广东省九年级数学中考模拟试卷
2024年广东省湛江市赤坎区湛江市培才学校九年级中考数学模拟试卷

2024年广东省湛江市赤坎区湛江市培才学校九年级中考数学模拟试卷一、单选题1.下列图形中,是中心对称图形的是()A .B .C .D .2.已知O 的半径为5,点P 到圆心O 的距离为6,那么点P 与O 的位置关系是()A .点P 在O 上B .点P 在O 内C .点P 在O 外D .无法确定3.如图,四边形ABCD 是圆O 的内接四边形,110C ∠=︒,则A ∠的度数为()A .55︒B .60︒C .70︒D .80︒4.已知二次函数()2323y x =---,下列说法正确的是()A .对称轴为2x =-B .顶点坐标为()2,3C .函数的最大值是-3D .函数的最小值是-35.近年来,由于新能源汽车的崛起,燃油汽车的销量出现了不同程度的下滑,经销商纷纷开展降价促销活动.某款燃油汽车今年3月份售价为23万元,5月份售价为16万元.设该款汽车这两月售价的月均下降率是x ,则所列方程正确的是()A .()216123x +=B .()223116x -=C .()22323116x --=D .()2231216x -=6.如图,OAB △绕点O 逆时针旋转80︒得到OCD ,若110A ∠=︒,40D ∠=︒,则α∠的度数是()A .30︒B .40︒C .50︒D .60︒7.如图,AB 为O 的直径,点C ,D 在O 上.若38CAB ∠=︒,则D ∠的度数为()A .38°B .42°C .48°D .52°8.1x =是关于x 的一元二次方程220x ax b ++=的解,则24a +b =()A .2-B .3-C .4D .6-9.二次函数2(0)y ax bx c a =++≠的图象如图所示,则函数值0y >时,x 的取值范围是()A .1x <-B .3x >C .13x -<<D .1x <-或3x >10.如图,点P 是等边ABC V 内一点,若将BPC 绕点B 按逆时针方向旋转一个角度后得到BP A ''△,连接PP ',若2BP =,则PP '的长度为()A .1B .2CD二、填空题11.在平面直角坐标系中,点M (2-,4)关于原点对称的点的坐标是.12.已知m n ,是方程2320x x --=的两个实数根,则2mn =.13.若点()11,A y ,()22,B y 在抛物线233y x =-上,则1y 2y .(填“<”或“>”或“=”)14.如图,在正方形ABCD 中,4AB =,E 为AB 的中点,连接DE ,将DAE 绕点D 按逆时针方向旋转90︒得到DCF ,连接EF ,则EF 的长为.15.如图,在Rt AOB 中,AOB 90∠= ,3OA =,4OB =,O 的半径为2,点P 是AB 边上的动点,过点P 作O 的一条切线PC (点C 为切点),则线段PC 长的最小值为.三、解答题16.解方程:2650x x -+=.17.如图,在破残的圆形残片上,弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D ,已知8cm AB =,2cm CD =.(1)求作此残片所在的圆的圆心O (不写作法,保留作图痕迹);(2)求出(1)中所作圆的半径.18.如图,把一个含有30︒角的直角三角尺ACB 绕着30︒角的顶点B 顺时针旋转,使得点A 与CB 延长线上的点E 重合,其中点C 的对应点为点D ,连接CD .(1)CBD △是_____三角形,DCB ∠的度数是_____(2)若4BC =,求CBD △的面积.19.如图,是二次函数2(1)4y a x =++的图象的一部分,根据图象回答下列问题:(1)确定a 的值(2)设抛物线的顶点是P ,B 是x 轴上的一个点,若PAB 的面积为6,求点B 的坐标.20.某超市以每件10元的价格购进一种文具,销售时该文具的销售单价不低于进价且不高于19元.经过市场调查发现,该文具的每天销售数量y (件)与销售单价x (元)之间满足一次函数关系:260y x =-+.(1)若该超市每天销售这种文具获利192元,则销售单价为多少元?(2)设销售这种文具每天获利w (元),求w 关于x 的函数关系式(写出自变量的取值范围),并求出当销售单价为多少元时,每天获利最大?最大利润是多少元?21.如图,在Rt ABC 中,90ACB ︒∠=,以AB 为直径作O ,过点C 作直线CD 交AB 的延长线于点D ,使BCD A ∠=∠.(1)求证:CD 为O 的切线;(2)若DE 平分ADC ∠,且分别交,AC BC 于点,E F ,当2CE =时,求EF 的长.22.【综合与实践】问题情境:数学课上,同学们利用两张全等的直角三角形纸片进行图形变换的操作探究,已知Rt Rt ABC DEF △≌△,90ACB DFE ∠=∠= ,60BAC EDF ∠∠== ,3AC DF ==.【操作探究1】(1)小颖将Rt ABC △和Rt DEF △按如图1的方式在同一平面内放置,其中AC 与DF 重合,此时B ,C 、E 三点恰好共线.点B ,E 在点C 异侧,求线段BE 的长;【操作探究2】(2)小军在图1的基础上进行了如下操作:保持Rt ABC △不动,将Rt DEF △绕点A 按顺时针方向旋转角度(()0120αα<< ,射线FE 和CB 交于点G (如图2).①求证:BG EG =;②如图3,当30α= 时,延长AF 交BC 于点H ,求线段GH 的长.23.如图1,抛物线24y x x =-与x 轴相交于原点O 和点A ,直线y x =与抛物线在第一象限的交点为B 点,抛物线的顶点为C 点.(1)求点B 和点C 的坐标;(2)抛物线上是否存在点D ,使得DOB OBC ∠=∠?若存在,求出所有点D 的坐标;若不存在,请说明理由;(3)如图2,点E 是点B 关于抛物线对称轴的对称点,点F 是直线OB 下方的抛物线上的动点,EF 与直线OB 交于点G .设BFG 和BEG 的面积分别为1S 和2S ,求12S S 的最大值.。
广东省中考模拟考试(一)数学考试卷(解析版)(初三)中考模拟.doc

广东省中考模拟考试(一)数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】下列各数中,与3互为相反数的是()A. B.﹣3 C.3﹣1 D.﹣【答案】B【解析】试题分析:根据只有符号不同的两个数互为相反数,可得﹣3与3互为相反数,故B正确;故选:B.考点:相反数【题文】如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.5 B.6 C.7 D.8【答案】B【解析】试题分析:由主视图与左视图可以在俯视图上标注数字为:主视图有三列,每列的方块数分别是:2,1,1;左视图有两列,每列的方块数分别是:1,2;俯视图有三列,每列的方块数分别是:2,1,2;因此总个数为1+2+1+1+1=6个,故选B.考点:由三视图判断几何体【题文】下列运算正确的是()评卷人得分A.x3+x2=x5B.x3﹣x2=x C.x3•x﹣2=x﹣5D.x3÷x2=x【答案】D【解析】试题分析: A、不是同底数幂的乘法指数不能相加,故A错误;B、不是同底数幂的除法指数不能相减,故B错误;C、同底数幂的乘法底数不变指数相加,故C错误;D、同底数幂的除法底数不变指数相减,故D正确;故选:D.考点:1、同底数幂的除法;2、合并同类项;3、同底数幂的乘法;4、负整数指数幂【题文】若x,y为实数,且|x+4|+=0,则()2015的值为()A.1 B.﹣1 C.4 D.﹣4【答案】B【解析】试题分析:根据非负数的性质得x+4=0,y﹣4=0,解得x=﹣4,y=4,则()2015=﹣1.故选:B.考点:非负数的性质【题文】如图,AB∥CD,EC⊥CD于C,CF交AB于B,已知∠2=29°,则∠1的度数是()A.58° B.59° C.61° D.62°【答案】C【解析】试题分析:延长DC到F,根据垂直的性质得到∠DCE=90°,根据余角的性质得到∠3=61°,根据平行线的性质由AB∥CD,可得∠1=∠361°.故选C.考点:平行线的性质【题文】在社会实践活动中,某中学对甲、乙,丙、丁四个超市三月份的苹果价格进行调查.它们的价格的平均值均为3.50元,方差分别为S甲2=0.3,S乙2=0.4,S丙2=0.1,S丁2=0.25.三月份苹果价格最稳定的超市是()A.甲 B.乙 C.丙 D.丁【答案】C【解析】试题分析:根据题意知它们的价格的平均值均为3.50元,方差分别为S甲2=0.3,S乙2=0.4,S丙2=0.1,S丁2=0.25,∴S乙2>S甲2>S丁2>S丙2,∴三月份苹果价格最稳定的超市是丙;故选C.考点:方差【题文】如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为()A.20° B.30° C.35° D.40°【答案】B【解析】试题分析:根据全等三角形的性质得到∠ACB=∠A′C′B′,然后根据角的和差计算得∠BCB′=30°.