林初中华师大版初中数学竞赛辅导讲义及习题解答第11讲双曲线(附答案)

合集下载

《双曲线》练习题经典(含答案)

《双曲线》练习题经典(含答案)

《双曲线》练习题一、选择题:1.已知焦点在x轴上的双曲线的渐近线方程是y=±4x,则该双曲线的离心率是(A)A.17B.15C.174 D.1542.中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为,则双曲线方程为(B)A.x2﹣y2=1 B.x2﹣y2=2 C.x2﹣y2=D.x2﹣y2=3.在平面直角坐标系中,双曲线C过点P(1,1),且其两条渐近线的方程分别为2x+y=0和2x﹣y=0,则双曲线C的标准方程为(B)A.B.C.或D.4.1(a>b>01有相同的焦点,则椭圆的离心率为( A )A B C D5.已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(A)A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.设双曲线=1(0<a<b)的半焦距为c,直线l过(a,0)(0,b)两点,已知原点到直线l的距离为,则双曲线的离心率为(A)A.2 B.C.D.7.已知双曲线22219y xa-=的两条渐近线与以椭圆221259yx+=的左焦点为圆心、半径为165的圆相切,则双曲线的离心率为( A )A.54B.53C.43D.658.双曲线虚轴的一个端点为M,两个焦点为F1、F2,∠F1MF2=120°,则双曲线的离心率为(B)A.3B.62 C.63 D.339.已知双曲线221(0,0)x ym nm n-=>>的一个焦点到一条渐近线的距离是2,一个顶点到它的一条渐近线的,则m等于( D )A .9B .4C .2D .,310.已知双曲线的两个焦点为F 1(-10,0)、F 2(10,0),M 是此双曲线上的一点,且满足12120,||||2,MF MF MF MF ==则该双曲线的方程是( A )A.x 29-y 2=1 B .x 2-y 29=1 C.x 23-y 27=1D.x 27-y 23=1 11.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( C )A .4 2B .83C .24D .4812.过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是( C ) A .28 B .14-82 C .14+8 2D .8 213.已知双曲线﹣=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( D ) A .﹣=1B .﹣=1 C .﹣=1 D .﹣=114.设双曲线﹣=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 2为圆心,|F 1F 2|为半径的圆与双曲线在第一、二象限内依次交于A ,B 两点,若3|F 1B |=|F 2A |,则该双曲线的离心率是( C ) A . B .C .D .215.过双曲线1222=-y x 的右焦点作直线l 交双曲线于A 、B 两点,若|AB|=4,则这样的直线共有( C )条。

