2014年九年级数学中考模拟复习试卷及答案【上海市黄浦区】

合集下载

2014上海中考数学模拟测试参考答案(2014.6)

2014上海中考数学模拟测试参考答案(2014.6)

2014年上海市初中毕业生统一学业考试模拟测试数学试卷参考答案 (2014.6)说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做到这一步可得到的分数; 4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原.则上不超过后继部分应得分数的一半................. 一、填空题(本大题共6题,每题4分,满分24分)1. B ;2. A ;3. A ;4. B ;5. C ;6. C . 二、选择题(本大题共12题,每题4分,满分48分)7.⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+23234x x ; 8.3->x ; 9.1-; 10.75; 11.︒1440; 12.1)2(22+-=x y ; 13.554或3148; 14.b a 6161+; 15.12; 16.213±; 17.如1-=k 等,不唯一; 18.()a 12±.三、解答题(本大题共7题,满分78分) 19.解:原式aba b a b a b b a +⋅-+-+=))((………………………………………………………(3分) ba -=1………………………………………………………………………(6分) 将2=a 、1=b 代入,上式12121+=-=……………………………(10分)20.解:1232322--=+-x x x x …………………………………………………………(2分) 0322=-+x x ……………………………………………………………………(3分) ()()0132=-+x x …………………………………………………………………(5分)解得:231-=x ,12=x …………………………………………………………(7分) 经检验,当1=x 时,方程无解,舍去……………………………………………(9分)故原方程的解为23-=x …………………………………………………………(10分) 21.解:(1)22……………………………………………………………………………(2分) (2) 过O 作AB OD ⊥、过C 作OB CE ⊥,D 、E 为垂足 由题意可知:︒=∠=∠45B A22)32(2222222=+⋅==∴AO OD ……………………………(3分))32,2(A 3232tan ==∠AOC ︒=∠︒=∠∴30,60COB AOC设x EB CE ==,则x EO 3=,x OB )13(+=4)13(=+∴x 解得)13(2-=x ………………………………………(4分) )13(42-==∴x OC426sin +==∠OC OD OCA ………………………………………………(5分) (3) 过A 、B 分别作x 轴的垂线,D 、E 为垂足;过O 作AB OF ⊥,F 为垂足 ︒=90AOB ︒=∠+∠∴90COB AOC 又︒=∠+∠90OAD AOC OAD COB ∠=∠∴易证BOE OAD ∆≅∆,m BE OD ==、n OE AD ==),(m n B -∴ ……………………………………………………………………(6分)因而可求得直线AB 解析式为n m nm x n m n m y -+-⎪⎭⎫ ⎝⎛-+=22…………………(7分) 令0=y 则n m n m x ++=22 即nm n m OC ++=22……………………………… (8分)又由(2)同理可得2222n m OF +⋅=)(2)()(2sin 2222n m n m n m OC OFOCA ++⋅+==∠∴……………………………(10分)22.证明:连接GE ;过A 作BC AH ⊥,H 为垂足 47103422=+⋅=+=BC AD S AH ABCD ,3=-=AD BC BH ……………………(2分)522=+=∴BH AH AB ……………………………………………………(3分) F 为AE 中点xyOABC DExyOABC DE FEF AF =∴易证EBF AGF ∆≅∆,BE AG =……………………………………………(4分) E 为BC 中点, AB BE ==∴5ABEG ∴为菱形,GBC ABG ∠=∠,︒=∠90BFE ……………………(6分) 又CE AG //且CE AG =AECG ∴为平行四边形,GC AE //……(7分) D BFE BGC ∠=︒=∠=∠∴90……(8分) GCB DGC ∠=∠CBG GCD ∠=∠∴…………(9分) GCD ABC ∠=∠∴2………(10分) 23.解:(1) 当100≤≤x 时,设函数解析式为)0(2≠++=a c bx ax y将点)20,0(、)39,5(、)48,10(代入⎪⎩⎪⎨⎧=+=+=28101001952520b a b a c 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=2052451c b a20524512++-=∴x x y ……………………………………………………(1分) 当2010≤≤x 时,由于函数图像为平行于x 轴的线段,故函数解析式为48=y ………………………………………………………(2分)当20≥x 时,设函数解析式为)0(≠=k xky 将点)48,20(代入解得960=k xy 960=∴……………………………………………………………………(3分) 画图正确………………………………………………………………………(4分)(2) 将6=x 代入20524512++-=x x y ,解得5208=y ……………………(5分) 将25=x 代入x y 960=,解得5192=y ……………………………………(6分)51925208> 故第6分钟学生的听课注意力更集中………………………………………(8分)(3) 把36=y 代入20524512++-=x x y 解得41=x ,202=x (不符题意,舍去)……………………………………(9分)F ABCEGDH把36=y 代入x y 960= 解得380=x ……………………………………(10分) 243684380<=-∴…………………………………………………………(11分) 故老师无法经过适当的安排,从而能使学生在听这道题时的听课注意力指数都不 低于36.…………………………………………………………………………(12分)25.解:(1)ADEF的值保持不变,证明过程如下:………………………………………(1分) 【解法一】延长FO 、DB ,相交于点G BD AB = ,D A ∠=∠∴ 易证AFO RT ∆∽DFG RT ∆DGAODF AF =∴,G AOF ∠=∠……………………………………………(2分) 又BOG AOF ∠=∠,G BOG ∠=∠∴,5==BO BG ………………(3分)315105=+=+=∴BG DB AO DF AF 又由垂径定理可知EF AF =41=+=∴DF AF AF AD EF ,是定值…………………………………………(4分) 【解法二】连接OE 、BE OB OE AO ==AEO EAB ∠=∠∴、EBO OEB ∠=∠︒=∠+∠=∠∴90OEB AEO AEB …………………………………………(2分) 又BD AB =E ∴为AD 中点,ED AE =………………………………………………(3分) 由垂径定理可知EF AF =4142===∴EF EF AE EF AD EF ,是定值………………………………………(4分). OA BCF E DG. OABCFE D(2) 连接AC 、CE ,并过E 作CD EG ⊥,G 为垂足 由(1)同理可证︒=∠90ACD 又由(1)可知E 为AD 中点【注:若上述结论在(1)中未证明,则需在(2)中给予证明】ED AD CE ==∴21…………………………………………………………(5分) y CD DG 2121==∴…………………(6分) 易证AFO RT ∆∽DGE RT ∆AODEAF DG =∴………………(7分) 5221x x y=∴ 整理得254x y =……………(9分)(3) 若圆F 与圆D 相切,这里只存在外切的可能……………………………(10分) 若两圆外切,则DE DC =易证DCE ∆为等边三角形,︒=∠60DABD ∆∴也为等边三角形,10==BD AD ………………………………(11分)521===∴AD AE BC ……………………………………………………(12分) 故当50<<BC 时,圆F 与圆D 相交;…………………………………(13分) 当5=BC 时,圆F 与圆D 相切;当105<<BC 时,圆F 与圆D 相离.…………………………………(14分). OA BCF ED G。