故选:B.考点:全等三角形的性质【题文】用配方法解一元二次方程x2﹣6x=﹣5的过程中,配方正确的是()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=4 D.(x﹣3)2=4【答案】D【解析】试题分析:先把方程两边都加上9,然后把方程左边写成完全平方的形式即可.即x2﹣6x+9=4,(x﹣3)2=4.故选D.考点:解一元二次方程-配方法【题文】如图是一个3×2的长方形网格,组成网格的小长方形长为宽的2倍,△ABC的顶点都是网格中的格点,则cos∠ABC的值是()A. B. C. D.【答案】D【解析】试题分析:如图,由6块长为2、宽为1的长方形,可得∠D=90°,AD=3×1=3,BD=2×2=4,因此在Rt△ABD中,AB==5,因此可得cos∠ABC=.故选D.考点:锐角三角函数【题文】若mn<0,则正比例函数y=mx与反比例函数在同一坐标系中的大致图象可能是()A. B. C. D.【答案】B【解析】试题分析:根据mn<0,可得m和n异号,所以:当m>0时,n<0,此时正比例函数y=mx经过第一、三象限,反比例函数图象在二、四象限,没有符合条件的图象;当m<0时,n>0,此时正比例函数y=mx经过第二、四象限,反比例函数图象经过一、三象限,B符合条件.故选B.考点:1、反比例函数的图象;2、正比例函数的图象【题文】化简: =.【答案】1【解析】试题分析:先将第二项变形,使之分母与第一项分母相同,然后再进行计算.==1.考点:分式的加减法【题文】我国首个火星探测器“萤火一号”已通过研制阶段的考核和验证,并将于今年下半年发射升空,预计历经约10个月,行程约380 000 000公里抵达火星轨道并定位.将380 000 000公里用科学记数法可表示为公里.【答案】3.8×108【解析】试题分析:科学记数法的形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大与10时,n是正整数;当原数的绝对值小于1时,n是负数.根据题意380000000公里=3.8×108公里.考点:科学记数法—表示较大的数【题文】八边形的内角和等于度.【答案】1080°【解析】试题分析: n边形的内角和可以表示成(n-2)•180°,代入公式就可以求出内角和(8-2)×180°=1080°.考点:多边形内角与外角【题文】如图,A(2,1),B(1,﹣1),以O为位似中心,按比例尺1:2,把△AOB放大,则点A的对应点A′的坐标为.【答案】(4,2)或(﹣4,﹣2)【解析】试题分析:根据位似的性质,以O为位似中心,按比例尺1:2,把△AOB放大,可得点A的对应点A′的坐标为(2×2,2×1)或(﹣2×2,﹣2×1),即(4,2)或(﹣4,﹣2).考点:1、位似变换;2、坐标与图形性质【题文】如图,直线y1=k1x+b和直线y2=k2x+b分别与轴交于A(-1,0)和B(3,0)两点.则不等式组k1x+b>k2x+b>0的解集为______.【答案】0<x<3【解析】试题分析:当x=﹣1时,y1=k1x+b=0,则x>﹣1时,y1=k1x+b>0,当x=3时,y2=k2x+b=0,则x<3时,y2=k2x+b>0,因为x>0时,y1>y2,所以当0<x<3时,k1x+b>k2x+b>0,即不等式组k1x+b>k2x+b>0的解集为0<x<3.考点:一次函数与一元一次不等式【题文】如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是.【答案】【解析】试题分析:连接D′C,∵绕顶点A顺时针旋转45°,∴∠D′CE=45°,∵ED′⊥AC,∴∠CD′E=90°,∵AC==,∴CD′=﹣1,∴正方形重叠部分的面积是×1×1﹣×(﹣1)(﹣1)=﹣1.考点:1、正方形的性质;2、旋转的性质【题文】解不等式组:.【答案】﹣4<x<2【解析】试题分析:分别求出不等式组中两个一元一次不等式的解集,然后根据同大取大,同小取小,大小小大取中间,大大小小无解的法则,即可求出原不等式组的解集.试题解析:解不等式4x﹣8<0,得x<2;解不等式,得2x+2﹣6<3x,即x>﹣4,所以,这个不等式组的解集是﹣4<x<2.考点:解一元一次不等式组【题文】先化简,再求值:,其中x=.【答案】,【解析】试题分析:先把分子分母因式分解和把除法运算化为乘法运算,然后约分后进行同分母的加法运算,再把x 的值代入计算即可.试题解析:===,当x=时,原式==.考点:分式的化简求值【题文】如图,A是∠MON边OM上一点,AE∥ON.(1)在图中作∠MON的角平分线OB,交AE于点B;(要求:尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)中,过点A画OB的垂线,垂足为点D,交ON于点C,连接CB,将图形补充完整,并证明四边形OABC是菱形.【答案】(1)作图见解析(2)证明见解析【解析】试题分析:(1)角平分线的作法:用圆规以顶点为圆心,任意长为半径画一个弧(要保证有两个交点,不要太小),再以刚才画出的交点为顶点,以大于第一次的半径为半径画弧(左右各画一个弧),再取两道弧的交点,并连接这个交点的一开始最上面的顶点,这就是角平分线.(2)本题可根据“一组邻边相等的平行四边形是菱形”,先证明OABC是个平行四边形,然后证明OA=AB 即可.试题解析:(1)如图,射线OB为所求作的图形.(2)证明:∵OB平分∠MON,∴∠AOB=∠BOC.∵AE∥ON,∴∠ABO=∠BOC.∴∠AOB=∠ABO,AO=AB.∵AD⊥OB,∴BD=OD.在△ADB和△CDO中∵∴△ADB≌△CDO,AB=OC.∵AB∥OC,∴四边形OABC是平行四边形.∵AO=AB,∴四边形OABC是菱形.考点:1、菱形的判定;2、全等三角形的判定【题文】在我市实施“城乡环境综合治理”期间,某校组织学生开展“走出校门,服务社会”的公益活动.八年级一班王浩根据本班同学参加这次活动的情况,制作了如下的统计图表:该班学生参加各项服务的频数、频率统计表:服务类别频数频率文明宣传员40.08文明劝导员10义务小警卫80.16环境小卫士0.32小小活雷锋120.24请根据上面的统计图表,解答下列问题:(1)该班参加这次公益活动的学生共有名;(2)请补全频数、频率统计表和频数分布直方图;(3)若八年级共有900名学生报名参加了这次公益活动,试估计参加文明劝导的学生人数.【答案】(1)50(2)图见解析(3)180【解析】试题分析:(1)根据总数=频数÷频率进行计算总人数;(2)首先根据各小组的频数和等于总数以及各小组的频率和等于1或频率=频数÷总数进行计算,然后正确补全即可;(3)根据样本中文明劝导员所占的频率来估算总体.试题解析:(1)总人数=4÷0.08=50;(2)环境小卫士的频数为50﹣(4+10+8+12)=16,文明劝导员的频率为10÷50=0.2,补全频率分布直方图:服务类别频数频率文明宣传员40.08文明劝导员100.2义务小警卫80.16环境小卫士160.32小小活雷锋120.24(3)参加文明劝导的学生人数=900×0.2=180人.考点:1、频数(率)分布直方图;2、用样本估计总体;3、频数(率)分布表【题文】如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD 为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.【答案】【解析】试题分析:在图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可.试题解析:由已知,得∠ECA=30°,∠FCB=60°,CD=90,EF∥AB,CD⊥AB于点D.∴∠A=∠ECA=30°,∠B=∠FCB=60°.在Rt△ACD中,∠CDA=90°,tanA=,∴AD==90×=90.在Rt△BCD中,∠CDB=90°,tanB=,∴DB==30.∴AB=AD+BD=90+30=120.答:建筑物A、B间的距离为120米.考点:解直角三角形的应用-仰角俯角问题【题文】在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?【答案】(1)90(2)甲、乙合作【解析】试题分析:(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.试题解析:(1)设乙队单独完成需x天.根据题意,得:×20+(+)×24=1.解这个方程得:x=90.经检验,x=90是原方程的解.∴乙队单独完成需90天.答:乙队单独完成需90天.(2)设甲、乙合作完成需y天,则有(+)×y=1.解得,y=36,①甲单独完成需付工程款为60×3.5=210(万元).②乙单独完成超过计划天数不符题意,③甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.