2019年洞头区毕业升学考试第二次适应性考试数学试卷

合集下载

2019年浙江省温州市洞头区灵昆中学中考数学二模试卷(解析版)

2019年浙江省温州市洞头区灵昆中学中考数学二模试卷(解析版)

2019年浙江省温州市洞头区灵昆中学中考数学二模试卷一.选择题(共10小题,满分40分,每小题4分)1.关于“线段、角、正方形、平行四边形、圆”这些图形中,其中是轴对称图形的个数为()A.2B.3C.4D.52.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为()A.1.3×106B.130×104C.13×105D.1.3×1053.计算(x﹣1)÷(1﹣)•x的结果是()A.﹣x2B.﹣1C.x2D.14.下列因式分解正确的是()A.x2+1=(x+1)2B.x2+2x﹣1=(x﹣1)2C.2x2﹣2=2(x+1)(x﹣1)D.x2﹣x+2=x(x﹣1)+25.矩形ABCD中AB=10,BC=8,E为AD边上一点,沿CE将△CDE对折,点D正好落在AB边上的F点.则AE的长是()A.3B.4C.5D.66.关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0B.﹣1C.﹣2D.﹣37.将不等式组的解集在数轴上表示出来,应是()A.B.C.D.8.已知三角形的三边长分别为2、x、10,若x为正整数,则这样的三角形个数为()A.1B.2C.3D.49.如图,在平面直角坐标系中,点A在一次函数y=x(x>0)的图象上,点B在x轴的正半轴上,以AB为边作矩形ABCD,AB=6,AD=2.则线段OD的最大长度()A.4+2B.5+C.4+2D.2+10.关于特殊四边形对角线的性质,矩形具备而平行四边形不一定具备的是()A.对角线互相平分B.对角线互相垂C.对角线相等D.对角线平分一组对角二.填空题(共6小题,满分30分,每小题5分)11.分解因式:2x2﹣2=.12.已知关于x,y的二元一次方程组的解满足x﹣y=3,则m的值为13.如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为m.14.一个正多边形的内角和与外角和的比是4:1,则它的边数是.15.把一个长方形纸片按如图所示折叠,若量得∠AOD′=36°,则∠D′OE的度数为.16.如图,正方形ABOD的边长为4,OB在x轴上,OD在y轴上,点A在第二象限内,且AD∥OB,AB∥OD,点C为AB的中点,直线CD交x轴于点F,过点C作CE⊥DF于点C,交x轴于点E,则点E坐标为,点P是直线CE上的一个动点,当点P的坐标为时,PB+PF 有最小值.三.解答题(共8小题,满分80分)17.(8分)(1)计算:;(2)化简:(a+2)2﹣a(a﹣1).18.(8分)如图:AB是半圆的直径,∠ABC的平分线交半圆于D,AD和BC的延长线交于圆外一点E,连结CD.(1)求证:△EDC是等腰三角形.(2)若AB=5,BC=3,求四边形ABCD的面积.19.(8分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,5×5正方形方格纸中,点A、B都在格点处.(1)请在图中作等腰△ABC,使其底边AC=,且点C为格点;(2)在(1)的条件下,作出平行四边形ABDC,且D为格点,并直接写出平行四边形ABDC的面积.20.(8分)一个不透明的布袋里装有16个只有颜色不同的球,其中红球有x个,白球有2x个,其他均为黄球,现甲同学从布袋中随机摸出1个球,若是红球,则甲同学获胜,甲同学把摸出的球放回并搅匀,由乙同学随机摸出1个球,若为黄球,则乙同学获胜.(1)当x=3时,谁获胜的可能性大?(2)当x为何值时,游戏对双方是公平的?21.(10分)如图,一次函数y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与X 轴交于点C,其中点A(﹣1,3)和点B(﹣3,n).(1)填空:m=,n=.(2)求一次函数的解析式和△AOB的面积.(3)根据图象回答:当x为何值时,kx+b≥(请直接写出答案).22.(12分)某市居民用电电费目前实行梯度价格表)(1)若月用电150千瓦时,应交电费元,若月用电250千瓦时,应交电费元;(2)若居民王大爷家12月应交电费150元,请计算他们家12月的用电量;(3)若居民李大爷家11、12月份共用电480千瓦时(其中11月份用电量少于12月份),共交电费262.6元.请直接写出李大爷家这两个月的用电量.23.(12分)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.24.(14分)如图,四边形ABCD 的顶点在⊙O 上,BD 是⊙O 的直径,延长CD 、BA 交于点E ,连接AC 、BD 交于点F ,作AH ⊥CE ,垂足为点H ,已知∠ADE =∠ACB .(1)求证:AH 是⊙O 的切线;(2)若OB =4,AC =6,求sin ∠ACB 的值;(3)若=,求证:CD =DH .2019年浙江省温州市洞头区灵昆中学中考数学二模试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据有理数的加法法则,即可解答.