2014学年第一学期黄浦区九年级第一学期期末考试(数学)资料

2014学年第一学期黄浦区九年级第一学期期末考试(数学)资料

黄浦区2014学年度第一学期九年级期终调研测试数 学 试 卷 2015年1月(满分150分,考试时间100分钟)考生注意:1. 本试卷含三个大题,共25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.在Rt △ABC 中,90C ︒∠=,如果∠A =α,AB c =,那么BC 等于(A )sin c α⋅; (B )cos c α⋅; (C )tan c α⋅; (D )cot c α⋅. 2.如果二次函数2y ax bxc =++的图像如图1所示, 那么下列判断正确的是(A )0,0a c >>; (B )0,0a c <>; (C )0,0a c ><;(D )0,0a c <<.3.如果3a =,2b =,且a 与b 反向,那么下列关系式中成立的是(A )23a b =;(B )23a b =-;(C )32a b =; (D )32a b =-.4.在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD =2,BD =3,那么由下列条件能够判定DE //BC 的是(A )23DE BC =; (B )25DE BC =; (C )23AE AC =; (D )25AE AC =. 5.抛物线21y x x =-+-与坐标轴(含x 轴、y 轴)的公共点的个数是 (A )0; (B )1; (C )2; (D )3.6.如图2,在△ABC 中,点D 、E 分别在边AB 、AC 上,且DE ∥BC ,若S △ADE :S △BDE =1:2,则S △ADE :S △BEC = (A )1:4; (B )1:6; (C )1:8; (D )1:9.图1xyO B图2二、填空题:(本大题共12题,每题4分,满分48分) 7.如果34x y =,那么x yy+的值是 ▲ . 8.计算:tan 60cos30︒︒-= ▲ .9.如果某个二次函数的图像经过平移后能与23y x =的图像重合,那么这个二次函数的解析式可以是 ▲ (只要写出一个).10.如果抛物线21(1)22y x m x m =+--+的对称轴是y 轴,那么m 的值是 ▲ . 11.如图3,AD ∥BE ∥FC ,它们依次交直线1l 、2l 于点A 、B 、C 和点D 、E 、F .如果AB =2,BC =3,那么DEEF的值是 ▲ .B12.如图4,在梯形ABCD 中,AD ∥BC ,AB ⊥AD ,BD ⊥CD ,如果AD =1,BC =3,那么BD长是 ▲ .13.如图5,如果某个斜坡AB 的长度为10米,且该斜坡最高点A 到地面BC 的铅垂高度为8米,那么该斜坡的坡比是 ▲ .14.在Rt △ABC 中,90C ︒∠=,CD 是斜边AB 上的高.如果CD =3,BD =2,那么cos A ∠的值是 ▲ .15.正六边形的中心角等于 ▲ 度.16.在直角坐标平面内,圆心O 的坐标是(3,5-),如果圆O 经过点(0,1-),那么圆O与x 轴的位置关系是 ▲ .17.在Rt △ABC 中,90C ︒∠=,30A ︒∠=,BC =1,分别以A 、B为圆心的两圆外切,如果点C 在圆A 内,那么圆B 的半径长r 的取值范围是 ▲ .18.如图6,在梯形ABCD 中,AD ∥BC ,BE ⊥CD ,垂足为点E ,联结AE ,∠AEB =∠C ,且2cos 5C ∠=,若AD =1,则AE 的长是 ▲ .图5图4图3B图6三、解答题:(本大题共7题,满分78分) 19.(本题满分10分,其中每小题各5分) 如图7,已知两个不平行的向量a 、b .(1)化简:2(3)()a b a b --+;(2)求作c ,使得1=2c b a -.(不要求写作法,但要指出所作图中表示结论的向量.)20.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)在直角坐标平面内,抛物线2y ax b x c =++经过原点O 、A (2-,2-)与B (1,5-)三点. (1)求抛物线的表达式; (2)写出该抛物线的顶点坐标. 21.(本题满分10分,其中每小题各5分)已知:如图8,⊙O 的半径为5,P 为⊙O 外一点,PB 、PD 与⊙O 分别交于点A 、B 和点C 、D ,且PO 平分∠BPD .(1)求证:CB =AD ;(2)当P A =1,∠BPO =45︒时,求弦AB 的长. 22.(本题满分10分)如图9,小明想测量河对岸的一幢高楼AB 的高度,小明在河边C 处测得楼顶A 的仰角是60°.距C 处60米的E 处有幢楼房,小明从该楼房中距地面20米的D 处测得楼顶A 的仰角是30°(点B 、C 、E 在同一直线上,且AB 、DE 均与地面BE 垂直).求楼AB 的高度.P 图8图7ab图923.(本题满分12分,其中每小题各6分)已知:如图10,在△ABC 中,点D 、E 分别在边AB 、AC 上,且∠ABE =∠ACD ,BE 、CD 交于点G . (1)求证:△AED ∽△ABC ;(2)如果BE 平分∠ABC ,求证:DE =CE .24.(本题满分12分,其中每小题各4分) 在平面直角坐标系xOy 中,将抛物线21(3)4y x =-向下平移使之经过点A (8,0) ,平移后的抛物线交y 轴于点B .(1)求∠OBA 的正切值;(2)点C 在平移后的抛物线上且位于第二象限,其纵坐标为6,联结CA 、CB , 求△ABC 的面积;(3)点D 在平移后抛物线的对称轴上且位于第一象限,联结DA 、DB ,当∠BDA =∠OBA 时,求点D 坐标.25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分) 如图12,在矩形ABCD 中,AB =8,BC =6,对角线AC 、BD 交于点O .点E 在AB 延长线上,联结CE ,AF ⊥CE ,AF 分别交线段CE 、边BC 、对角线BD 于点F 、G 、H (点F 不与点C 、E 重合).(1)当点F 是线段CE 的中点时,求GF 的长;(2)设BE =x ,OH =y ,求y 关于x 的函数解析式,并写出它的定义域; (3)当△BHG 是等腰三角形时,求BE 的长.黄浦区分,满分241.A ; 4.D ;二、填空题:(本大题共12题,每题4分,满分48分) 图10 B A 备用图A 图12图11 Ox y7.74; 8 9.答案不惟一(如231y x =+); 10. 1;11.23; 12 13.1:0.75; 1415.60; 16.相切; 17.02r << 18.三、解答题:(本大题共7题,满分78分) 19.(本题满分10分,其中每小题各5分)解:(1)原式=62a b a b --- ………………………………………………………………(4分) =53a b -. ……………………………………………………………………(1分)(2)图略 . 20.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分) 解:(1)由抛物线2y ax b x c =++经过原点O ,可知0c =. …………………………(2分) 由抛物线2y ax b x =+经过A (2-,2-)、B (1,5-)得22(2)(2)2,11 5.a b a b ⎧⋅-+⋅-=-⎨⋅+⋅=-⎩ ……………………………………………………………………(2分) 解得2,3.a b =-⎧⎨=-⎩ ……………………………………………………………………(2分)∴该抛物线的表达式为223y x x =--. …………………………………………………(1分)(2)由223y x x =--配方得2392()48y x =-++. …………………………………………(2分)∴顶点坐标为(34-,98). ………………………………………………………… (1分)21. (本题满分10分,其中每小题各5分) 证明:(1)过点O 作OM ⊥AB ,ON ⊥CD ,M 、N 为垂足,………………………………(1分)则OM 、ON 分别是弦AB 和CD 的弦心距.∵PO 平分∠BPD ,∴OM =ON ,………………………………………………………(1分) ∴AB =CD .……………………………………………………………………………………(2分) ∴AB +AC =CD +AC .即CB =AD .……………………………………………………………………………………(1分) (2)联结OA ,…………………………………………………………………………………(1分) 在Rt △PMO 中,∠BPO =45 º, OM =PM . 设AM =x ,则 OM =1x +,由题意得 2225(1)x x =++. ………………………………………………………………(2分) 化简得2012x x +=-.解得14x =- (舍) 23x =.…………………………………………………………………(1分) ∴AM =3,∵OM ⊥AB ,且O 为圆心, ∴AB =2AM =6.…………………………………………………………………………………(1分)22.(本题满分10分)解:设BC =x .在Rt △ABC 中,tan ABACB BC ∠=.………………………………………(1分)∴tan 603AB BC x =⋅=.……………………………………………………………………(1分) 过D 作DG //BE ,交AB 于G ,………………………………………………………………(1分) ∵AB ⊥BE ,DE ⊥BE ,∴BG =DE =20,AG 20-.………………………………………………………………(1分) 在Rt △ADG 中,cot DGADG AG∠=.…………………………………………………………(1分)∴cot 303DG AG x =⋅=-……………………………………………………………(1分)由题意得360x x -+.…………………………………………………………………(2分)解得 30x =+………………………………………………………………………(1分)答:楼AB 的高度(30+米.……………………………………………………………(1分) 23.(本题满分12分,其中每小题各6分) 解:(1)∵∠ABE =∠ACD ,且∠A 是公共角,∴△ABE ∽△ACD .……………………………………………………………………(2分)∴AE AB AD AC =,即AE ADAB AC =.……………………………………………………………(1分) 又∵∠A 是公共角,………………………………………………………………………(1分) ∴△AED ∽△ABC . ……………………………………………………………………(2分) (2)∵∠ABE =∠ACD ,∠BGD =∠CGE ,∴ △BGD ∽△CGE .……………………………………………………………………(1分)∴DG BG EG CG =,即DG EGBG CG =. 又∵∠DGE =∠BGC , ∴△DGE ∽△BGC .………………………………………………………………………(2分)∴∠GBC =∠GDE ,………………………………………………………………………(1分) ∵BE 平分∠ABC ,∴∠GBC =∠ABE , ∵∠ABE =∠ACD , ∴∠GDE =∠ACD .………………………………………………………………………(1分) ∴DE =CE .………………………………………………………………………………(1分) 24.(本题满分12分,其中每小题各4分)解:(1)设平移后抛物线的表达式是21(3)4y x k =-+,将A (8,0)代入该表达式 解得 254k =-.∴平移后抛物线的表达式是2125(3)44y x =--. (1) .…………………………………(2分)把0x =代入(1)得 4y =-. ∴B (0,4-). ………………………………………………………………………………(1分)在Rt △AOB 中,tan 2OBA OAOB∠==.……………………………………………………(1分)(2)把6y =代入(1) 解得110x =(舍去), 24x =-. ∴C (4-,6). ………………………………………………………………………………(2分)∴直线AC 解析式为142y x =-+.设AC 与y 轴交于点E ,则点E 坐标为(0,4) …………………………………………(1分) ∴S △ABC = S △BEC + S △A BE =16+32=48. ………………………………………………………(1分) (3)设对称轴交线段AB 于N ,交x 轴于点F ,∵FN //BO ,∴∠OBA =∠DNA ,∴∠BDA =∠DNA ,又∠DAN 是公共角,△BDA ∽△DNA .……………………………………………………(1分)∴AD ABAN AD=,即2AD AN AB =. ∵FN //BO ,∴58AN AF AB AO ==. ∴58AN AB =. 设点D 坐标为(3,m ) .由题意得 222558m +=⋅. ……………………………………………………………(2分)解得5m = (负值已舍).∴点D 坐标为(3,5) .…………………………………………(1分) 25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分) 解:(1)矩形ABCD 中,∠ABC =90 º, ∵AB =8,BC =6,∴AC =10.∵AF ⊥CE ,且点F 是线段CE 的中点,∴AE=AC=10.∴BE=2. ……………………………………………………………(1分)Rt △CBE 中,tan 13ECB BE BC ∠==. ………………………………………………(1分)CE=CF1分) Rt △CBE中,tan 3GF CF ECB =⋅∠=1分)(2)∵∠ABC =∠CBE =90º,∠AGB =∠CGF ,∴△BAG ∽△BCE .……………………………………………………………………(1分)∴BG AB BE BC =,∴43BG x =.……………………………………………………………(1分) 矩形ABCD 中,AD ∥BC , ∴BG BH AD DH=,∴45365xy y -=+.…………………………………………………………(1分) ∴451029x y x -=+ (902x <<). ………………………………………………………(2分)(3)1°当BH =BG 时,DH =AD ,∴56y +=,即4510129xx -=+.解得3x =.…………(1分)2°当GH =BG 时,AD =AH , 过点A 作AM ⊥DH ,垂足为H .Rt △CBE 中,cos 53ADB ∠=. ∴53265y+=. (1)将451029x y x -=+代入(1) 解得74x =.………………………………………………(2分)3°当GH =BH 时,DH =AH , ∴点H 在AD 垂直平分线上,此时点F 与点C 重合 ,∴92x =.(舍) …………………………………………(1分) 综上所述BE 的长是3或74.……………………………………………………………(1分)。