考点:分式方程的应用【题文】如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)判断直线CD和⊙O的位置关系,并说明理由.(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.【答案】(1)证明见解析(2)6【解析】试题分析:(1)连接OD,根据圆周角定理求出∠DAB+∠DBA=90°,求出∠CDA+∠ADO=90°,根据切线的判定推出即可;(2)根据勾股定理求出DC,根据切线长定理求出DE=EB,根据勾股定理得出方程,求出方程的解即可.试题解析:(1)直线CD和⊙O的位置关系是相切,理由是:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即OD⊥CE,已知D为⊙O的一点,∴直线CD是⊙O的切线,即直线CD和⊙O的位置关系是相切;(2)∵AC=2,⊙O的半径是3,∴OC=2+3=5,OD=3,在Rt△CDO中,由勾股定理得:CD=4,∵CE切⊙O于D,EB切⊙O于B,∴DE=EB,∠CBE=90°,设DE=EB=x,在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,则(4+x)2=x2+(5+3)2,解得:x=6,即BE=6.考点:切线的判定与性质【题文】如图,已知抛物线与x轴交于A(﹣1,0)、E(3,0)两点,与y轴交于点B(0,3).(1)求抛物线的解析式;(2)设抛物线顶点为D,求四边形AEDB的面积;(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.【答案】(1)y=﹣x2+2x+3;(2)9(3)相似【解析】试题分析:(1)易得c=3,故设抛物线解析式为y=ax2+bx+3,根据抛物线所过的三点的坐标,可得方程组,解可得a、b的值,即可得解析式;(2)易由顶点坐标公式得顶点坐标,根据图形间的关系可得四边形ABDE的面积=,代入数值可得答案;(3)根据题意,易得∠AOB=∠DBE=90°,且,即可判断出两三角形相似.试题解析:(1)∵抛物线与y轴交于点(0,3),∴设抛物线解析式为y=ax2+bx+3(a≠0)根据题意,得,解得.∴抛物线的解析式为y=﹣x2+2x+3;(2)如图,设该抛物线对称轴是DF,连接DE、BD.过点B作BG⊥DF于点G.由顶点坐标公式得顶点坐标为D(1,4)设对称轴与x轴的交点为F∴四边形ABDE的面积==AO•BO+(BO+DF)•OF+EF•DF=×1×3+×(3+4)×1+×2×4=9;(3)相似,如图,BD=;∴BE=DE==∴BD2+BE2=20,DE2=20即:BD2+BE2=DE2,所以△BDE是直角三角形∴∠AOB=∠DBE=90°,且,∴△AOB∽△DBE.考点:二次函数综合题【题文】如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q 分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A﹣B﹣﹣C﹣﹣E的方向运动,到点E停止;动点Q沿B﹣﹣C﹣﹣E﹣﹣D的方向运动,到点D停止,设运动时间为xs,△PAQ的面积为ycm2,(这里规定:线段是面积为0的三角形)解答下列问题:(1)当x=2s时,y= cm2;当x=s时,y= cm2.(2)当5≤x≤14 时,求y与x之间的函数关系式.(3)当动点P在线段BC上运动时,求出时x的值.(4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值.【答案】(1)2;9(2)(2)当5≤x≤9时,y=x2-7x+;当9<x≤13时, y=-x2+x-35;当13<x≤14时,y=-4x+56;(3)y=(4)、或【解析】试题分析:(1)当x=2s时,AP=2,BQ=2,利用三角形的面积公式直接可以求出y的值,当x=s时,三角形PAQ的高就是4,底为4.5,由三角形的面积公式可以求出其解.(2)当5≤x≤14 时,求y与x之间的函数关系式.要分为三种不同的情况进行表示:当5≤x≤9时,当9<x≤13时,当13<x≤14时.(3)可以由ly=x2-7x+当9<x≤13时(如图2)y=(x-9+4)(14-x)y=-x2+x-35当13<x≤14时(如图3)y=×8(14-x)y=-4x+56;(3)当动点P在线段BC上运动时,∵y= =×(4+8)×5=8∴8=x2-7x+,即x2-14x+49=0,解得:x1=x2=7 ∴当x=7时,y=(4)设运动时间为x秒,当PQ∥AC时,BP=5-x,BQ=x,此时△BPQ∽△BAC,故,即,解得x=;当PQ∥BE时,PC=9-x,QC=x-4,此时△PCQ∽△BCE,故,即,解得x=;当PQ∥BE时,EP=14-x,EQ=x-9,此时△PEQ∽△BAE,故,即,解得x=.综上所述x的值为:x=、或.考点:二次函数综合题。
广东初三初中数学中考模拟带答案解析

广东初三初中数学中考模拟班级:___________ 姓名:___________ 分数:___________一、选择题1.如图,矩形ABCD中,AB=4,BC=3,动点E从B点出发,沿B﹣C﹣D﹣A运动至A点停止,设运动的路程为x,△ABE的面积为y,则y与x的函数关系用图象表示正确的是()A.B.C.D.2.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分的面积为()A.2 B.C.D.3.一组数据2,x,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是()A.3,3,0.4B.2,3,2C.3,2,0.4D.3,3,2二、解答题1.如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.2.为了解市民对全市创卫工作的满意程度,某中学教学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2为进行回访,已知4为市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.3.先化简,再求值:(﹣x﹣1)÷,其中x=,y=.4.计算:(﹣1)2017+π0﹣+5.如图,已知△ABC,∠BAC=90°,(1)请用尺规作一条直线AD,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)(2)直线AD与BC交于点D,若AB=3,AC=4,求线段AD的长。
2024年广东省九年级数学中考模拟试卷(原卷版)

2024年广东省九年级数学中考模拟试卷本练习卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,完卷时间120分钟,满分120分.第I卷一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a与c互为相反数,a≠0且,那么下列关系式正确的是( )A.a·c=1B.a+c=1C.aa cc=1D.a+c=02. 如图,已知直线a∥b,∠1=100º,则教∠2等于()A. 100ºB. 80ºC. 90ºD. 110º3.不等式-2x+8>3x+18的解集为( )4.将点A(-2,3)先向右平移4个单位长度,再向下平移2个单位长度,得到点A',再将点B(5,4)先向上平移2个单位长度,再向左平移3个单位长度,得到点B',则B'与A'相距( )A.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度5.如图是由一个长方体和一个三棱柱组成的几何体,则它的俯视图是()A. B.C. D.6. 下列运算正确的是( )A. a ²·a=a ²B. (-2a ²)³=-6aa 5C. 2a ³+a ³=3a ³D. 3a+4a=7a ²7.如图,正五边形ABCDE 内接于⊙O ,点F 是弧DE 上的动点,则AFC ∠的度数为( )A .144ºB . 108ºC .72ºD .随着点F 的变化而变化8.“勾股图”有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以“勾股图”为背景的邮票(如图1),欧几里得在《几何原本》中曾对该图做了深入研究.如图2,在ABC ∆中,90ACB ∠=°,分别以ABC ∆的三条边为边向外作正方形.连接EB ,CM ,DG ,CM 分别与AB ,BE 相交于点P ,Q .若30ABE ∠=°,则DG QM的值为( )A B 1− C .45 D 9.如图,BD 是Rt ABC ∆斜边AC 上的中线.AC=13,AB=5,点P 是BC 上一个动点,过点P 分别作AC 和BD 的垂线,垂足为E 、F .则PE PF +的值是( )A. 4B. 5C. 6013D. 651310. 