点P 、H ,过点O 作OG ⊥DF ,则PG=GH ,244tan FDC tan 183α∠===,则3cos 5α=, 设:PG=GH=m ,则:22OG 24m ,DG 20m =-=-,22OG 424m tan FDC DG 320m-∠===-, 整理得:25m 2-640m+1216=0, 解得:64245m ±= DG 20m OD 85123cos 5α-===. 【点睛】本题考查的是圆的基本知识综合运用,涉及到直线与圆的位置关系、解直角三角形等知识,其中(3),正确画图,作等腰三角形OPH 的高OG ,是本题的关键.20.(1)120,30%;(2)作图见解析;(3)1.【解析】试题分析:(1)用安全意识分“一般”的人数除以安全意识分“一般”的人数所占的百分比即可得这次调查一共抽取的学生人数;用安全意识分“很强”的人数除以这次调查一共抽取的学生人数即可得安全意识“很强”的学生占被调查学生总数的百分比;(2)用这次调查一共抽取的学生人数乘以安全意识分“较强”的人数所占的百分比即可得安全意识分“较强”的人数,在条形统计图上画出即可;(3)用总人数乘以安全意识为“淡薄”、 “一般”的学生一共所占的百分比即可得全校需要强化安全教育的学生的人数.试题解析:(1) 12÷15%=120人;36÷120=30%; (2)120×45%=54人,补全统计图如下:(3)1800×=1人.考点:条形统计图;扇形统计图;用样本估计总体.21.(1)2(2)①75︒;②33【解析】【分析】(1)由图可知当点F 与点D 重合时,AF 最大,根据勾股定理即可求出此时AF 的长; (2)①连接EG 、EH .根据¼GH 的长为π可求得∠GEH=60°,可得△GEH 是等边三角形,根据等边三角形的三个角都等于60°得出∠HGE=60°,可得EG//A'O ,求得∠GEO=90°,得出△GEO 是等腰直角三角形,求得∠EGO=45°,根据平角的定义即可求出∠A'GO 的度数;②分C'A'与半圆相切和B'A'与半圆相切两种情况进行讨论,利用切线的性质、勾股定理、切斜长定理等知识进行解答即可得出答案.【详解】解:(1)当点F 与点D 重合时,AF 最大,AF 最大22OA OD +2 故答案为:62(2)①连接EG 、EH .∵¼3180GEH GH ππ∠=⨯⨯=, ∴60GEH ∠=︒.∵GE GH =,∴GEH ∆是等边三角形,∴60HGE EHG ∠=∠=︒.∵''60C A O HGE ∠=︒=∠,∴//'EG A O ,∴'180GEO EOA ∠+∠=︒,∵'90EOA ∠=︒,∴90GEO ∠=︒,∵GE EO =,∴45EGO EOG ∠=∠=︒,∴'75A GO ∠=︒.②当''C A 切半圆E 于Q 时,连接EQ ,则'90EQA ∠=︒.∵'90EOA ∠=︒,∴'A O 切半圆E 于O 点,∴''30EA O EA Q ∠=∠=︒.∵3OE =, ∴'33A O =, ∴平移距离为'633AA =-当''B A 切半圆E 于N 时,连接EN 并延长l 于P 点,∵''150OA B ∠=︒,'90ENA ∠=︒,'90EOA ∠=︒,∴30PEO ∠=︒,∵3OE =, ∴23EP =∵3EN =, ∴33NP =,∵'30NA P ∠=︒, ∴'633A N =-∵''633A O A N ==- ∴'33A A =【点睛】本题主要考查了弧长公式、勾股定理、切线的性质,作出过切点的半径构造出直角三角形是解决此题的关键.22.(1)平均数为800升,中位数为800升;(2)12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,一个月估计可以节约用水3000升.【解析】试题分析:(1)根据平均数和中位数的定义求解可得;(2)用洗衣服的水量除以第3天的用水总量即可得;(3)根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.试题解析:解:(1)这7天内小申家每天用水量的平均数为(815+780+800+785+790+825+805)÷7=800(升),将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,∴用水量的中位数为800升;(2)100800×100%=12.5%.答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升.235作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小【解析】【分析】(1)利用勾股定理计算即可;(2)作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB 的值最小.【详解】解:(1)221+255(2)作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小.故答案为作线段AB 关于AC 的对称线段AB′,作BQ′⊥AB′于Q′交AC 于P ,作PQ ⊥AB 于Q ,此时PQ+QB 的值最小.【点睛】本题考查作图-应用与设计,勾股定理,轴对称-最短问题,垂线段最短等知识,解题的关键是学会利用轴对称,根据垂线段最短解决最短问题,属于中考常考题型.24.证明见解析【解析】试题分析:先利用等角的余角相等得到.DAE BAF ∠=∠根据有两组角对应相等,即可证明两三角形相似. 试题解析:∵四边形ABCD 为矩形,90,BAD D ∴∠=∠=o90DAE BAE ∴∠+∠=o ,BF AE ⊥Q 于点F ,90ABF BAE ∴∠+∠=o ,DAE BAF ∴∠=∠,.ABF EAD ∴V V ∽点睛:两组角对应相等,两三角形相似.25.小亮说的对,CE 为2.6m .【解析】【分析】先根据CE ⊥AE,判断出CE 为高,再根据解直角三角形的知识解答.【详解】解:在△ABD 中,∠ABD =90°,∠BAD =18°,BA =10m, ∵tan ∠BAD =,∴BD =10×tan18°,∴CD =BD ﹣BC =10×tan18°﹣0.5≈2.7(m ),在△ABD 中,∠CDE =90°﹣∠BAD =72°, ∵CE ⊥ED,∴sin∠CDE=,∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),∵2.6m<2.7m,且CE⊥AE,∴小亮说的对.答:小亮说的对,CE为2.6m.【点睛】本题主要考查了解直角三角形的应用,主要是正弦、正切概念及运算,解决本题的关键把实际问题转化为数学问题.26.(1)详见解析;(2)∠BDE=20°.【解析】【分析】(1)根据已知条件易证BC∥DF,根据平行线的性质可得∠F=∠PBC;再利用同角的补角相等证得∠F=∠PCB,所以∠PBC=∠PCB,由此即可得出结论;(2)连接OD,先证明四边形DHBC是平行四边形,根据平行四边形的性质可得BC=DH=1,在Rt△ABC中,用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,再求得∠NOH=∠DOC=40°,根据三角形外角的性质可得∠OAD=12∠DOC=20°,最后根据圆周角定理及平行线的性质即可求解.【详解】(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四边形BCDF是圆内接四边形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如图2,连接OD,∵AC 是⊙O 的直径,∴∠ADC=90°,∵BG ⊥AD ,∴∠AGB=90°,∴∠ADC=∠AGB ,∴BG ∥DC ,∵BC ∥DE ,∴四边形DHBC 是平行四边形,∴BC=DH=1,在Rt △ABC 中,3tan ∠ACB=3AB BC ∴∠ACB=60°,∴BC=12AC=OD , ∴DH=OD ,在等腰△DOH 中,∠DOH=∠OHD=80°,∴∠ODH=20°,设DE 交AC 于N ,∵BC ∥DE ,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD )=40°,∴∠DOC=∠DOH ﹣∠NOH=40°,∵OA=OD ,∴∠OAD=12∠DOC=20°, ∴∠CBD=∠OAD=20°,∵BC ∥DE ,∴∠BDE=∠CBD=20°.【点睛】本题考查了圆内接四边形的性质、圆周角定理、平行四边形的判定与性质、等腰三角形的性质等知识点,解决第(2)问,作出辅助线,求得∠ODH=20°是解决本题的关键.27.(1)y=-x 2+2x+1;(2)-m 2+1m .(1)2.【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)根据自变量与函数值的对应关系,可得C 点坐标,根据平行于y 轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得答案;(1)根据自变量与函数值的对应关系,可得F 点坐标,根据平行于y 轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得DE 的长,根据平行四边形的对边相等,可得关于m 的方程,根据解方程,可得m 的值.【详解】解:(1)∵点A (-1,0),点B (1,0)在抛物线y=-x 2+bx+c 上,∴10{930b c b c -++=-++=,解得23b c =⎧⎨=⎩, 此抛物线所对应的函数表达式y=-x 2+2x+1;(2)∵此抛物线所对应的函数表达式y=-x 2+2x+1,∴C (0,1).设BC 所在的直线的函数解析式为y=kx+b ,将B 、C 点的坐标代入函数解析式,得303k b b +=⎧⎨=⎩,解得1{3k b =-=, 即BC 的函数解析式为y=-x+1.由P 在BC 上,F 在抛物线上,得P (m ,-m+1),F (m ,-m 2+2m+1).PF=-m 2+2m+1-(-m+1)=-m 2+1m .(1)如图,∵此抛物线所对应的函数表达式y=-x 2+2x+1,∴D(1,4).∵线段BC与抛物线的对称轴交于点E,当x=1时,y=-x+1=2,∴E(1,2),∴DE=4-2=2.由四边形PEDF为平行四边形,得PF=DE,即-m2+1m=2,解得m1=1,m2=2.当m=1时,线段PF与DE重合,m=1(不符合题意,舍).当m=2时,四边形PEDF为平行四边形.考点:二次函数综合题.。

