算法统计概率
必修3--算法--统计初步---概率

算法初步一、1、算法的概念:按照一定规则解决某一类问题的明确和有限的步骤。
表示方法:①自然语言,②程序框图,③程序设计语言2、基本程序框:3、基本逻辑结构和对应程序设计语言:4、几个说明①把,a b 的值对调:引入中间变量x 程序设计语言为,,x a a b b x ===②程序设计语言中 +→+;-→-;⨯→*;÷→;n x x n ∧→()mnm x x n∧=→;()SQR x →;x a x a ≥→>=;x a x a ≠→<>;||()x ABS x →x a ÷的商x a →;x a ÷的商的整数部分\x a →;x a ÷的余数x MOD a → ;③多个数的和或积以12100+++ 为例,⑴一个个来(加或乘);⑵找出循环体和计数变量;⑶瞄准何时退出循环 开始 0,1S i = =⑴1,12S S i i i =+= =+= 加一个数,下一个加2,因此i 要为12i +=⑵12,13S S i i i =+=+ =+= 加2个数,下一个加3,因此i 要为13i += ---------(100)12,101S i =+ ++100 = 加满,可退出,此时i 的值可作为退出循环的依据 说明:Ⅰ、每一步都用到,1S S i i i =+ =+,称为循环变量Ⅱ、i 从1到101,循环了100次,记录了循环的次数,称计数变量Ⅲ、注意直到型循环和当型循环时,条件判定练习: 1、画出下列各题的程序框图①计算135(21)n ⨯⨯⨯⨯- ; ②求满足123100n ++++< 的最大整数n2、图l 是某县参加2007年高考的学生身高条形统计 图,从左到右的各条形表示的学生人数依次记为1A 、 2A 、…、m A (如2A 表示身高(单位:cm )在[150, 155)内的学生人数).图2是统计图l 中身高在一定范 围内学生人数的一个算法流程图.现要统计身高在 160~180cm (含160cm ,不含180cm )的学生人数, 那么在流程图中的判断框内应填写的条件是( ) A .9i < B .8i < C .7i < D .6i <3、阅读程序框,若输入的n 是100,则输出的变量S 和T 的值依次是( ) A .2550,2500 B .2550,2550 C .2500,2500 D .2500,25504、上面的程序框图,如果输入三个实数,,a b c 要求输出这三个数中最大的数,那么在空白的判断框中,应该填入 下面四个选项中的( )A .c x >B .x c >C .c b >D .b c >5、阅读上图的程序框图,若输入4m =,6n =,则输出a = ,i =6、下列给出的赋值语句中正确的是( )A 、M =4B 、M M -=C 、3==A BD 、0=+y x 二、算法案例1、11()n n k a a a - 化为十进制 01112n n a k a k a k -⨯+⨯++⨯2、把十进制的数a 化为k 进的数:①除k 取余数,②除到商为0为止,③答案倒着写3、利用秦九绍算法计算一个多项式1110()n n n n f x a x a x a x a --=++++ 的值。
新课标数学3教学指导

目录数学3第一章算法初步第二章统计第三章概率数学3在本模块中,学生将学习算法初步、统计、概率。
算法是数学及其应用的重要组成部分,是计算科学的重要基础。
随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素质。
需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。
在本模块中,学生将在义务教育初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力现代社会是信息化的社会,人们常常需要收集数据,根据所获的的数据提取有价值的信息,作出合理的决策。
统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。
随机现象在日常生活中随处可见,概率是研究随机现象规律的学科,它为人们认识客观世界提供了重要的思维模式和解决问题的方法,同时为统计学的发展提供了理论基础。
因此,统计与概率的基础知识已经成为一个未来公民的必备常识。
在本模块中学生将在义务教育阶段学习统计与概率的基础上,通过实际问题情景,学习随机抽样、样本估计总体、线性回归的基本方法,体会用样本估计总体及其特征的思想;通过解决实际问题,较为系统的地经历数据收集与处理的全过程,体会统计思想与确定性思维的差异。
学生将结合具体实例,学习概率的某些基本性质和简单的概率模型,加深对随机现象的理解,能通过试验、计算器〔机〕模拟估计简单随机事件发生的概率。
第一章算法初步〔一〕内容标准〔约12课时〕〔二〕教学要求基本要求1.从实例出发了解算法的概念,会初步用自然语言描述算法。
2.通过简单的算法实例理解算法的含义,了解算法的主要特征。
3.了解程序框图是表达的算法的一种直观而明确的方式。
4.掌握基本的程序框图、流程线和它们各自表示的功能,认识程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。
组合数学目录

组合数学目录组合数学是数学中一个重要的分支学科,它研究组合和组合学问题,是数学、统计学和计算机科学等多领域的基础知识。
它涉及到组合、排列、组合优化、计数、概率、可能性等几个方面的数学问题,既涉及基础理论,又涉及实际应用。
本文以《组合数学目录》为题,简要介绍组合数学的内容。
组合数学主要涉及以下内容:一、组合算法组合算法是数学中最重要的概念之一。
它包括排列组合、组合优化、计数法、差分组合和组合密码学等。
它们是用来解决一些具有复杂性的数学问题的一般性的工具。
二、统计概率统计概率是描述一系列实验结果的形式,通常是以概率的方式给出,即每个结果发生的可能性。
它的主要内容有:概率论、样本空间、事件、联合概率、独立性、贝叶斯定理、随机变量、期望值、方差和协方差等。
三、概率统计概率统计是一门研究统计数据的科学,它研究如何收集、整理、分析、综合和使用统计数据,用来预测某事物的行为结果。