如图,P 为⊙O 的直径BA 延长线上的一点,PC 与⊙O 相切,切点为C ,点D 是⊙O 上一点,连结PD.已知PC =PD =BC.下列结论:(1)PD 与⊙O 相切;(2)四边形PCBD 是菱形;(3)PO =AB ;(4)∠PDB =130°.其中正确的个数为( )A. 1个B. 2个C. 3个D. 4个第Ⅱ卷二、填空题(本题共5小题,每小题3分,共15分.)11. 计算:|﹣5|+(-3+π)0-2sin30°= .12. 据统计,我国2023年全年的人口出生率为902万人,“902万”用科学计数法表示为 .13. 如图,小明和小刚分别设计了两个转盘(每一个转盘中的扇形面积均相等),两人利用设计出的两个转盘进行“配紫色”游戏,即每人将两个转盘各转动一次,如果红色和蓝色分别出现在两个转盘上,那就说明可以配成紫色,那么小明出紫色的概率是 .14.如图,BD 是ABC 的中线,AB=8,BC=5,ABD △和BCD △的周长差为______.15.二次函数()20y ax bx c a ++≠的大致图象如图所示,顶点坐标为(2−,9a −),下列结论:①abc<0;②16a-4b+c>0;③若方程21ax bx c ++=−有两个根12,x x ,且12x x <,则1251x x −<<<;④若抛物线与y 轴的交点在(0,2−)与(0,3−)之间,则a 的取值范围是2355a <<.其中正确结论的是____________.三、解答题(本题共8小题,75分.)16.(6分)先化简,再求值:232(1)11x x x x x +−−÷++,其中x=-1. 17.(7分)解方程组:�2xx +5yy =45xx +yy =6 18.(9分)我国为了维护对钓鱼岛P 的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同()AP BD ∥,当轮船航行到距钓鱼岛20km 的A 处时,飞机在B 处测得轮船的俯角是45°;当轮船航行到C 处时,飞机在轮船正上方的E 处,此时EC=6km .轮船到达钓鱼岛P 时,测得D 处的飞机的仰角为30°.试求飞机的飞行距离BD (结果保留1位小数).19.(9分)已知:如图,在圆内接四边形ABCD 中,对角线AC BD ⊥,垂足为P ,过点P 作AB 的垂线分别交AB ,DC 于点H ,M .求证:(1)M 是CD 的中点(2)若2PD =,HP =3BP =,求MH 的长.20.(10分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城3月份销售自行车64辆,5月份销售了100辆.(1)若该商城3至5月的自行车销量的月平均增长率相同,问该商城自行车销量的月平均增长率是多少?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A 型车的进价为500元/辆,售价为700元/辆,B 型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A 型车不少于B 型车的2倍,但不超过B 型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?21.(10分)学习习近平总书记关于生态文明建设重要讲话,牢固树立“绿水青山就是金山银山”的科学观,让环保理念深入到学校,某校李老师为了了解本班学生4月植树成活情况,对本班全体学生进行了调查,并将调查结果分为了三类:A :好,B :中,C :差.请根据图中信息,解答下列问题:(1)求全班学生总人数;(2)将上面的条形统计图与扇形统计图补充完整;(3)张老师在班上随机抽取了4名学生,其中A 类2人,B 类1人,C 类1人,若再从这4人中随机抽取2人,请用画树状图或列表法求出一个A 类,一B 类学生的概率.22.(12分)如图,已知矩形ABCD 中,(1)AB a a =>,2BC =,点O 是BC 边的中点,点E 是矩形内一个动点,且1OE =.(1)当OE BC ⊥时,连接BE 、CE ,直接写出BEC ∠的度数;(2)当a =DE ,若DE OE ⊥,求BE 的长;(3)当2a =时,将线段DE 绕点D 逆时针旋转90°后,得到线段DF ,点P 是线段DF 的中点,当点E 在矩形ABCD 内部运动时,求点P 运动路径的长度.23.(12分)如图,抛物线2y x bx c =−++经过(1,0)A −,(0,3)C 两点,并交x 轴于另一点B ,点M 是抛物线的顶点,直线AM 与y 轴交于点D .(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH DH+的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.。
2024年广东省九年级数学中考模拟试卷答案

2024年中考模拟检测数学试题一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中只有一项符合题问要求,请将正确选项前的字母代号填在答题卡相应位置上)1. 实数2022−的绝对值是( )A. 2022−B. 2022C. 12022D. 12022− 2. 垃圾分类可以有效减少垃圾对环境的污染,因此我们应增强环保意识,积极参与垃圾分类,共享低碳生活.下列有关垃圾分类的图标,是轴对称图形的有( )A. B.C. D.3. 计算2212ac −的结果是() A. 2412a c − B. 2212a c C. 2414a c D. 2214a c 4. 为了发扬“中国航天精神”,年的4月24日设立为“中国航天日”.正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A. 航B. 天C. 精D. 神5. 如图,A 、B 、C 是⊙O 上的点,OC AB ⊥,垂足为点D ,若OA =5,AB =8,则CD 的长为( ).A. 5B. 4C. 3D. 26. 一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上.如果每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是( )A. 49B. 59C. 23D. 457. 若2x =是关于x 的一元二次方程220x mx +−=的一个根,则m 的值为( )A. 1B. 3C. 1−D. 3−8. 方程231x x +=的根可视为函数3y x 的图象与函数1y x =的图象交点的横坐标,那么用此方法可推断出方程3223x x x −+=的实数根x 所在的范围是( )A. 12x <<B. 23x <<C. 34x <<D. 45x <<二、填空题(本大题共8小题,起小题!分,共24分,请将答案直接写在答题卡相应位置上)9. 我国的北斗卫星导航系统()BDS 星座已部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为________.10.在实数范围内有意义,则x 的取值范围是__________.11. 分解因式:2218m −=______. 12. 如图所示,在O 中,直径10AB =,弦DE AB ⊥于点C ,连接DO .若3OC =,则DE 长为 _____.的13. 如图,点A B C D ,,,在O 上,130AOC ∠=°,则ABC ∠=___________°.14. 如果所示的地板由15块方砖组成,每一块方砖除颜色外完全相同,小球自由滚动,随机停在黑色方砖的概率为_________.15. 小明参加“强国有我”主题演讲比赛,其演讲形象、内容、效果三项的成绩分别是70分、90分、80分.若将三项得分依次按2:4:4的比例确定最终成绩,则小明的最终比赛成绩为______分.16. 已知ABC ,动点P 从点A 出发,以每秒钟1个单位长度的速度沿A→B→C→A 方向运动到点A 处停止.设点P 运动的运动时间为t 秒,PAB 的面积S 关于t 的函数图象如图所示,则ABC 的边BC 上的高等于____________________.三、解答题(本大题共11小题,共102分.请在答题卡指定位置作答,解答时应写出必要的文字说明、满算步骤或推理过程)17. 计算:(()2023011−+−−° 18. 解不等式2732x x −−<,并把它的解集表示在数轴上.19. 先化简,再求值:()()()()232232x x x x x −++−+−,其中2x =−.20. 如图,在ABC 中,点D 为BC 边上中点,连接AD .(1)尺规作图:作射线BF ,使得CBF ∠=C ∠,且射线BF 交AD 的延长线于点E (不要求写作法,保留作图痕迹);(2)在(1)的条件下,连接CE ,若12AD BC =,求证:四边形ABEC 为矩形. 21. 