河南省开封市中考数学一模试卷

河南省开封市中考数学一模试卷

河南省开封市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2019·昆明模拟) 若a>0,b<0,那么a﹣b的值()A . 大于零B . 小于零C . 等于零D . 不能确定2. (2分) (2018七下·历城期中) 一种新型病毒的直径约为0.000043毫米,用科学记数法表示为()毫米.A . 0.43×10-4B . 0.43×10-5C . 4.3×10-5D . 4.3×10-83. (2分)(2019·苏州模拟) 下列运算正确的是()A . a2+a2=a4B . (a2)3=a5C . a+2=2aD . (ab)3=a3b34. (2分) (2020九上·浙江期末) 以下说法正确的是()A . 存在锐角,使得sin²+cos² >1B . 已知∠A为Rt△ABC的一个内角,且∠A<45°,则sinA<cosAC . 在Rt△ABC中,∠C=90°,∠A,∠B为Rt△ABC的两个内角,则sinA不一定等于cosBD . 存在锐角,使得sin ≥tan5. (2分)(2017·苏州) 有一组数据:,,,,,这组数据的平均数为()A .B .C .D .6. (2分)若不等式组的解集为x<1,则a的取值范围为()A . a≥1B . a≤1C . a≥2D . a=27. (2分)丽华根据演讲比赛中九位评委所给的分数作了如下表格平均数中位数众数方差8.58.38.10.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A . 平均数B . 众数C . 方差D . 中位数8. (2分)圆锥母线长为3cm,底面半径为2cm,则其侧面展开图的面积是()A . 12πcm2B . 6 cm2C . 3cm2D . 6πcm29. (2分)(2020·章丘模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是()A .B .C . -D .10. (2分)下列命题中是真命题的是()A . “面积相等的两个三角形全等”是必然条件B . “任意画一个等边三角形,它是轴对称图形”是随机事件C . “同位角相等”这一事件是不可能事件D . “三角形三条高所在直线的交点在三角形的外部”这一事件是随机事件11. (2分) (2017八下·路北期末) 如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF 相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB=S四边形DEOF中正确的有()A . 4个B . 3个C . 2个D . 1个12. (2分)(2019·丽水模拟) 一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()A .B .C .D .二、填空题 (共8题;共8分)13. (1分)(2020·重庆模拟) 计算:|2 |﹣2sin30°﹣(π﹣3)0=________.14. (1分)(2017·临泽模拟) 计算: =________.15. (1分)(2020·青山模拟) “服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队。