初中数学竞赛专题-第二十九章双曲线的性质及应用

初中数学竞赛专题-第二十九章双曲线的性质及应用

第二十九章 双曲线的性质及应用【基础知识】双曲线具有一般圆锥曲线的性质外,还具有下述有趣性质:性质1双曲线()222210,0x y a b a b -=>>的左、右焦点为1F ,2F ,其上任意一点()00,P x y 处的两条焦半径长,当0x a≥以时,10PF ex a=+,20PF ex a=-;当0x a≤时,()10PF ex a =-+,()200PF ex a a ex =--=-. 性质2以焦半径为直径的圆与以实轴为直径的圆外切.证明设双曲线方程为()222210,0x y a b a b-=>>,其上任一点()00,P x y ,设两焦点为1F ,2F ,2PF 的中点为M ,中心O 为12F F 的中点,则()101122OM PF ex a ==+,但以实轴为直径的圆222x y a +=与以2PF 为直径的圆的半径之和为()()200111222a PF a ex a ex a +=+-=+,即证. 性质3设1F ,2F 是双曲线()222210x y a b a b -=>>的左、右焦点,点P 是双曲线上异于顶点的任意一点,(I )12PF PF ⋅的最小值为2b ;(Ⅱ)设122F PF θ∠=,则2122sin b PF PF θ⋅=,且1222cot F PF S b θ=⋅△;(Ⅲ)设12PF F α∠=,21PF F β∠=,则当点P 在双曲线右支上时,1tan cot 221e e αβ-⋅=+;当点P 在双曲线左支上时,1cottan221e e αβ-⋅=+.证明(I )当P 为双曲线顶点时,即取最小值. (Ⅱ)在12PF F △中,由余弦定理,22212122cos24PF PF PF PF c θ+-⋅⋅=,由122PF PF a -=,有222121224PF PF PF PF a +-⋅=,两式相减,化简即得2212221cos2sin b b PF PF θθ⋅==-. 122121sin 2cot 2PF F S PF PF b θθ=⋅⋅=⋅△. (Ⅲ)P 在右支上时,由122PF PF a -=及正弦定理,有()1212sin sin sin PF PF F F βααβ==+.由等比定理,有()22sin sin sin c a αββα=+-.故()1tancotsin 22sin sin 1tan cot 22c e a αβαβαββα+⋅+===--⋅,故1tan cot 221e e αβ-⋅=+. P 点在左支上时,同理可证.性质4P 是双曲线()222210,0x y a b a b-=>>上异于顶点的一点,O 是中心,1F ,2F 为其左、右焦点,令OP d =,则22212PF PF d b a ⋅-=-.其证明与椭圆性质8的证明类似.性质5直线0Ax By C ++=与双曲线()222210,0x y a b a b-=±>>相交、相切、相离的充要条件是2222A a B b - 2C ±且22220A a B b -≠. 其证明与椭圆性质9的证明类似. 推论直线0Ax By C ++=与双曲线()()()222210,0x m y n a b a b ---=>>相交、相切、相离的充要条件是2222A a B b -()2Am Bn C ++.性质6设双曲线的一个焦点为F ,直线l 与过顶点A ',A 的切线相交于M ',M ,则 (1)0FM FM '⋅=⇔直线l 与双曲线相切或l 为双曲线的一渐近线; (2)0FM FM '⋅<⇔直线l 与双曲线相离;(3)0FM FM '⋅>⇔直线l 与双曲线相交(或相交于一点).证明设双曲线方程()222210,0x y a b a b-=>>,(),0F c ,(),0A a '-,(),0A a ,直线l :y kx m =+.()(),,FM FM a c m ka a c m ka '⋅=---⋅-+()22222c a m k a =-+-2222m b k a =+-.由22221x y a b y kx m ⎧-=⎪⎨⎪=+⎩消去y ,得 ()()2222222220a kb x a kmx a m b -+++=.()2222224a b m b a k ∆=+-.(1)222222220000FM FM m b k a m a k b '⋅=⇔+-=⇔=-=⇔∆=或0m =,bk a=±⇔直线l 与双曲线相切或l 为双曲线的一渐近线;(2)222200FM FM m a k b '⋅<⇔<-⇔∆<⇔直线l 与双曲线要离;(3)2222222200FM FM m a k b m a k b '⋅>⇔>-⇔>-≠或222200m a k b >-=⇔∆>或l 平行于双曲线的一渐近线⇔直线l 与双曲线相交(或相交于一点).性质7设P ,Q 是双曲线()222210x y b a a b -=>>上的两点,O 为中心,若OP OQ ⊥,则22221111a b OPOQ+=-.证明设OP 的倾斜角为α,将其参数方程cos sin x t y t αα=⎧⎨=⎩(t 为参数)代入双曲线方程,得2222222cos sin a b t b a αα=-,故22222221cos sin b a a b OPαα-=. 同理,22222221sin cos b a a b OQαα-=.两式相加即证. 注类似地可证明如下结论:(Ⅰ)AB ,CD 是过双曲线()222210,0x y a b a b -=>>焦点F 的弦,若AB CD ⊥,则(i )当弦AB ,CD 的端点均在双曲线的同一支或均在两支上时,有2221111a AB CD a b⎛⎫+=- ⎪ ⎪⎝⎭;(ii )当弦AB 与CD 的端点一组在双曲线的同一支上,另一组在两支上时,有2221111a AB CD a b-=-. (Ⅱ)AB 是过双曲线()222210x y b a a b -=>>焦点F 的弦,O 为中心,Q 为双曲线上一点,若OQ AB ⊥,则(i )当A ,B 在双曲线的两支上时,有2222211a AB ab OQ +=-;(ii )当A ,B 在双曲线的同一支时,有2222211a ABb aOQ -=-. 性质8过双曲线的一个焦点,(I )且与双曲线交于同支的弦,以通径为最短,对于大于通径长的任何一个长度L ,在同一支上过焦点可作两条不同的弦;(Ⅱ)且与双曲线交于异支的弦,以其实轴长为最短,对于大于实轴长的一个长度L ,过一个焦点可作两条交于异支的弦.证明设双曲线方程为()222210,0x y a b a b -=>>.由双曲线的对称性,不妨设弦过双曲线的右焦点,弦的端点分别为()11,A x y ,()22,B x y ,AB L =.当焦点弦为通径时,容易求得22b L a=,且该弦是唯一的.当焦点弦不是通径时,设弦所在直线方程为()y k x c =-,并代入双曲线方程得()2222222222220ba k x a ck x a c k ab -+--=.由此,得22122222a ck x x a k b +=-.(I )当焦点弦与双曲线交于右支上两点时, 易知222212222222a c ab k ab L AB x x c a a k b ⎛⎫+==+-⋅= ⎪-⎝⎭.于是()()22222b a L k a La b +=-. ①若22b L a <,则220La b -<,①式右边为负数,k 无实数解,即不存在小于通径的同支焦点弦;若22b L a >,则①中k 的两解为k =易知此时bk a>,所以交于右支的弦有两条. (Ⅱ)当焦点弦的端点A ,B 在双曲线异支上时, 易知222212222222a c ab k ab L AB x x c a b a k ⎛⎫+==--⋅= ⎪-⎝⎭. 于是()()22222b L a k a La b-=+. ②若2L a <,则②式右边为负,k 无实数解,即不存在小于实数的交于异支的焦点弦;若2L a =,则0k =,即交于异支的焦点弦以实轴为最短;若2L a >,则②中k 的两解为k =且易知0bk a<<,即交于异支的焦点弦有两条.注由上述性质,可得如下易于操作的结论:(1)若22min 2,b L a a ⎧⎫<⎨⎬⎩⎭,则这样的焦点弦不存在;(2)若22min 2,b L a a ⎧⎫=⎨⎬⎩⎭,且双曲线非等轴,则弦唯一;(3)若双曲线等轴,且2L a =,则焦点弦有两条,分别为实轴和通径;(4)若a b <(或b a <)且当222b a L a <<(或222b L a a<<)时,焦点弦有两条,它们都交于异支(或同支)上;(5)若222b L a a =>(或222b L a a=>),焦点弦有三条,一条为实轴,另两条交于同支(或一条为通径,另两条于异支)上;(6)若22max 2,b L a a ⎧⎫>⎨⎬⎩⎭,焦点弦有四条,两条交于同支上,另两条交于异支上.性质9等轴双曲线222x y a -=上点()00,P x y 对弦AB 的张角为直角的充要条件是0AB y k x =-. 性质10设()00,M x y ,双曲线方程为()222210,0x y a b a b-=>>,对于直线l 的方程00221x x y y a b -=,则(1)当M 在双曲线上时,l 为双曲线的切线;(2)当M 在双曲线外时,l 为双曲线的切点弦直线;(3)当M 在双曲线内时,l 为以M 为中点的弦平行且过此弦端点切线交点的直线.事实上,这可由第二十五章的性质7推论后的注即得,这里,其实l 为点M 关于双曲线的极线. 【典型例题与基本方法】例1过双曲线2212y x -=的右焦点作直线l 交双曲线于A ,B 两点,若实数λ使得AB λ=的直线l 恰有3条,则λ=_____________ (1997年全国高中联赛题)解填4.理由是:首先注意到,过双曲线2212y x -=的右焦点且与右支交于两点的弦,当且仅当该弦与x 轴垂直时,取得最小长度224ba =.(事实上,在极坐标系中,可设双曲线的方程为ρ=,设()1,A ρθ,()()212,0,0B ρθρρ=π+>>,则24413cos AB θ=+=-≥,当2θπ=时,等号成立.其次,满足题设条件的直线恰有三条时,只有两种可能:(i )与双曲线左、右两支都相交的只有一条,而仅与右支相交的有两条.此时,与双曲线左、右两支都相交的必是x 轴,而其两交点间的距离为22a =.但仅与右支相交的两条的弦长4λ>,这不满足题设条件.(ii )与双曲线左、右两支都相交的有两条,而仅与右支相交的只有一条,且这条弦必与x 轴垂直(否则,由对称性知仅与右支相交的有两条弦),此时,4AB λ==,且与双曲线左、右两支都相交的弦长也可满足这个条件.所以4λ=.例21F ,2F 为双曲线221445x y -=的两个焦点,P 是双曲线上一点,已知2PF ,1PF ,12F F 成等差数列(或12122PF PF F F =+),且公差大于0.试求12F PF ∠.解由题设,知24a =,245b =,则7c =. 又1222PF PF c =+,则12214PF PF -=.而1224PF PF a -==,从而求得110PF =,26PF =.于是由性质3(Ⅱ),知22122260sin 1cos2b b PF PF θθ=⋅==-,即得1cos 2θ=-. 从而120θ=︒,即12120F PF ∠=︒.例31F ,2F 是双曲线()222210,0x y a b a b -=>>的左、右焦点,ab ,直线l 与2F 与x 轴的夹角为θ,tan θ=且22QP PF =∶.求双曲线方程. (1991年全国高考题)解设()1,0F c -,()2,0F c ,在2Rt OQF △中,由tan θ=可得0,Q ⎛⎫⎪ ⎪⎝⎭.于是1116PF c =,256c PF =,223736OP c =.由性质4,有222255373636c c b a -=-,即223b a =,与已知223a b =联立求得21a =,23b =.故所求双曲线方程为2233x y -=.例4求过点()6,7P ,且与双曲线221916x y -=相切的方程.解运用性质5,联立方程670A B C ++=与222916A B C -=消去C ,可得()()359130A B A B ++=.求得53A B =-或139A B =-,因此求得3C B =或53C B =,即所求切线方程为5303Bx By B -++=与135093Bx By B -++=,即5390x y --=与139150x y --=为所求. 例5设点P 为双曲线()222210,0x y a b a b -=>>右支异于顶点的一点,1F ,2F 分别为其左、右焦点,试证:12PF F △的1F ∠的内角平分线上的旁心的轨迹方程为:()()()()222c a x c a y c a c x c --+=->.证明设12PF F α∠=,21PF F β∠=,由性质3(Ⅱ),在12PF F △中,有()1212sin sin sin PF PF F F βααβ==+,即()22sin sin sin a c βααβ=-+,从而亦即tan cot 22c ac aαβ-⋅=+.设1F ∠的内角平分线上的旁心(),Q x y ,则1QF y k x c =+,2QF yk x c=-.由22MF QF ⊥,有12tancot22QF QF k k αβ⋅=⋅,即y y c ax c x c c a-⋅=+-+,故 ()()()()222c a x c a y c a c x c --+=->.例6设点P 是双曲线()222210,0x y a b a b-=>>上任意一点,过点P 的直线与两渐近线1l :b y x a =,2l :by x a =-分别交于点1P ,2P ,设入12P P PP λ=.求证:()12214OP P S ab λλ+=△.证明依题意,设111,b P x x a ⎛⎫ ⎪⎝⎭,222,b P x x a ⎛⎫- ⎪⎝⎭,(),P x y ,则有121x x x λλ+=+,且121211b bx x y y a a y λλλλ-+==++.即121x x x λλ+=+,①且121x x a y b λλ-=+.② 由①2-②2得()222122241x x a x y b λλ-=+. 即()()()()222222222222122222111444x y x x b xa y ab a bb a b λλλλλλ+++⎛⎫=-=⋅-= ⎪⎝⎭. 从而222221211221221b b b OP OP x x x x x x a a a ⎛⎫⎛⎫⎛⎫⋅++-+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()222222211144b a a b a λλλλ++⎛⎫=+⋅⋅=+ ⎪⎝⎭.故()()12222121222111sin 2241OP P ba S OP OP POP ab b a λλ⋅+=⋅⋅∠=⋅⋅+⋅⎛⎫+ ⎪⎝⎭△ ()214ab λλ+=.