某校为了了解家长和学生的参与“防疫教育”的情况,在本校学生中随机抽取部分学生做调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与,请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了 名学生?(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数 ;(3)根据抽样调查结果,估计该校3200名学生中“家长和学生都参与”的人数.22. 4月18日上午7:30,2021盐城马拉松在盐城市盐南体育中心正式鸣枪开跑,共吸引了来自全国各地的约15000名选手同台竞技.本次马拉松共设三个项目:全程马拉松、半程马拉松、迷你马拉松.小乐和小观参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组中的一个.(1)小乐被分配到半程马拉松项目组的概率为______.(2)用树状图或列表法求小乐和小观被分到同一个项目组概率.23. 在某市双城同创的工作中,某社区计划对1200m 2的区域进行绿化,经投标,由甲、乙两个施工队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为2300m 区域的绿化时,甲队比乙队少用3天.(1)甲、乙两施工队每天分别能完成绿化的面积是多少?的(2)若甲队每天绿化费用为0.4万元,乙队每天绿化费用为0.15万元,且甲、乙两队施工的总天数不超过14天,则如何安排甲、乙两队施工的天数,使施工费用最少?并求出最少费用.24. 如图,以AB 为直径作O ,在O 上取一点C ,延长AB 至点D ,连接DC ,DCB DAC ∠=∠,过点A 作AE AD ⊥交DC 的延长线于点E .(1)求证:CD 是O 的切线;(2)若4CD =,2DB =,求AE 的长.25. LED 感应灯是一种通过感应模块自动控制光源点亮的一种新智能照明产品,当人进入感应范围内灯自动亮,离开感应范围灯灭.若在感应范围内有多个感应灯装置,那么人离哪个感应灯更近,这个感应灯就会亮,其它感应灯就不亮,这样既方便又节能.(说明:人到两个感应灯距离相等时,两个灯都亮)(1)如图①,已知在ABC 中,906m 8m A AB AC ∠=°==,,,若在ABC 的其中两个顶点B 、C 处分别装有感应灯,EF 垂直平分BC ,垂足为点F ,交AC 于点E ,请求出在该三角形内能使感应灯C 亮的区域面积;(2)如图②,在ABC 中,5m 6m ABAC BC ===,,AD 为BC 边上的高,在ABC 的三个顶点处都装有感应灯,请求出在该三角形内能使感应灯B 亮的区域面积;(3)如图③,在平面内五个散点A 、B 、C 、D 、E 处装有自控灯,请用直尺和圆规在平面内作出能使感应灯上亮的区域图形.26. 定义:在平面内,将点A 关于过点B 的任意一条直线对称后得到点C ,称点C 为点A 关于点B 的线对称点.理解:在直角坐标系中,已知点()2,0A ,(1)点A 关于直线y x =对称的点的坐标为_______;(2)若点A 、B 关于直线2y x =对称,则OA 与OB 数量关系为________; (3)下列为点A 关于原点的线对称点是_______.(填写序号,可多选) ①()2,0−②(③(1, ④()1,2 运用: (4)已知直线y mx b =+经过点()2,4,当m 满足什么条件时,该直线上始终存在点()2,0关于原点的线对称点:(5)已知抛物线2182y x =−+,问:该抛物线上是否存在点()0,0关于()0,3线对称点,若存在请求出点坐标,若不存在请说明理由.27. 已知ABC 是等腰直角三角形,90C AC BC ∠=°=,.(1)当6AC BC ==时,①将一个直角的顶点D 放至AB 的中点处(如图①),两条直角边分别交AC BC 、于点E 、F ,请说明DEF 为等腰直角三角形;②将直角顶点D 放至AC 边的某处(如图②),与另两边的交点分别为点E 、F ,若DEF 为等腰直角三角形,且面积为4,求CD 的长.(2)若等腰Rt DEF △三个顶点分别在等腰Rt ABC △的三边上,等腰Rt DEF △的直角边长为1时,求等腰Rt ABC △的直角边长的最大值.的的。
2024学年广东省广州市九年级中考数学三模预测练习试题

2024学年广东省广州市九年级中考数学三模预测练习试题考试时间:120分钟 满分:120分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 某日上午八点温州市的气温为1−℃,下午两点,气温比上午八点上升了3℃,则下午两点的气温为( )A .4−℃B .2−℃C .2℃D .4℃2.如图所示的几何体的左视图是( )A .B .C .D .3. 2023年10月26日,神舟十七号载人飞船发射成功,与距地约400000米的空间站核心舱成功对接, 数据400000用科学记数法可表示为( )A .44010×B .5410×C .6410×D . 60.410×4 .不等式组10215x x +> +≤ 的解集在数轴上表示正确的是( )A .B .C .D .5. 下列计算正确的是( )A. 248a a a ⋅=B. 3332a a a −=C. ()3236ab a b =D. ()222a b a b +=+ 6. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点.若1155,230∠=°∠=°,则3∠的度数为( )A. 45°B. 50°C. 55°D. 60°7. 如图,电路连接完好,且各元件工作正常.随机闭合开关1S ,2S ,3S 中的两个,能让两个小灯泡同时发光的概率为( )A .16B .12C .23 D .138. 如图,一辆自行车竖直摆放在水平地面上,自行车右边是它的部分示意图,现测得88A ∠=°,42C ∠=°,60AB =,则点A 到BC 的距离为( )A.60sin50°B.60sin50°C.60cos50°D.60tan50°9.赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m,拱高约为7m,则赵州桥主桥拱半径R约为()A.20m B.28m C.35m D.40m10.如图,四边形ABCD中,已知AB∥CD,AB与CD之间的距离为4,AD=5,CD=3,∠ABC=45°,点P,Q同时由A点出发,分别沿边AB,折线ADCB向终点B方向移动,在移动过程中始终保持PQ⊥AB,已知点P的移动速度为每秒1个单位长度,设点P的移动时间为x秒,△APQ的面积为y,则能反映y与x之间函数关系的图象是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,满分18分.)11. 分解因式:2x2﹣8=_______12 .一个不透明的袋子中装有4个白球和若干个黄球,它们除颜色外完全相同,从袋子中随机摸出一球,再放回,不断重复,共摸球30次,其中10次摸到白球,则估计袋子中大约有黄球个.13.如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是5,则圆锥的母线l为.14.某快递公司每天上午9:0010:00−为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么从9:00开始,经过分钟时,两仓库快递件数相同.15.边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为_______.16.如图,DE 平分等边ABC 的面积,折叠BDE △得到,△FDE AC 分别与,DF EF 相交于,G H .若,==DG m EH n ,用含,m n 的式子表示GH 的长是________.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17. 计算:()101113tan303π− −−+−−°18. 计算:2212442x x x x x x −+ − −+−0,1,2,3,4中选取适合x 的值代入求值.19 .如图①是一台手机支架,图②是其侧面示意图,AB 、BC 可分别绕点A 、B 转动,测量知10cm AB =,8cm BC =.当AB ,BC 转动到70BAE ∠=°,65ABC ∠=°时, 求点C 到直线AE 的距离.(精确到0.1cm ,参考数据:sin 700.94°≈,cos 700.34°≈ 1.41≈)20. 中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是________部,中位数是________部;(2)扇形统计图中“4部”所在扇形的圆心角为________度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.21. 