2019年河南省中考数学一模试卷及参考答案

2019年河南省中考数学一模试卷及参考答案

2019年河南省中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(3分)﹣8的相反数是()A.﹣8B.C.8D.﹣2.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010 3.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b25.(3分)若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1B.0C.1D.26.(3分)为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AC交BC于点E.若∠BCD =80°,则∠AEC的度数为()A.80°B.100°C.120°D.140°8.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°9.(3分)如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)10.(3分)如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t的函数图象大致为()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)=.12.(3分)将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:13.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是.14.(3分)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.15.(3分)如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(8分)先化简,再求值:,其中x=4|cos30°|+317.(9分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?18.(9分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.19.(9分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.20.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)21.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期30天的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成如图所示的图象,图中的折线ODE表示日销售量y (件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求线段DE所对应的函数关系式.(不要求写出自变量的取值范围)(3)通过计算说明试销售期间第几天的日销售量最大?最大日销售量是多少?22.(10分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.23.(11分)如图,在平面直角坐标系中,二次函数y=ax2+bx﹣3交x轴于点A(﹣3,0)、B(1,0),在y轴上有一点E(0,1),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴下方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标;若不存在,请说明理由.2019年河南省中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(3分)﹣8的相反数是()A.﹣8B.C.8D.﹣【解答】解:﹣8的相反数是8,故选:C.2.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【解答】解:44亿=4.4×109.故选:B.3.(3分)如图所示的几何体的主视图是()A.B.C.D.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.4.(3分)下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【解答】解:A、原式=6a2,不符合题意;B、原式=27a6,符合题意;C、原式=a2,不符合题意;D、原式=a2+2ab+b2;不符合题意;故选:B.5.(3分)若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1B.0C.1D.2【解答】解:由题意可知:△>0,∴1﹣4(﹣a+)>0,解得:a>1故满足条件的最小整数a的值是2,故选:D.6.(3分)为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定【解答】解:∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,故选:A.7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AC交BC于点E.若∠BCD =80°,则∠AEC的度数为()A.80°B.100°C.120°D.140°【解答】解:∵四边形ABCD为平行四边形,∴∠BAD=∠BCD=80°,AD∥BC,由作法得AE平分∠BAD,∴∠F AE=∠BAD=40°,∵AF∥BE,∴∠AEB=∠F AE=40°,∴∠AEC=180°﹣40°=140°.故选:D.8.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°【解答】解:∵AB是⊙O的直径,∠ABD=15°,∴∠ADB=90°,∴∠A=75°,∵AD∥OC,∴∠AOC=75°,∴∠BOC=180°﹣75°=105°,故选:B.9.(3分)如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)【解答】解:连结EF,作GH⊥x轴于H,如图,∵四边形ABOD为矩形,∴AB=OD=OF+FD=1+2=3,∵△ABE沿BE折叠后得到△GBE,∴BA=BG=3,EA=EG,∠BGE=∠A=90°,∵点E为AD的中点,∴AE=DE,∴GE=DE,在Rt△DEF和Rt△GEF中,∴Rt△DEF≌Rt△GEF(HL),∴FD=FG=2,∴BF=BG+GF=3+2=5,在Rt△OBF中,OF=1,BF=5,∴OB==2,∵GH∥OB,∴△FGH∽△FBO,∴==,即==,∴GH=,FH=,∴OH=OF﹣HF=1﹣=,∴G点坐标为(,).故选:B.10.(3分)如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t的函数图象大致为()A.B.C.D.【解答】解:∵PQ⊥BQ∴在P、Q运动过程中△BPQ始终是直角三角形.∴S△BPQ=PQ•BQ,①当点P在BD上,Q在BC上时(即0s≤t≤2s),BP=t,BQ=PQ•cos60°=t,PQ=BP•sin60°=t,∴S△BPQ=PQ•BQ=•t•t=t2此时S△BPQ的图象是关于t(0s≤t≤2s)的二次函数.∵>0,∴抛物线开口向上;②当P在DE上,Q在BC上时(即2s<t≤4s),PQ=BD•sin60°=×2=,BQ=BD•cos60°+(t﹣2)=t﹣1,∴S△BPQ=PQ•BQ=••(t﹣1)=t﹣;此时S△BPQ的图象是关于t(2s<t≤4s)的一次函数.∵斜率>0∴S△BPQ随t的增大而增大,直线由左向右依次上升.③P在EC上时,由∠C=45°易求得EC=•=(即4s<t≤4+s)PQ=﹣(t﹣4)(4s<t≤4+s),BQ=3+(t﹣4),∴S△BPQ=PQ•BQ=﹣(t﹣4)2﹣(t﹣4)+3,∴抛物线开口向下.故选:D.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)=2.【解答】解:原式=2﹣4+4=2,故答案为:2.12.(3分)将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:y=﹣5x2﹣50x﹣128【解答】解:∵抛物线y=﹣5x2先向左平移5个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(﹣5,﹣3),∴所得到的新的抛物线的解析式为y=﹣5(x+5)2﹣3,即y=﹣5x2﹣50x﹣128,故答案为y=﹣5x2﹣50x﹣128.13.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是.【解答】解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之和为偶数的结果数为8,所以两次抽取的卡片上数字之和为偶数的概率为=,故答案为:.14.(3分)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.【解答】解:连接AC,∵DC是⊙A的切线,∴AC⊥CD,又∵AB=AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CAD=∠ACB=45°,又∵AB=AC,∴∠ACB=∠B=45°,∴∠F AD=∠B=45°,∵的长为,∴,解得:r=2,∴S阴影=S△ACD﹣S扇形ACE=.故答案为:.15.(3分)如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为或1.【解答】解:如图所示,当∠CFE=90°时,△ECF是直角三角形,由折叠可得,∠PFE=∠A=90°,AE=FE=DE,∴∠CFP=180°,即点P,F,C在一条直线上,在Rt△CDE和Rt△CFE中,,∴Rt△CDE≌Rt△CFE(HL),∴CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=,即AP=;如图所示,当∠CEF=90°时,△ECF是直角三角形,过F作FH⊥AB于H,作FQ⊥AD于Q,则∠FQE=∠D=90°,又∵∠FEQ+∠CED=90°=∠ECD+∠CED,∴∠FEQ=∠ECD,∴△FEQ∽△ECD,∴==,即==,解得FQ=,QE=,∴AQ=HF=,AH=,设AP=FP=x,则HP=﹣x,∵Rt△PFH中,HP2+HF2=PF2,即(﹣x)2+()2=x2,解得x=1,即AP=1.综上所述,AP的长为1或.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(8分)先化简,再求值:,其中x=4|cos30°|+3【解答】解:原式=÷=•=,当x=4|cos30°|+3=4×+3=2+3时,原式==.17.(9分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是117度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在B等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.18.(9分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.【解答】解:(1)如图,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考点:n=3×(﹣2)=﹣6,所以反比例函数解析式为:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:,解得:,所以一次函数解析式为:y=﹣x+2;(2)当y=0时,﹣x+2=0,解得:x=4,则C(4,0),所以;(3)当OE3=OE2=AO=,即E2(﹣,0),E3(,0);当OA=AE1=时,得到OE1=2OD=4,即E1(﹣4,0);当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1,1.5),令y=0,得到y=﹣,即E4(﹣,0),综上,当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.19.(9分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.【解答】解:(1)如图,连接OD,∵BC是⊙O的直径,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半径,∴PD是⊙O的切线;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP,(3)∵BC是⊙O的直径,∴∠BDC=∠BAC=90°,在Rt△ABC中,BC==13cm,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BC=CD=BC=,∵△ABD∽△DCP,∴,∴,∴CP=16.9cm.20.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)【解答】解:如图,延长CA交BE于点D,则CD⊥BE,由题意知,∠DAB=45°,∠DCB=33°,设AD=x米,则BD=x米,CD=(20+x)米,在Rt△CDB中,=tan∠DCB,∴≈0.65,解得x≈37,答:这段河的宽约为37米.21.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期30天的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成如图所示的图象,图中的折线ODE表示日销售量y (件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是330件,日销售利润是660元.(2)求线段DE所对应的函数关系式.(不要求写出自变量的取值范围)(3)通过计算说明试销售期间第几天的日销售量最大?最大日销售量是多少?【解答】解:(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).故答案为:330;660.(2)线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450;(3)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.联立两线段所表示的函数关系式成方程组,得,解得:,∴交点D的坐标为(18,360),∵点D的坐标为(18,360),∴试销售期间第18天的日销售量最大,最大日销售量是360件.22.(10分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.23.(11分)如图,在平面直角坐标系中,二次函数y=ax2+bx﹣3交x轴于点A(﹣3,0)、B(1,0),在y轴上有一点E(0,1),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴下方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标;若不存在,请说明理由.【解答】解:(1)∵二次函数y=ax2+bx﹣3经过点A(﹣3,0)、B(1,0),∴,解得:,∴二次函数解析式为y=x2+2x﹣3;(2)设直线AE的解析式为y=kx+b,∵过点A(﹣3,0),E(0,1),∴,解得:,∴直线AE解析式为y=x+1,如图,过点D作DG⊥x轴于点G,延长DG交AE于点F,设D(m,m2+2m﹣3),则F(m,m+1),∴DF=﹣m2﹣2m+3+m+1=﹣m2﹣m+4,∴S△ADE=S△ADF+S△DEF=×DF×AG+DF×OG=×DF×(AG+OG)=×3×DF=(﹣m2﹣m+4)=﹣m2﹣m+6=﹣(m+)2+,∴当m=﹣时,△ADE的面积取得最大值为.(3)∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为直线x=﹣1,设P(﹣1,n),∵A(﹣3,0),E(0,1),∴AP2=(﹣1+3)2+(n﹣0)2=4+n2,AE2=(0+3)2+(1﹣0)2=10,PE2=(0+1)2+(1﹣n)2=(n﹣1)2+1,①若AP=AE,则AP2=AE2,即4+n2=10,解得n=±,∴点P(﹣1,)或(﹣1,﹣);②若AP=PE,则AP2=PE2,即4+n2=(n﹣1)2+1,解得n=﹣1,∴P(﹣1,﹣1);③若AE=PE,则AE2=PE2,即10=(n﹣1)2+1,解得n=﹣2或n=4,∴P(﹣1,﹣2)或(﹣1,4);综上,点P的坐标为(﹣1,)或(﹣1,﹣)或(﹣1,﹣1)或(﹣1,﹣2)或(﹣1,4).。