【解题思维策略分析】1.注意曲线方程形式的巧设例7过双曲线上任一点P 作倾斜角为α(定值)的直线l 与双曲线两渐近线交于Q ,R ,则PQ PR ⋅为定值.证明双曲线方程为()222210,0x y a b a b -=>>,则渐近线方程为0bx ay ±=.设00P x y (,)是双曲线上的点,则过P 的直线l 的参数方程为00cos ,sin x x t y y t αα=+⎧⎨=+⎩(t 为参数) 由()()00cos sin 0b x t a y t αα+±+=,可得001sin cos bx ay t a b αα+=-+,002sin cos bx ay t a b αα-=-.于是22122222sin cos a b PQ PR t t a b αα⋅=⋅=-(定值). 例8过双曲线上任一点P 的切线与双曲线两渐近线交于A ,B 两点.求证:点P 是线段AB 的中点,证明设双曲线方程为22221x y a b -=,两渐近线方程为22220x y a b-=.过双曲线上任意一点()11,P x y 的切线方程为11221x x y ya b-=,切线方程与渐近线方程联立消去y ,整理得()22222224211120b x a y x a b x x a b --⋅+=,即22120x x x a -+=.由韦达定理,知AB 的中点的横坐标1x x =,代入切线方程得1y y =,从而AB 的中点坐标为()11,x y 和点P 坐标相同,由此即证. 2.关注以坐标轴为渐近线的等轴双曲线问题例9求双曲线1xy =在第一象限内一支上的一定点(),Q a b 与它在第三象限内一支上的一动点Px y (,)之间的最短距离(以a 的解析式表示).解当以点Q 为中心,QP 为半径的圆与双曲线()10,0xy x y =<<相切时,QP 达到最小值.此时过点P 的双曲线1xy =(0x <,0y <)的切线与QP 垂直.设切点P 的坐标为()11,x y ,过()11,P x y 的双曲线的切线方程为112y x x y +=(即用112y x x y+代xy ),故11111y b y x a x ⎛⎫-⋅-=- ⎪-⎝⎭,且111x y =,1a b ⋅=.于是11111111x a x x a x -⋅=-,即211ax =-,从而131x a -=-,131y a -=-.所以()()22211QP x a y b =-+-223112213333a a a a a a ----⎛⎫⎛⎫⎛⎫=--+--=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故322233min QP a a-⎛⎫=+ ⎪⎝⎭. 例10设双曲线1xy =的两支1C ,2C 如图29-1,正三角形PQR 的三顶点位于此双曲线上.(Ⅰ)求证:P ,Q ,R 不能都在双曲线的同一支上;(Ⅱ)设11P -(,)在2C 上,Q ,R 在1C 上,求顶点Q ,R 的坐标.(1997年全国高中联赛题)(I )证法1假设P ,Q ,R 在双曲线1xy =的同一支如1C 上,其坐标分别为111,x x ⎛⎫ ⎪⎝⎭,221,x x ⎛⎫ ⎪⎝⎭,331,x x ⎛⎫⎪⎝⎭.设1230x x x <<<,则直线PQ 的斜率1121k x x =-,直线QR 的斜率2231k x x =-,()2121212123tan 011x x x k k PQR k k x x x --∠==<++. 因此,PQR ∠是钝角,这与PQR △是正三角形相矛盾,故P ,Q ,R 不能都在双曲线1xy =的同一支上. 注由1230x x x <<<,有123y y y >>,于是()()()()()()222222222122313122313PQ QR PR x x x x x x y y y y y y ⎡⎤⎡⎤+-=-+---+-+---=⎣⎦⎣⎦()()()()()()22212231321223132123212322232222220xx x x x x x y y y y y y y x x x x y y y y --++--+=--+--<.即PQR △为钝角三角形.证法2设111,P x x ⎛⎫ ⎪⎝⎭,221,Q x x ⎛⎫ ⎪⎝⎭,331,R x x ⎛⎫ ⎪⎝⎭是双曲线1xy =上的三点,易得直线PR 的斜率1131k x x -=,PR 边上的高线方程为()13221y x x x x x -=-.同理,QR 边上的高线方程为()23111y x x x x x -=-. 联立上述两方程得PQR △的垂心1231231,H x x x x x x ⎛⎫-- ⎪⎝⎭,它显然在双曲线1xy =上.当P ,Q ,R 在双曲线的同一支如1C 上,则1230x x x -<,而H 在另一支2C 上,即H 在PQR △的外部,即PQR △为钝角三角形,故P ,Q ,R 不能都在双曲线的同一支上.(Ⅱ)设Q ,R 的坐标分别为111,x x ⎛⎫ ⎪⎝⎭,221,x x ⎛⎫⎪⎝⎭,这时QR 边上的高线方程为()1211y x x x +=+,它必过线段QR 的中点,因此QR 的中点的坐标满足上述方程,于是有121212111122x x x x x x ++⎛⎫+=+ ⎪⎝⎭,即()()()121212121120x x x x x x x x -+++=⎡⎤⎣⎦.因10x >,20x >,上式中括号的式子显然大于0,则1210x x -=,即121x x =.于是Q 点的坐标为221,x x ⎛⎫⎪⎝⎭,而R 点的坐标为221,x x ⎛⎫⎪⎝⎭,这说明Q ,R 关于直线y x =对称.PQ ,PR 所在的直线分别为过P 点与直线y x =交成30︒角的相互对称的两条直线,易见其倾斜角分别为75︒和15︒.不妨设PQ 的倾斜角为75︒,这时它的方程为()1tan 751y x +=︒⋅+,即(()121y x +=+.将其与双曲线方程1xy =联立,解得Q点坐标为(22-+,由对称性知R点的坐标为(22+-.注由(Ⅰ)的证法2,使我们获得如下结论:三个顶点都在同一等轴双曲线上的三角形的垂心也在此双曲线上.由此也启发我们:在处理某些等轴双曲线问题时,可考虑以坐标轴为渐近线的等轴双曲线来讨论. 例11一直角三角形的三顶点在等轴双曲线上.求证:直角顶点处的切线垂直于斜边.证明如图29-2,设等轴双曲线方程为2xy c =,直角三角形ABC 的三顶点在等轴双曲线上,直角顶点,c A ct t ⎛⎫ ⎪⎝⎭,其余两顶点1,c B ct t ⎛⎫ ⎪⎝⎭,22,c C ct t ⎛⎫ ⎪⎝⎭,直线AB ,AC ,BC 的斜率分别为11AB k tt =-,21AC k tt =-,121BC k t t =-.图29-2由AB AC ⊥,有21211t t t =-. 过点A 的切线为22x t y ct +=,此切线斜率为21k t =-,于是21211BC k k t t t ⋅==-,故直角顶点处的切线垂直于斜边.3.借用双曲线知识,求解函数等其他问题 例12求函数3y x =+解令3u x =,0,v v u =≥≥,则y u v =+且221188u v -=.视y 为参数,在uOv 坐标系中,作出直线系v u y =-+及双曲线部分()2210188u v v -=>,如图29-3.图29-3当直线过点()0时,直线在v轴上的截距y =,由切线公式y kx =y =故函数y 的值域是(),⎡-∞+∞⎣∪. 例13求二元函数()()221,1f x y x y x y ⎛⎫=-+++ ⎪⎝⎭的最小值.(1998年“希望杯”竞赛题) 解因()()221,1f x y x y x y ⎛⎫=-+--- ⎪⎝⎭可看作直线10x y ++=上的点(),1x x --和双曲线1xy =上的点1,y y ⎛⎫ ⎪⎝⎭的距离的平方式.由作图可知,所求最小值为12.4.注意知识的综合运用例13设直线l :y kx m =+(其中k ,m 为整数)与椭圆2211612x y +=交于不同两点A 、B ,与双曲线221412x y -=交于不同两点C 、D ,问是否存在直线l ,使得向量0AC BD +=.若存在,指出这样的直线有多少条?若不存在,请说明理由. 解由22,1,1612y kx m x y =+⎧⎪⎨+=⎪⎩消去y 化简整理,得()2223484480k xkmx m +++-=.设()11,A x y ,()22,B x y ,则122834kmx x k +=-+.()()()222184344480km k m ∆=-+->.①由22,1,412y kx m x y =+⎧⎪⎨-=⎪⎩消去y 化简整理,得()22232120k xkmx m ----=.设()33,C x y 、()44,D x y ,则34223kmx x k+=-. ()()()2222243120km k m ∆=-+-+>.②因为0AC BD +=,所以()()42310x x x x -+-=. 此时()()42310y y y y -+-=. 由1234x x x x +=+得2282343km kmk k -=+-. 于是20km =或2241343k k -=+-.从而由前一式解得0k =或0m =. 当0k =时,由①、②得m ->m 是整数,所以m 的值为3-,2-,1-,0,1,2,3. 当0m =时,由①、②得k <k 是整数,所以1,0,1k =-. 于是,满足条件的直线有9条. 【模拟实战】习题A1.设双曲线()222210,0x y a b a b -=>>,两焦点为()1,0F c -,()2,0F c ,点Q 是双曲线右(或左)支上除顶点外任一点,从焦点1F (或2F )作12F QF ∠的角平分线的垂线,垂足为P ,则P 点的轨迹是以原点为圆心,a为半径的圆(除点(),0a -,(),0a ).2.求曲线22916144x y +=与22732224x y -=的公切线方程.3.一直线截双曲线()222210,0x y a b a b -=>>于P ,Q 两点,与渐近线交于P ',Q '两点.求证:PP QQ ''=.4.已知双曲线中心为原点,焦点在x 轴上,离心率53e =,且与直线8160x +-=相切.求双曲线方程.习题B1.已知双曲线C :()2222211a x a y a a -=>+(),设该双曲线上支的顶点为A ,且上支与直线y x =-交于P 点,一条以A 为焦点,()0,M m 为顶点,开口方向向下的抛物线通过P 点,且PM 的斜率为k 满足1143k ≤≤.求实数a 的取值范围. 2.已知双曲线222210,0,x y a b a a b-=>>≡()b 上有一定点A ,点P ,Q 为满足PA QA ⊥的异于点A 的任意两点.求证:PQ 过定点.第二十九章 双曲线的性质及应用 习题A1.延长1F P 与2QF 的延长线交于R 点.由Q 在双曲线上,且1F ,2F 为其焦点,则22122F R QR QF QF QF a =-=-=,即212OP F R a ==.反之,可证以原点为圆心,a 为半径的圆(除点(),0a -,(),0a )上的点满足条件.2.曲线化为标准方程为221169x y +=与221327x y -=.由直线与两曲线相切的充要条件,有222222169,327A B c A B c⎧+=⎪⎨-=⎪⎩求得5A B C B =⎧⎨=±⎩或5A B C B =-⎧⎨=±⎩ 从而所求公切线方程为50x y +±=与50x y -±=.3.过P ,Q 点分别作两渐近线的垂线PA ,PB ,QC ,QD ,显然PBQ QCQ ''△∽△,则QQ QCPQ PB'='.同理PP PA QP QD '='.由于双曲线上任一点到两渐近线距离之积为定值,即PA PB QC QD ⋅=⋅,故QC PAPB QD=,即QQ PP PQ QP ''='',亦即QQ PP QQ PQ PP QP ''=''''++,故PP QQ ''=. 4.设双曲线方程为()222210,0x y a b a b-=>>因为2413b e a =-=,可设29a λ=,()2160b λλ=>,所以双曲线方程为221916x y λλ-=.因直线827160x y +-=与其相切,由性质5,有2649281616λλ⋅-⋅=,得2λ=,故所求双曲线方程为2211832x y -=.习题B1.在方程可化为()22221/1x y a a -=-.由1a >知2201a a >-.又()0,1A ,于是以A 为焦点,()0,M m 为顶点开口向下的抛物线方程为()()241x m y m =---.联立y x =-与()22221a x a y a -+=得(),P a a -. 又P 在抛物线上,有()()241a m a m =---.(*)而MP m ak a-=,即有MP m ak a =+并代入()*式,得()24410MP MP ak a k a +--=.因1143MP k ≤≤,且40a >,则关于MP k 的二次方程的判别式()241440a a a ∆=-+⋅⋅>⎡⎤⎣⎦成立.令()()2441f k ak a k a =+--,而此抛物线的对称轴方程为()411242a a k a a --=-=⋅,由1a >,则102aa-<.联立40a >与11043f f ⎛⎫⎛⎫⋅ ⎪ ⎪⎝⎭⎝⎭≤,即114441401693a a a a a a -⎛⎫⎛⎫⋅+--⋅⋅+- ⎪ ⎪⎝⎭⎝⎭≤,即17410493a a ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭≤,故1247a ≤≤为所求. 2.设()sec ,tan A a b θθ,()11sec ,tan P a b αα,()22sec ,tan Q a b αα,则PQl :()()()()112112sec tan tan tan sec sec x a b b y b a a αααααα--=--,即PQl :121212cossincos0222b x a y ab αααααα-++--⋅=.又11cos2sin 2AP b k a αθαθ-=+,22cos2sin 2AQ b k a αθαθ-=+,因此221211cos cos sin 222AP AQk k b a αθαθαθ--+⋅=-⇔⋅+⋅2221212121212sin0cos )cos cos cos )0cos 222222b a b αθααααααααααθθ++--+-⎡⎤⎡⎤=⇔-++-+=⇔⋅⋅⎢⎥⎢⎥⎣⎦⎣⎦()()()()222212122222sin sin cos 022cos cos a a b b a b a ab b a a b θααααθθ++++-⋅-=--2.由此式,知直线PQ 恒过定点22222222sec ,tan a b a b a b b a a b θθ⎛⎫++⋅⋅ ⎪--⎝⎭.。