2014年九年级中考第二次模拟数学试卷及答案

2014年九年级中考第二次模拟数学试卷及答案

2014年初中毕业、升学统一考试模拟考试数学试题(考试形式:闭卷 满分:150分 考试时间:120分钟)友情提醒:本卷中的所有题目均在答题卡上作答,在本卷中作答无效。

一、选择题(本大题共8小题,每小题3分,共24分.每题的四个选项中,只有一个选项是符合要求的,请将正确选项前的字母代号填写在答题卡...相应位置....上) 1.下列各数中,最小的实数是A.B .12- C .2- D .132.下列函数中,自变量x 的取值范围是3x ≥的是A .13y x =- B.y = C .3y x =- D.y =3.下列成语或词语所反映的事件中,可能性大小最小的是A .瓜熟蒂落B .守株待兔C .旭日东升D .夕阳西下 4.下列水平放置的四个几何体中,主视图与其它三个不相同的是A B C D5.如图,在平面直角坐标系中,菱形OACB 的顶点O 在原点,点C 的坐标为(4,0),点B 的纵坐标是−1,则顶点A 坐标是A .(2,1)B .(1,−2)C .(1,2)D .(2,-1)6.下列四个选项中,数轴上的数a ,一定满足2a >-的是 A . B .C .D .7.已知P 是⊙O 内一点,⊙O 的半径为10,P 点到圆心O 的距离为6,则过P 点且长度是整数的弦的条数是 A .3B .4C .5D .68.在平面直角坐标系中,已知直线334y x =-+与x 轴、y 轴分别交于A 、B 两点,点C 在y 轴上.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是 A .(0,34) B .(0,43) C .(0,3) D .(0,4)(第5题)二、填空题(本大题共10题,每题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 计算:23a a a + ▲ .10.已知某种纸一张的厚度约为0.0089厘米,0.0089用科学计数法表示为 ▲ . 11.某天我国6个城市的平均气温分别是 -3℃、5℃、 -12℃、 16℃、 22℃、 28℃.则这6个城市平均气温的极差是 ▲ ℃.12.若32-=+b a ,21422=-b a ,则12+-b a = ▲ .13. 已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为 ▲ . 14.如图,是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,则这个白色小正方形内的数字是 ▲ . 15.已知圆锥的底面半径为9cm ,母线长为30cm ,则此圆锥的侧面展开扇形的圆心角度数为▲ .16. 将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB = ▲ °.17.如图所示,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数xy x y 24=-=和 的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为 ▲ .18.在△ABC 中,∠ABC =30°,AB 边长为10,AC 边的长度可以在3、5、7、9、11中取值,满足这些条件的互不全等的三角形的个数是 ▲ 个.三、解答题 (本大题共10题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)(1)212cos30()12--+--(2) 解不等式: 122123x x -+-≥20.(本题满分8分)(第16题)(第14题)(第17题)先化简再求值:232(1)121x x x x x ---÷--+,其中x 是方程022=-x x 的根.21.(本题满分8分)今年“3.15”期间某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:同一日内,顾客在本商场每消费满200元,就可以在箱子里一次摸出两个球,商场根据两小球所标金额之和返还相应数额的购物券.某顾客刚好消费200元. (1)该顾客至少可得到 ▲ 元购物券,至多可得到 ▲ 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得的购物券金额不低于30元的概率.22.(本题满分8分)如图,在平行四边形ABCD 中,E F ,为BC 上两点,且BE CF =,AF DE =. (1)找出图中一对全等的三角形,并证明; (2)求证:四边形ABCD 是矩形.23.(本题满分10分)某市需调查该市九年级男生的体能状况,为此抽取了50名九年级男生进行引体向上个数测试,测试情况绘制成表格如下:(1)求这次抽样测试数据的平均数、众数和中位数;(2)在平均数、众数和中位数中,你认为用哪一个统计量作为该市九年级男生引体向上项目测试的合格标准个数较为合适?简要说明理由;A BCDEF(3)如果该市今年有3万名九年级男生,根据(2)中你认为合格的标准,试估计该市九年级男生引体向上项目测试的合格人数是多少?24.(本题满分10分)小明到某品牌服装专卖店做社会调查.了解到该专卖店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,而“计件奖金=销售每件的奖金×月销售件数”,并获得如下信息:(1)求营业员的月基本工资和销售每件的奖金;(2)营业员丙哥希望本月总收入不低于1800元,则丙哥本月至少要卖服装多少件?25.(本题满分10分)超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到文昌路的距离为100米的点P处.这时,一辆小轿车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为4秒且∠APO=60°,∠BPO=45°.(1)求A、B1.41≈,1.73≈)(2)请判断此车是否超过了文昌路每小时70千米的限制速度?26.(本题满分10分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F 在AC的延长线上,且CBFCAB∠=∠2.(1)试判断直线BF与⊙O的位置关系,并说明理由;(2)若AB=6,BF=8,求CBF∠tan.OPBA万丰文昌路。