其主要内容包括:抽样分布、数据描述、统计推断、过程能力分析、非参数检验、回归分析、时间序列分析、因子分析、聚类分析等。
四、可能性理论可能性理论是由计算机科学家香农提出的一种数学理论,它用于描述复杂系统中不同实体之间的相互联系。
它包括:可能性函数、可能性图、可能性规则、可能性函数的演算、可能性空间和可能性算法等。
五、计算机统计学计算机统计学是一门多学科的科学,它研究和提供一种全面的、系统的和科学的方法,来实现计算机中数据的可视化、分析、探索和推理,来改善计算机的决策能力。
它的主要内容有:可视化分析、统计模型、统计技术、数据挖掘和机器学习等。
总之,组合数学是一门多学科交叉的重要学科,其内容涵盖组合算法、统计概率、概率统计、可能性理论和计算机统计学等。
它是一个非常庞大的学科,以上只是其中的一些关键点,以便更好地了解组合数学。
组合数学具有很强的实际应用价值,对于科学研究和实际应用都有着重要的作用。
(江苏专用)2020版高考数学复习第十章算法、统计与概率10.2抽样方法教案

§10.2 抽样方法考情考向分析 在抽样方法的考查中,系统抽样,分层抽样是考查的重点,题型主要以填空题为主,属于中低档题.1.简单随机抽样(1)定义:一般地,从个体数为N 的总体中逐个不放回地取出n 个个体作为样本(n <N ),如果每个个体都有相同的机会被取到,那么这样的抽样方法称为简单随机抽样. (2)最常用的简单随机抽样方法有两种——抽签法和随机数表法. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本. (1)采用随机的方式将总体中的N 个个体编号;(2)将编号按间隔k 分段,当N n 是整数时,取k =N n ;当N n不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N ′能被n 整除,这时取k =N ′n,并将剩下的总体重新编号; (3)在第一段中用简单随机抽样确定起始的个体编号l ;(4)按照一定的规则抽取样本,通常将编号为l ,l +k ,l +2k ,…,l +(n -1)k 的个体抽出. 3.分层抽样(1)定义:一般地,当总体由差异明显的几个部分组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按不同的特点分成层次比较分明的几个部分,然后按各个部分在总体中所占的比实施抽样,这种抽样方法叫分层抽样,所分成的各个部分称为“层”. (2)分层抽样的应用范围:当总体由差异明显的几个部分组成时,往往选用分层抽样的方法.概念方法微思考三种抽样方法有什么共同点和联系?提示 (1)抽样过程中每个个体被抽取的机会均等.(2)系统抽样中在起始部分抽样时采用简单随机抽样;分层抽样中各层抽样时采用简单随机抽样或系统抽样.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)简单随机抽样是一种不放回抽样.( √)(2)抽签法中,先抽的人抽中的可能性大.( ×)(3)系统抽样在第1段抽样时采用简单随机抽样.( √)(4)要从1002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.( ×)(5)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( ×)题组二教材改编2.[P52习题T1]某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是________.答案分层抽样法解析从全体学生中抽取100名宜用分层抽样法,按男、女学生所占的比例抽取.3.[P52习题T4]某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取_____名学生.答案15解析从高二年级中抽取的学生数与抽取学生总数的比为310,所以应从高二年级抽取学生人数为50×310=15.4.[P52习题T2]某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号,29号,42号学生在样本中,那么样本中还有一个学生的学号是________.答案16解析从被抽中的3名学生的学号中可以看出学号间距为13,所以样本中还有一个学生的学号是16.题组三易错自纠5.在一个容量为N的总体中抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则________.答案p1=p2=p3解析由随机抽样的知识知,三种抽样中,每个个体被抽到的概率都相等.6.甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件. 答案 1800解析 分层抽样中各层的抽样比相同.样本中甲设备生产的产品有50件,则乙设备生产的产品有30件.在4800件产品中,甲、乙设备生产的产品总数比为5∶3,所以乙设备生产的产品的总数为1800件.题型一 简单随机抽样1.某班级有男生20人,女生30人,从中抽取10人作为样本,其中一次抽样结果是:抽到了4名男生,6名女生,则下列命题正确的是________.(填序号) ①这次抽样中可能采用的是简单随机抽样; ②这次抽样一定没有采用系统抽样;③这次抽样中每个女生被抽到的概率大于每个男生被抽到的概率; ④这次抽样中每个女生被抽到的概率小于每个男生被抽到的概率. 答案 ①解析 利用排除法求解.这次抽样可能采用的是简单随机抽样,①正确;这次抽样可能采用系统抽样,男生编号为1~20,女生编号为21~50,间隔为5,依次抽取1号,6号,…,46号便可,②错误;这次抽样中每个女生被抽到的概率等于每个男生被抽到的概率,③和④均错误.2.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为________.答案 01解析 由题意知前5个个体的编号为08,02,14,07,01.3.利用简单随机抽样,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为________.