初中数学竞赛辅导讲义及习题解答第10讲抛物线

初中数学竞赛辅导讲义及习题解答第10讲抛物线

第十讲抛物线一般地说来,我们称函数y ax 2bx c ( a、b、c为常数, a 0 )为x的二次函数,其图象为一条抛物线,与抛物线有关的知识有:1.a、b、c的符号决定抛物线的大概地点;b 对称,抛物线张口方向、张口大小仅与2.抛物线对于xa 有关,抛物线在极点2a( b ,4ac b2)处获得最值;2a4a3.抛物线的分析式有以下三种形式:①一般式:y ax2 bx c ;②极点式:y a(x h) 2 k ;③交点式:y a(x x1 )( x x2 ) ,这里 x1、 x2是方程 ax2 bx c 0 的两个实根.确立抛物线的分析式一般要两个或三个独立条件,灵巧地采用不一样方法求出抛物线的分析式是解与抛物线有关问题的重点.注:对称是一种数学美,它展现出整体的和睦与均衡之美,抛物线是轴对称图形,解题中应踊跃捕获、创建对称关系,以便从整体上掌握问题,由抛物线捕获对称信息的方式有:(1)从抛物线上两点的纵坐标相等获取对称信息;(2)从抛物线的对称轴方程与抛物线被x 轴所截得的弦长获取对称信息.【例题求解】【例1】二次函数y x 2bx c的图象以下图,则函数值y 0 时,对应x 的取值范围是.思路点拨由图象知抛物线极点坐标为 (一 1,一 4),可求出b,c值,先求出y 0时,对应 x 的值.【例 2】已知抛物线y x2 bx c ( a <0) 经过点 (一 1,0) ,且知足4a 2b c 0 .以下结论:① a b 0 ;②a c 0 ;③ a b c 0 ;④ b 2 2ac 5a 2.此中正确的个数有()A.1个B.2 个C.3 个D.4 个思路点拨由条件大概确立抛物线的地点,从而判断 a 、 b 、 c 的符号;由特别点的坐标得等式或不等式;运用根的鉴别式、根与系数的关系.1【例 3】如图,有一块铁皮,拱形边沿呈抛物线状,MN = 4 分米,抛物线极点处到边MN 的距离是 4 分米,要在铁皮上截下一矩形ABCD ,使矩形极点B、C 落在边 MN 上,A、D 落在抛物线上,问这样截下的矩形铁皮的周长可否等于8 分米?思路点拨适合成立直角坐标系,易得出M 、 N 及抛物线极点坐标,从而求出抛物线的解析式,设 A( x, y ),成立含x的方程,矩形铁皮的周长可否等于8 分米,取决于求出x 的值能否在已求得的抛物线分析式中自变量的取值范围内.注:把一个生产、生活中的实质问题转变,成数学识题,需要察看剖析、建模,成立直角坐标系下的函数模型是解决实质问题的常用方法,同一问题有不一样的建模方式,经过剖析比较可获取简解.【例 4】二次函数 y 1 x2 3x m 2 的图象与x轴交于 A 、两点 (点 A 在点 B 左侧 ),与2 2y 轴交于 C 点,且∠ ACB = 90°.(1)求这个二次函数的分析式;(2)设计两种方案:作一条与 y 轴不重合,与△ A BC 两边订交的直线,使截得的三角形与△ ABC 相像,而且面积为△BOC 面积的1,写出所截得的三角形三个极点的坐标(注:设4计的方案不用证明).思路点拨(1)A 、 B、 C 三点坐标可用m 的代数式表示,利用相像三角形性质成立含m 的方程; (2)经过特别点,结构相像三角形基本图形,确立设计方案.注:解函数与几何联合的综合题,擅长求点的坐标,从而求出函数分析式是解题的基础;而充足发挥形的要素,数形相助,把证明与计算相联合是解题的重点.【例 5】已知函数 y (a 2) x2 2(a 2 1) x 1 ,此中自变量x 为正整数, a 也是正整数,求 x 何值时,函数值最小.思路点拨将函数分析式经过变形得配方式,其对称轴为x a 2 1(a 2)3,因a 2 a 231 a2 11 ,故函数的最小值只可能在x 取a2 , a 2 ,a 2 1时达0 , a 2 aa 2a 2 a 2到.因此,解决本例的重点在于分类议论.学历训练1.如图,若抛物线y ax2与四条直线x 1 、 x 2 、y 1 、 y 2 所围成的正方形有公共点,则 a 的取值范围是.2.抛物线 y ax 2bx c 与x轴的正半轴交于 A ,B 两点,与 y 轴交于 C 点,且线段AB 的长为 1,△ ABC 的面积为1,则b的值为.3.如图,抛物线的对称轴是直线x 1 ,它与x轴交于 A 、B 两点,与y 轴交于点C,点 A 、C 的坐标分别为(-l ,0)、(0,3),则 (1) 抛物线对应的函数分析式为;(2)若点P为2此抛物线上位于x 轴上方的一个动点,则△ABP 面积的最大值为.4.已知二次函数 y ax2 bx c 的图象以下图,且OA = OC,则由抛物线的特点写出如下含有 a 、 b 、 c 三个字母的式子①4ac b21 ,② ac b 1 0 ,③ abc 0 ,④4aa b c 0 ,>0,此中正确结论的序号是(把你以为正确的都填上 ).5.已知 a 1 ,点( a1,y1 ), ( a,y2 ) ,( a 1,y3 )都在函数 y x2的图象上,则 ( )A .y1 y 2 y 3B .y1y3y2 C.y3y2 y1D. y 2 y1 y36.把抛物线y x2bx c 的图象向右平移 3 个单位,再向下平移 2 个单位,所得图象的解析式为 2 3 5,则有 ( )y xxA . b 3 , c 7 B.b 9 ,c 15 C. b 3 , c= 3 D .b 9, c 21 7.二次函数 y ax2 bx c 的图象以下图,则点 ( a b , ac )所在的直角坐标系是()A .第一象限B.第二象限C.第三象限 D .第四象限8.周长是 4m 的矩形,它的面积2S(m )与一边长x (m)的函数图象大概是 ()9.阅读下边的文字后,回答以下问题:“已知:二次函数 y ax2 bx c 的图象经过点A(0 ,a ), B(1 ,-2) ,求证:这个二次函数图象的对称轴是直线x 2 .题目中的横线部分是一段被墨水污染了没法辨识的文字.(1) 依据现有的信息,你可否求出题目中二次函数的分析式 ?若能,写出求解过程;若不可以,说明原因.(2)请你依据已有信息,在原题中的横线上,填加一个适合的条件,把原题增补完好.10.如图,一位运动员在距篮下 4 米处跳起投篮,球运转的路线是抛物线,当球运转的水平距离为 2.5 米时,达到最大高度 3.5 米,而后正确落入篮圈.已知篮圈中心到地面的距离为3.05 米.(1)成立以下图的直角坐标系,求抛物线的分析式;(2)该运动员身高 1. 8 米,在此次跳投中,球在头顶上方 0.25 米处出手,问:球出手时,他跳离地面的高度是多少 ?11.如图,抛物线和直线y kx 4k ( k 0 )与x轴、 y 轴都订交于 A 、 B 两点,已知抛物线的对称轴 x 1与x轴订交于 C 点,且∠ ABC =90°,求抛物线的分析式.12.抛物线 y ax2 bx c 与x轴交于 A 、 B 两点,与 y 轴交于点 C,若△ ABC 是直角三角形,则 ac .13.如图,已知直线y 2 x 3 与抛物线 y x2订交于 A、 B 两点, O 为坐标原点,那么△OAB 的面积等于.14.已知二次函数y ax2 bx c ,一次函数y k( x 1) k 2 .若它们的图象对于随意的实4415.如图,抛物线y ax2 bx c 与两坐标轴的交点分别是 A ,B ,E,且△ ABE 是等腰直角三角形, AE = BE ,则以下关系式中不可以总成立的是( )A . b=0B . S△ADC=c2 C. ac=一 1 D. a+c= 016.因为被墨水污染,一道数学题仅能见到以下文字:已知二次函数 y x2 bx c 的图象过点(1 , 0)求证:这个二次函数的图象对于直线x 2 对称.依据现有信息,题中的二次函数不拥有的性质是( )A .过点 (3, 0) B.极点是 (2,一 2)C.在x轴上截得的线段长为 2 D .与 y 轴的交点是 (0, 3)17.已知 A(x 1,2002) ,B(x 2,2002)是二次函数 y ax2 bx 5 ( a 0 )的图象上两x x1x2 时,二次函数的值是( )A. 2b 2 5 B.b2 5C. 2002 D. 5a 4a18.某种产品的年产量不超出1000 吨,该产品的年产量( 单位:吨 )与花费 (单位:万元 )之间函数的图象是极点在原点的抛物线的一部分 (如图 1 所示 );该产品的年销售量 (单位:吨 )与销售单价 (单位:万元/吨 )之间函数的图象是线段 (如图 2 所示 ).若生产出的产品都能在当年销售完,问年产量是多少吨时,所获毛收益最大?(毛收益=销售额一花费).19.如图,已知二次函数y 2x 2 2 的图象与x 轴交于 A 、 B 两点 (点 A 在点 B 的左侧 ),与y 轴交于点C,直线: x=m(m>1) 与x轴交于点 D .(1)求 A 、 B、 C 三点的坐标;(2)在直线 x= m (m>1) 上有一点 P (点 P 在第一象限 ),使得以 P、D 、B 为极点的三角形与以 B 、 C、 O 为极点的三角形相像,求P 点坐标 (用含 m 的代数式表示);(3) 在 (2)成立的条件下,试问:抛物线y 2 x2 2 上能否存在一点Q,使得四边形ABPQ 为平行四边形 ?假如存在这样的点Q,恳求出m 的值;假如不存在,请简要说明原因.20.已知二次函数y x 2x 2 及实数 a 2 ,求(1)函数在一2<x≤ a 的最小值;(2)函数在 a≤ x≤ a+2 的最小值.21.如图,在直角坐标:x O y中,二次函数图象的极点坐标为C(4 , 3 ),且在x轴上截5(1) 求二次函数的分析式;(2) 在 y 轴上求作一点 P (不写作法 )使 PA+PC 最小,并求 P 点坐标;(3) 在 x 轴的上方的抛物线上,能否存在点Q ,使得以 Q 、A 、 B 三点为极点的三角形与△ ABC 相像 ?假如存在,求出Q 点的坐标;假如不存在,请说明原因.22.某校研究性学习小组在研究有关二次函数及其图象性质的问题时,发现了两个重要结论.一是发现抛物线y=ax 2+2x+3(a ≠ ,0)当实数 a 变化时,它的极点都在某条直线上;二是发现当实数 a 变化时,若把抛物线y=ax 2+2x+3 的极点的横坐标减少1,纵坐标增添,获取aA 点的坐标;若把极点的横坐标增添1,纵坐标增添1,获取 B 点的坐标,则 A 、 B 两点必定仍在抛物线 y=ax 2+2x+3 上. aa2(1) 请你辅助探究出当实数所在直线的分析式; a 变化时,抛物线 y=ax +2x+3 的极点.. (2) 问题 (1) 中的直线上有一个点不是该抛物线的极点,你能找出它来吗?并说明原因; (3) 在他们第二个发现的启迪下,运用“一般——特别—一般”的思想,你还可以发现什么?你能用数学语言将你的猜想表述出来吗?你的猜想能成立吗 ?若能成立请说明原因.参照答案第十一讲双曲线k ( k 0)的函数叫做反比率函数,它的图象是由两条曲线构成的双曲线,与双形如 yx曲线有关的知识有:k 中的系数k决定图象的大概地点及y 随 x 变化的情况.1.双曲线分析式yx2.双曲线图象上的点是对于原点 O 成中心对称,在k >0 时函数的图象对于直线 y x 轴对称;在 k <0时函数的图象对于直线y x轴对称.3.自变量的取值是不等于零的全体实数,双曲线向坐标轴无穷延长但不可以靠近坐标轴.【例题求解】k 的图象与直线y 2 x和y x 1过同一点,则当x 0时,【例 1】已知反比率函数y这x8个反比率函数的函数值y 随 x 的增大而(填增大或减小 ).思路点拨确立 k 的值,只要求出双曲线上一点的坐标即可.注: (1) 解与反比函数有关问题时,充足考虑它的对称性(对于原点O 中心称,对于y x 轴对称 ),这样既能从整上思虑问题,又能提升思想的周祥性.(2)一个常用命题:如图,设点 A 是反比率函数yk ( k 0)的图象上一点,过A作AB⊥x轴于B,过 Ax作 AC ⊥ y 轴于 C,则① S△AOB = 1k ;2② S 矩形OBAC = k .【例 2】如图,正比率函数y kx ( k 0 )与反比率函数y 1 的图象订交于 A 、C 两点,过xA 作 AB ⊥ x 轴于 B ,连接 BC,若 S△ ABC 的面积为 S,则 ()A .S=1 B.S =2 C.S= k D. S= k2思路点拨运用双曲线的对称性,导出S△AOB与 S△OBC的关系.【例 3】如图,已知一次函数 y x 8 和反比率函数y k( k 0 )的图象在第一象限内有x两个不一样的公共点A 、B.(1)务实数 k 的取值范围;(2)若△ AOB 面积 S= 24,求k的值.(2003 年荆门市中考题)9思路点拨(1)两图象有两个不一样的公共点,即联立方程组有两组不一样实数解;(2)S△AOB= S△COB S- S△COA,成立k的方程.【例 4】如图,直线 y 1x 2 分别交 x 、 y 轴于点 A 、 C,P 是该直线上在第一象限内的2一点, PB⊥ x 轴于 B, S△ABP =9.(1)求点 P 的坐标;(2) 设点 R 与点 P 在同一个反比率函数的图象上,且点R 在直线 PB 的右边,作PT⊥ x 轴于F,当△ BRT 与△ AOC 相像时,求点R 的坐标.思路点拨(1)从已知的面积等式出发,列方程求P 点坐标; (2) 以三角形相像为条件,联合线段长与坐标的关系求R 坐标,但要注意分类议论.【例 5】如图,正方形OABC 的面积为9,点 O 为坐标原点,点 A 在 x 轴上,点 C 在 y 轴上,点B在函数y k( k0 ,x0 )的图象上,点P( m , n )是函数 yk( k0 ,x0 ) x x的图象上的随意一点,过点 P 分别作 x 轴、 y 轴的垂线,垂足分别为 E、F,并设矩形 OEPF 和正方形 OABC 不重合部分的面积为 S.(1)求 B 点坐标和k的值;(2) 当 S9 时,求点P的坐标;2(3)写出 S 对于 m 的函数关系式.思路点拨把矩形面积用坐标表示, A 、B 坐标可求, S 矩形 OAGF 可用含 n 的代数式表示,解题的重点是双曲线对于 y x 对称,切合题设条件的 P 点不唯一,故思虑须周祥.注:求两个函数图象的交点坐标,一般经过解这两个函数分析式构成的方程组获取,求切合某种条件的点的坐标,需依据问题中的数目关系和几何元素间的关系成立对于纵横坐标的方程(组 ),解方程 (组 )即可求得有关点的坐标,对于几何问题,还应注企图形的分类议论.10学历训练1.若一次函数y kx b 的图象以下图,则抛物线y x2kx b的对称轴位于y 轴的侧;反比率函数ykb 的图象在第象限,在每一个象限内,y随x的增大而.x2.反比率函数 y k 的图象经过点A(m , n),此中 m,n 是一元二次方程x2 kx 4 0的两x个根,则 A 点坐标为.3.如图:函数y kx 0 y 4 的图象交于 A B两点,过点A作AC ( k ≠)与、⊥ y 轴,x垂足为点 C,则△ BOC的面积为.4.已知,点P(n , 2n) 是第一象限的点,下边四个命题:(1) 点 P 对于 y 轴对称的点P1的坐标是 (n , -2n) ; (2)点P到原点O的距离是 5 n;(3)直线 y=-nx+2n不经过第三象限;(4) 对于函数y= n,当 x< 0 时 ,y 随 x 的增大而减小;此中x真命题是.(填上全部真命题的序号)5.已知反比率函数y= 1 m的图像上两点A(x 1, y1) 、B ( x2, y2),当 x1< 0< x2时,有 y1x<y2 ,则 m 的取值范围是 ( )A . m< OB . m>0 C. m<1>12 26.已知反比率函数y k 的图象以下图,则二次函数y 2kx2 x k 2的图象大概为 () x117 .已知反比率函数yk (k 0), 当x 0时,y随x的增大面增大,那么一次函数xy kx k 的图象经过()A .第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限8.如图, A 、 B 是函数 y1 的图象上的点,且A、B对于原点O对称,AC⊥x轴于C,xBD ⊥ x 轴于 D,假如四边形ACBD 的面积为S,那么 ()A . S=1B.1<S<2C.S>2D.S= 29.如图,已知一次函数 y=kx+b(k ≠ O)的图像与 x 轴、 y 轴分别交于 A、B 两点,且与反比率函数y= m(m≠ 0) 的图像在第一象限交于 C 点, CD垂直于 x 轴,垂足为 D.若 OA=OB=OD=l.x(1)求点 A、 B、 D的坐标;(2)求一次函数和反比率函数的分析式.10.已知 A(x 1、 y1), B(x 2, y2)是直线y x 2 与双曲线y k( k 0 )的两个不一样交点.x(1) 求k的取值范围;(2) 能否存在这样k的值,使得( x12)( x22) x 2 x1 ?若存在,求出这样的k 值;若不存x1 x2在,请说明原因.k11.已知反比率函数y和一次函数y= 2x-1,此中一次函数图像经过(a,b) ,(a+1 ,b+k)2x两点.(1)求反比率函数的分析式;(2) 如图,已知点 A 在第一象限,且同时在上述两个函数的图像上,求 A 点坐标;(3)利用 (2) 的结果,请问:在 x 轴上能否存在点 P,使 AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明原因.1212.反比率函数 y k 的图象上有一点P(m, n) ,此中m、 n 是对于 t 的一元二次方程xt 2 3t k 0 的两根,且P到原点O的距离为13 ,则该反比率函数的分析式为.13.如图,正比率函数y 3x的图象与反比率函数k( k 0 )的图象交于点 A ,若k取 1,yx2, 3 20,对应的 Rt△ AOB 的面积分别为 S1, S2,, S20,则 S1+S2+ +S20= .14.老师给出一个函数y=f(x) ,甲、乙、丙、丁四位同学各指出这个函数的一个性质:甲:函数图像不经过第三象限;乙:函数图像经过第一象限;丙:当 x< 2 时, y 随 x 的增大而减小;丁:当 x< 2 时, y> 0已知这四位同学表达都正确,请结构出知足上述全部性质的一个..函数:.15.已知反比率函数y12 的图象和一次函数y kx 7的图象都经过点P(m,2).x(1)求这个一次函数的分析式;(2) 假如等腰梯形ABCD 的极点 A 、 B 在这个一次函数的图象上,极点C、D 在这个反比率函数的图象上,两底 AD 、BC 与 y 轴平行,且 A 、 B 的横坐标分别为 a 和 a 2 ,求 a 的值.16.如图,直线经过A(1 , 0), B(0 ,1)两点,点P 是双曲线y1 ( x 0 )上随意一点,PM2x⊥ x 轴, PN⊥ y 轴,垂足分别为 M ,N .PM 与直线 AB 交于点 E,PN 的延长线与直线 AB 交于点 F.(1)求证: AF × BE= 1;(2)若平行于AB 的直线与双曲线只有一个公共点,求公共点的坐标.(2003 年江汉油田中考题)17.已知矩形 ABCD 的面积为36,以此矩形的对称轴为坐标轴成立平面直角坐标系,设点.....................A的坐标为 (x, y),此中 x>0 , y>0.(1) 求出 y 与 x 之间的函数关系式,求出自变量x 的取值范围;S,并用以下方法,解答后边的问a2 (a(a a)0 a132∴. a2k22k .a∴当 ak=0,即 ak 时, a 2k 2获得最小值 2k .aa 2问题:当点 A 在何地点时,矩形 ABCD的外接圆面积 S 最小 ?并求出 S 的最小值;(3)假如直线 y=mx+2(m<0) 与 x 轴交于点 P ,与 y 轴交于点 Q ,那么能否存在这样的实数 m ,使得点 P 、Q 与 (2) 中求出的点 A 构成△ PAQ 的面积是矩形 ABCD 面积的 1 ?若存在,6恳求出 m 的值;若不存在,请说明原因.参照答案。