如图,在平面直角坐标系中,一次函数152y x =+和2y x =−的图象相于点A , 反比例函数k y x=的图象经过点A .(1)求反比例函数的表达式;(2)设一次函数152y x =+的图象与反比例函数y =k x 的图象的另一个交点为B ,连接OB ,求ABO 的面积;(3)根据图象直接写出关于x 的不等式152k x x+>的解集.22. 随着“双减”政策的逐步落实,其中增加中学生体育锻炼时间的政策引发社会的广泛关注, 体育用品需求增加,某商店决定购进AB 、两种羽毛球拍进行销售, 已知每副A 种球拍的进价比每副B 种球拍贵20元,用2800元购进A 种球拍的数量与用2000元购进B 种球拍的数量相同.(1)求AB 、两种羽毛球拍每副的进价; (2)若该商店决定购进这两种羽毛球拍共100副,考虑市场需求和资金周转,用于购买这100副羽毛球拍的资金不超过5900元,若销售A 种羽毛球拍每副可获利润25元, B 种羽毛球拍每副可获利润20元,如何进货获利最大?最大利润是多少元?23. 如图,在ABC 中,AB AC =,以AB 为直径的O 分别交BC ,AC 于点D ,E .作OF AC ⊥于点F ,DG AC ⊥于点G .(1)求证:DG 是O 的切线,(2)已知3DG =,1EG =,求O 的半径,24. 综合与探究:如图,在平面直角坐标系中,直线4y kx =+与x 轴交于点(4,0)A −,与y 轴交于点C , 抛物线2y x bx c =−++经过A ,C 两点且与x 轴的正半轴交于点B .(1)求k 的值及抛物线的解析式.(2)如图①,若点D 为直线AC 上方抛物线上一动点,当ACD BAC ∠=∠2时,求D 点的坐标; (3)如图②,若F 是线段OA 的上一个动点,过点F 作直线EF 垂直于x 轴交直线AC 和抛物线分别于点G 、E ,连接CE .设点F 的横坐标为m .①当m 为何值时,线段EG 有最大值,并写出最大值为多少; ②是否存在以C ,G ,E 为顶点的三角形与AFG 相似,若存在,直接写出m 的值;若不存在,请说明理由.25. 如图1,在ABC 中,AB AC =,点M ,N 分别为边AB ,BC 的中点,连接MN . 初步尝试:(1)MN 与AC 的数量关系是 ,MN 与AC 的位置关系是 . 特例研讨:(2)如图2,若90BAC ∠=°, BC =BMN 绕点B 顺时针旋转α(α为锐角), 得到BEF △,当点A ,E ,F 在同一直线上时,AE 与BC 相交于点D ,连接CF . ①求BCF ∠的度数;②求CD 的长.深入探究:(3)若90BAC ∠<°,将BMN 绕点B 顺时针旋转α,得到BEF △,连接AE ,CF .当旋转角α满足0360α°<<°,点C ,E ,F 在同一直线上时, 利用所提供的备用图探究BAE ∠与ABF ∠的数量关系,并说明理由.。
广东省2024届九年级下学期中考模拟数学试卷(含部分解析)

2024年广东省中考数学模拟试题学校:______姓名:______班级:______考号:______一、单选题(共10小题,每题3分,满分30分)1.―(―2021)=( )A.―2021B.2021C.―12021D.120212.从正面、左面、上面观察一个几何体得到的形状图如图所示,则这个几何体是( )A.三棱锥B.三棱柱C.圆柱D.长方体3.某校将举办一场“中国汉字听写大赛”,要求每班推选一名同学参加比赛.为此,七年级(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两名同学的平均分都是96分,甲成绩的方差是0.2,乙成绩的方差是0.8.根据以上数据,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定4.下列计算正确的是( )A.a―1÷a―3=a2B.(13)0=0C.(a2)3=a5D.(12)―2=145.不等式组{3(x―2)≥x―43x>2x―2的解集在数轴上表示正确的是( )A. B. C. D.6.已知反比例函数y=―5x,则下列结论错误的是( )A.图象必经过点(―1,5)B.图象的两个分支分布在第二、四象限C.y随x的增大而增大D.若x>1,则―5<y<07.甲、乙两人同时从A地出发,骑自行车到B地.已知A、B两地的距离为30km,甲每小时比乙多走3km,并且比乙先到40分钟.设乙每小时走xkm,则可列方程为( )A.30x ―30x―3=23B.30x―30x+3=23 C.30x+3―30x=23D.30x―3―30x=238.若关于x的一元二次方程(m―2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3B.m<3C.m<3且m≠2D.m≤3且m≠29.如图,某海监船以20海里/时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30∘方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为( )A.40海里B.60海里C.203海里D.403海里10.如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E.要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是( )A.DE=DOB.AB=ACC.CD=DBD.AC/\/OD二、填空题(共6小题,每题3分,满分18分)11.高速公路便捷了物流和出行,构建了我们更好的生活.交通运输部的数据显示,截止去年底,我国高速公路通车里程161000公里,稳居世界第一.161000这个数据用科学记数法可表示为 .12.若二次函数y=2x2―5的图象上有两个点A(2,a)、B(3,b),则a b(填“<”或“=”或“>”).13.某校随机调查了若干名学生和家长对中学生带手机进校园的态度,并将调查结果绘制成如图的不完整的统计图.已知调查家长的人数与调查学生的人数相等,则家长反对学生带手机进校园的人数为.学生及家长对中学生带手机进校园的态度统计图14.如图,已知M,N两点在正方形ABCD的对角线BD上移动,∠MCN=45∘,连接AM,AN,并延长分别交BC,CD于E,F两点,则∠CME+∠CNF=.15.如图,在Rt△ABC中,∠C=90∘,D,E分别是BC,AC的中点,AD=4,BE=3,则AB=.16.扫地机器人能够自主移动并作出反应,是因为它发射红外信号反射回接收器,机器人在打扫房间时,若碰到障碍物则发起警报.若某一房间内A、B两点之间有障碍物,现将A、B两点放置于平面直角坐标系xOy中(如图),已知点A,B的坐标分别为(0,4),(6,4),机器人沿抛物线y=ax2―4ax―5a运动.若机器人在运动过程中只触发一次报警,则a的取值范围是.三、解答题(共9小题,满分72分)17.解下列方程:(1)2(x―3)2=x2―9;(2)3x(x―1)+2x=2.18.如图点A,F,C,D在同一条直线上,已知AF=DC,∠A=∠D,BC//EF.试说明:AB=DE.19.如图,A,B是⊙O上两点,且AB=OA,连接OB并延长到点C,使BC=OB,连接AC.(1)求证:AC是⊙O的切线;(2)D,E分别是AC,OA的中点,DE所在直线交⊙O于点F,G,OA=4,求GF的长.20.观察下面分解因式的过程:x2―4y2―2x+4y=(x+2y)(x―2y)―2(x―2y)=(x―2y)(x+2y―2),这种分解因式的方法叫分组分解法。
2022-2023学年广东省数学中考数学模拟试卷

初中数学学业水平考试模拟试题本试卷共4页,25小题,满分120分,考试时间90分钟。
注意事项:1.答题前,考生务必把自己的姓名、考生号等填写在答题卡相应的位置上。
2.做选择题时,必须用2B 铅笔把答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
3.非选择题必须使用黑色字迹钢笔或签字笔,将答案写在答题卡规定的位置上。
4.所有题目必须在答题卡上指定位置作答,不按以上要求作答的答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将答题卡交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。