答案514解析 由题意知9n -1=13,得n =28,所以整个抽样过程中每个个体被抽到的概率为1028=514. 思维升华应用简单随机抽样应注意的问题(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.题型二 系统抽样例1(1)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示:若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________. 答案 4解析 由题意知,将1~35号分成7组,每组5名运动员,成绩落在区间[139,151]内的运动员共有4组,故由系统抽样法知,共抽取4名.(2)某单位有840名职工,现采用系统抽样的方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________. 答案 12解析 由84042=20,即每20人抽取1人,所以抽取编号落入区间[481,720]的人数为720-48020=24020=12. 引申探究1.若本例(2)中条件不变,若号码“5”被抽到,那么号码“55”________被抽到.(填“能”或“不能”) 答案 不能解析 若55被抽到,则55=5+20n ,n =2.5,n 不是整数.故不能被抽到.2.若本例(2)中条件不变,若在编号为[481,720]中抽取8人,则样本容量为________. 答案 28解析 因为在编号[481,720]中共有720-480=240(人),又在[481,720]中抽取8人, 所以抽样比应为240∶8=30∶1,又因为单位职工共有840人,所以应抽取的样本容量为84030=28.思维升华(1)系统抽样适用的条件是总体容量较大,样本容量也较大.(2)使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体,从而确定分段间隔.(3)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定. 跟踪训练1将参加夏令营的600名学生按001,002,…,600进行编号.采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分别住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,则三个营区被抽中的人数依次为________. 答案 25,17,8解析 由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1).令3+12(k -1)≤300,得k ≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k -1)≤495,得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17;第Ⅲ营区被抽中的人数为50-25-17=8.题型三 分层抽样命题点1 求总体或样本容量例2(1)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n =________. 答案 13解析 ∵360=n120+80+60,∴n =13.(2)(2018·江苏省南京金陵中学模拟)某校共有教师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n 的样本,已知从女学生中抽取的人数为50人,那么n 的值为________. 答案 120解析 因为共有教师200人,男学生1200人,女学生1000人, 所以女学生占的比例为10002400=512,女学生中抽取的人数为50人, 所以n ×512=50,所以n =120.命题点2 求某层入样的个体数例3(1)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师的人数为________.答案 180解析 由题意,得抽样比为3201600=15, ∴该样本中的老年教师的人数为900×15=180.(2)我国古代数学专著《九章算术》中有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣________人. 答案 108解析 由题意可知,这是一个分层抽样的问题,其中北乡可抽取的人数为300×81008100+7488+6912=300×810022500=108.思维升华分层抽样问题类型及解题思路(1)求某层应抽个体数量:按该层所占总体的比例计算.(2)已知某层个体数量,求总体容量或反之:根据分层抽样就是按比例抽样,列比例式进行计算.(3)确定是否应用分层抽样:分层抽样适用于总体中个体差异较大的情况.跟踪训练2 (1)某校为了了解学生学习的情况,采用分层抽样的方法从高一1 000人,高二1 200人,高三n 人中抽取81人进行问卷调查,已知高二被抽取的人数为30,那么n =________. 答案 1040解析 分层抽样是按比例抽样的,所以81×12001000+1200+n=30,解得n =1040.(2)(2018·如东模拟)下表是关于青年观众的性别与是否喜欢戏剧的调查数据,人数如下表所示:现要在所有参与调查的人中用分层抽样的方法抽取n 人做进一步的调研,若在“不喜欢戏剧的男性青年观众”的人中抽取了8人,则n 的值为________. 答案 30解析 参与调查的总人数为150,由8∶n =40∶150, 得n =30.1.(2018·盐城调研)某单位有老年人20人,中年人120人,青年人100人,现用分层抽样的方法从所有人中抽取一个容量为n 的样本,已知从青年人中抽取的人数为10,则n =________. 答案 24解析 由分层抽样可得10n=10020+120+100=1024,故n =24.2.打桥牌时,将洗好的扑克牌(52张)随机确定一张为起始牌后,开始按次序搬牌,对任何一家来说,都是从52张总体中抽取一个13张的样本,则这种抽样方法是________. 答案 系统抽样解析 符合系统抽样的特点.3.