高中数学双曲线习题及答案解析

高中数学双曲线习题及答案解析

双曲线习题练习及答案解析1、已知双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点.则C 的方程为( )A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=【答案】B 因为双曲线的一条渐近线方程为2y x =,则b a =.① 又因为椭圆221123x y +=与双曲线有公共焦点,双曲线的焦距26c =,即c =3,则a 2+b 2=c 2=9.②.由①②解得a =2,b =,则双曲线C 的方程为22145x y -=.故选:B.2已知双曲线22221x y a b-=(a 、b 均为正数)的两条渐近线与直线1x =-围成的三)A.B. C. D. 2【答案】D解:双曲线的渐近线为by x a=±,令1x =-,可得b y a=,不妨令1,b A a ⎛⎫- ⎪⎝⎭,1,b B a ⎛⎫-- ⎪⎝⎭,所以2b AB a =,所以12AOBA S AB x =⋅=AB ∴=,即2b a =b a =2c e a ===;故选:D3已知双曲线C 的中心为坐标原点,一条渐近线方程为2y x =,点()22,2P -在C 上,则C 的方程为A. 22124x y -=B. 221714x y -=C. 22142x y -=D. 221147y x -=【答案】B由于C 选项的中双曲线的渐近线方程为22y x =±,不符合题意,排除C 选项.将点()22,2P -代入A,B,D 三个选项,只有B 选项符合,故本题选B.4已知双曲线C :2218y x -=的左、右焦点分别为1F 、2F ,O 为坐标原点,点P在C 的一条渐近线上,若2OP PF =,则12PF F △的面积为 ( )A .B .C .D .【答案】C双曲线C :2218y x -=中,1(3,0)F -,2(3,0)F ,渐近线方程:y =±,因2OP PF =,则点P 在线段2OF 的中垂线:32x =上,则P 点纵坐标y 0有0||y =所以12PF F △面积121201||||2PF F SF F y =⋅=故选:C 5已知双曲线C :()22102y x m m m -=>+,则C 的离心率的取值范围为( )A .(B .()1,2C .)+∞D .()2,+∞【答案】C双曲线()22102y x m m m -=>+的离心率为e ===,因为0m >,所以e =>C的离心率的取值范围为)+∞.故选:C.6若双曲线2288ky x -=的焦距为6,则该双曲线的离心率为( )A.4B.32C. 3D.103因为2288ky x -=为双曲线,所以0k ≠,化为标准方程为:22181y x k -=. 由焦距为6可得:3c ==,解得:k =1.所以双曲线为22181y x -=.所以双曲线的离心率为4c e a ===.故选:A7已知1F ,2F 分别是双曲线22124y x -=的左,右焦点,若P 是双曲线左支上的点,且1248PF PF ⋅=.则12F PF △的面积为( ) A. 8B. 16C. 24D. 【答案】C 因为P 是双曲线左支上的点,所以2122PF PF a -==,22124100F F c ==. 在12F PF △中,()22221212121212121212cos 22cos F F PF PF PF PF F PF PF PF PF PF PF PF F PF=+-∠=-+-∠,即110049696cos F PF=+-∠,所以1cos 0F PF ∠=,12in 1s P F F =∠,故12F PF △的面积为121242PF PF ⋅=.故选:C .8已知双曲线()222:1016x y C a a -=>的一条渐近线方程为20x y -=,1F ,2F 分别是双曲线C 的左、右焦点,P 为双曲线C 上一点,若15PF =,则2PF = A.1B.9C.1或9D.3或93.B 由题意知42a=,所以2a =,所以c ==,所以152PF a c =<+=+,所以点Р在双曲线C 的左支上,所以214PF PF -=,所以29PF =.故选B9如图,F 1,F 2分别是双曲线22221x y a b-=(a >0,b >0)的两个焦点,以坐标原点O为圆心,|OF 1|为半径的圆与该双曲线左支交于A ,B 两点,若△F 2AB 是等边三角形,则双曲线的离心率为( )B. 211【答案】D 连接1AF ,依题意知:21AF =,12122c F F AF ==,所以21121)a AF AF AF =-=1c e a ===. 10已知双曲线22214x y b-=()0b >的左右焦点分别为1F 、2F ,过点2F 的直线交双曲线右支于A 、B 两点,若1ABF ∆是等腰三角形,且120A ∠=︒.则1ABF ∆的周长为( ) A.83+ B.)41C.83+ D.)22【答案】A双曲线的焦点在x 轴上,则2,24a a ==;设2||AF m =,由双曲线的定义可知:12||||24AF AF a m =+=+, 由题意可得:1222||||||||||AF AB AF BF m BF ==+=+, 据此可得:2||4BF =,又 ,∴12||2||8BF a BF =+=,1ABF 由正弦定理有:11||||sin120sin 30BF AF =︒︒,即11|||BF AF =所以8)m =+,解得:m =1ABF ∆的周长为: 11||||||AF BF AB ++=122(4)8162833m ++=+⨯=+故选:A11已知双曲线C :2218y x -=的左、右焦点分别为1F 、2F ,O 为坐标原点,点P在C 的一条渐近线上,若2OP PF =,则12PF F △的面积为 ( ) A.B.C. D.【答案】C双曲线C :2218y x -=中,1(3,0)F -,2(3,0)F,渐近线方程:y =±,因2OP PF =,则点P 在线段2OF 的中垂线:32x =上,则P 点纵坐标y 0有0||y = 所以12PF F △面积121201||||2PF F S F F y =⋅=故选:C12双曲线22221x y a b-=与22221x y a b -=-的离心率分别为12,e e ,则必有( )A. 12e e =B. 121e e ⋅=C.12111e e += D. 2212111e e += 【答案】D13多选以已知双曲线的虚轴为实轴、实轴为虚轴的双曲线叫做原双曲线的共轭双曲线,则以下说法,正确的有( ) A. 双曲线与它的共轭双曲线有相同的准线 B. 双曲线与它的共轭双曲线的焦距相等 C. 双曲线与它的共轭双曲线的离心率相等 D. 双曲线与它的共轭双曲线有相同的渐近线 【答案】BD由双曲线对称性不妨令双曲线C 的方程为:22221(0,0)x y a b a b-=>>,则其共轭双曲线C '的方程为22221y x b a-=,对于A ,双曲线C 的准线垂直于x 轴,双曲线C '的准线垂直于y 轴,A 不正确;对于B ,双曲线C 和双曲线C '的半焦距均为:c =,所以焦距相同,B 正确;对于C ,由B 选项知,双曲线C 的离心率为1ce a=,而双曲线C '的离心率为2c e b =,而a ,b 不一定等,C 不正确;对于D ,双曲线C 和双曲线C '的渐近线均为by x a=±,D 正确. 故选:BD13多选已知双曲线C :()222104x y b b-=>的离心率为72,1F ,2F 分别为C 的左右焦点,点P 在C 上,且26PF =,则( )A .7b =B .110PF =C .OP =D .122π3F PF ∠=【答案】BCD72=,可得b =A 不正确,而7c ==,因为27||6c PF =>=,所以点P 在C 的右支上,由双曲线的定义有:121||||||624PF PF PF a -=-==,解得1||10PF =,故选项B 正确,在12PF F △中,有2222221271076cos cos 02727OP OP POF POF OP OP +-+-∠+∠=+=⨯⨯⨯⨯,解得||OP =,22212106141cos 21062F PF +-∠==-⨯⨯,所以1223F PF π∠=,故选项C ,D 正确. 故选:BCD.多选若方程22151x y t t +=--所表示的曲线为C ,则下面四个命题中正确的是A .若1<t <5,则C 为椭图B .若t <1.则C 为双曲线 C .若C 为双曲线,则焦距为4D .若C 为焦点在y 轴上的椭圆,则3<t <5 【答案】BD 14多选已知双曲线C 1:)0,0(12222>>=-b a b y a x 的实轴长是2,右焦点与抛物线C 2:y 2=8x 的焦点F 重合,双曲线C 1与抛物线C 2交于A 、B 两点,则下列结论正确的是 ( ▲ )A .双曲线C 1的离心率为2 3B .抛物线C 2的准线方程是x =-2 C .双曲线C 1的渐近线方程为y =±3x D. |AF |+|BF |=320 【答案】BC【解析】由题意可知对于C 1:()0012222>>=-b a by a x ,,实轴长为2a =2,即a =1,而C 2:y 2=8x 的焦点F 为(2,0),所以c =2,则双曲线C 1的方程为1322=-yx ,则对于选项A ,双曲线C 1的离心率为212==a c ,所以选项A 错误;对于选项B ,抛物线C 2的准线方程是x =-2,所以选项B 正确;对于选项C ,双曲线C 1的渐近线方程为y =±abx =±3x ,所以选项C 正确;对于选项D ,由y 2=8x 与1322=-y x 联立可得A (3,62),B (3,62-),所以由抛物线的定义可得 |AF |+|BF |=10433=++=++p x x B A ,所以选项D 错误,综上答案选BC.14多选12,F F 分别是双曲线2221(0)y x b b-=>的左右焦点,过2F 作x 轴的垂线与双曲线交于,A B 两点,若1ABF 为正三角形,则( )A.b = B.C. 双曲线的焦距为D.1ABF 的面积为【答案】ABD在正三角形1ABF 中,由双曲线的对称性知,12F F AB ⊥,12||2||AF AF =, 由双曲线定义有:12||||2AF AF -=,因此,1||4AF =,2||2AF =,12||F F ==即半焦距c =b =,A 正确;双曲线的离心率1ce ==B 正确;双曲线的焦距12F F =C 不正确;1ABF 的面积为21||4AF =D 正确.故选:ABD15多选已知双曲线C 的左、右焦点分别为1F 、2F ,过2F 的直线与双曲线的右支交于A 、B 两点,若122||||2||AF BF AF ==,则( )A. 11AF B F AB ∠=∠B. 双曲线的离心率e =C. 直线的AB 斜率为±D. 原点O 在以2F 为圆心,2AF 为半径的圆上 【答案】ABC 如图:设122||||2||2(0)AF BF AF m m ===>,则22||||||3AB AF BF m =+=,由双曲线的定义知,12||||22AF AF m m a -=-=,即2m a =;12||||2BF BF a -=, 即1||22BF m a -=,∴1||3||BF m AB ==,即有11AF B F AB ∠=∠,故选项A 正确;由余弦定理知,在1ABF 中,22222211111||||||4991cos 2||||2233AF BF AB m m m AF B AF BF m m +-+-∠===⋅⋅,在△12AF F 中,22222212121112||||||441cos cos 2||||223AF AF F F m m c F AB AF B AF AF m m +-+-∠===∠=⋅⋅, 化简整理得,222121144c m a ==,∴离心率ce a ==,故选项B 正确; 在△21AF F中,2222222211134443cos 224m m c m m c m AF F c m cm -+--∠===⋅⋅,21sin AF F ∠==,∴212121sin tan cos AF F AF F AF F ∠∠==∠ ∴根据双曲线的对称性可知,直线AB的斜率为±,故选项C 正确; 若原点O 在以2F 为圆心,2AF 为半径的圆上,则2c m a ==,与3c a =不符,故选项D 错误.