【3套试卷】开封市中考模拟考试数学精选含答案

【3套试卷】开封市中考模拟考试数学精选含答案

中考一模数学试卷及答案考试时间:100分钟一、单选题1.在一个无盖的正方体玻璃容器内装了一些水,把容器按不同方式倾斜一点,容器内水面的形状不可能是( )A .B .C .D . 2.流感病毒的形状一般为球形,直径大约为0.000 000 102米,数0.000 000 102用科学记数法表示为( )A .710.210-⨯B .610.210-⨯C .71.0210-⨯D .61.0210-⨯ 3.2020的绝对值等于( )A .2020B .-2020C .12020D .12020- 4.如图,在O e 中,弦8AB =,点C 在AB 上移动,连接OC ,过点C 作CD OC ⊥交O e 于点D ,则CD 的最大值是( )A .2B .4C .6D .85.下列计算正确的是( )A .22(1)21m m m -=-B .()326m m -=- C .32m m m -= D .22(1)1m m +=+6.已知512x ≤≤,那么函数243y x x =-+-的最大值为( ) A .0 B .34 C .1 D .527.如图∠1=∠2,则AB ∥CD 的根据是( )A .内错角相等,两直线平行B .同位角相等,两直线平行C .同旁内角相等两直线平行D .两直线平行,同位角相等8.二次函数y =(x +1)2+2的图象的顶点坐标是( )A .(﹣2,3)B .(﹣1,2)C .(1,2)D .(0,3) 9.在直角坐标系中,函数y kx =与12y x k =-的图像大数是( ) A . B .C .D .10.如图是一斜坡的横截面,某人沿斜坡从M 出发,走了13米到达 N 处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是( )A .1∶5B .12∶13C .5∶13D .5∶12二、填空题 11.实数3与6的比例中项是___12.在数学课上,老师提出如下问题:如图,已知线段AB ,BC ,∠ABC = 90°. 求作:矩形ABCD .小明的作图过程如下:(1)连接AC ,作线段AC 的垂直平分线,交AC 于M;(2)连接BM 并延长,在延长线上取一点D ,使MD=MB ,连接AD ,CD .∴四边形ABCD 即为所求.老师说:“小明的作法正确.”请回答:小明这样作图的依据是______.13.已知A ,B ,C ,D 在同一条直线上,AB =8cm ,BD =3cm ,C 为AB 的中点,则线段CD 的长为_____cm .14.如图,直线EF 分别与直线AB 、CD 相交于点G 、H ,已知∠1=∠2=60°,GM 平分∠HGB 交直线CD 于点M .那么∠3=_________.15.如图,在ACB △和DCE V 中,A D ∠=∠,AB DE =,添加一个你认为合适的条件___,使得ACB DCE ≌△△.三、解答题16.如图,在平面直角坐标系中,点A ,B 分别在y 轴,x 轴正半轴上.(1)OAB ∠的平分线与ABO ∠的外角平分线交于点C ,求C ∠的度数;(2)设点A ,B 的坐标分别为()0,a ,(),0b ,且满足224250a a b b -+-+=,求OAB S V 的面积;(3)在(2)的条件下,当ABD △是以AB 为斜边的等腰直角三角形时,请直接写出点D 的坐标.17.如图.AD 平分BAC ∠,DE AC ⊥,垂足为E ,BF AC P 交ED 的延长线于点F ,若BC 恰好平分ABF ∠.求证:(1)点D 为EF 的中点;(2)AD BC ⊥.18.某市为了了解初中学校“高效课堂”的有效程度,并就初中生在课堂上是否具有“主动质疑”、“独立思考”、“专注听讲”、“讲解题目”等学习行为进行评价.为此,该市教研部门开展了一次抽样调查, 并将调查结果绘制成尚不完整的条形统计图和扇形统计图( 如图所示),请根据图中信息解答下列问题:(1)这次抽样调查的样本容量为 .(2)在扇形统计图中,“主动质疑”对应的圆心角为 度;(3)请补充完整条形统计图;(4)若该市初中学生共有8万人,在课堂上具有“独立思考”行为的学生约有多少人? 19.在数轴上,点A B 、分别表示数a b 、,且6100a b ++-=,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右运动,点M 始终为线段AP 的中点,设点P 运动的时间为x 秒.则:()1在点P 运动过程中,用含x 的式子表示点P 在数轴上所表示的数.()2当2PB AM =时,点P 在数轴上对应的数是什么?()3设点N 始终为线段BP 的中点,某同学发现,当点P 运动到点B 右侧时,线段MN 长度始终不变.请你判断该同学的说法是否正确,并加以证明.20.如图,ACF DBE ∆≅∆,E F ∠=∠,若15AD =,6BC =,求线段AB 的长,21.如图,在边长为1的正方形网格中,(4,2)A ,(3,1)B -,(2,2)D -,(1,1)E ,AB 绕C 点顺时针旋转m ︒得DE (点A 与点E 对应).(1)直接写出m 的值:m = ;(2)用无刻度直尺作出点C 并直接写出C 的坐标(保留作图痕迹,不写作法);(3)若格点F 在EAB ∠的角平分线上,这样的格点F (不包括点A 有) 个(直接写出答案)22.已知:抛物线23(1)26y ax a x a =--+-(0)a >.(1)求证:抛物线与x 轴有两个交点.(2)设抛物线与x 轴的两个交点的横坐标分别为1x ,2x (其中12x x >).若t 是关于a 的函数、且21t ax x =-,求这个函数的表达式;(3)若1a =,将抛物线向上平移一个单位后与x 轴交于点A 、B .平移后如图所示,过A 作直线AC ,分别交y 的正半轴于点P 和抛物线于点C ,且1OP =.M 是线段AC 上一动点,求2MB MC +的最小值.23.点P 是平面直角坐标系中的一点且不在坐标轴上,过点P 向x 轴,y 轴作垂线段,若垂线段的长度的和为4,则点P 叫做“垂距点”,例如:下图中的()1,3P 是“垂距点”.(1)在点()2,2A ,35,22B ⎛⎫- ⎪⎝⎭,()1,5C -,是“垂距点”的为______; (2)若31,22D m m ⎛⎫ ⎪⎝⎭为“垂距点”,求m 的值; (3)若过点()2,3的一次函数y kx b =+(0k ≠)的图像上存在“垂距点”,则k 的取值范围是______.参考答案1.D 2.C 3.A 4.B 5.B 6.C 7.B 8.B 9.B 10.D11.212.有一个角是90°的平行四边形是矩形(或对角线互相平分且相等的四边形是矩形) 13.1或714.60°15.AC=DC 或∠ACB=∠DCE 或∠B=∠E 或∠ACD=∠BCE (答案不唯一)16.(1)45°;(2)1;(3)(1.5,1.5)或(-0.5,0.5)17.(1)证明见解析;(2)证明见解析;18.(1)560;(2)54;(3)见解析;(4)2400019.(1)62x -+;(2)P 点在数轴上表示的数为2;(3)正确,MN 的长度不变,为定值820.4.521.(1)90;(2)见解析(3)522.(1)详见解析;(2)5t a =-;(3)2MB MC +的最小值143=23.(1)A ,B ;(2)2m =±;(3)32k <-或102k -<<或0k >.中考模拟考试数学试卷含答案一、选择题(共9小题,每小题3分,共27分)1.将方程3x 2+1=6x 化为一元二次方程的一般形式,其中二次项系数为3,则一次项系数、常数项分别是( )A .-6,1B .6,1C .6,-1D .-6,-12.下列交通标志中,是中心对称图形的是( )A B C D3.下列说法中,正确的是( )A .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次B .随机事件发生的概率为0.5C .概率很小的事件是不可能发生D .不可能事件发生的概率为04.抛物线()21232y x =-+的对称轴是( ) A .2x = B . 2x =- C . 3x = D . 3x =-5.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同,从袋中任意摸出一个球,是白球的概率是( )A .12B .13C .310D .156.如图,在⊙O 中,点C 是»AB 的中点,∠A =50°,则∠BOC 的度数( )A .40°B . 45°C . 50°D . 60°7.如图,以点O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 是切点,123AB =,OP =6,则大圆的半径长为( )A .6B .63C .62D .128.关于x 的方程2380x mx +-=有一个根是23,另一个根及m 的值分别是( ) A .3,-5 B .-4,10 C .-4,-10 D .3,5 9.定义[x ]表示不超过实数x 的最大整数,则方程[]214x x =的解的个数有( ) A .1个 B .2个 C .3个 D .4个二、填空题(共5小题,每小题3分,共15分)11.平面直角坐标系中,点P (2,4)关于原点对称点的坐标是 .12.从5-,0,4,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是 .13.武汉市木兰山某景区观赏人数逐年增加,据统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x ,则列出的方程是 .14.已知y =2x 2的图象是抛物线,若抛物线不动,把x 轴、y 轴分别向上、向右平移2个单位长度,那么在新的坐标系下抛物线的解析式是 .15.如图,正十二边形A 1A 2…A 12,连接A 3A 7,A 7A 10,则∠A 3A 7A 10= .三、解答题(共8小题,共58分)17.(本题8分)解方程x 2-2x =018.(本题8分)如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A ,B ,并使AB 与车轮内圆相切于点D ,作CD ⊥AB 交外圆于点C ,测得CD =10cm ,AB =60cm ,求这个车轮的外圆的半径长.19.(本题8分)在四张编号为ABCD的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示)(2)我们知道,满足a2+b2=c2 的三个正整数abc成为勾股数,求抽到的两张卡片上的数是勾股数的概率。