用简单随机抽样的方法从含有10个个体的总体中抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性分别是________. 答案110,110解析 在抽样过程中,个体a 每一次被抽中的概率是相等的,因为总体容量为10,故个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性均为110.4.将参加英语口语测试的1000名学生编号为000,001,002,…,999,从中抽取一个容量为50的样本,按系统抽样的方法分为50组,如果第一组编号为000,001,002,…,019,且第一组随机抽取的编号为015,则抽取的第35个样本编号为________. 答案 695解析 由题意可知,第一组随机抽取的编号为015,分段间隔数k =N n =100050=20,由题意知抽出的这些号码是以15为首项,20为公差的等差数列,则抽取的第35个样本编号为15+(35-1)×20=695.5.某工厂的一、二、三车间在某月份共生产了3600双皮靴,在出厂前检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 成等差数列,则二车间生产的产品数为________.答案 1200解析 因为a ,b ,c 成等差数列,所以2b =a +c ,所以从二车间抽取的产品数占抽取产品总数的13,根据分层抽样的性质可知,二车间生产的产品数占产品总数的13,所以二车间生产的产品数为3600×13=1200.6.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为________. 答案 10解析 由系统抽样的特点知,抽取号码的间隔为96032=30,抽取的号码依次为9,39,69,…,939.落入区间[451,750]的有459,489,…,729,这些数构成首项为459,公差为30的等差数列,设有n 项,显然有729=459+(n -1)×30,解得n =10.所以做问卷B 的有10人. 7.某电视台为了调查“爸爸去哪儿”节目的收视率,现用分层抽样的方法从4300人中抽取一个样本,这4300人中青年人1600人,且中年人人数是老年人人数的2倍,现根据年龄采用分层抽样的方法进行调查,在抽取的样本中青年人有320人,则抽取的样本中老年人的人数为________. 答案 180解析 设老年人有x 人,从中抽取y 人,则1 600+3x =4 300,得x =900,即老年人有900人,则9001600=y320,得y =180.8.某中学教务处采用系统抽样方法,从学校高三年级全体1000名学生中抽50名学生做学习状况问卷调查.现将1000名学生从1到1000进行编号,求得间隔数k =20,即分50组每组20人.在第一组中随机抽取一个号,如果抽到的是17号,则第8组中应抽取的号码是_____. 答案 157解析 根据系统抽样的特点可知,抽取出的编号成首项为17,公差为20的等差数列,所以第8组应抽取的号码是17+(8-1)×20=157.9.(2017·江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件. 答案 18解析 ∵样本容量总体个数=60200+400+300+100=350,∴应从丙种型号的产品中抽取350×300=18(件).10.某高中在校学生有2000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山的比赛活动.每人都参与而且只能参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取的人数为________. 答案 36解析 根据题意可知,样本中参与跑步的人数为200×35=120,所以从高二年级参与跑步的学生中应抽取的人数为120×32+3+5=36.11.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,若第5组抽取号码为22,则第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.答案 37 20解析 将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件得,200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中应抽取x 人,则40200=x100,解得x =20.12.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =8,则在第8组中抽取的号码是________. 答案 76解析 由题意知,m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.13.某市教育主管部门为了全面了解2018届高三学生的学习情况,决定对该市参加2018年高三第一次全省统一考试(后称统考)的32所学校进行抽样调查.将参加统考的32所学校进行编号,依次为1到32,现用系统抽样法抽取8所学校进行调查,若抽到的最大编号为31,则最小编号是________. 答案 3解析 根据系统抽样的特点可知,总体分成8组,组距为328=4,若抽到的最大编号为31,则最小编号是3.14.某校共有学生2 000名,各年级男、女学生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为________.答案 16解析 由题意,知二年级女生有380人,那么三年级的学生人数应该是2000-373-377-380-370=500,即总体中各个年级的人数比为3∶3∶2,故在分层抽样中应在三年级抽取的学生人数为64×28=16.15.某公司员工对户外运动分别持“喜欢”、“不喜欢”和“一般”三种态度,其中持“一般”态度的比持“不喜欢”态度的多13人,按分层抽样方法从该公司全体员工中选出部分员工座谈户外运动,如果选出的人中有6人对户外运动持“喜欢”态度,有2人对户外运动持“不喜欢”态度,有3人对户外运动持“一般”态度,那么这个公司全体员工中对户外运动持“喜欢”态度的有________人.