故选:ABC .16多选已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F,一条渐近线过点(,则下列结论正确的是( )A. 双曲线CB. 双曲线C 与双曲线22124y x -=有相同的渐近线C. 若F 到渐近线的距离为2,则双曲线C 的方程为22184x y -=D. 若直线2:a l x c=与渐近线围成的三角形面积为则焦距为【答案】BCD 渐近线的方程为by x a=±,因为一条渐近线过点(,故b a ⨯=a ===,故A 错误.又渐近线的方程为2y x =±,而双曲线22124y x -=的渐近线的方程为2y x =±, 故B 正确.若F 到渐近线的距离为2,则2b =,故a =C 的方程为22184x y -=,故C 正确. 直线2:a l x c =与渐近线的两个交点的坐标分别为:2,a ab c c ⎛⎫ ⎪⎝⎭及2,a ab cc ⎛⎫- ⎪⎝⎭,故2122a ab c c =⨯⨯⨯即23a b =,而a =,故b =,a =,所以23=,所以c =,故焦距为D 正确.故选:B CD.16多选已知点P 在双曲线221169x y -=上,1F ,2F 分别是左、右焦点,若12PF F △的面积为20,则下列判断正确的有( ) A. 点P 到x 轴的距离为203B. 12503PF PF += C. 12PF F △为钝角三角形 D. 123F PF π∠=【答案】BC由双曲线方程得4a =,3b =,则5c =,由△12PF F 的面积为20,得112||10||2022P P c y y ⨯⨯=⨯=,得||4P y =,即点P 到x 轴的距离为4,故A 错误, 将||4P y =代入双曲线方程得20||3P x =,根据对称性不妨设20(3P ,4),则213||3PF =, 由双曲线的定义知12||||28PF PF a -==,则11337||833PF =+=, 则12133750||||333PF PF +=+=,故B 正确,在△12PF F 中,113713||210||33PF c PF =>=>=, 则24012020553PF k -==>-,21PF F ∠为钝角,则△12PF F 为钝角三角形,故C 正确, 2222121212121212121337641002||||||(||||)2||||10033cos 13372||||2||||233PF PF F F PF PF PF PF F PF PF PF PF PF -+⨯⨯+--+-∠===⨯⨯3618911121337133729⨯=-=-≠⨯⨯⨯,则123F PF π∠=错误,故正确的是BC ,故选16双曲线:C 2214x y -=的渐近线方程为__________,设双曲线1:C 22221(0,0)x y a b a b -=>>经过点(4,1),且与双曲线C 具有相同渐近线,则双曲线1C 的标准方程为__________.【答案】12y x =± 221123y x -=【解析】(1)双曲线:C 2214x y -=的焦点在y 轴上,且1,2a b ==,渐近线方程为ay x b=±, 故渐近线方程为12y x =±;(2)由双曲线1C 与双曲线C 具有相同渐近线,可设221:4y C x λ-=,代入(4,1)有224134λλ-=⇒=-,故212:34x C y -=-,化简得221123y x -=.17已知O 为坐标原点,抛物线C :()220y px p =>的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则PF =______. 【答案】3抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直,所以P 的横坐标为2p ,代入抛物线方程求得P 的纵坐标为p ±,不妨设(,)2pP p , 因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =,(6,0)2pQ +,(6,)PQ p =-,因为PQ OP ⊥,所以2602pPQ OP p ⋅=⨯-=, 0,3p p >∴=,所以PF =3故答案为△3.若双曲线1C :()2230y x λλ-=≠的右焦点与抛物线2C :28y x =的焦点重合,则实数λ=( ) A. 3±B.C. 3D. -3【答案】D双曲线1C 的右焦点与抛物线的焦点(2,0)重合,所以双曲线1C 方程化:()22103y x λλλ-=≠,再转化为:()22103x y λλλ-=<--,所以23a λ=-, 2b λ=-,所以222433c a b λλλ=+=--=-,所以c =2=平方得 3.λ=-故选:D.17设双曲线:的右焦点为,点,已知点在双曲线的左支上,若的周长的最小值是,则双曲线的标准方程是__________,此时,点的坐标为__________.【答案】【解析】如下图,设为双曲线的左焦点,连接,,则,,故的周长, 因为,所以的周长, 因为的周长的最小值是,,,所以,的方程为, 当的周长取最小值时,点在直线上,因为,,所以直线的方程为,联立,解得,或(舍去), 故的坐标为.故答案为:,.C 2221(0)y x b b-=>F ()0,Q b P CPQF △8C P 2214y x -=⎛⎫ ⎪ ⎪⎝⎭D C PD QD QD QF =2PFPD =+PQF△2l PQ PF QF PQ PD QD =++=+++PQ PD QD +≥=PQF△2l ≥PQF △82228,9c b +=+=22221cbab2b =c =C 2214y x -=PQF △P QD ()0,2Q ()D QD 25y x =+222514y x y x ⎧=+⎪⎪⎨⎪-=⎪⎩1x y ⎧=⎪⎨⎪=⎩4x y ⎧=⎪⎨=⎪⎩P 2⎛⎫- ⎪ ⎪⎝⎭2214y x -=,12⎛⎫- ⎪ ⎪⎝⎭18已知双曲线()221112211:10,0x y C a b a b -=>>与()222222222:10,0y x C a b a b -=>>有相同的渐近线,若1C 的离心率为2,则2C 的离心率为__________.双曲线()221112211:10,0x y C a b a b -=>>的渐近线方程为11b y x a =± ,()222222222:10,0y x C a b a b -=>>的渐近线方程为22a y x b =±,由题意可得1212b a a b =,由1C 的离心率为2得:22211121()b e a ==+ ,则222()3a b = , 所以设2C 的离心率为2e ,则22222141()133b e a =+=+=,故2=e ,故答案为:19知双曲线()222210,0x y a b a b-=>>,焦点()()()12,0,00F c F c c ->,,左顶点(),0A a -,若过左顶点A 的直线和圆22224a a x y ⎛⎫-+= ⎪⎝⎭相切,与双曲线在第一象限交于点P ,且2PF x ⊥轴,则直线的斜率是 _____, 双曲线的离心率是 _________. 【答案】如图,设圆22224a a x y ⎛⎫-+= ⎪⎝⎭的圆心为B ,则圆心坐标(,0)2a B ,半径为2a ,则32a AB =,设过左顶点A 的直线和圆22224a a x y ⎛⎫-+= ⎪⎝⎭相切于点C ,连接BC ,则2a BC =,所以AC ==,得tan aBC BAC AC ∠===;2PF x ⊥轴,由双曲线的通径可得,22b PF a=,又2AF a c =+,所以222tan PF AF b a BAC a c ∠===+,化简得24(40e -=,求解得e =.已知双曲线C :﹣y 2=1.(Ⅰ)求以C 的焦点为顶点、以C 的顶点为焦点的椭圆的标准方程; (Ⅱ)求与C 有公共的焦点,且过点(2,﹣)的双曲线的标准方程,并且求出这条双曲线的实轴长、焦距、离心率以及渐近线方程.解:(Ⅰ)双曲线C :﹣y 2=1的焦点为(±,0),顶点为(±2,0),设椭圆的标准方程为+=1(a >b >0),可得c =2,a =,b ==1,则椭圆的方程为+y 2=1;(Ⅱ)设所求双曲线的方程为﹣=1(m .n>0),由题意可得m 2+n 2=5,﹣=1,解得m =,n =,即所求双曲线的方程为﹣=1,则这条双曲线的实轴长为2、焦距为2、离心率为以及渐近线方程为y=±x .20已知双曲线C :﹣=1(a >0,b >0)与双曲线﹣=1有相同的渐近线,且经过点M (,﹣).(Ⅰ)求双曲线C 的方程;(Ⅱ)求双曲线C 的实轴长,离心率,焦点到渐近线的距离.:(Ⅰ)∵双曲线C 与双曲线﹣=1有相同的渐近线,∴设双曲线的方程为(λ≠0),代入M (,﹣).得λ=,故双曲线的方程为:.(Ⅱ)由方程得a =1,b =,c =,故离心率e =. 其渐近线方程为y =±x ;实轴长为2, 焦点坐标F (,0),解得到渐近线的距离为:=.21已知双曲线C :22221(0,0)x y a b a b-=>>,点)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点2F 作倾斜角为30°的直线,直线与双曲线交于不同的两点A ,B ,求AB .(1)由题可得c a a ⎧=⎪⎨⎪=⎩3c =,b =,所以双曲线的方程为22136x y-=;(2)双曲线22136x y -=的右焦点为()23,0F所以经过双曲线右焦点2F 且倾斜角为30°的直线的方程为3)y x =-.联立221363)x y y x ⎧-=⎪⎪⎨⎪=-⎪⎩得256270x x +-=,设()11,A x y ,()22,B x y ,则1265x x +=-,12275x x =-.所以5AB ==. 22已知双曲线()2222:10,0x y C a b a b -=>>与双曲线22162y x -=的渐近线相同,且经过点()2,3.(1)求双曲线C 的方程;(2)已知双曲线C 的左右焦点分别为12,F F ,直线l 经过2F ,倾斜角为3,4l π与双曲线C 交于,A B 两点,求1F AB 的面积.(1)设所求双曲线C 方程为2262y x λ-=,代入点()2,3得:223262λ-=,即12λ=-, 所以双曲线C 方程为221622y x -=-,即2213y x -=.(2)由(1)知:()()122,0,2,0F F -,即直线AB 的方程为()2y x =--.设()()1122,,,A x y B x y ,联立()22213y x y x ⎧=--⎪⎨-=⎪⎩得22470x x +-=,满足>0∆且122x x +=-,1272x x =-,由弦长公式得12||AB x x =-=6==,点()12,0F -到直线:20AB x y +-=的距离d ===所以111622F ABS AB d =⋅=⋅⋅=。

2021年初中数学竞赛辅导讲义及习题解答 第 讲 方程与函数

2021年初中数学竞赛辅导讲义及习题解答 第 讲 方程与函数

感谢您使用本资源,本资源是由订阅号”初中英语资源库“制作并分享给广大用户,本资源制作于2020年底,是集实用性、可编辑性为一体。

本资源为成套文件,包含本年级本课的相关资源。

有教案、教学设计、学案、录音、微课等教师最需要的资源。

我们投入大量的人力、物力,聘请精英团队,从衡水中学、毛毯厂中学、昌乐中学等名校集合了一大批优秀的师资,精研中、高考,创新教学过程,将同学们喜闻乐见的内容整体教给学生。