上海市黄浦区2014年初三数学二模考试试题及答案

上海市黄浦区2014年初三数学二模考试试题及答案

黄浦区2014年九年级学业考试模拟考数学试卷(时间100分钟,满分150分) 2014.4.10一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1. 下列二次根式中,2的同类根式是 ( )(A )4;(B )6;(C )8;(D )10.2. 化简32(3)a 的结果是 ( )(A )66a ;(B )96a ; (C )69a ; (D )99a .3. 方程2690x x -+=的根的情况是 ( ) (A )没有实数根;(B )有且仅有一个实数根; (C )有两个相等的实数根;(D )有两个不相等的实数根.4. 下列图形中,既是轴对称图形又是中心对称图形的是 ( ) (A )正三角形;(B )正方形; (C )等腰直角三角形;(D )等腰梯形.5. 在平行四边形ABCD 中,下列条件中不能..判定四边形ABCD 是菱形的是 ( ) (A )AB =BC ; (B )AC =BD ; (C )∠ABD =∠CBD ; (D )AC ⊥BD .6. 某赛季甲、乙两名篮球运动员各参加10场比赛,各场得分情况如图1所示,下列四个结论中,正确的是 ( ) (A )甲运动员得分的平均数小于乙运动员得分的平均数; (B )甲运动员得分的中位数小于乙运动员得分的中位数; (C )甲运动员得分的最小值大于乙运动员得分的最小值; (D )甲运动员得分的方差大于乙运动员得分的方差. 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】7.1的相反数是 . 图18. 因式分解:24x y y -= .9. 不等式组36210x x ->-⎧⎨+>⎩的解集是 .10. 方程2x x +=的根是 . 11. 若反比例函数13ky x-=的图像经过第一、三象限,则 k 的取值范围是 .12. 某校对部分学生家庭进行图书量调查,调查情况如图2所示,若本次调查中,有50本以下图书的学生家庭有24户,则参加本次调查的学生家庭数有 户. 13. 布袋中有1个黑球和1个白球,这两个球除颜色外其他都相同,如果从布袋中先摸出一个球,放回摇匀后,再摸出一个球,那么两次都摸到白球的概率是 . 14. 将抛物线2y x x =+向右平移1个单位后,所得新抛物线的表达式是 . 15. 如图3,AB ∥CD ,直线MN 分别与AB 、CD 交于点E 、F ,FG 是∠NFD 的平分线,若∠MEB=80°,则∠GFD 的度数为 .16. 如图4,△ABC 中,D 为边AC 的中点,设BD =a ,BC =b ,那么CA 用a 、b 可表示为 .17. 当两个圆有两个公共点,且其中一个圆的圆心在另一圆的圆内时,我们称此两圆的位置关系为“内相交”.如果⊙1O 、⊙2O 半径分别3和1,且两圆“内相交”,那么两圆的圆心距d 的取值范围是 .18. 如图5,在△ABC 中,AB =AC =5,BC =4,D 为边AC 上一点,且AD =3,如果△ABD 绕点A 逆时针旋转,使点B 与点C 重合,点D 旋转至D ',那么线段D D '的长为 . 图5ABCD图2100~149本50~99本150本及以上 35%30%20%50本以下图4ABC D图3E MF GND CA三、解答题:(本大题共7题,满分78分) 19. (本题满分10分)计算:()1122cot 302323(31)-︒+⨯--+-.20. (本题满分10分) 解方程:31131x x-=+-.21. (本题满分10分,第(1)、(2)小题满分各5分)如图6,D 是⊙O 弦BC 的中点,A 是BC 上一点,OA 与BC 交于点E ,已知AO =8,BC =12.(1)求线段OD 的长;(2)当EO 2BE 时,求∠DEO 的余弦值.EADCBO图622. (本题满分10分,第(1)、(2)小题满分各5分)已知弹簧在其弹性限度内,它的长度y (厘米)与所挂重物质量x (千克)的关系可表示为y kx b =+的形式,其中k 称为弹力系数,测得弹簧A 的长度与所挂重物(不超过弹性限度)的关系如图7-1所示.(1)求弹簧A 的弹力系数;(2)假设在其它条件不变的情况下,弹簧的弹力系数k 与弹簧的直径d (如图7-2所示)成正比例.已知弹簧B 的直径是弹簧A 的1.5倍,且其它条件均与弹簧A 相同(包括不挂重物时的长度).当弹簧B 挂一重物后,测得此时弹簧长度为9厘米,求该重物的质量.23. (本题满分12分,第(1)、(2)小题满分各6分)如图8,Rt △ABC 中,∠ACB=90°,D 是边BC 上一点,点E 、F 分别是线段AB 、AD 中点,联结CE 、CF 、EF .(1)求证:△CEF ≌△AEF ;(2)联结DE ,当BD=2CD 时,求证:DE=AF .FEDCBA图8y (厘米)x (千克)81048O图7-1d图7-224. (本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)在平面直角坐标系xOy中,已知顶点为P(0, 2)的二次函数图像与x轴交于A、B两点,A点坐标为(2, 0).(1)求该二次函数的解析式,并写出点B坐标;(2)点C在该二次函数的图像上,且在第四象限,当△ABC的面积为12时,求点C坐标;(3)在(2)的条件下,点D在y轴上,且△APD与△ABC相似,求点D坐标.25. (本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)如图9,在平行四边形ABCD中,AB=4,BC=2,∠A=60°.(1)求证:BD⊥BC;(2)延长CB至G,使BG=BC,E是边AB上一点,F是线段CG上一点,且∠EDF=60°,设AE=x,CF=y.①当点F在线段BC上时(点F不与点B、C重合),求y关于x的函数解析式,并写出定义域;②当以AE为半径的⊙E与以CF为半径的⊙F相切时,求x的值.图9 BDC A黄浦区2014年九年级学业考试模拟考数学参考答案与评分标准一、选择题:(本大题共6题,每题4分,满分24分)1. C ;2. C ;3. C ;4. B ;5. B ;6. D .二、填空题:(本大题共12题,每题4分,满分48分) 7. 12-; 8. (2)(2)y x x +-; 9. 122x -<< ; 10. 2x = ; 11. 13k <; 12. 160; 13.14; 14. 2y x x =-; 15. 50°; 16. 22a b -; 17. 23d <<; 18.125. 三、解答题:(本大题共7题,满分78分) 19. 解:原式=323(23)(423)+-++- ……………………………………(8分)=32323423+--+- ………………………………………(1分) =2 ………………………………………………………………(1分) 20. 解:去分母得3(1)(3)(1)(3)x x x x --+=-+. ……………………………(3分)整理得 2230x x --=. …………………………………………………(3分) (1)(3)0x x +-=. …………………………………………………(1分) 解得 11x =-,13x =. ………………………………………………………(2分)经检验11x =-,13x =都是原方程的根. ………………………………………(1分) 21. 解:(1)联结OB . ……………………………………………………………………(1分)∵OD 过圆心,且D 是弦BC 中点,∴OD ⊥BC ,12BD BC =. …………………………………………………(2分) 在Rt △BOD 中,222OD BD BO +=. ………………………………………………(1分) ∵BO =AO =8,6BD =.∴27OD =. ………………………………………………………………………(1分) (2)在Rt △EOD 中,222OD ED EO +=.设BE x =,则2EO x =,6ED x =-.222(27)(6)(2)x x +-=.……………………………………………………(2分) 解得 116x =-(舍), 24x =.………………………………………………(1分)在Rt △EOD 中,cos DEO ∠=.…………………………………………………(2分) 22. 解:(1)把(4,8),(8,10)代入y kx b =+得84108k bk b=+⎧⎨=+⎩ …………………………………………………(2分)解得126k b ⎧=⎪⎨⎪=⎩ …………………………………………………(2分)∴ 弹簧A 的弹力系数为12. ………………………………………………(1分) (2)设弹簧B 弹力系数为b k ,弹簧A 的直径为A d ,则弹簧B 的直径为32A d .由题意得 32b A A k kd d =. ∴ 3324b k k ==. …………………………………………………(2分)又∵弹簧B 与弹簧A 不挂重物时的长度相同, ∴弹簧B 长度与所挂重物质量的关系可表示为364y x =+. ………………………(1分) 把9y =代入364y x =+得 4x =. …………………………………………(2分) ∴此时所挂重物质量为4千克.23. 证明:(1)∵∠ACB=90°,且E 线段AB 中点,∴CE =12AB =AE . ………………………………………………………………(2分)同理CF =AF . ………………………………………………………………………(1分) 又∵EF =EF ,…………………………………………………………………………(1分) ∴△CEF ≌△AEF . ……………………………………………………………(2分) (2) ∵点E 、F 分别是线段AB 、AD 中点,∴12EF BD =,EF ∥BC . ………………………………………………………………(2分)∵BD=2CD , ∴EF CD =.又∵EF ∥BC ,∴四边形CEFD 是平行四边形. …………………………………(2分) ∴DE =CF . ……………………………………………………………………………(1分) ∵CF =AF ,∴DE =AF . ………………………………………………………………(1分)24. 解:(1)设抛物线表达式为22y ax =+. 把(2, 0)代入解析式,解得12a =-.…………………(1分)∴抛物线表达式为2122y x =-+………………………(1分)设点C 横坐标为m ,则2122CH m =-.…………………………………………(1分) 由题意得211[2(2)](2)1222m ⋅--⋅-=…………………(1分) 解得4m =±. …………………………………………(1分) ∵点C 在第四象限,∴4m =. ∴C (4, -6). ……(1分)(3)∵PO =AO =2,∠POA=90°,∴∠APO=45°. ……………………………………(1分) ∵BH =CH =6,∠CHB=90°,∴∠CBA=45°. ∵∠BAC <135°,∴点D 应在点P 下方,∴在△APD 与△ABC 中,∠APD=∠CBA . …………………………………………(1分)由勾股定理得P A =22,BC =62.1°当PD PA AB BC =时,22462PD =.解得43PD =.∴12(0,)3D …………………………(1分) 2°当PD PABC AB =时,2262=.解得6PD =.∴2(0,4)D -………………………(1分) 综上所述,点D 坐标为2(0,)3或(0,4)-………………………………………………(1分)25. 解:(1)过点D 作DH ⊥AB ,垂足为H . ……………………………………………(1分) 在Rt △AHD 中,cos cos 1AH AD A BC A =⋅∠=⋅∠=.∵12AH AD =,12BC CD =,∴AH BC AD CD =,即AH AD BC CD=. 又∵∠C =∠A =60°,∴△AHD ∽△CBD . …………………………………………… (2分) ∴∠CBD =∠AHD =90°. ∴BD ⊥BC . …………………………………………………(1分) (2)①∵AD ∥BC ,∴∠ADB =90°,∵∠BDH +∠HDA =90°,∠A +∠HDA =90°. ∴∠BDH =∠A =60°.∵∠EDF =60°,∴∠BDH =∠EDF , 即∠EDH +∠BDE =∠FDB +∠BDE .∴∠EDH =∠FDB . …………………………………………………………………(2分) 又∵∠EHD =∠CBD =90°,∴△EHD ∽△FBD . …………………………………(1分)∴DH EHBD BF =,31223x y-=-. ∴42y x =-(12)x <<.………………………… (2分) ②联结EF .1°当点F 在线段BC (点F 不与点B 、C 重合)上时,∵△EHD ∽△FBD ,∴DH DE BD DF =. 即DH BDDE DF=. 又∵∠BDH =∠EDF ,∴△BDH ∽△FDE . ∴∠DEF=90°.在Rt △EDH 中,22224DE EH DH x x =+=-+∴2tan 6033612EF DE DE x x =⋅︒==-+……………………………………(1分)解得,1957x +=(舍),2957x -=(舍). …………………………………(1分) ii)当⊙E 与⊙F 外切时,2(42)3612x x x x +-=-+.解得11x =(舍),22x =-(舍). ……………………………………………………(1分) 2°点F 与点B 重合时,即 x =1 时,两圆外切.3°当点F 在线段BG (点F 不与点B 重合)上时,易得42CF x =-,且△BDH ∽△FDE 仍然成立. ∴23612EF x x =-+.由1°计算可知9576x -=时两圆内切. …………………………………………(1分) 综上所述,当 x =1 时,两圆外切,当957x -=(1分)。