2019年开封市八年级数学上期中一模试卷及答案

2019年开封市八年级数学上期中一模试卷及答案

2019年开封市八年级数学上期中一模试卷及答案一、选择题1.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣34 2.如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A .△ABC≌△CDEB .CE =AC C .AB⊥CD D .E 为BC 的中点 3.计算()2xy xy x xy --÷的结果为( )A .1yB .2x yC .2x y -D .xy - 4.一个多边形的内角和是其外角和的3倍,则这个多边形的边数是( )A .7B .8C .6D .55.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A .角平分线上的点到这个角两边的距离相等B .角的内部到角的两边的距离相等的点在角的平分线上C .三角形三条角平分线的交点到三条边的距离相等D .以上均不正确6.如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △P AB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和P A +PB 的最小值为( )A .29B .34C .52D .417.如图,在等腰∆ABC 中,AB=AC ,∠BAC=50°,∠BAC 的平分线与AB 的垂直平分线交于点O 、点C 沿EF 折叠后与点O 重合,则∠CEF 的度数是( )A .60°B .55°C .50°D .45° 8.关于x 的分式方程2x a 1x 1+=+的解为负数,则a 的取值范围是( ) A .a 1> B .a 1< C .a 1<且a 2≠- D .a 1>且a 2≠9.下列说法中正确的是( )A .三角形的角平分线、中线、高均在三角形内部B .三角形中至少有一个内角不小于60°C .直角三角形仅有一条高D .三角形的外角大于任何一个内角10.如图,在ABC ∆中,4AB =,3AC =,30BAC ∠=︒,将ABC ∆绕点A 按逆时针旋转60︒得到11AB C ∆,连接1BC ,则1BC 的长为( )A .3B .4C .5D .611.如图所示,在平行四边形ABCD 中,分别以AB 、AD 为边作等边△ABE 和等边△ADF,分别连接CE ,CF 和EF ,则下列结论,一定成立的个数是( )①△CDF≌△EBC;②△CEF 是等边三角形;③∠CDF=∠EAF;④CE∥DFA .1B .2C .3D .412.若二次三项式2249x mxy y ++是一个完全平方式,则m 的可能值是( )A .6±B .12C .6D .12±二、填空题13.若关于x 的分式方程2222x m x x ++=--的解有增根,则m 的值是____. 14.如图,点D 为等边△ABC 内部一点,且∠ABD=∠BCD ,则∠BDC 的度数为_______.15.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.16.若x 2+2mx +9是一个完全平方式,则m 的值是_______17.七边形的内角和为_____度,外角和为_____度.18.当x =_________时,分式33x x -+的值为零. 19.如图,AD 是ABC ∆的角平分线,DF AB ⊥,垂足为F ,DE DG =,ADG ∆和EFD ∆的面积分别为50和4.5,则AED ∆的面积为_________.20.若2x+5y﹣3=0,则4x•32y的值为________.三、解答题21.某地有两所大学和两条相交叉的公路,如图所示(点M,N表示大学,AO,BO表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案;22.已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.求证:AD=AE.23.先化简,再求值:2422xx x+--,其中x3﹣2.24.今年汶川车厘子喜获丰收,车厘子一上市,水果店的王老板用2500元购进一批车厘子,很快售完;老板又用4400元购进第二批车厘子,所购数量是第一批的2倍,由于进货量增加,进价比第一批每干克少了3元.”(l)第一批车厘子每千克进价多少元?.(2)该老板在销售第二批车厘子时,售价在第二批进价的基础上增加了%a,售出80%后,为了尽快售完,决定将剩余车厘子在第二批进价的基础上每千克降价325a元进行促销,结果第二批车厘子的销售利润为1520元,求a的值。

2019年河南省新乡、开封市名校联考中考数学一模试卷

2019年河南省新乡、开封市名校联考中考数学一模试卷

2019年河南省新乡、开封市名校联考中考数学一模试卷学校:___________姓名:___________班级:___________考号:___________注意:本试卷包含Ⅰ、Ⅱ两卷。