本资源适用于教师下载后作为教学的辅助工具使用、适合于学生家长下载后打印出来作为同步练习使用、也适用于同学们自己将所学知识进行整合,整体把握进度和难度,是一个非常好的资源。

如果需要更多成套资料,请微信搜索订阅号“初中英语资源库”,在页面下方找到“资源库”,就能得到您需要的每一份资源(包括小初高12000份主题班会课课件免费赠送!)第十二讲 方程与函数方程思想是指在解决问题时,通过等量关系将已知与未知联系起来,建立方程或方程组,然后运用方程的知识使问题得以解决的方法;函数描述了自然界中量与量之间的依存关系,函数思想的实质是剔除问题的非本质特征,用联系和变化的观点研究问题.转化为函数关系去解决.方程与函数联系密切,我们可以用方程思想解决函数问题,也可以用函数思想讨论方程问题,在确定函数解析式中的待定系数、函数图象与坐标轴的交点、函数图象的交点等问题时,常将问题转化为解方程或方程组;而在讨论方程、方程组的解的个数、解的分布情况等问题时,借助函数图象能获得直观简捷的解答.【例题求解】【例1】 若关于的方程mx x =-1有解,则实数m 的取值范围 .思路点拨 可以利用绝对值知识讨论,也可以用函数思想探讨:作函数x y -=1,mx y =函数图象,原方程有解,即两函数图象有交点,依此确定m 的取值范围.【例2】设关于x 的方程09)2(2=+++a x a ax 有两个不相等的实数根1x ,2x ,且1x <1<2x ,那么a 取值范围是( )A .5272<<-aB .52>a C .72-<a D .0112<<-a思路点拨 因根的表达式复杂,故把原问题转化为二次函数问题来解决,即求对应的二次函数与x 轴的交点满足1x <1<2x 的a 的值,注意判别式的隐含制约.【例3】 已知抛物线0)21(22=+-+=a x a x y (0≠a )与x 轴交于两点A(1x ,0),B(2x ,0)( 1x ≠2x ).(1)求a 的取值范围,并证明A 、B 两点都在原点O 的左侧;(2)若抛物线与y 轴交于点C ,且OA+OB =OC 一2,求a 的值.思路点拨 1x 、2x 是方程0)21(22=+-+a x a x 的两个不等实根,于是二次函数问题就可以转化为二次方程问题加以解决,利用判别式,根与系数的关系是解题的切入点.【例4】 抛物线)1(2)45(2212+++-=m x m x y 与y 轴的正半轴交于点C ,与x 轴交于A 、B 两点,并且点B 在A 的右边,△ABC 的面积是△OAC 面积的3倍.(1)求这条抛物线的解析式;(2)判断△OBC 与△OCA 是否相似,并说明理由.思路点拨 综合运用判别式、根与系数关系等知识,可判定对应方程根的符号特征、两实根的关系,这是解本例的关键.对于(1),建立关于m 的等式,求出m 的值;对于(2)依m 的值分类讨论.【例5】 已知抛物线q px x y ++=2上有一点M(,0y )位于x 轴下方.(1)求证:此抛物线与轴交于两点;(2)设此抛物线与x 轴的交点为A(1x ,0),B(,0),且1x <2x ,求证:1x <0x <2x .思路点拨 对于(1),即要证042>-q p ;对于(2),即要证0))((2010<--x x x x .注:(1)抛物线与x 轴交点问题常转化为二次方程根的个数、根的符号特征、根的关系来探讨,需综合运用判别式、韦达定理等知识.(2)对较复杂的二次方程实根分布问题,常转化为用函数的观点来讨论,基本步骤是:在直角坐标系中作出对应函数图象,由确定函数图象大致位置的约束条件建立不等式组.(3) 一个关于二次函数图象的命题:已知二次函数c bx ax y ++=2(0≠a )的图象与x 轴交于A (1x ,0),B(,0)两点,顶点为C .①△ABC 是直角三角形的充要条件是:△=442=-ac b .②△ABC 是等边三角形的充要条件是:△=1242=-ac b学历训练1.已知关于x 的函数1)1(2)6(2++-++=m x m x m y 的图象与x 轴有交点,则m 的取值范围是 .2.已知抛物线23)1(2----=k x k x y 与x 轴交于A (α,0),B(β,0)两点,且1722=+βα,则=k .3.已知二次函数y=kx 2+(2k -1)x —1与x 轴交点的横坐标为x 1、x 2(x 1<x 2),则对于下列结论:①当x=-2时,y=l ;②当x>x 2,时,y>O ;③方程kx 2+l(2k -1)x —l=O 有两个不相等的实数根x 1、x 2;④x 1<-l ,x 2>-l ;⑤x 2-x 1=kk 241+,其中所有正确的结论是 (只需填写序号) .4.设函数)5(4)1(2+-+-=k x k x y 的图象如图所示,它与x 轴交于A 、B 两点,且线段OA 与OB 的长的比为1:4,则k =( ).A .8B .一4C .1lD .一4或115.已知:二次函数y =x 2+bx+c 与x 轴相交于A(x 1,0)、B(x 2,0)两点,其顶点坐标为P(-2b ,4b -4c 2),AB =|x 1-x 2|,若S △APB =1,则b 与c 的关系式是 ( ) A .b 2-4c+1= 0 B .b 2-4c -1=0 C .b 2-4c+4=0 D .b 2-4c -4=06.已知方程1+=ax x 有一个负根而且没有正根,那么a 的取值范围是( )A .a >-1B .a =1C .a ≥1D .非上述答案7.已知在平面直角坐标系内,O 为坐标原点,A 、B 是x 轴正半轴上的两点,点A 在点B 的左侧,如图,二次函数y=ax 2+bx +c (a ≠0)的图象经过点A 、B ,与y 轴相交于点C .(1)a 、c 的符号之间有何关系?(2)如果线段OC 的长度是线段OA 、OB 长度的比例中项,试证a 、c 互为倒数;(3)在(2)的条件下,如果b=-4,AB=43,求a 、c 的值.8.已知:抛物线c bx ax y ++=2过点A(一1,4),其顶点的横坐标为21,与x 轴分别交于B(x 1,0)、C(x 2,0)两点(其中且1x <2x ),且132221=+x x .(1)求此抛物线的解析式及顶点E 的坐标;(2)设此抛物线与y 轴交于D 点,点M 是抛物线上的点,若△MBO 的面积为△DOC 面积的32倍,求点M 的坐标. 9.已知抛物线m mx x y 223212--=交x 轴于A (1x ,0)、B (2x ,0),交y 轴于C 点,且1x <0<2x ,()1122+=+CO OB AO .(1)求抛物线的解析式;(2)在x 轴的下方是否存在着抛物线上的点P ,使∠APB 为锐角,若存在,求出P 点的横坐标的范围;若不存在,请说明理由.10.设m 是整数,且方程0232=-+mx x 的两根都大于59-而小于73,则= .11.函数732+-=x x y 的图象与函数63322+-+-=x x x x y 的图象的交点个数是 .12.已知a 、b 为抛物线2))((----=d c x c x y 与x 轴交点的横坐标,b a <,则b c c a -+-的值为 .13.是否存在这样的实数k ,使得二次方程0)23()12(2=+--+k x k x 有两个实数根,且两根都在2与4之间?如果有,试确定k 的取值范围;如果没有,试述理由.14.设抛物线452)12(2++++=a x a x y 的图象与x 轴只有一个交点. (1)求a 的值;(2)求61832-+a a 的值.15.已知以x 为自变量的二次函数23842---=n nx x y ,该二次函数图象与x 轴的两个交点的横坐标的差的平方等于关于x 的方程0)4)(1(2)67(2=++++-n n x n x 的一整数根,求n 的值.16.已知二次函数的图象开口向上且不过原点O ,顶点坐标为(1,一2),与x 轴交于点A ,B ,与y 轴交于点C ,且满足关系式OB OA OC ⋅=2.(1)求二次函数的解析式;(2)求△ABC 的面积.17.设p 是实数,二次函数p px x y --=22的图象与x 轴有两个不同的交点A (1x ,0)、B (2x ,0).(1)求证:032221>++p x px ;(2)若A 、B 两点之间的距离不超过32-p ,求P 的最大值.(参考答案精品“正版”资料系列,由本公司独创。

双曲线练习题及答案

双曲线练习题及答案

双曲线相关知识双曲线的焦半径公式:1:定义:双曲线上任意一点P 与双曲线焦点的连线段,叫做双曲线的焦半径。

2.已知双曲线标准方程x^2/a^2-y^2/b^2=1 点P(x,y)在左支上│PF1│=-(ex+a) ;│PF2│=-(ex-a) 点P(x,y)在右支上│PF1│=ex+a ;│PF2│=ex-a运用双曲线的定义例1.若方程1cos sin 22=+ααy x 表示焦点在y 轴上的双曲线,则角α所在象限是( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限练习1.设双曲线191622=-y x 上的点P 到点)0,5(的距离为15,则P 点到)0,5(-的距离是( )A .7 B.23 C.5或23 D.7或23例2. 已知双曲线的两个焦点是椭圆10x 2+32y 52=1的两个顶点,双曲线的两条准线分别通过椭圆的两个焦点,则此双曲线的方程是( )。

(A )6x 2-4y 2=1 (B )4x 2-6y 2=1 (C )5x 2-3y 2=1 (D )3x 2-5y 2=1练习2. 离心率e=2是双曲线的两条渐近线互相垂直的( )。

(A )充分条件 (B )必要条件 (C )充要条件 (D )不充分不必要条件例3. 已知|θ|<2π,直线y=-tg θ(x -1)和双曲线y 2cos 2θ-x 2 =1有且仅有一个公共点,则θ等于( )。

(A )±6π (B )±4π (C )±3π (D )±125π课堂练习1、已知双曲线的渐近线方程是2x y ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ; 2、焦点为(0,6),且与双曲线1222=-y x 有相同的渐近线的双曲线方程是( )A .1241222=-y xB .1241222=-x y C .1122422=-x y D .1122422=-y x3. 设e 1, e 2分别是双曲线1b y a x 2222=-和1ay b x 2222=-的离心率,则e 12+e 22与e 12·e 22的大小关系是 。

华东师大版数学八年级上册第11章第12章检测题及答案各一套

华东师大版数学八年级上册第11章第12章检测题及答案各一套

华东师大版数学八年级上册第11章第12章检测题及答案各一套第11章检测题及答案一、选择题1. 一支长为9厘米的直尺上共分有27个刻度,刻度之间的距离是多少毫米?A. 0.3B. 0.03C. 0.3D. 0.032. 化简.(a^2)^3 × (-a)^2 × a^4 × (-a^3)A. a^29B. -a^29C. a^23D. -a^233. 一张正方形的边长是4m,则其周长是多少?A. 8mB. 16mC. 4mD. 32m4. 形如a^n的数,n是自然数,当n为0时,a^n的值是:A. 1B. aC. a^2D. 05. 已知圆周率π≈3.14,求直径为35cm的圆的周长.A. 11cmB. 17.5cmC. 110cmD. 55cm二、填空题1. 若a = -2,b = 3,则a - b + b - a的值是________.2. 若x = -7,则(-x)^2/(-7)^2 = ________.3. 若a = -3,则ax的值是________.4. 化简a^b × a^c × a^d × a^e × a^f,其中b = 2,c = -5,d = -3,e = 4,f = -1,a ≠ 0.5. 化简,并化为最简形式:(-3b^3c^2)^2.三、解答题1. 已知ΔABC中,角A的度数比角C的度数多30°,角B的度数比角A的度数多10°,求各角的度数.2. 一个正数的平方与这个正数的四倍的积等于这个正数的平方减25,求这个正数.3. 把一段水银温度计的长度为80mm的温区分成了8个等分,每个等分代表的温度是多少?4. 化简:a^3 × a^2 × a^5 × a^-4.5. 天球坐标系是宇宙中天体的共同参照系。