2014年上海市黄浦区中考数学三模试卷及答案

2014年上海市黄浦区中考数学三模试卷及答案

2014年黄浦区初三三模数学试卷2014年5月22日(完卷时间:100分钟,满分:150分)考生注意:所有答案都写在答题卷上一、选择题【每题列出的四个选项中,有且只有一个是正确的】(本大题共6题,每题4分,满分24分) 1.4与6的最小公倍数是( )(A )2. (B )4. (C )6. (D )12.2.化简()23a 的结果是( )(A )5a . (B )6a . (C )8a . (D )9a .3. 二元一次方程32=+y x 的解的个数是( )(A )1. (B )2 . (C )3. (D )无数.4.下列图形中,中心对称图形是( )(A ) (B )(C ) (D )5.函数43-=x y 的图像不经过( )(A )第一象限. (B )第二象限. (C )第三象限. (D )第四象限.6.以等边ABC ∆的三个顶点为圆心的⊙A 、⊙B 与⊙C ,若其中⊙A 与⊙B 相外切,⊙A 与⊙C 也外切,而⊙B 与⊙C 相外离,则⊙A 的半径A R 与⊙B 的半径B R 之间的大小关系是( )(A ) A R >B R . (B ) A R =B R . (C ) A R <B R . (D )以上都有可能. 二、填空题(本大题共12题,每题4分,满分48分)PDCBAA 1NM CBAB 121 l 3l 2l 1 7.计算:=+-+1112x x x . 8.不等式组⎩⎨⎧<-≥+0201x x 的解集是 .9.分解因式:=-++1222y xy x . 10.方程352=+x 的解是 .11.任意掷出一枚质地均匀的骰子后,骰子朝上面的点数为素数的概率是 . 12.抛物线342--=x x y 的顶点坐标为 .13.如果关于x 的方程032=+-k kx x 有两个相等的实数根,那么k 的值为 . 14.如果反比例函数xky =的图像经过点()1,2与()n ,1-,那么n 的值为 . 15.如图1,直线l 1、l 2被直线l 3所截,如果l 1‖l 2,∠1=︒48,那么∠2= 度.16.如图2,在梯形ABCD 中,AB ‖CD ,CD AB 2=,AC 与BD 交于点P ,令b BC a AB ==,,那么=AP .(用向量a 、b 表示)(图1) (图2) (图3) (图4)17.如图3,⊙O 的半径为5,点P 是弧AB 的中点,OP 交AB 于点H ,如果1=PH ,那么弦AB 的长是 .18.如图4,在ABC ∆中,∠ACB =︒90,AC =4,BC =3,将ABC ∆绕点C 顺时针旋转至C B A 11∆的位置,其中B 1C ⊥AB ,B 1C 、A 1B 1交AB 于M 、N 两点,则线段MN 的长为 .三、解答题(本大题共7题,满分78分) 19.(本题10分)计算:()12211260sin 8-︒+++.O BAPH不认识展馆人数认识法国馆捷克馆 中国馆283540DCB A20.(本题10分)小明在寒假中对他所住的小区学生作了有关上海世博会各国展馆的认识度调查,他随机对他所住小区的40名初中学生调查了对中国馆、捷克馆与法国馆认识情况如下图,接着他又到居委会了解他所住的小区学生数情况如下表.(1)从统计图中可知他所住的小区初中学生中对____________馆的认识度最高; (2)请你估计他所住的小区初中学生中有_____________人认识捷克馆;(3)小明用下面的算式()1602002404035++⨯,计算得到结果为525,并由此估计出他所住的小区共有525名学生认识法国馆.你认为这样的估计正确吗?答:___________;为什么?答:_______________________________________________________.初中学生展馆认识情况统计图学生人数情况表学 段 小 学 初 中 高 中 人 数24020016021.(本题10分)如图5,在梯形ABCD 中,AD‖BC , ∠B =︒90,AC =AD .(1)若∠BAC ∶∠BCA =3∶2,求∠D 的度数; (2)若AD =5,tan ∠D =2,求梯形ABCD 的面积.(图5)yO NMP BA x NMDCBAOyOx22.(本题10分)动车组的出现使上海到杭州的旅程时间较一般的火车缩短了许多,而计划中上海到杭州磁浮列车的平均速度又将比动车组提高120千米/小时,这样从上海南站到杭州站225千米的旅程时间又将缩短30分钟,问计划中上海到杭州磁浮列车的平均速度将达到多少千米/小时?23.(本题12分)如图6,在梯形ABCD 中,AD‖BC , 对角线AC 与BD 交于点O ,M 、N 分别为OB 、OC 的 中点,又∠ACB =∠DBC . (1)求证:AB =CD ; (2)若AD =21BC .求证:四边形ADNM 为矩形. (图6)24. (本题12分)已知点P 是函数x y 21=(x >0)图像上一点,PA ⊥x 轴于点A ,交函数x y 1=(x >0)图像于点M , PB ⊥y 轴于点B ,交函数xy 1=(x >0)图像于点N .(点M 、N 不重合)(1)当点P 的横坐标为2时,求△PMN 的面积; (2)证明:MN‖AB ;(如图7)(3)试问:△OMN 能否为直角三角形?若能,请求出此时点P 的坐标;若不能,请说明理由.(图7) (备用图)PONM P ON M F EDCBA25、(本题14分)如图,一把“T 型”尺(图8),其中MN ⊥OP ,将这把“T 型”尺放置于矩形ABCD 中(其中AB =4,AD =5),使边OP 始终经过点A ,且保持OA =AB ,“T 型”尺在绕点A 转动的过程中,直线MN 交边BC 、CD 于E 、F 两点.(图9)(1)试问线段BE 与OE 的长度关系如何?并说明理由; (2)当△CEF 是等腰直角三角形时,求线段BE 的长;(3)设BE =x ,CF =y ,试求y 关于x 的函数解析式,并写出函数定义域.(图8) (图9)参考答案与评分标准一、选择题1、D ;2、B ;3、D ;4、C ;5、B ;6、A .二、填空题7、1-x ; 8、x ≤-1<2; 9、()()11-+++y x y x ; 10、2±;11、21; 12、()7,2-; 13、0,12; 14、2-; 15、132; 16、b a 3232+; 17、6; 18、0.8.三、解答题19、解:原式1212382++⎪⎪⎭⎫ ⎝⎛+=,———————————————(2+2+1=5分) 124322-++=,————————————————————(3分)4123-=.—————————————————————————(2分)20、解:(1)中国;———————————————————————————(3分) (2)140.————————————————————————————(3分) (3)不正确;———————————————————————————(1分)对初中学生随机抽样的结果并不能表示小学生与高中生的结果,缺乏代表性.————————————————————————————————————(3分) 21、解:(1)在ABC ∆中,︒=∠90B ,则︒=∠+∠90BCA BAC ,——————————————————(1分) 又∠BAC ∶∠BCA =3∶2, ∴∠BCA =︒︒=⨯369052.———————————————————(1分) ∵AD‖BC ,∴︒=∠=∠36BCA CAD .————————————(1分)又∵AC =AD ,∴()︒︒=∠-=∠=∠7218021DAC ACD D .————(2分) (2)作AD CH ⊥,垂足为H ,——————————————————(1分) 在CDH Rt ∆中,tan ∠D =2,令k CH k DH 2,==,———————(1分)则在ACH Rt ∆中,222CH AH AC +=,————————————(1分) 即()()222255x x +-=,解得:2=x .————————————————————————(1分) 则35,42=-====x AH BC x CH , ∴()1645321=⨯+⨯=ABCD S 梯形.———————————————(1分) 22、解:设磁浮列车的平均速度为x 千米/小时,—————————————(1分) 则21225120225=--x x ,————————————————————(5分)整理得:0540001202=--x x ,———————————————(1分) 解得180,30021-==x x .——————————————————(1分) 经检验,两根均为原方程的根,但1802-=x ,不合题意,舍去.——(1分) 答:计划中上海到杭州磁浮列车的平均速度将达到300千米/小时.————(1分)23、证明:(1)∵∠ACB =∠DBC ,∴OC OB =,———————————————————————(2分) ∵AD‖BC , ∴OBOCOD OA =,即OD OA =——————————————————(2分) ∴BD AC =,————————————————————————(1分) ∴梯形ABCD 为等腰梯形,即AB =CD .——————————————(1分) (2)∵AD =21BC ,AD‖BC , ∴21==BC AD OC OA ,又N 为OC 的中点,—————————————(2分) ∵OA ON =,————————————————————————(1分) 同理OD OM =,又OD OA =.————————————————(2分) ∴四边形ADNM 为矩形.———————————————————(1分)24、解:(1)∵点P 是函数x y 21=(x >0)图像上一个点,当点P 的横坐标为2, ∴点P 为(2,1),——————————————————————(1分)由题意可得:M 为(2,21),N 为(1,1),———————————(2分) ∴4121121=⨯⨯=∆PMNS .———————————————————(1分) (2)令点P 为()a a ,2,(a >0)———————————————————(1分)则()()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛a a N a a M a B a A ,1,21,2,,0,0,2, ∴211221,212=--===aa a a PNPM a a PB PA ,—————————————(1分) 即PNPMPB PA =————————————————————————(1分) ∴MN‖AB .—————————————————————————(1分) (3)由(2)得,222222414,1a a OM a a ON +=+=, 2222245552112a a a a a a MN +-=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-=,易知︒≠∠90MON . ∴当︒=∠90ONM 时, 有22222245551414a a a a a a +-++=+, 解得22,221==a a (舍去),即点P 为()2,22.——————(2分) 同理当︒=∠90OMN 时,点P 为⎪⎪⎭⎫⎝⎛42,22.——————————(2分)综上所述,当点P 为()2,22与⎪⎪⎭⎫⎝⎛42,22时,能使△OMN 为直角三角形. 25、解:(1)线段BE 与OE 的长度相等. —————————————————(1分)联结AE ,在△ABE 与△AOE 中,∵OA =AB ,AE =AE ,︒=∠=∠90AOE ABE ,——————————(2分) ∴△ABE ≌△AOE . —————————————————————(1分) ∴BE =OE .LOFEDCBAKH(2)延长AO 交 BC 于点T ,———————————————————(1分) 由△CEF 是等腰直角三角形,易知△OET 与△ABT 均为等腰直角三角形.————————————(1分) 于是在△ABT 中,AB =4,则AT =24,—————————————(2分)∴BE =OE =OT =424-.————————————————————(1分)(3)在BC 上取点H ,使BH = BA =4,过点H 作AB 的平行线,交EF 、AD 于点K 、L ,(如图)————————————————(1分) 易知四边形ABHL 为正方形 由(1)可知KL =KO令HK =a ,则在△HEK 中,EH =4–a , EK =a x -+4,∴()()22244a x a x -+=+-,化简得:xxa +=48.—————————————————————(1分) 又HL ‖AB ,∴x x EH EC a y --==45,即2216840x x x y --=.————————————(1分)∴函数关系式为2216840xx x y --=,定义域为0<2≤x .—————(1+1=2分)。

2014年九年级数学中考模拟复习试卷及答案

2014年九年级数学中考模拟复习试卷及答案

2014年初中数学模拟题(满分:120 分 考试时间:120 分钟)一、选择题(下列各题A 、B 、C 、D 四个选项中,有且仅有一个是正确的,1--8题每小题3 分,9--12题每小时4分,共40分。