第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。

第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。

答案写在试卷上均无效,不予记分。

一、选择题1、-3的倒数是()A. -3B. 3C. -D.2、小时候我们用肥皂水吹泡泡,其泡沫的厚度约0.000326毫米,用科学记数法表示为()A. 3.26×10-4毫米B. 0.326×10-4毫米C. 3.26×10-4厘米D. 32.6×10-4厘米3、如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A. 主视图B. 左视图C. 俯视图D. 主视图和左视图4、下面是一位同学做的四道题:①(a+b)2=a2+b2,②(-2a2)2=-4a4,③a5÷a3=a2,④a3•a 4=a12.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④5、在一次数学测试后,随机抽取九年级(3)班5名学生的成绩(单位:分)如下:80,9 8,98,83,91,关于这组数据的说法错误的是()A. 众数是98B. 平均数是90C. 中位数是91D. 方差是566、已知关于x的一元二次方程x2-2x+k-1=0有两个不相等的实数根,则实数k的取值范围是()A. k≤2B. k≤0C. k<2D. k<07、“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.8、一个两位数,它的十位数字是2,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1-6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. B.C. D.9、如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是()A. ∠CBD=30°B. S△BDC=AB2C. 点C是△ABD的外心D. sin2A+cos2D=110、如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A. B.C. D.二、填空题1、分解因式:a3b+2a2b2+ab3=______.2、不等式组的最小整数解是______.3、一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC=______.4、如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为______cm2.(结果保留π)5、如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为______.三、计算题1、先化简,再求值÷(-m-1),其中m=-2.______四、解答题1、某电视台为了解本地区电视节目的收视情况,对部分市民开展了“你最喜爱的电视节人目”的问卷调查(每人只填写一项),根据收集的数据绘制了两幅不完整的统计图(如图所示),根据要求回答下列问题:(1)本次问卷调查共调查了______名观众;图②中最喜爱“新闻节目”的人数占调查总人数的百分比为______;(2)补全图①中的条形统计图;(3)现有最喜爱“新闻节目”(记为A),“体育节目”(记为B),“综艺节目(记为C),“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“B”和“C”两位观众的概率.______2、如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(-2,0),与反比例函数y=(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=(x>0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.______3、如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sinE的值.______4、某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲侦测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m,请求出点O到BC的距离.(参考数据sin73.7°≈,cos73.7°≈,tan73.7°≈)______5、某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量(万件)与售价(元/件)之间满足函数关系式.(1)求这种产品第一年的利润(万元)与售价(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润至少为多少万元.______6、如图①,在正方形ABCD和正方形AB'C'D'中,AB=2,AB'=,连接CC’(1)问题发现:______.(2)拓展探究:将正方形AB'C'D'绕点A逆时针旋转,记旋转角为θ,连接BB',试判断:当0°≤θ<360°时,的值有无变化?请仅就图②中的情形给出你的证明;(3)问题解决:请直接写出在旋转过程中,当C,C′,D'三点共线时BB′的长.______7、如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=-x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标和△PAB的面积;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,直接写出符合条件的所有点M的坐标;若不存在,请说明理由.______2019年河南省新乡、开封市名校联考中考数学一模试卷参考答案一、选择题第1题参考答案: C解:-3的倒数是-.故选:C.根据倒数的定义可得-3的倒数是-.主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: A解:0.000326毫米,用科学记数法表示为3.26×10-4毫米.故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: C解:观察几何体,可得三视图如图所示故选:C.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看到的图形是俯视图,又利用了中心对称图形.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案: C解:①(a+b)2=a2+2ab+b2,故此选项错误;②(-2a2)2=4a4,故此选项错误;③a5÷a3=a2,正确;④a3•a4=a7,故此选项错误.故选:C.直接利用完全平方公式以及同底数幂的乘除运算法则、积的乘方运算法则分别计算得出答案.此题主要考查了完全平方公式以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第5题参考答案: D解:98出现的次数最多,∴这组数据的众数是98,A说法正确;=(80+98+98+83+91)=90,B说法正确;这组数据的中位数是91,C说法正确;S2=[(80-90)2+(98-90)2+(98-90)2+(83-90)2+(91-90)2]=×278=55.6,D说法错误;故选:D.根据众数、中位数的概念、平均数、方差的计算公式计算.本题考查的是众数、中位数的概念、平均数和方差的计算,掌握方差的计算公式s12=[(x-)2+(x2-)2+…+(x n-)2]是解题的关键.1- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第6题参考答案: C解:根据题意得△=(-2)2-4(k-1)>0,解得k<2.故选:C.利用判别式的意义得到△=(-2)2-4(k-1)>0,然后解不等式即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第7题参考答案: C解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,依题意得:-=30,即.故选:C.设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前30 天完成任务,即可得出关于x的分式方程.考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第8题参考答案: B解:由题意可得,出现六种可能性,这些数字分别为:21,22,23,24,25,26,能被3整除的是21,24,故得到的两位数是3的倍数的概率是:,故选:B.根据题意,可以求得得到的两位数是3的倍数的概率等于,本题得以解决.本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第9题参考答案: D解:由作图可知:AC=AB=BC,∴△ABC是等边三角形,由作图可知:CB=CA=CD,∴点C是△ABD的外心,∠ABD=90°,BD=AB,∴S△ABD=AB2,∵AC=CD,∴S△BDC=AB2,故A、B、C正确,故选:D.根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;本题考查作图-基本作图,线段的垂直平分线的性质,三角形的外心等知识,直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第10题参考答案: D解:当0≤t<2时,S=×2t××(4-t)=-t2+2t;当2≤t<4时,S=×4××(4-t)=-t+4;只有选项D的图形符合.故选:D.应根据0≤t<2和2≤t<4两种情况进行讨论.把t当作已知数值,就可以求出S,从而得到函数的解析式,进一步即可求解.本题主要考查了动点问题的函数图象,利用图形的关系求函数的解析式,注意数形结合是解决本题的关键.二、填空题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第1题参考答案: ab(a+b)2解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2.故答案为:ab(a+b)2.首先提取公因式ab,再利用完全平方公式分解因式即可.此题主要考查了提取公因式法与公式法分解因式,正确分解因式是解题关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: 0解:解不等式x+1>0,得:x>-1,解不等式1-x≥0,得:x≤2,则不等式组的解集为-1<x≤2,所以不等式组的最小整数解为0,故答案为:0.首先分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集,从而得出答案.