它由地球的赤道(称为天球赤道)和地球上的本初子午线构成。

高中数学竞赛讲义(十一)答案

高中数学竞赛讲义(十一)答案

高中数学竞赛讲义(十一)答案基础训练题1.圆。

设AO交圆于另一点是A关于的对称点。

则因为AB,所以P在以为直径的圆上。

2.圆或椭圆。

设给定直线为y=±kx(k>0),P(x,y)为轨迹上任一点,则。

化简为2k2x2+2y2=m2(1+k2).当k≠1时,表示椭圆;当k=1时,表示圆。

3.12.由题设a=10,b=6,c=8,从而P到左焦点距离为10e=10×=8,所以P到右焦点的距离为20-8=12。

4.-2<k<2或k<5.由(|k|-2)(5-k)<0解得k>5或-2<k<2.5.设两条焦半径分别为m,n,则因为|F1F2|=12,m+n=20.由余弦定理得122=m2+n2-2mncos600,即(m+n) 2-3mn=144.所以,6.3x+4y-5=0.设M(x1,y1),N(x2,y2),则两式相减得-(y1+y2)(y1-y2)=0.由,得。

故方程y+1=(x-3).7.-4.设B(x1,y1),C(x2,y2),则=0,所以y1+y2=-8,故直线BC的斜率为8.=1。

由渐近线交点为双曲线中心,解方程组得中心为(2,1),又准线为,知其实轴平行于y轴,设其方程为=1。

其渐近线方程为=0。

所以y-1=(x-1).由题设,将双曲线沿向量m=(-2,-1)平移后中心在原点,其标准方程为=1。

由平移公式平移后准线为,再结合,解得a2=9,b2=16,故双曲线为=1。

9.2.曲线y2=ax关于点(1,1)的对称曲线为(2-y)2=a(2-x),由得y2-2y+2-a=0,故y1+y2=2,从而==1,所以a=2.10.(2,]。

设P(x1,y1)及,由|PF1|=ex1+a,|PF2|=ex1-a,|PF1|+|PF2|=2ex1, 所以,即。

因,所以,所以即2<t≤2.11.解:由对称性,不妨设点P在第一象限,由题设|F1F2|2=4=4c2,又根据椭圆与双曲线定义解得|PF1|=a1+a2,|PF2|=a1-a2.在ΔF1PF2中,由余弦定理从而又sin∠F1PF2=所以12.解:以直线AB为x轴,AT的中垂线为y轴建立直角坐标系,则由定义知M,N两点既在抛物线y2=4ax上,又在圆[x-(a+r)]2+y2=r2上,两方程联立得x2+(2a-2r)x+2ra+a2=0,设点M,N坐标分别为(x1,y1),(x2,y2),则x1+x2=2r-2a.又|AM|=|MP|=x1+a,|AN|=|NP|=x2+a. |AB|=2r,所以|AM|+|AN|=x1+x2+2a=2r=|AB|.得证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一讲 双曲线形如xky =(0≠k )的函数叫做反比例函数,它的图象是由两条曲线组成的双曲线,与双曲线相关的知识有: 1. 双曲线解析式xky =中的系数k 决定图象的大致位置及y 随x 变化的状况.2.双曲线图象上的点是关于原点O 成中心对称,在k >0时函数的图象关于直线x y =轴对称;在k <0时函数的图象关于直线x y -=轴对称.3.自变量的取值是不等于零的全体实数,双曲线向坐标轴无限延伸但不能接近坐标轴. 【例题求解】【例1】 已知反比例函数xky =的图象与直线x y 2=和1+=x y 过同一点,则当0>x 时,这个反比例函数的函数值y 随x 的增大而 (填增大或减小). 思路点拨 确定k 的值,只需求出双曲线上一点的坐标即可.注:(1)解与反比函数相关问题时,充分考虑它的对称性(关于原点O 中心称,关于x y ±=轴对称),这样既能从整上思考问题,又能提高思维的周密性.(2)一个常用命题:如图,设点A 是反比例函数xky =(0≠k )的图象上一点,过A 作AB ⊥x 轴于B ,过A作AC ⊥y 轴于C ,则 ①S △AOB =k 21; ②S 矩形OBAC =k .【例2】 如图,正比例函数kx y = (0>k )与反比例函数xy 1=的图象相交于A 、C 两点,过A 作AB ⊥x 轴于B ,连结BC ,若S △ABC 的面积为S ,则( ) A .S=1 B .S =2 C .S=k D .S=2k 思路点拨 运用双曲线的对称性,导出S △AOB 与S △OBC 的关系.【例3】 如图,已知一次函数8+-=x y 和反比例函数xky =(0≠k )的图象在第一象限内有两个不同的公共点A 、B . (1)求实数k 的取值范围;(2)若△AOB 面积S =24,求k 的值.思路点拨 (1)两图象有两个不同的公共点,即联立方程组有两组不同实数解; (2)S △AOB= S △COB S- S △COA ,建立k 的方程.【例4】 如图,直线221+=x y 分别交x 、y 轴于点A 、C ,P 是该直线上在第一象限内的一点,PB ⊥x 轴于B ,S △ABP =9. (1)求点P 的坐标;(2)设点R 与点P 在同一个反比例函数的图象上,且点R 在直线PB 的右侧,作PT ⊥x 轴于F ,当△BRT 与△AOC 相似时,求点R 的坐标.思路点拨 (1)从已知的面积等式出发,列方程求P 点坐标;(2)以三角形相似为条件,结合线段长与坐标的关系求R 坐标,但要注意分类讨论.【例5】 如图,正方形OABC 的面积为9,点O 为坐标原点,点A 在x 轴上,点C 在y 轴上, 点B 在函数x k y =(0>k ,0>x )的图象上,点P(m ,n )是函数xky = (0>k ,0>x )的图象上的任意一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,并设矩形OEPF 和正方形OABC 不重合部分的面积为S . (1)求B 点坐标和k 的值; (2)当29=S 时,求点P 的坐标; (3)写出S 关于m 的函数关系式.思路点拨 把矩形面积用坐标表示,A 、B 坐标可求,S 矩形OAGF 可用含n 的代数式表示,解题的关键是双曲线关于x y =对称,符合题设条件的P 点不惟一,故思考须周密.注:求两个函数图象的交点坐标,一般通过解这两个函数解析式组成的方程组得到,求符合某种条件的点的坐标,需根据问题中的数量关系和几何元素间的关系建立关于纵横坐标的方程(组),解方程(组)便可求得有关点的坐标,对于几何问题,还应注意图形的分类讨论.学历训练1. 若一次函数b kx y +=的图象如图所示,则抛物线b kx x y ++=2的对称轴位于y 轴的 侧;反比例函数xkby =的图象在第 象限,在每一个象限内,y 随x 的增大而 .2.反比例函数xky =的图象经过点A(m ,n),其中m ,n 是一元二次方程042=++kx x 的两个根,则A 点坐标为 .3.如图:函数kx y -=(k ≠0)与xy 4-=的图象交于A 、B 两点,过点A 作AC ⊥y 轴,垂足为点C ,则△BOC 的面积为 .4.已知,点P(n ,2n)是第一象限的点,下面四个命题:(1)点P 关于y 轴对称的点P 1的坐标是(n ,-2n); (2)点P 到原点O ;(3)直线y=-nx+2n 不经过第三象限;(4)对于函数y=nx,当x <0时,y 随x 的增大而减小;其中真命题是 .(填上所有真命题的序号)5.已知反比例函数y=1mx-的图像上两点A(x 1,y 1)、B (x 2,y 2),当x 1<0<x 2时,有y 1<y 2 ,则m 的取值范围是( )A .m <OB .m >0 C. m <12 D.m >126.已知反比例函数xky =的图象如图所示,则二次函数222k x kx y +-=的图象大致为( )7.已知反比例函数),0(≠=k xky 当0<x 时,y 随x 的增大面增大,那么一次函数k kx y -=的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 8.如图,A 、B 是函数xy 1=的图象上的点,且A 、B 关于原点O 对称,AC ⊥x 轴于C ,BD ⊥x 轴于D ,如果四边形ACBD 的面积为S ,那么( ) A . S =1 B .1<S<2 C .S>2 D .S =29.如图,已知一次函数y=kx+b(k ≠O)的图像与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y=xm(m ≠0)的图像在第一象限交于C 点,CD 垂直于x 轴,垂足为D .若OA=OB=OD=l .(1)求点A 、B 、D 的坐标;(2)求一次函数和反比例函数的解析式.10.已知A(x 1、y 1),B(x 2,y 2)是直线2+-=x y 与双曲线xky = (0≠k )的两个不同交点. (1)求k 的取值范围;(2)是否存在这样k 的值,使得211221)2)(2(x x x x x x +=--?若存在,求出这样的k 值;若不存在,请说明理由.11.已知反比例函数2ky x=和一次函数y =2x-1,其中一次函数图像经过(a ,b),(a+1,b+k)两点.(1)求反比例函数的解析式;(2)如图,已知点A 在第一象限,且同时在上述两个函数的图像上,求A 点坐标; (3)利用(2)的结果,请问:在x 轴上是否存在点P ,使ΔAOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.12.反比例函数xky =的图象上有一点P(m ,n),其中m 、n 是关于t 的一元二次方程032=+-k t t 的两根,且P 到原点O 的距离为13,则该反比例函数的解析式为 .13.如图,正比例函数x y 3=的图象与反比例函数xky =(0>k )的图象交于点A ,若k 取1,2,3…20,对应的Rt △AOB 的面积分别为S 1,S 2,…,S 20,则S 1+S 2+…+S 20= .14.老师给出一个函数y=f(x),甲、乙、丙、丁四位同学各指出这个函数的一个性质: 甲:函数图像不经过第三象限; 乙:函数图像经过第一象限;丙:当x <2时,y 随x 的增大而减小; 丁:当x <2时,y >0已知这四位同学叙述都正确,请构造出满足上述所有性质的一个..函数: . 15.已知反比例函数xy 12=的图象和一次函数7-=kx y 的图象都经过点P(m ,2). (1)求这个一次函数的解析式;(2)如果等腰梯形ABCD 的顶点A 、B 在这个一次函数的图象上,顶点C 、D 在这个反比例函数的图象上,两底AD 、BC 与y 轴平行,且A 、B 的横坐标分别为a 和2+a ,求a 的值.16.如图,直线经过A(1,0),B(0,1)两点,点P 是双曲线xy 21=(0>x )上任意一点,PM ⊥x 轴,PN ⊥y 轴,垂足分别为M ,N .PM 与直线AB 交于点E ,PN 的延长线与直线AB 交于点F . (1)求证:AF ×BE =1;(2)若平行于AB 的直线与双曲线只有一个公共点,求公共点的坐标. (2003年江汉油田中考题)17.已知矩形ABCD 的面积为36,以此矩形的对称轴为坐标轴建立平面直角坐标系.....................,设点A 的坐标为(x ,y),其中x>0,y>0.(1)求出y 与x 之间的函数关系式,求出自变量x 的取值范围;(2)用x 、y 表示矩形ABCD 的外接圆的面积S ,并用下列方法,解答后面的问题:方法:∵2222()2k k a a k a a+=-+ (k 为常数且k>0,a ≠0),且 2()0k a a -≥∴.2222k a k a+≥.∴当k a a -=0,即a =222k a a+取得最小值2k .问题:当点A 在何位置时,矩形ABCD 的外接圆面积S 最小?并求出S 的最小值; (3)如果直线y=mx+2(m<0)与x 轴交于点P ,与y 轴交于点Q ,那么是否存在这样的实数m ,使得点P 、Q 与(2)中求出的点A 构成△PAQ 的面积是矩形ABCD 面积的16?若存在,请求出m 的值;若不存在,请说明理由.参考答案。

相关文档
最新文档