)1.在实数中π,-25,0, 3 ,-3.14, 4 无理数有( )。

A.1 个 B.2个 C.3个 D.4个2.我们的数学课本的字数大约是21.1万字,这个数精确到( )位。

A.千位 B.万位 C.十分位 D.千分位3.一个长方体的左视图、俯视图及相关数据如图所示,则主视图的面积为()A .6B .8C .12D .244.不等式组30,32x x -≥⎧⎪⎨<⎪⎩的所有整数解之和是( )A .9B .12C .13D .155.如图,将三角尺的直角顶点放在直线a 上,a ∥b,∠1=50°,∠2=60°,则∠3的度数为a b321A. 50°B. 60°C. 70°D. 80° 6.下列说法中 ①若式子有意义,则x >1.②已知∠α=27°,则∠α的补角是153°.③已知x=2 是方程x 2-6x+c=0 的一个实数根,则c 的值为8. ④在反比例函数中,若x >0 时,y 随x 的增大而增大,则k的取值范围是k >2. 其中正确命题有( ) A. 1 个B. 2 个C. 3 个D. 4 个D 图37.“赵爽弦图”是由于四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图3所示).小亮同学随机地在大正方形及其内部区域投针,若直角三角形的两条直角边的长分别是2和1,则针扎到小正方形(阴影)区域的概率是( )A .31B .41C .51D .558.元旦期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .x(130802080+⨯=%)%B .x 30802080=·%·%C .20803080x ⨯⨯=%%D .x 30208080=⨯·%%9.如图,AB 是⊙O 的直径,弦CD ⊥A ,∠CDB =300,CD =则阴影部分图形的面积为( )A .4πB .2πC .πD .23π10.已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c <0;④8a+c>0.其中正确的有( )A .3个B .2个C .1个D .0个11.如图,已知正方形ABCD 的边长是2,如果将线段BD 绕点B 旋转后,点D •落在CB 的延长线上的D′处,那么tan ∠BAD′等于( )A .1BCD .12.如图所示,给出下列条件:①B ACD ∠=∠;②ADC ACB ∠=∠;③AC ABCD BC=; ④AC 2=A D ×AB .其中单独能够判定ABC ACD △∽△的个数为( ) A .1 B .2 C .3 D .4二、填空题(每小题4分,共20分)13.分解因式:3225105x x y xy -+= .14.两圆的圆心距5d =,它们的半径分别是一元二次方程2540x x -+=的两个根,这两圆的位置关系是 。

2014年九年级数学中考冲刺复习模拟试卷及答案

2014年九年级数学中考冲刺复习模拟试卷及答案

中考数学模拟试题一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题卡的相应位置上。

每题3分,共36分。

1.连接海口、文昌两市的跨海大桥,近日获国家发改委批准建设,该桥估计总投资1 460 000 000。

数据1 460 000 000用科学记数法表示应是()A.146×107 B.1.46×109 C.1.46×1010 D.0.146×10102.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.3.△ABC中的三条中位线围成的三角形周长是15cm,则△ABC的周长为()A.60cm B.45cm C.30cm D.152cm4.要从小强、小红和小华三人跟随机选两人作为旗手,则小强和小红同时入选的概率是()A.23 B.13 C.12 D.165.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧AmB上的一点,则tan APB∠的值是()A.1 B D6.如图,一枚直径为4cm的圆形古钱币沿着直线滚动一周,圆心移动的距离是()A.2πcm B.4πcmC.8πcm D.16πcm7.为了解某公司员工的年工资情况,小王随机调查了10位员工,其年工资(单位:万元)如下:3,3,3,4,5,5,6,6,8,20,下列统计量中,能合理反映该公司年工资中等水平的是( )A .方差B .众数C .中位数D .平均数8.如图,是由两个相同的圆柱组成的图形,它的俯视图是(A) (B) (C) (D)9. 下列命题错误的是(A)若 a <1,则(a -1)a -11=-a -1(B) 若2)3(a -=a -3 ,则a ≥3(C)依次连接菱形各边中点得到的四边形是矩形 (D)81的算术平方根是910.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有(A )29人 (B )30人 (C )31人 (D )32人11.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,给出下列结论:① b 2-4ac >0;② 2a +b <0;③ 4a -2b+c =0;④ a ︰b ︰c = -1︰2︰3.其中正确的是 (A) ①② (B) ②③ (C) ③④ (D)①④12.如图,在斜边长为1的等腰直角三角形OAB 中,作内接正方形A 1B 1C 1D 1;在等腰直角三角形OA 1B 1中,作内接正方形A 2B 2C 2D 2;在等腰直角三角形OA 2B 2中,作内接正方形A 3B 3C 3D 3;……;依次作下去,则第n 个正方形A n B n C n D n 的边长是(A )131-n(B )n 31(C )131+n(D )231+n二、填空题:本题共5小题,满分20分. 13.农民张大伯因病住院,手术费为a 元,其它费用为b 元.由于参加农村合作医疗,手术费报销85%,其它费用报销60%,则张大伯此次住院可报销 元.(用代数式表示)14. 18.如图,∠APB=300,圆心在边PB 上的⊙O 半径为1cm ,OP=3cm ,若⊙O 沿BP 方向移动,当⊙O 与PA 相切时,圆心O 移动的距离为cm.15.若关于x 的方程22(2)0ax a x a +++=有实数解,那么实数a 的取值范围是_____________.16.如图1,正方形OCDE 的边长为1,阴影部分的面积记作S 1;如图2,最大圆半径r =1,阴影部分的面积记作S 2,则S 1 S 2(用“>”、“<”或“=”填空).17.如图,正方形ABCD 的边长是4cm ,点G 在边AB 上,以BG 为边向外作正方形GBFE ,连结AE 、AC 、CE ,则AEC ∆的面积是_____________2cm .三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤. 18. (本题满分6分)解方程:111122=++-x x .(第17题)19. (本题满分8分)已知△ABC 中,AB=AC ,DE ⊥AC 于点E ,DE 与半⊙O 相切于点D .求证:△ABC 是等边三角形.20. (本题满分8分)有公路1l 同侧、2l 异侧的两个城镇A ,B ,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A ,B 的距离必须相等,到两条公路1l ,2l 的距离也必须相等,发射塔C 应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C 的位置.(保留作图痕迹,不要求写出画法)2l1lAB21.( 本题满分10分)某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种营养食品,已知这两种原料的维生素C 含量及购买这两种原料的价格如下表:现要配制这种营养食品20千克,要求每千克至少含有480单位的维生素C.设购买甲种原料x 千克.(1)至少需要购买甲种原料多少千克?(2)设食堂用于购买这两种原料的总费用为y 元,求y 与x 的函数关系式.并说明购买甲种原料多少千克时,总费用最少?22. (本题满分10分)极具特色的“八卦楼”(又称“威镇阁”)是漳州的标志性建筑,它建立在一座平台上.为了测量“八卦楼”的高度AB ,小华在D 处用高1.1米的测角仪CD ,测得楼的顶端A 的仰角为22o ;再向前走63米到达F 处,又测得楼的顶端A 的仰角为39o (如图是他设计的平面示意图).已知平台的高度BH 约为13米,请你求出“八卦楼”的高度约多少米?(参考数据:sin22o ≈207,tan220≈52,sin39o ≈2516,tan39o ≈54)23. (本题满分10分)如图,二次函数y=x 2+bx+c 的图象与x 轴交于A 、B 两点,且A 点坐标为(-3,0),经过B 点的直线交抛物线于点D (-2,-3). (1)求抛物线的解析式和直线BD 解析式;(2)过x 轴上点E (a ,0)(E 点在B 点的右侧)作直线EF ∥BD ,交抛物线于点F ,是否存在实数a 使四边形BDFE 是平行四边形?如果存在,求出满足条件的a ;如果不存在,请说明理由.24. (本题满分12分)如图所示,现有一张边长为4的正方形纸片ABCD ,点P 为正方形AD 边上的一点(不与点A 、点D 重合)将正方形纸片折叠,使点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF ,连接BP 、BH . (1)求证:∠APB =∠BPH ;(2)当点P 在边AD 上移动时,△PDH 的周长是否发生变化?并证明你的结论; (3)设AP 为x ,四边形EFGP 的面积为S ,求出S 与x 的函数关系式,试问S 是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.A B C D E F G H P (备用图) A BC DEF G HP数学试题参考答案及评分标准13. 85% a +60% b 14. 1或5 15. 1a ≥- 16. < 17. 8三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤. 18. (本题满分6分)解:方程两边同乘x 2-1整理得 022=--x x ……………(2分)解得 .2,121=-=x x ………………………………(4分) 经检验:2121=-=x x 是增根,是原方程的根. ………(5分) 所以原方程的根是.2=x ………(6分) 19. (本题满分8分)证明:连结OD …………………………………1分∵DE 切半⊙O 于D∴DE OD ⊥∴︒=∠90ODE …………………2分 ∵AC DE ⊥∴︒=∠90DEA ……………………………3分 ∴=∠ODE DEA ∠ ∴OD =ACC DOB ∠=∠…………………………………4分 ∵AC AB =∴DOB C B ∠=∠=∠……………………5分 ∴OD BD = ∵OB OD =∴BOD ∆是等边三角形……………………………6分 ︒=∠60B ………………………………………7分 ∵AC AB =∴ABC ∆是等边三角形………………………………8分20. (本题满分8分)解:根据题意知道,点C 应满足两个条件,一是在线段AB 的垂直平分线上;二是在两条公路夹角的平分线上,所以点C 应是它们的交点. ⑴ 作两条公路夹角的平分线OD 或OE ;⑵ 作线段AB 的垂直平分线FG ;则射线OD ,OE 与直线FG 的交点1C ,2C 就是所求的位置.…………………(8分)注:本题学生能正确得出一个点的位置得6分,得出两个点的位置得8分. 21. (本题满分10分)解:(1)依题意,得600x+400(20-x)≥480×20, ……………3分 解得x ≥8. …………………………………………4分 ∴至少需要购买甲种原料8千克. …………………5分 (2)y=9x+5(20-x), ……………………………………6分 ∴y=4x+100. …………………………………………7分 ∵k=4>0,∴y 随x 的增大而增大. ………………………………8分 ∵x ≥8.∴当算=8时,y 最小. …………………………………9分 ∴购买甲种原料8千克时,总费用最少. …………10分 22.(本题满分10分)解:在Rt △ACG 中,tan22o =CG AG, ……1分AB1C 2C F G D O1l2lE∴CG=25AG . ………………………………3分 在Rt △ACG 中tan39o =EG AG, ………………4分 ∴EG=45AG . …………………………………6分∵CG-EG=CE .∴25AG -45AG =63, …………………7分∴AG=50.4. …………………………………………………8分 ∵GH=CD=1.1,BH=13,∴BG=13-1.1=11.9.∴AB=AG-BG=50.4-11.9=38.5. ……………………………9分 ∴“八卦楼”的高度约为38.5米. ………………………10分 23.(本题满分10分) 解:(1)将A (-3,0),D (-2,-3)的坐标代入y=x 2+bx+c 得,⎩⎨⎧-=+-=+-324039c b c b , 解得:⎩⎨⎧-==32c b ,∴y=x 2+2x -3 ……………2分由x 2+2x -3=0,得: x 1=-3,x 2=1, ∴B 的坐标是(1,0),设直线BD 的解析式为y=kx+b,则⎩⎨⎧-=+-=+320b k b k , 解得:⎩⎨⎧-==11b k , ∴直线BD 的解析式为y=x -1; ……………………4分 (2)∵直线BD 的解析式是y=x -1,且EF ∥BD ,∴直线EF 的解析式为:y=x -a . ……………………5分 若四边形BDFE 是平行四边形, 则DF ∥x 轴,∴D 、F 两点的纵坐标相等,即点F 的纵坐标为-3. ……………6分由⎩⎨⎧-=-+=ax y x x y 322,得 y 2+(2a +1)y+a 2+2a -3=0, 解得:y=()24132aa -±+-. ……………………7分令()24132aa -±+-=-3,解得:a 1=1,a 2=3. ……………………9分 当a =1时,E 点的坐标(1,0),这与B 点重合,舍去; ∴当a =3时,E 点的坐标(3,0),符合题意.∴存在实数a =3,使四边形BDFE 是平行四边形. ……………10分24.(本题满分12分)解:(1)∵PE=BE , ∴∠EBP=∠EPB .………………………………(1分)又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP .即∠PBC=∠BPH .………………………………(2分)又∵AD ∥BC ,∴∠APB=∠PBC .∴∠APB=∠BPH .………………………………(3分) (2)△PHD 的周长不变,为定值 8.……………(4分) 证明:过B 作BQ ⊥PH ,垂足为Q .由(1)知∠APB=∠BPH , 又∵∠A=∠BQP=90°,BP=BP ,∴△ABP ≌△QBP .∴AP=QP , AB=BQ .……………………(5分)又∵ AB=BC ,∴BC = BQ . 又∵∠C=∠BQH=90°,BH=BH ,∴△BCH ≌△BQH .……………………(6分) ∴CH=QH .∴△PHD 的周长为:PD+DH+PH =AP+PD+DH+HC =AD+CD =8. ……………………(7分)(3)过F 作FM ⊥AB ,垂足为M ,则FM BC AB ==. 又EF 为折痕, ∴EF ⊥BP .A BDE FGHP Q A BDE FGH P11 又∵∠A=∠EMF=90°,∴△EFM ≌△BPA .∴EM AP ==x .………………(8分)∴在Rt △APE 中,222(4)BE x BE -+=. 解得,228x BE =+.………………(9分) ∴228x CF BE EM x =-=+-.………………(10分) 又四边形PEFG 与四边形BEFC 全等, ∴211()(4)4224x S BE CF BC x =+=+-⨯. 即:21282S x x =-+.……………(11分) 配方得,21(2)62S x =-+,∴当x =2时,S 有最小值6.………………(12分)。