答案 78解析 设持“喜欢”、“不喜欢”、“一般”态度的人数分别为6x,2x,3x ,由题意可得3x -2x =13,x =13,∴持“喜欢”态度的有6x =78(人).16.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数减少1人,则在采用系统抽样时,需要在总体中先剔除2个个体,求n . 解 总体容量为6+12+18=36.当样本容量为n 时,由题意知,系统抽样的间隔为36n ;分层抽样的比例是n 36,抽取的工程师人数为n 36×6=n 6,技术员人数为n 36×12=n 3,技工人数为n 36×18=n 2, 所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n -1)时,总体容量剔除以后是34人,系统抽样的间隔为34n -1,因为34n -1必须是整数,所以n 只能取18,即样本容量n =18.。
数学的算法知识点归纳总结

数学的算法知识点归纳总结数学的算法知识点归纳总结在数学领域中,算法是解决问题和完成计算任务的关键工具。
它们描述了完成特定操作或计算的一系列步骤。
本文将对数学中的各种算法进行归纳总结,帮助读者更好地理解和应用这些算法。
一、基本运算算法1. 加法算法:加法是数学中最基本的运算之一。
算法的基本步骤是垂直对齐两个加数,从右至左逐位相加,并记录下每一位的进位。
2. 减法算法:减法是加法的逆运算。
算法的基本步骤是垂直对齐被减数和减数,从右至左逐位相减,并记录下每一位的借位。
3. 乘法算法:乘法是将两个数相乘得到一个积的运算。
传统的乘法算法是将被乘数逐位与乘数相乘,并将乘积相加得到最终结果。
4. 除法算法:除法是将一个数分为若干等分的运算。
传统的除法算法是将除数逐位分别除以被除数,并将商相加得到最终结果。
二、数论算法1. 质数判断算法:质数是只能被1和自身整除的正整数。
判断一个数是否为质数的算法可以通过将该数与小于等于其平方根的所有正整数进行取余运算,如果能整除其中任何一个数,则该数为合数,否则为质数。
2. 最大公约数算法:最大公约数是两个或多个整数共有的约数中最大的一个。
欧几里得算法是一种辗转相除的算法,通过连续地将较大数除以较小数取余,直到余数为0,最后一个被除数即为最大公约数。
3. 最小公倍数算法:最小公倍数是两个或多个整数公有的倍数中最小的一个。
通过将两个数的乘积除以最大公约数即可得到最小公倍数。
三、代数算法1. 方程求解算法:方程是含有一个或多个未知数的等式。
求解代数方程的算法有很多种,包括直接求解、代数变形、因式分解、牛顿迭代等方法。
2. 矩阵运算算法:矩阵是一个按照轴对称排列的数表。
矩阵运算包括加法、减法、乘法和求逆等操作。
其中矩阵乘法的算法是通过将一个矩阵的每一行与另一个矩阵的每一列进行乘法运算,并将结果相加得到新的矩阵。
3. 求导与积分算法:求导是求函数导数的运算,可以使用导数的定义和公式进行计算。
高考数学总复习(考点引领+技巧点拨)第十章 算法、统计与概率第1课时 算 法

《最高考系列高考总复习》2014届高考数学总复习(考点引领+技巧点拨)第十章算法、统计与概率第1课时算法考情分析考点新知① 算法初步是高中数学新课程标准中新添加的内容,高考对本章的考查主要以填空题的形式出现,单独命题以考查考生对流程图的识别能力为主,对算法语言的阅读理解能力次之,考查用自然语言叙述算法思想的可能性不大.②算法可结合在任何试题中进行隐性考查,因为算法思想在其他数学知识中的渗透是课标的基本要求,常见的与其他知识的结合有分段函数、方程、不等式、数列、统计等知识综合,以算法为载体,以算法的语言呈出,实质考查其他知识.① 了解算法的含义、算法的思想.②理解程序框图的三种基本逻辑结构:顺序、选择、循环.③理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.1. (必修3P37测试1改编)阅读程序框图,若输入的a,b,c分别为14,6,20,则输出的a,b,c分别是________.答案:20,14,6解析:该程序框图的作用是交换a,b,c的值,逐一进行即可.Read xIf x ≤0 Then y ←x +2Elsey ←log 2xEnd If Print y2. (必修3P 37测试3改编)某算法的伪代码如图所示,若输出y 的值为3,则输入x 的值为________.答案:8解析:所给算法伪代码的意义是求函数y =⎩⎪⎨⎪⎧x +2,x ≤0,log 2x ,x>0的值,当输出y 的值为3,若输入的x≤0,则x +2=3,解得x =1不合,舍去;若输入的x>0,则log 2x =3,解得x =8.综上所述,输入x 的值为8.3. (2013·连云港期末)下图是一个算法流程图,若输入x 的值为-4,则输出y 的值为________.(第3题图)答案:2解析:算法流程图的运行过程如下:条件 Y Y Y N x-47412输出故输出的y 的值为2.4. (必修3P 25习题7改编)阅读如图所示的伪代码,若使这个算法执行的是-1+3-5+7-9的计算结果,则a 的初始值x =________.S ←0a ←xFor I From 1 To 9 Step 2 S←S+a×I a←a×(-1)End For Print S (第4题图)答案:-1 解析:根据算法的循环结构知循环体第一次被执行后的结果应为0+(-1),故初始值x =-1.(第5题图)5. (2013·南通期末)已知实数x∈[1,9],执行如右图所示的流程图,则输出的x 不小于55的概率为________.答案:38解析:由流程图知,当输入x 时,各次循环输出的结果分别是2x +1,2(2x +1)+1=4x +3,2(4x +3)+1=8x +7,此时退出循环.由⎩⎪⎨⎪⎧8x +7≥55,1≤x ≤9,解得6≤x≤9,故输出的x不小于55的概率为P =9-69-1=38.1. 算法一般而言,对一类问题的机械的、统一的求解方法称为算法. 2. 