1.3a 的立方根是()A.9aB.aC.aD.aa 2.下列运算正确的是()A.6210bb b C.222b a b a B.3)3)(3(2x x x D.632)(aa 3.0001397.0 用科学记数法表示,要求精确到0.01,结果为()A.41040.1 B.4104.1 C.41039.1 D.410397.1 4.在滴水的水龙头下放置一个能显示水量的容器,每5min 记录一次容器中的水量,并填写下表时间t/min 051015水量ω/ml 0102030则这个函数的解析式为()A.y=2x+5 B.y=2x-5 C.y=2x D.y=-2x5.关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则此不等式组的解集是()A.x≥0B.x<3C.0≤x<3D.0<x≤36.已知x,y 可以取-2,-1,1,2中任意一个值,求直线y=xk的图象经过第一、三象限的概率是()A.1B.12C.13D.147.如图,已知∠ABE ≌∠DCE ,则下列结论:正确的是( )①AB =EC ②∠A =∠D ③AC =DB ④∠ACB =∠DBC A.①② B.③④ C.①②③④ D.②③④8.关于x 的一元二次方程2x 2+4x +a =0没有实数根,则实数a 的取值范围是()A.a ≤12B.a <0C.a >2D.a ≥49.如图,AC 为☉O 的切线,C 为切点,若∠B=30°,BC=32,则线段AB的长度为()A.6B.8C.10D.1210.如图,点A 、B 是反比例函数y =kx(k ≠0)图象上的两点,线段AB 的反向延长交y 轴于点C ,且点A 为线段BC 中点,过点B 作BD ⊥x 轴于点D ,点E 为线段OD 的四等分点,且OE <DE.连接AE 、BE ,若S ΔABE =5,则k 的值为( )A.8B.10C.12D.14第7题图第9题图第10题图二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡的位置上.三、11.分解因式:3x 4−127=___________12.已知x m =9−4,x n =3−2,则计算式子x m−3n 的值为______.13.若2a +b =4,a −b2=1,则4a 2−b 2=_____________.14.设x ,y 为实数,且y =2+3−x +x −3,则(x −2y)2022的值是______.15.如图,在△ABC 中,AB=AC,由图中的尺规作图痕迹得到的射线AD 与BC 交于点E,点F 为AC 的中点,连接EF,若AE=BC=4,则△CEF 的周长为16.如图,矩形ABCD 的对角线AC,BD 交于点O,AD=8,过点O 作OE⊥AC,交AD 于点E,过点E 作EF⊥BD,垂足为F,且OE+EF 的值为524,则AB 的值为_________第15题图第16题图17.如图,所有图形都是由同样大小的三角形按照一定的规律排列的,依照此规律排列下去,第_______个图形共有121个三角形.AC FAB△△△△△△△△△△△△△△△△△△△△△△△△第17题图三、解答题(一)(本大题3小题,每小题6分,共18分)18.计算31)31(60sin )2022()35(3520019.先化简,再求值:1114422x x x x x ,若x 是方程022x x 的正整数解.20.如图,∠ADF=∠DFC ,CD=2AD,过点D 作DE//AB,交∠BCD 的平分线于点E,连接BE,延长DE 交BC 于F 且CD=2CF,将△BCE 绕点C 顺时针旋转90°得到△DCG,连接EC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重点中学——星华学校初三数学模拟试卷说明:全卷共4页,考试时间为100分钟,满分120分.请在答题卡上作答.(出卷者:倪迁华) 一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.有理数51-的绝对值为( ) A .51 B .5- C .51- D .5 2.我们虽然把地球称为“水球”,但可利用淡水资源匮乏.我国淡水总量仅约为899000亿米3,用科学记数法表示这个数为( ) A .0.899×104亿米3B .8.99×105亿米3C .8.99×104亿米3D .89.9×104亿米33.下列图形中对称轴只有两条的是( )A .圆B .等边三角形C .矩形D .等腰梯形 4.计算:322-=( )A .3B .22C .2D .425.已知等腰三角形的一个底角等于30°,则这个等腰三角形的顶角等于( ) A 、150° B 、120° C 、75° D 、30° 6.如图所示的几何体的正视图是( )7.如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于( )A .30° B.40° C .60° D.70°8.袋子内有3个红球和2个蓝球,它们只有颜色上的区别,从袋子中随机地取出一个球,取出红球的概率是( ) A .52 B .32 C .53 D .239.计算223)2(a a --的结果是( )A .2a - B .25a C .25a - D .2a 10.如图,在等腰梯形ABCD 中,BC ∥AD ,AD =5,DC =4,DE ∥AB 交BC 于点E ,且EC =3,则梯形ABCD 的周长是( ) A .21 B .25 C .26 D .20ACBD E第7题图第10题图二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:m mn mn 962++=___ ___.12.已知正比例函数)0(≠=k kx y ,点(2,﹣3)在函数上,则y 随x 的增大而 (增大或减小). 13.如图,AB 为⊙O 的直径,CD 为⊙O 的一条弦, CD ⊥AB ,垂足为E ,已知CD =6,AE =1, 则⊙O 的半径为 .14.在学校艺术节文艺汇演中,甲、乙两个舞蹈队队员的身高的方差分别是S 甲2=1.5,S 乙2=2.5,那么身高更整齐的是 队(填“甲”或“乙”).15.不等式组:⎪⎩⎪⎨⎧->+≥-1230211x x 的解集是 . 16.观察下列图形的排列规律(其中▲、■、★分别表示三角形、正方形、五角星),若第一个图形是三角形,则第18个图形是 .(填图形名称)▲■★■▲★▲■★■▲★▲■★■▲★▲■★三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:︒-+-+-60sin 6272)12(118先化简,再求值:a -1a +2·a 2+2a a 2-2a +1÷1a 2-1,其中a 为整数且-3<a <2.19.如图,Rt △ABC 的斜边BC =8,AC =6(1)用尺规作图作AB 的垂直平分线l ,垂足为D ,(保留作图痕迹,不要求写作法、证明);(2)连结D 、C 两点,求CD 的长度.四、解答题(二)(本大题3小题,每小题8分,共24分)20.如图,某同学在楼房的A 处测得荷塘的一端B 处的俯角为30︒,荷塘另一端D 处与C 、B 在同一条直线上,已知AC=32米,CD=16米,求荷塘宽BD 为多少米?(取3 1.73≈,结果保留整数)第13题图C BA第19题图第20题图21.已知一元二次方程012=+++q px x 的一根为 2. (1)求q 关于p 的关系式; (2)若q p 2=,求方程的另一根;(3)求证:抛物线q px x y ++=2与x 轴有两个交点.22.某中学为了解本校学生对球类运动的爱好情况,采用抽样的方法,从乒乓球、羽毛球、篮球和排球四个方面调查了若干名学生,在还没有绘制成功的“折线统计图”与“扇形统计图”中,请你根据已提供的部分信息解答下列问题。
(1)在这次调查活动中,一共调查了 名学生,并请补全统计图; (2)“羽毛球”所在的扇形的圆心角是 度;(3)若该校有学生1200名,估计爱好乒乓球运动的约有多少名学生?五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,在平面直角坐标系xOy 中,函数)0(4>=x xy 的图象与一次函数k kx y -=的图象交点为A (m ,2). (1)求一次函数的解析式;(2)设一次函数k kx y -=的图象与y 轴交于点B ,若P 是x 轴上一点,且满足△PAB 的面积是4,直接写出P 的坐标.24.如图1,在△ABC 和△EDC 中,AC =CE =CB =CD ,∠ACB =∠ECD =90,AB 与CE 交于F ,ED 与AB 、BC 分别交于M 、H .(1)求证:CF =CH ;(2)如图2,△ABC 不动,将△EDC 绕点C 旋转到∠BCE =45时,试判断四边形ACDM 是什么四边形?并证明你的结论.25. 已知,如图,在平面直角坐标系中,Rt △ABC 的斜边BC 在x 轴上,直角顶点A 在y 轴的正半轴上,A (0,2),B (-1,0)。