2014年上海市初三模拟测试(含答案)

2014年上海市初三模拟测试(含答案)

1 / 72014年上海市初三模拟测试数 学 试 卷(满分150分,考试时间100分钟) 2014.3考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列二次根式中,属于最简二次根式的是 ( ) (A(B )8;(C )2x ;(D )12+x .2.k 为实数,则关于x 的方程01)12(2=-+++k x k x 的根的情况是 ( ) (A)有两个不相等的实数根; (B)有两个相等的实数根; (C)没有实数根; (D)无法确定.3.如果用A 表示事件“若a b >,则ac bc >”,那么下列结论正确的是 ( ) (A )P(A)=0; (B )P(A)=1; (C )0<P(A)<1; (D) P(A)>14.下列位于方格纸中的两个三角形,既不成轴对称又不成中心对称的是 ( )5. ( ) (C) 梯形的对角线互相垂直;(D)平行四边形的对角线相等.6.下图描述了小丽散步过程中离家的距离s (米)与散步所用时间t (分)之间的函数关系.依据图象,下面描述符合小红散步情景的是 ( ) (A )从家出发,到了一个公共阅报栏,看了一会儿报,就回家了; (B )从家出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段,然后回家了;(C )从家出发,一直散步(没有停留),然后回家了;(D )从家出发,散了一会儿步,就找同学去了,18分钟后才开始返回. 二、填空题:(本大题12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.比较大小:-2.2 / 7 A B C D E F (第15题)(第17题)(第16题) ① ②③ 8.因式分解:2221x x y ++-= .9.两个..不相等...的无理数,它们的乘积为有理数,这两个数可以是 . 10.方程4210x =的根是 .11.若一次函数(12)y k x k =-+的图像经过第一、二、三象限,则k 的取值范围是 . 12.抛物线221y x =-的顶点坐标是 .13.随机抽取某城市一年(以365天计)中的30天的日平均气温状况统计如下:则可估计该城市一年中日平均气温为26℃的约有 天.14.若圆的半径是10cm ,则圆心角为40°的扇形的面积是 cm 2.15.如图,在梯形ABCD 中,AD//BC ,EF 是梯形的中位线,点E 在AB 上,若A D ︰B C =1︰3,AD a =,则用a 表示FE 是:FE = .16.如图,某人把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,最省事的办法是带编号为 的碎片去.17.如图,某涵洞的截面是抛物线形,现测得水面宽AB =1.6m ,涵洞顶点O 到水面的距离CO 为2.4m ,在图中直角坐标系内,涵洞截面所在抛物线的解析式是___ _______.18.如图,点G 是等边ABC △的重心,过点G 作BC 的平行线,E ,点M 在BC 边上.如果以点B 、D 、M 的三角形相似(但不全等),那么:BDM CEM S S =△△ . 三、解答题:(本大题共7题,满分78分)19.(本题10分)先化简再求值:5332(3)(1)x x x x +÷-+,其中12x =-. 20.(本题10分)解方程: 33201x x x x+--=+ 21.(本题10分)如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的60BAD ∠=.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?(结果精确到0.1cm 1.732≈) 22.(本题10分)如图,在Rt △ABC 中,∠ABC =90°,BA =BC .点D 是AB B 作BG 丄CD ,分别交CD 、CA 于点E 、F ,与过点A 点G .(第18题)3 / 7(1)求ACAF的值; (2)求ABCAFGS S ∆∆的值; 23.(本题12分)如图,已知线段AB ∥CD ,AD 与BC 相交于点K ,E 是线段AD 上一动点. ⑴ 若BK =52KC ,求CDAB的值; ⑵ 联结BE ,若BE 平分ABC ∠,则当12AE AD =时,猜想线段AB 、BC 、CD 三者之间有怎样的数量关系?请写出你的结论并予以证明;⑶ 试探究:当BE 平分ABC ∠,且()12AE AD n n =>时,线段AB 、BC 、CD 三者之间有怎样的数量关系?请直接写出你的结论,不必证明.24.(本题12分)已知一次函数m x y +=43的图像分别交x 轴、y 轴于A 、B 两点(如图),且与反比例函数x y 24=的图像在第一象限交于点C (4,n ),CD ⊥x 轴于D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄浦区2014年九年级学业考试模拟考数学试卷(时间100分钟,满分150分) 2014.4.10考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1. 下列二次根式中,2的同类根式是(A )4; (B )6;(C )8;(D )10.2. 化简32(3)a 的结果是(A )66a ; (B )96a ; (C )69a ; (D )99a . 3. 方程2690x x -+=的根的情况是(A )没有实数根; (B )有且仅有一个实数根; (C )有两个相等的实数根; (D )有两个不相等的实数根. 4. 下列图形中,既是轴对称图形又是中心对称图形的是 (A )正三角形; (B )正方形;(C )等腰直角三角形; (D )等腰梯形. 5. 在平行四边形ABCD 中,下列条件中不能..判定四边形ABCD 是菱形的是 (A )AB =BC ; (B )AC =BD ; (C )∠ABD =∠CBD ; (D )AC ⊥BD . 6. 某赛季甲、乙两名篮球运动员各参加10场比赛,各场得分情况如图1所示,下列四个结论中,正确的是(A )甲运动员得分的平均数小于乙运动员得分的平均数; (B )甲运动员得分的中位数小于乙运动员得分的中位数; (C )甲运动员得分的最小值大于乙运动员得分的最小值; (D )甲运动员得分的方差大于乙运动员得分的方差. 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】7. 12的相反数是 .8. 因式分解:24x y y -= . 9. 不等式组36210x x ->-⎧⎨+>⎩的解集是 .图110. 方程2x x +=的根是 . 11. 若反比例函数13ky x-=的图像经过第一、三象限,则 k 的取值范围是 . 12. 某校对部分学生家庭进行图书量调查,调查情况如图2所示,若本次调查中,有50本以下图书的学生家庭有24户,则参加本次调查的学生家庭数有 户. 13. 布袋中有1个黑球和1个白球,这两个球除颜色外其他都相同,如果从布袋中先摸出一个球,放回摇匀后,再摸出一个球,那么两次都摸到白球的概率是 . 14. 将抛物线2y x x =+向右平移1个单位后,所得新抛物线的表达式是 . 15. 如图3,AB ∥CD ,直线MN 分别与AB 、CD 交于点E 、F ,FG 是∠NFD 的平分线,若∠MEB=80°,则∠GFD 的度数为 . 16. 如图4,△ABC 中,D 为边AC 的中点,设BD =a ,BC =b ,那么CA 用a 、b 可表示为 . 17. 当两个圆有两个公共点,且其中一个圆的圆心在另一圆的圆内时,我们称此两圆的位置关系为“内相交”.如果⊙1O 、⊙2O 半径分别3和1,且两圆“内相交”,那么两圆的圆心距d 的取值范围是 .18. 如图5,在△ABC 中,AB =AC =5,BC =4,D 为边AC 上一点,且AD =3,如果△ABD 绕点A 逆时针旋转,使点B 与点C 重合,点D 旋转至D ',那么线段D D '的长为 . 三、解答题:(本大题共7题,满分78分) 19. (本题满分10分)计算:()1122cot 302323(31)-︒+⨯--+-.20. (本题满分10分) 解方程:31131x x-=+-.21. (本题满分10分,第(1)、(2)小题满分各5分)图5 A B C D 图2 100~149本 50~99本150本及以上35%30% 20%50本以下 图4 A B C D 图3 E M FG N D C B A如图6,D 是⊙O 弦BC 的中点,A 是BC 上一点,OA 与BC 交于点E ,已知AO =8,BC =12.(1)求线段OD 的长;(2)当EO =2BE 时,求∠DEO 的余弦值.22. (本题满分10分,第(1)、(2)小题满分各5分)已知弹簧在其弹性限度内,它的长度y (厘米)与所挂重物质量x (千克)的关系可表示为y kx b =+的形式,其中k 称为弹力系数,测得弹簧A 的长度与所挂重物(不超过弹性限度)的关系如图7-1所示.(1)求弹簧A 的弹力系数;(2)假设在其它条件不变的情况下,弹簧的弹力系数k 与弹簧的直径d (如图7-2所示)成正比例.已知弹簧B 的直径是弹簧A 的1.5倍,且其它条件均与弹簧A 相同(包括不挂重物时的长度).当弹簧B 挂一重物后,测得此时弹簧长度为9厘米,求该重物的质量.23. (本题满分12分,第(1)、(2)小题满分各6分)如图8,Rt △ABC 中,∠ACB=90°,D 是边BC 上一点,点E 、F 分别是线段AB 、AD 中点,联结CE 、CF 、EF .