流程图流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.3. 构成流程图的图形符号及其作用(1) 起止框用“”表示,是任何流程图不可缺少的,表明算法的开始或结束;(2) 输入、输出框用“”表示,可用在算法中任何需要输入、输出的位置,需要输入的字母、符号、数据都填在框内;(3) 处理框用“”表示,算法中处理数据需要的算式、公式等可以分别写在不同的用以处理数据的处理框内;(4) 当算法要求你对两个不同的结构进行判断时,需要将实现判断的条件写在判断框内,判断框用“”表示.4. 基本的算法结构(1) 算法都可以由顺序结构、选择结构、循环结构这三块“积木”通过组合和嵌套表达出来.(2) 流程图可以方便直观地表示三种基本的算法结构.5. 伪代码伪代码是介于自然语言和计算机语言之间的文字和符号,是表达算法的简单而实用的好方法.6. 赋值语句用符号“x←y”表示,将y的值赋给x,其中x是一个变量,y是一个与x同类型的变量或表达式.7. 输入语句、输出语句(1) 输入语句:“Read a,b”表示输入的数据依次送给a,b.(2) 输出语句:“Print x”表示输出运算结果x.8. 条件语句条件语句的一般形式是If A ThenBElseCEnd If其中A表示判断的条件,B表示满足条件时执行的操作内容,C表示不满足条件时执行的操作内容,End If表示条件语句结束.9. 循环语句循环语句一般有三种:“While循环”“Do循环”“For循环”.(1) 当型循环一般采用“While循环”描述循环结构.格式:While 条件循环体End While先判断条件是否成立,当条件成立时,执行循环体,遇到End While语句时,就返回继续判断条件,若仍成立,则重复上述过程,若不成立,则退出循环.当型语句的特点是先判断,后执行.(2) 直到型循环可采用“Do循环”描述循环结构.格式:Do循环体Until 条件End Do先执行循环体部分,然后再判断所给条件是否成立.如果条件不成立,那么再次执行循环体部分,如此反复,直到所给条件成立时退出循环.直到型语句的特点是先执行,后判断.(3) 当循环的次数已经确定,可用“For”语句表示.格式:For I from 初值to 终值 step 步长循环体End for功能:根据For语句中所给定的初值、终值和步长,来确定循环次数,反复执行循环体内各语句.通过For语句进入循环,将初值赋给变量I,当循环变量的值不超过终值时,则顺序执行循环体内的各个语句,遇到End For,将循环变量增加一个步长的值,再与终值比较,如果仍不超过终值范围,则再次执行循环体.这样重复执行,直到循环变量的值超过终值,则跳出循环.注:① 只有当循环次数明确时,才能使用本语句;② Step可以省略,此时默认步长为1;③ 步长可以为正、负,但不能是0,否则会陷入“死循环”.步长为正时,要求终值大于初值,如果终值小于初值,循环将不能执行.步长为负时,要求终值必须小于初值.[备课札记]题型1 流程图的算法功能例1(2013·江苏)下图是一个算法的流程图,则输出的n的值是________.答案:3解析:根据流程图得,当n=1时,a取初值2,进入循环体,a=3×2+2=8,n=1+1=2;由a<20进行第二次循环,a=3×8+2=26,n=2+1=3;此时a<20不成立,退出循环,从而最终输出n=3.变式训练(2013·扬州调研)如图所示的流程图,若输出的结果是15,则判断框中的横线上可以填入的最大整数为________.答案:49条件Y Y Y Y Y Y Y Ns 0+1=1 1+3=4 4+5=9 9+7=16 16+9=25 25+11=36 36+13=49 输出i 1+2=3 3+2=5 5+2=7 7+2=9 9+2=11 11+2=13 13+2=15 15判断框中的横线上可以填入的最大整数为49.题型2 算法伪代码的算法功能例2 (2013·南通一模)根据如图所示的伪代码,最后输出的S 的值为________.S →0For I From 1 to 28 Step 3 S ←S +I End For Print S 答案:145解析:由算法伪代码知,此算法为计算首项为1,公差为3的等差数列的前10项的和,所以S =1+4+…+28=10(1+28)2=145.备选变式(教师专享)(2013苏州调研)如下一段伪代码中,Int(x)表示不超过x 的最大整数,若输入m =6,n =4,则最终输出的结果n 为________.Read m ,nWhile m n ≠Int ⎝ ⎛⎭⎪⎫m n c ←m -n×Int ⎝ ⎛⎭⎪⎫m nm ←n n ←cEnd While Print n 答案:2解析:输入m =6,n =4时,m n =64=32,而Int ⎝ ⎛⎭⎪⎫m n =Int ⎝ ⎛⎭⎪⎫64=1,显然m n ≠Int ⎝ ⎛⎭⎪⎫m n ,进行循环体,执行c =m -n×Int ⎝ ⎛⎭⎪⎫m n =6-4×1=2,并将m←4,n ←2;从而m n =42=2,Int ⎝ ⎛⎭⎪⎫m n =Int ⎝ ⎛⎭⎪⎫42=2,判断条件m n =Int ⎝ ⎛⎭⎪⎫m n ,退出循环,故输出n =2.题型3 算法与相关知识的交汇例3 如图是讨论三角函数某个性质的程序框图,若输入a i =sin i 11π(i∈N *),则输出的i 的值是________.答案:22解析:根据流程图所示的算法,可知:该程序的作用是计算:S =a 1+a 2+…+a n =sinπ11+sin 2π11+…+sin n π11,并判断满足条件S≤0的最小整数i -1的值.结合三角函数的正弦线可得:S =sin π11+sin 2π11+…+sin 20π11>0,S =sin π11+sin 2π11+…+sin 21π11=0,故满足条件的i 值为22,故答案为22. 备选变式(教师专享)(2013·合肥模拟改)如图所示,算法流程图输出的n 为________.答案:13解析:由框图可知,该程序为求数列a n =12n -13的前n 项和大于零的n 的最小值,由a n 的形式可知:S 12=0,a 13>0,S 13>0,所以输出的n 值为13.1. (2013·盐城二模)如图,该程序运行后输出的结果为________.