(1)求点C 的坐标;(2)求过A 、B 、C 三点的抛物线的解析式和对称轴;(3)设点P (m ,n )是抛物线在第一象限部分上的点,△PAC 的面积为S ,求S 关于m 的函数关系式,并求使S 最大时点P 的坐标.A(图1) (图2)(24题图)九年级数学第一次模拟题参考答案和评分标准一、ABCBB DACDA二、11、2(3)m n + 12、减小 13、5, 14、甲 15、21≤<-x 16、五角星. 三、解答题(一)(本大题3小题,每小题5分,共15分) 17.解:原式=3333211-+-··································································· 4分 =21 ··························································································· 5分 18.解:设原计划平均每亩产量是x 万斤根据题意得:205.193636=+-xx ······························································· 2分 解得:3.0=x ····················································································· 4分 经检验:3.0=x 是原方程的根 45.05.1=x答:改良前亩产0.3万斤,改良后亩产0.45万斤. ······································· 5分 19.解:(1)作图正确(不保留痕痕迹的得1分), ··········································· 3分(2)因为在Rt ABC △中,BC =8,AC =6∴ 1022=+=AC BC AB , ························································ 4分 ∴521==AB CD ····································································· 5分 四、解答题(二)(本大题3小题,每小题8分,共24分)20.解: 如图,依题意得: ∠BAC =60°, ························································ 2分在Rt △ABC 中,∵tan ∠BAC =ACBC, ················································· 3分 ∴BC =tan 32⨯60°332= ····································································· 6分∴荷塘宽3916332≈-=-=CD BC BD (米) ····································· 7分答:约荷塘宽BD 约为39米 ·································································· 8分 21.解:(1)∵A (m ,2)在函数)0(4>=x xy 的图象上 ∴m42=, 2=m ······································································ 2分 ∴A (2,2)∵A (2,2)一次函数k kx y -=的图象上∴k k -=22,2=k ···································································· 3分 ∴一次函数的解析式为:22-=x y ························································· 4分 (2)1(1,0)P -,2(3,0)P ·········································································· 8分 22.解:(1)200 ························································································ 2分∵喜欢篮球的人数:200×20%=40(人) 喜欢羽毛球的人数:200-80-20-40=60(人)喜欢排球的20人,应占10020020⨯℅=10℅ 喜欢羽毛球的应占统计图的1-20%-40%-10%=30%∴根据以上数据补全统计图: ·································································· 4分(2)108° ···························································································· 6分 (3)该校1200名学生中估计爱好乒乓球运动的约有:40%×1200=480(人) ····································································· 8分 五、解答题(三)(本大题3小题,每小题9分,共27分) 23.解:(1)2=x 代入方程012=+++q px x 得:01222=+++q p ·············································································· 1分52--=p q ························································································ 2分 (2)若q p 2=,则⎩⎨⎧--==522p q q p ,∴⎩⎨⎧-=-=12q p ········································· 3分原方程变为:022=-x x ······································································ 4分 ∴01=x ,22=x方程的另一根为0 ·················································································· 5分 (3)∵208)52(44222++=---=-=∆p p p p q p ······························ 6分 04)4(2>++=p ··································································· 7分 ∴方程02=++q px x 有两个不等的实根 ·················································· 8分 ∴抛物线q px x y ++=2与x 轴有两个交点. ············································ 9分24.解: (1)证明:在△ACB 和△ECD 中 ∵∠ACB =∠ECD = 90∴∠1+∠ECB =∠2+∠ECB ,∴∠1=∠2 ········································································ 1分又∵AC =CE =CB =CD ,∴∠A =∠D = 45 ····································································· 2分∴△ACF ≌△DCH , ···························································· 3分∴CF =CH ············································································· 4分(2)答: 四边形ACDM 是菱形 ······························································· 5分 证明: ∵∠ACB =∠ECD = 90, ∠BCE =45∴∠1=45, ∠2=45 ···················································· 6分又∵∠E =∠B = 45,∴∠1=∠E , ∠2=∠B ······················································· 7分 ∴AC ∥MD , CD ∥AM ,∴ACDM 是平行四边形 ···················································· 8分 又∵AC =CD , ∴ACDM 是菱形 ······································· 9分25.解:(1)∵A (0,2),B (-1,0),∴OA=2,OB=1。