(1)求证:△CEF ≌△AEF ;(2)联结DE ,当BD=2CD 时,求证:DE=AF .E ADCBO图6FED C B A y (厘米) x (千克) 8 104 8 O 图7-1 d图7-224. (本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 在平面直角坐标系xOy 中,已知顶点为P (0, 2)的二次函数图像与x 轴交于A 、B 两点, A 点坐标为(2, 0).(1)求该二次函数的解析式,并写出点B 坐标;(2)点C 在该二次函数的图像上,且在第四象限,当△ABC 的面积为12时,求点C 坐标; (3)在(2)的条件下,点D 在y 轴上,且△APD 与△ABC 相似,求点D 坐标.25. (本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分) 如图9,在平行四边形ABCD 中,AB =4,BC =2,∠A =60°. (1)求证:BD ⊥BC ;(2)延长CB 至G ,使BG =BC ,E 是边AB 上一点,F 是线段CG 上一点,且∠EDF =60°,设AE =x ,CF =y .①当点F 在线段BC 上时(点F 不与点B 、C 重合),求y 关于x 的函数解析式,并写出定义域; ②当以AE 为半径的⊙E 与以CF 为半径的⊙F 相切时,求x 的值.黄浦区2014年九年级学业考试模拟考数学参考答案与评分标准一、选择题:(本大题共6题,每题4分,满分24分)1. C ;2. C ;3. C ;4. B ;5. B ;6. D .二、填空题:(本大题共12题,每题4分,满分48分) 7. 12-; 8. (2)(2)y x x +-; 9. 122x -<< ; 10. 2x = ; 11. 13k <; 12. 160; 13.14; 14. 2y x x =-; 15. 50°; 16. 22a b -; 17. 23d <<; 18.125. 三、解答题:(本大题共7题,满分78分)图9B DC A19. 解:原式=323(23)(423)+-++- …………………………………………(8分)=32323423+--+- ………………………………………………(1分) =2 ………………………………………………………………………(1分)20. 解:去分母得3(1)(3)(1)(3)x x x x --+=-+. ………………………………………(3分)整理得 2230x x --=. ………………………………………………………(3分) (1)(3)0x x +-=. ………………………………………………………(1分)解得 11x =-,13x =. …………………………………………………………(2分)经检验11x =-,13x =都是原方程的根. ………………………………………………(1分) 21. 解:(1)联结OB . …………………………………………………………………………(1分)∵OD 过圆心,且D 是弦BC 中点,∴OD ⊥BC ,12BD BC =. ………………………………………………………………(2分) 在Rt △BOD 中,222OD BD BO +=. ……………………………………………………(1分)∵BO =AO =8,6BD =.∴27OD =. ……………………………………………………………………………(1分) (2)在Rt △EOD 中,222OD ED EO +=.设BE x =,则2EO x =,6ED x =-. 222(27)(6)(2)x x +-=.……………………………………………………………(2分) 解得 116x =-(舍), 24x =.………………………………………………………(1分) ∴ED =2,EO =42. 在Rt △EOD 中,2cos 4DEO ∠=.………………………………………………………(2分) 22. 解:(1)把(4,8),(8,10)代入y kx b =+得84108k bk b=+⎧⎨=+⎩ ………………………………………………………(2分)解得126k b ⎧=⎪⎨⎪=⎩ ………………………………………………………(2分)∴ 弹簧A 的弹力系数为12. ………………………………………………………(1分)HP ACBOxy(2)设弹簧B 弹力系数为b k ,弹簧A 的直径为A d ,则弹簧B 的直径为32A d . 由题意得32b A A k kd d =. ∴ 3324b k k ==. ………………………………………………………(2分)又∵弹簧B 与弹簧A 不挂重物时的长度相同, ∴弹簧B 长度与所挂重物质量的关系可表示为364y x =+. ……………………………(1分) 把9y =代入364y x =+得 4x =. …………………………………………………(2分) ∴此时所挂重物质量为4千克.23. 证明:(1)∵∠ACB=90°,且E 线段AB 中点,∴CE =12AB =AE . ………………………………………………………………………(2分)同理CF =AF . ……………………………………………………………………………(1分) 又∵EF =EF ,……………………………………………………………………………(1分) ∴△CEF ≌△AEF . ……………………………………………………………………(2分) (2) ∵点E 、F 分别是线段AB 、AD 中点,∴12EF BD =,EF ∥BC . ………………………………………………………………(2分)∵BD=2CD , ∴EF CD =.又∵EF ∥BC ,∴四边形CEFD 是平行四边形. ……………………………………(2分) ∴DE =CF . …………………………………………………………………………………(1分) ∵CF =AF ,∴DE =AF . ……………………………………………………………………(1分) 24. 解:(1)设抛物线表达式为22y ax =+.把(2, 0)代入解析式,解得12a =-.…………………(1分)∴抛物线表达式为2122y x =-+………………………(1分)∴B (-2, 0). ……………………………………………(1分) (2)过点C 作CH ⊥x 轴,垂足为H . 设点C 横坐标为m ,则2122CH m =-.…………………………………………(1分)由题意得211[2(2)](2)1222m ⋅--⋅-=…………………(1分)解得4m =±. …………………………………………(1分)∵点C 在第四象限,∴4m =. ∴C (4, -6). ……(1分)(3)∵PO =AO =2,∠POA=90°,∴∠APO=45°. ………………………………………(1分) ∵BH =CH =6,∠CHB=90°,∴∠CBA=45°. ∵∠BAC <135°,∴点D 应在点P 下方,∴在△APD 与△ABC 中,∠APD=∠CBA . ………………………………………………(1分) 由勾股定理得P A =22,BC =62.1°当PD PA AB BC =时,22462PD =.解得43PD =.∴12(0,)3D ……………………………(1分) 2°当PD PABC AB =时,22462PD =.解得6PD =.∴2(0,4)D -…………………………(1分) 综上所述,点D 坐标为2(0,)3或(0,4)-……………………………………………………(1分)25. 解:(1)过点D 作DH ⊥AB ,垂足为H . …………………………………………………(1分) 在Rt △AHD 中,cos cos 1AH AD A BC A =⋅∠=⋅∠=. ∵12AH AD =,12BC CD =,∴AH BCAD CD=,即AH AD BC CD =. 又∵∠C =∠A =60°,∴△AHD ∽△CBD . …………………………………………………(2分) ∴∠CBD =∠AHD =90°. ∴BD ⊥BC . ……………………………………………………(1分) (2)①∵AD ∥BC ,∴∠ADB =90°,∵∠BDH +∠HDA =90°,∠A +∠HDA =90°. ∴∠BDH =∠A =60°.∵∠EDF =60°,∴∠BDH =∠EDF , 即∠EDH +∠BDE =∠FDB +∠BDE .∴∠EDH =∠FDB . ………………………………………………………………………(2分) 又∵∠EHD =∠CBD =90°,∴△EHD ∽△FBD . ………………………………………(1分) ∴DH EHBD BF =,∴31223x y-=-. ∴42y x =-(12)x <<.……………………………(2分) ②联结EF .1°当点F 在线段BC (点F 不与点B 、C 重合)上时, ∵△EHD ∽△FBD ,∴DH DE BD DF =. 即DH BDDE DF=. 又∵∠BDH =∠EDF ,∴△BDH ∽△FDE . ∴∠DEF=90°. 在Rt △EDH 中,22224DE EH DH x x =+=-+.∴2tan6033612EF DE DE x x =⋅︒=⋅=-+.…………………………………………(1分) i) 当⊙E 与⊙F 内切时,2(42)3612x x x x --=-+. 解得,19576x +=(舍),29576x -=(舍). ………………………………………(1分) ii)当⊙E 与⊙F 外切时,2(42)3612x x x x +-=-+.解得11x =(舍),22x =-(舍). …………………………………………………………(1分)2°点F 与点B 重合时,即 x =1 时,两圆外切. 3°当点F 在线段BG (点F 不与点B 重合)上时,易得42CF x =-,且△BDH ∽△FDE 仍然成立. ∴23612EF x x =-+.由1°计算可知9576x -=时两圆内切. ………………………………………………(1分) 综上所述,当 x =1 时,两圆外切,当9576x -=时,两圆内切.……………………(1分)。

相关文档
最新文档