此题主要考查了解一元一次不等式(组),关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: 75°解:∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°-∠CEA-∠BAE=75°,∴∠BDC=∠ADE=75°,故答案为75°.根据三角板的性质以及三角形内角和定理计算即可;本题考查三角板的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考基础题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案: π解:∵∠BOC=60°,△B′OC′是△BOC绕圆心O逆时针旋转得到的,∴∠B′OC′=60°,△BCO=△B′C′O,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°,∵AB=2cm,∴OB=1cm,OC′=,∴B′C′=,∴S扇形B′OB==π,S扇形C′OC==,∵∴阴影部分面积=S扇形B′OB+S△B′C′O-S△BCO-S扇形C′OC=S扇形B′OB-S扇形C′OC=π-=π;故答案为:π.根据已知条件和旋转的性质得出两个扇形的圆心角的度数,再根据扇形的面积公式进行计算即可得出答案.此题考查了旋转的性质和扇形的面积公式,掌握直角三角形的性质和扇形的面积公式是本题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第5题参考答案: 或解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB-BM=7-x,又折叠图形可得AD=AD′=5,∴x2+(7-x)2=25,解得x=3或4,即MD′=3或4.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7-3=4,D′N=5-3=2,EN=4-a,∴a2=22+(4-a)2,解得a=,即DE=,②当MD′=4时,AM=7-4=3,D′N=5-4=1,EN=3-a,∴a2=12+(3-a)2,解得a=,即DE=.故答案为:或.连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.三、计算题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第1题参考答案: 解:原式=÷(-)=÷=•=-,当m=-2时,原式=-=-=-1+2.先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.四、解答题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第1题参考答案: 200 25%解:(1)本次问卷调查的总人数为45÷22.5%=200人,图②中最喜爱“新闻节目”的人数占调查总人数的百分比为×100%=25%,故答案为:200、25%;(2)“体育”类节目的人数为200-(50+35+45)=70人,补全图形如下:(3)画树状图为:共有12种等可能的结果数,恰好抽到最喜爱“B”和“C”两位观众的结果数为2,所以恰好抽到最喜爱“B”和“C”两位观众的概率==.(1)用喜欢科普节目的人数除以它所占的百分比即可得到调查的总人数,用“新闻节目”人数除以总人数可得;(2)用调查的总人数分别减去喜欢新闻、综艺、科普的人数得到喜欢体育的人数,然后补全图①中的条形统计图;(3)画树状图展示所有12种等可能的结果数,再找出抽到最喜爱“B”和“C”两位观众的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: 解:(1)∵一次函数y=x+b的图象经过点A(-2,0),∴0=-2+b,得b=2,∴一次函数的解析式为y=x+2,∵一次函数的解析式为y=x+2与反比例函数y=(x>0)的图象交于B(a,4),∴4=a+2,得a=2,∴4=,得k=8,即反比例函数解析式为:y=(x>0);(2)∵点A(-2,0),∴OA=2,设点M(m-2,m),点N(,m),当MN∥AO且MN=AO时,四边形AOMN是平行四边形,||=2,解得,m=2或m=+2,∴点M的坐标为(-2,)或(,2+2).(1)根据一次函数y=x+b的图象经过点A(-2,0),可以求得b的值,从而可以解答本题;(2)根据平行四边形的性质和题意,可以求得点M的坐标,注意点M的横坐标大于0.本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: (1)证明:连接OB∵PO⊥AB,∴AC=BC,∴PA=PB在△PAO和△PBO中∴△PAO和≌△PBO∴∠OBP=∠OAP=90°∴PB是⊙O的切线.(2)连接BD,则BD∥PO,且BD=2OC=6在Rt△ACO中,OC=3,AC=4∴AO=5在Rt△ACO与Rt△PAO中,∠AOC=∠POA∠PAO=∠ACO=90°∴△ACO∼△PAO=∴PO=,PA=∴PB=PA=在△EPO与△EBD中,BD∥PO∴△EPO∽△EBD∴=,解得EB=,PE=,∴sinE==(1)要证明是圆的切线,须证明过切点的半径垂直,所以连接OBB,证明OB⊥PE即可.(2)要求sinE,首先应找出直角三角形,然后利用直角三角函数求解即可.而sinE既可放在直角三角形EAP中,也可放在直角三角形EBO中,所以利用相似三角形的性质求出EP 或EO的长即可解决问题本题考查了切线的判定以及相似三角形的判定和性质.能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案: 解:作OM⊥BC于M,ON⊥AC于N,则四边形ONCM为矩形,∴ON=MC,OM=NC,设OM=x,则NC=x,AN=840-x,在Rt△ANO中,∠OAN=45°,∴ON=AN=840-x,则MC=ON=840-x,在Rt△BOM中,BM=x,由题意得,840-x+x=500,解得,x=480,答:点O到BC的距离为480m.作OM⊥BC于M,ON⊥AC于N,设OM=x,根据矩形的性质用x表示出OM、MC,根据正切的定义用x表示出BM,根据题意列式计算即可.本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第5题参考答案: 解:(1)W1=(x-6)(-x+26)-80=-x2+32x-236.(2)由题意:20=-x2+32x-236.解得:x=16,答:该产品第一年的售价是16元.(3)∵公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.∴14≤x≤16,W2=(x-5)(-x+26)-20=-x2+31x-150,∵抛物线的对称轴x=15.5,又14≤x≤16,∴x=14时,W2有最小值,最小值=88(万元),答:该公司第二年的利润W2至少为88万元.(1)根据总利润=每件利润×销售量-投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用二次函数的性质即可解决问题;本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题,属于中考常考题型.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第6题参考答案:解:(1)如图①中,延长D′C′交BC于H.由题意四边形BHC′B′,四边形CHDD′D都是矩形,∴BB′=HC′,DD′=CH,∵AB=AD,∴BB′=DD′,∴CH=HC′,∵∠CHC′=90°,∴△CHC′是等腰直角三角形,∴==.故答案为.(2)结论:=,值不变.理由:如图②中,连接AC,AC′.∵四边形ABCD,四边形AB′C′D′都是正方形,∴∠BAC=∠B′AC′=45°,==,∴∠BAB′=∠CAC′,∴△BAB′∽△CAC′,∴==.(3)如图③-1中,当C,C′,D′共线时.易知AC=2,AD′=,∴CD′==,∴CC′=-,∴BB′=CC′=-1如图③-2中,当C,D′,C′共线时,同法可得CC′=+,BB′=CC′=+1.综上所述,满足条件的BB′的长为+1或-1.(1)如图①中,延长D′C′交BC于H.证明△CC′H是等腰直角三角形即可解决问题.(2)结论:=,值不变.如图②中,连接AC,AC′.证明△BAB′∽△CAC′即可解决问题.(3)分两种情形画出图形分别求解即可.本题属于四边形综合题,考查了正方形的性质,等腰直角三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第7题参考答案: 解:(1)∵B(1,0),∴OB=1,∵OC=2OB=2,∴C(-2,0),Rt△ABC中,tan∠ABC=2,∴=2,∴=2,∴AC=6,∴A(-2,6),把A(-2,6)和B(1,0)代入y=-x2+bx+c得:,解得:,∴抛物线的解析式为:y=-x2-3x+4;(2)①∵A(-2,6),B(1,0),易得AB的解析式为:y=-2x+2,设P(x,-x2-3x+4),则E(x,-2x+2),∵PE=DE,∴-x2-3x+4-(-2x+2)=(-2x+2),x=1(舍)或-1,∴P(-1,6);在y=-2x+2中x=-1时,y=4,即E(-1,4),则PE=2,∴S△PAB=S△PAE+S△PBE=×PE×(x B-x A)=×2×(1+2)=3;②∵M在直线PD上,且P(-1,6),设M(-1,y),∴AM2=(-1+2)2+(y-6)2=1+(y-6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三种情况:i)当∠AMB=90°时,有AM2+BM2=AB2,∴1+(y-6)2+4+y2=45,解得:y=3±,∴M(-1,3+)或(-1,3-);ii)当∠ABM=90°时,有AB2+BM2=AM2,∴45+4+y2=1+(y-6)2,y=-1,∴M(-1,-1),iii)当∠BAM=90°时,有AM2+AB2=BM2,∴1+(y-6)2+45=4+y2,y=,∴M(-1,);综上所述,点M的坐标为:∴M(-1,3+)或(-1,3-)或(-1,-1)或(-1,).(1)先根据已知求点A的坐标,利用待定系数法求二次函数的解析式;(2)①先得AB的解析式为:y=-2x+2,根据PD⊥x轴,设P(x,-x2-3x+4),则E(x,-2x +2),根据PE=DE,列方程可得P的坐标,先求出点E的坐标,从而得PE=2,根据S△PAB=S+S△PBE=×PE×(x B-x A)计算可得;△PAE②先设点M的坐标,根据两点距离公式可得AB,AM,BM的长,分三种情况:△ABM为直角三角形时,分别以A、B、M为直角顶点时,利用勾股定理列方程可得点M的坐标.此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,铅直高度和勾股定理的运用,直角三角形的判定等知识.此题难度适中,解题的关键是注意方程思想与分类讨论思想的应用.。