(第1题图)答案:16解析:由流程图知,在循环体中执行运算:第一循环:b =2,a =2;第二循环:b =22=4,a =3;第三循环:b =24=16,a =4;不满足条件a<4,退出循环,故输出b =16.2. 如图,N i 表示第i 个学生的学号,G i 表示第i 个学生的成绩,已知学号在1~10的学生的成绩依次为401、392、385、359、372、327、354、361、345、337,则打印出的第5组数据是________.(第2题图)答案:8,361 解析:本题流程图表示的算法功能是筛选成绩大于等于360分的学生,打印出他们的学号和成绩,所以打印出的第5组数据是8,361.3. (2013·北京(改))执行如图所示的程序框图,输出的S =________.(第3题图)答案:1321解析:执行第一次循环时S =12+12×1+1=23,i =1;第二次循环S =⎝ ⎛⎭⎪⎫232+12×23+1=1321,i =2,此时退出循环.故输出S =1321.4. 如图是一个算法流程图,则输出的k =________.(第4题图)答案:5解析:根据流程图所示的顺序,程序的运行过程中变量值变化如下表:是否继续循环k k 2-5k +4循环前 0 0 第一圈 是 1 0 第二圈 是 2 -2 第三圈 是 3 -2 第四圈 是 4 0 第五圈 是 5 4 第六圈否输出5∴ 最终输出结果k =5.1. (2013·苏锡常一模) 根据下图所示的伪代码,输出的结果T 为________.T ←1I ←3While I <20 T ←T +Ⅰ I ←I +2 End While Print T 答案:100解析:图中伪代码表示的算法是T =1+3+5+…+19=10(1+19)2=100,所以输出T=100.2. 定义一种新运算“”:S =a b ,其运算原理为如图的程序框图所示,则式子54-36=________.答案:1解析:由框图可知S =⎩⎪⎨⎪⎧b (a +1),a ≤b ,a (b +1),a>b ,从而可得54-36=5×(4+1)-(3+1)×6=1.3. (2013·西亭期中)如下给出的是一个与定义在R 上f(x)=x 3+sinx 相关的算法语言,一个公差不为零的等差数列{a n },使得该程序能正常运行且输出的结果恰好为0,请写出一个符合条件的数列{a n }的通项公式_______.n ←1 S←0While i ≤10x ←a nS ←S +f(x)n ←n +1End WhliePrint S答案:a n =n -5.5等 (答案不唯一)解析:易见f(x)是奇函数,而由题意,要使f(a 1)+f(a 2)+…+f(a 10)=0,可考虑f(a i )+f(a 11-i )=0(i =1,2,3,4,5),由于{a n }是等差数列,因而又可考虑a i +a 11-i =0(i =1,2,3,4,5),如a n =2n -11,a n =n -5.5等(答案不唯一).4. 货物运输价格P(元)与运输距离s(km)有关,按下列公式定价(P 为每吨货物每千米的运价)P =⎩⎪⎨⎪⎧20,s <100,17.5,100≤s <200,15,200≤s <300,12.5,300≤s <500,10,s ≥500.现输入s 和货物的吨数ω,画出计算总运费的流程图.解:流程图如图所示:1. 求解伪代码问题的基本思路关键是理解基本算法语言.在一个赋值语句中,只能给一个变量赋值,同一个变量的多次赋值的结果以算法顺序的最后一次为准.对于条件语句要注意准确判断和语句格式的完整性理解.对于循环语句,要注意是“N”循环,还是“Y”循环,弄清何时退出循环.2. 注意算法与其他知识的综合交汇,特别是用流程图来设计数列的求和是高考的常考题型.数列的求和计算问题是典型的算法问题,要求能看懂流程图和伪代码,能把流程图或伪代码转化为数列问题,体现了化归的思想方法.请使用课时训练(A)第1课时(见活页).。
统计学算法

统计学算法
概率统计学算法是一类基于概率论的统计算法,用于求解未知量的解,主要应用于信息检索和计算机技术这些领域。
它可以提供准确、快速、稳定的解决方案。
概率统计学算法分为四大类:
一、贝叶斯概率算法:
贝叶斯概率算法是一种基于概率论的统计技术,其基本思想是将历史数据用于预测和研究,以获得更准确的结果。
这种算法把一系列不确定的变量,利用概率关联组合起来,将历史数据概括为一个潜在变量分布,以空间和非空间的方式描述。
二、统计学概率算法:
统计学概率算法是一种从数据中推断出结论的算法,它从统计结果中推断出可以帮助求解问题的概率规律。
它用分布 d(x) 来表示假设中随机变量 X 的分布,并将其用于历史数据,寻求正确的模型参数,以概率分析的方式求解未知参数的值,从而分析出未知参数的可能解。
三、随机变量概率算法:
随机变量概率算法是一类基于概率论的算法,主要是基于随机变量和概率分布,它使用统计观测值、预测值和样本量来对模型参数进行估计,然后利用概率在模型中求解未知参数,从而最终求解未知量的准确值和概率分布。
四、回归分析概率算法:
回归分析概率算法是一类基于概率论的算法,使用概率的方法来预测未知的出现,利用数据特征分析,以及分析历史数据来推导出未知变量的关系和模型。
它采用损失函数和优化方法来分析数据特征,以求得精确的参数值,从而实现未知变量的推断,从而推断出未知量的解。
高考数学一轮复习第十章算法统计与概率第56课几何概型课件

[易错与防范] 1.易混淆几何概型与古典概型,两者共同 点是试验中每个结果的发生是等可能的,不同 之处是几何概型的试验结果的个数是无限的, 古典概型中试验结果的个数是有限的. 2.准确把握几何概型的“测度”是解题关 键. 3.几何概型中,线段的端点、图形的边框 是否包含在事件之内不影响所求结果.
编后语
与面积有关的几何概型
☞角度 1 与随机模拟相关的几何概型
(2016·全国卷Ⅱ改编)从区间[0,1]随机抽取 2n 个数 x1, x2,…,xn,y1,y2,…,yn,构成 n 个数对(x1,y1),(x2,y2),…,(xn, yn),其中两数的平方和小于 1 的数对共有 m 个,则用随机模拟的方法 得到的圆周率 π 的近似值为________.
[变式训练 1] (1)设 A 为圆周上一点,在圆周上等可能地任取一点与 A 连结,
则弦长超过半径 2倍的概率是________. 【导学号:62172308】
(2)(2016·山东高考)在[-1,1]上随机地取一个数 k,则事件“直线 y=kx 与圆
(x-5)2+y2=9 相交”发生的概率为________.
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)随机模拟方法是以事件发生的频率估计概率.( )
(2)从区间[1,10]内任取一个数,取到 1 的概率是110.(
)
(3)概率为 0 的事件一定是不可能事件.( )
(4)在几何概型定义中的区域可以是线段、平面图形、立体图形.( ) [答案] (1)√ (2)× (3)× (4)√
即点 M 在正方体的下半部分,
1 ∴所求概率 P=2VV正正方方体体=12.]
图 56-4
[思想与方法] 1.古典概型与几何概型的区别在于:前者 基本事件的个数有限,后者基本事件的个数无 限. 2.判断几何概型中的几何度量形式的方法 (1)当题干是双重变量问题,一般与面积有 关系.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法、统计、概率专题练习
一、填空题
1. 某单位有老年人28人,中年人54人,青年人81人,为调查身体健康状况,需要从中抽取一个容量为
36的样本,用分层抽样方法应分别从老年人、中年人、青年人中各抽取 __人、 人、 人
2. 某班有学生54人,有4张上海世博会门票,现根据学生的学号,用系统抽样的方法分给4位学生.若
已知3号,29号,42号学生已被抽中,那么还有一个被抽到的学生学号是 . 3. 已知样本9,10,11,,x y 的平均数是10,标准差是2,则xy .
4. 已知样本x 1,x 2,x 3,x 4,x 5的方差为3,则样本4x 1+1,4x 2+1,4x 3+1,4x 4+1,4x 5+1的标准差是______.
5. 在下列各图中,两个变量具有线性相关关系的图是 .
6. 有一位同学为了研究气温对热饮销售的影响,经过统计得到了某小卖部一天所卖的热饮杯数(y )与当
天气温(x ℃)之间的线性关系,其回归方程为y
ˆ=-2.35x +147.77.如果某天气温为2℃时,则该小卖部大约能卖出热饮的杯数是 .
7. 由经验得知,在某商场付款处排队等候付款的人数及其概率如下:
则排队人数为2或3人的概率为 . 8. 一个社会调查机构就某地居民的月收入调查了10000人,
并根据所得数据画了样本的频率分布直方图.为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出80人作进一步调查,则在[1500,2000)(元)月收入段应抽出 人.
9. 从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率是 .
10. 已知x 可以在区间[-t ,4t ](t >0)上任意取值,则x ∈[-2
1
t ,t ]的概率是 .
11. 已知数列{a n },a 1=1,a n +1=a n -n ,计算数列{a n }的第20项.现已给出该问题算法的程序框图,为
使之能完成上述的算法功能,则在右图判断框中(A )处应填上合适的语句是 ;
在处理框中(B )处应填上合适的语句是 . 12. 按如图所示的程序框图,在运行后输出的结果为 . 13. 按如图所示的程序框图,在运行后输出的结果为 .
14. 如图程序是求两正整数m,n 的最大公约数 ,请补充完整整个程。
(1) ;
(2) ;(3) . 二、解答题
15.从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下:
甲 8 9 7 9 7 6 10 10 8 6 乙
10
9
8
6
8
7
9
7
8
8
(1)计算甲、乙两人射箭命中环数的平均数和标准差; (2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛.
16.为了 研究某高校大学新生的视力情况,随机抽取了该校100名进校学生的视力,得到频率分布直方图,如图,已知前4组的频数从左到右依次是等比数列{a n }的前四项,后6组的频数从左到右依次是等差数列{b n }的前六项。
(1)求a 1,a 2及数列{a n }的通项公式; (2)求数列{b n }的通项公式;
(3)若规定视力低于5.0的学生属于近视学生,试估计该校新生的近视率μ的大小。
第(11)题 第(12)题 第(13)题 第(14)题
17.在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.
(1)求取出的两个球上标号为相同数字的概率; (2)求取出的两个球上标号之积能被3整除的概率.
18.现有6名奥运会志愿者,其中志愿者12A A ,通晓日语,12B B ,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(Ⅰ)求1A 被选中的概率; (Ⅱ)求1B 和1C 不全被选中的概率.
(Ⅲ)若6名奥运会志愿者每小时派俩人值班,现有俩名只会日语的运动员到来,求恰好遇到12A A ,的概率.
19. 将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,将得到的点数分别记为b a ,.
(Ⅰ)求直线05=++by ax 位于点(-1,-1)上方的概率;
(Ⅱ)将5,,b a 的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
20. 在一只袋子中装有7个红玻璃球,3个绿玻璃球.从中无放回地任意抽取两次,每次只取一个.试求: (1)取得两个红球的概率; (2)取得两个绿球的概率; (3)取得两个同颜色的球的概率; (4)至少取得一个红球的概率.
21.设AB=6,在线段AB 上任取两点(端点A 、B 除外),将线段AB 分成了三条线段. (1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形的概率; (2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形的概率.。