河南省开封市数学中考一模试卷

河南省开封市数学中考一模试卷

河南省开封市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)(2019·肥城模拟) 2019的相反数的倒数是()A .B .C . -2019D . 20192. (2分)(2020·云南模拟) 一物体及其正视图如下图所示,则它的左视图与俯视图分别是右侧图形中的().A . ①②B . ③④C . ①④D . ③②3. (2分)(2017·保定模拟) 某社区青年志愿者小分队年龄情况如表所示:年龄(岁)1819202122人数25221则这12名队员年龄的众数、中位数分别是()A . 2,20岁B . 2,19岁C . 19岁,20岁D . 19岁,19岁4. (2分)下列图形中,是轴对称图形的是()A .B .C .D .5. (2分) (2016高二下·抚州期中) 设M=2a-3b,N=-2a-3b,则M-N=()A . 4a-6bB . 4aC . -6bD . 4a+6b6. (2分)如图,点A是双曲线在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线上运动,则k的值为()A . 1B . 2C . 3D . 4二、填空题 (共10题;共10分)7. (1分)(2017·北区模拟) 计算cos60°=________.8. (1分)(2017·松北模拟) 分解因式a2﹣ab2=________.9. (1分)函数中,自变量x的取值范围是1 .10. (1分) (2020七下·锡山期末) 如图,若AB∥CD,∠C=60°,则∠A+∠E=________度.11. (1分) 2011年10月20日,为更好地服务我国367 000 000未成年人,在团中央书记处领导下,团中央网络影视中心开通面向全国未成年人的专属网站﹣﹣未来网.将367 000 000用科学记数法表示为________.12. (1分) (2019九下·枣庄期中) 汉代数学家赵爽在注解《周碑算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为________.13. (1分)(2020·铁岭模拟) 如图,正方形OABC的边长为8,A、C两点分别位于x轴、y轴上,点P在AB 上,CP交OB于点Q,函数y=的图象经过点Q,若S△BPQ=S△OQC ,则k的值为________.14. (1分) (2016九上·广饶期中) 如图,水库大坝的横截面是梯形,坝顶AD宽5米,坝高10米,斜坡CD 的坡角为45°,斜坡AB的坡度i=1:1.5,那么坝底BC的长度为________米.15. (1分)如图,点A、B、C都在圆O上,如果∠AOB+∠ACB=84°,那么∠ACB的大小是________.16. (1分)按下图规律,在第四个方框内填入的数应为________三、解答题 (共11题;共115分)17. (5分)(2019·乌鲁木齐模拟) 计算: .18. (5分)(2018·遵义) 化简分式( + )÷ ,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.19. (10分) (2019九上·河源月考) 已知关于x的方程.(1)若该方程的一个根为2,求a的值及该方程的另一根.(2)求证:不论a取何实数,该方程都有两个不相等的实数根.20. (10分) (2017·邕宁模拟) 学校举办“大爱镇江”征文活动,小明为此次活动设计了一个以三座山为背景的图标(如图),现用红、黄两种颜色对图标中的A、B、C三块三角形区域分别涂色,一块区域只涂一种颜色.(1)请用树状图列出所有涂色的可能结果;(2)求这三块三角形区域中所涂颜色是“两块黄色、一块红色”的概率.21. (5分)(2011·钦州) 某校为了解九年级800名学生的体育综合素质,随机抽查了50名学生进行体育综合测试,所得成绩整理分成五组,并制成如下频数分布表和扇形统计图,请根据所提供的信息解答下列问题:组别成绩(分)频数A50≤x<603B60≤x<70mC70≤x<8010D80≤x<90nE90≤x<10015(1)频数分布表中的m=________,n=________;(2)样本中位数所在成绩的级别是________,扇形统计图中,E组所对应的扇形圆心角的度数是________;(3)请你估计该校九年级的学生中,体育综合测试成绩不少于80分的大约有________人22. (15分)(2020·通州模拟) 如图,在△ABC中,AB=AC=5,BC=6,点M在△ABC内,AM平分∠BAC.点E与点M在AC所在直线的两侧,AE⊥AB,AE=BC,点N在AC边上,CN=AM,连接ME,BN.(1)补全图形;(2)求ME:BN的值;(3)问:点M在何处时BM+BN取得最小值?确定此时点M的位置,并求此时BM+BN的最小值.23. (10分)(2017·金乡模拟) 如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈ ,sin31°≈ ,ta n39°≈ ,sin39°≈ )24. (10分)(2017·集宁模拟) 我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?25. (15分) (2019八下·兴化月考) 如图,正方形ABCD的顶点A在等腰直角△DFG的斜边FG上,FG与BC相交于点E,连接CF.(1)求证:△DAG≌△DCF;(2)连结BD交AF于H,若∠BHE=65°,求∠FDC的度数.(3)在(2)的条件下,试探究线段GA,AH,FH之间的特殊数量关系,并说明理由.26. (15分)(2019·西岗模拟) 如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DAE交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.27. (15分)(2016·黄陂模拟) 已知直线l:y=kx(k<0),将直线y=kx沿y轴向下平移m(m>0)个单位得到直线y=kx﹣m,平移后的直线与抛物线y=ax2相交于A(x1 , y1),B(x2 , y2)两点,抛物线y=ax2经过点P(6,﹣9).(1)求a的值;(2)如图1,当∠AOB<90°时,求m的取值范围;(3)如图2,将抛物线y=ax2向右平移一个单位,再向上平移n个单位(n>0).若第一象限的抛物线上存在点M,N两点,且M,N两点关于直线y=x轴对称,求n的取值范围.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共10分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共11题;共115分)17-1、18-1、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、27-1、27-2、27-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

则该几 体
这组样 数 这组样 数

众数



由 扫描全能王 扫描创建
由 扫描全能王 扫描创建
由 扫描全能王 扫描创建
由 扫描全能王 扫描创建
由 扫描全能王 扫描创建
由 扫描全能王 扫描创建
拟试 数学 试题
试 请

题满
签笔
试时间

题卡
将 线内 项 填写清
选择题 题




涂 题卡
题 给 个选项

实数


清节

亿 学记数

亿 则数Leabharlann 运确嗥关双
长跑 赛
选 彐厂 厂
爱 选
两个
实数 则 值为

为 题 郑开马 开赛 这 马
记录她们 绩
时间


关 这组数


这组样 数

这组样 数
数过
个几 体 视图 图
相关文档
最新文档