【解答】解:﹣10+3=﹣(10﹣3)=﹣7,故选:A.【点评】本题考查了有理数的加法,解决本题的关键是熟记有理数的加法法则.2.【分析】用仰卧起坐个数不少于50个的频数除以女生总人数10计算即可得解.【解答】解:仰卧起坐个数不少于50个的有52、50、50、61、72共5个,所以,频率==0.5.故选:C.【点评】本题考查了频数与频率,频率=.3.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.4.【分析】根据勾股定理求出OA,根据正弦的定义解答即可.【解答】解:由题意得,OC=2,AC=4,由勾股定理得,AO==2,∴sin A==,故选:A.【点评】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=•=故选:D.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.6.【分析】由方程根的情况,根据根的判别式可得到关于a的不等式,可求得a的取值范围,则可求得答案.【解答】解:∵关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,∴△>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选:B.【点评】本题主要考查根的判别式,掌握方程根的情况与根的判别式的关系是解题的关键.7.【分析】根据一元一次不等式组的解法解出不等式组,根据小于等于或大于等于用实心圆点在数轴上表示解答.【解答】解:不等式组的解集为:1≤x≤3,故选:A.【点评】本题考查的是解一元一此不等式组及在数轴上表示一元一次不等式组的解集,在解答此类题目时要注意实心圆点与空心圆点的区别.8.【分析】先根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出x的取值范围,然后根据若x为正整数,即可选择答案.【解答】解:∵10﹣2=8,10+2=12,∴8<x<12,∵若x为正整数,∴x的可能取值是9,10,11,故这样的三角形共有3个.故选:C.【点评】本题考查了三角形的三边关系,熟练掌握“三角形任意两边之和大于第三边,任意两边之差小于第三边”求出x的取值范围是解题的关键.9.【分析】由直线的斜率得出tan∠AOB=,作△AOB的外接圆⊙P,连接OP、PA、PB、PD,作PG⊥CD,交AB于H,垂足为G,易得∠APH=∠AOB,解直角三角形求得PH=2,然后根据广告代理渠道PD、PA,根据三角形三边关系得出OD取最大值时,OD=OP+PD,据此即可求得.【解答】解:∵点A在一次函数y=x(x>0)的图象上,∴tan∠AOB=,作△AOB的外接圆⊙P,连接OP、PA、PB、PD,作PG⊥CD,交AB于H,垂足为G,∵四边形ABCD是矩形,∴AB∥CD,四边形AHGD是矩形,∴PG⊥AB,GH=AD=2,∵∠APB=2∠AOB,∠APG=∠APB,AH=AB=3=DG,∴∠APH=∠AOB,∴tan∠APH=tan∠AOB=,∴=,∴PH=2,∴PG=2+2=4,∴PD===5,OP=PA===,在△OPD中,OP+PD≥OD,∴OD的最大值为5+,故选:B.【点评】本题考查了一次函数图象上点的坐标特征,圆心角和圆周角的关系,垂径定理以及勾股定理的应用,三角形三边关系等,作出辅助线是解题的关键.10.【分析】根据矩形、平行四边形的性质即可判断;【解答】解:矩形的对角线互相平分且相等,平行四边形的对角线互相平分,∴矩形具备而平行四边形不一定具备的是矩形的对角线相等,故选:C.【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等是常考内容.二.填空题(共6小题,满分30分,每小题5分)11.【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.【解答】解:2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1).故答案为:2(x+1)(x﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.12.【分析】②﹣①得到x﹣y=4﹣m,代入x﹣y=3中计算即可求出m的值.【解答】解:,②﹣①得:x﹣y=4﹣m,∵x﹣y=3,∴4﹣m=3,解得:m=1,故答案为:1【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.【分析】利用勾股定理易得扇形的半径,那么就能求得扇形的弧长,除以2π即为圆锥的底面半径.【解答】解:易得扇形的圆心角所对的弦是直径,∴扇形的半径为:m,∴扇形的弧长为:=πm,∴圆锥的底面半径为:π÷2π=m.【点评】本题用到的知识点为:90度的圆周角所对的弦是直径;圆锥的侧面展开图的弧长等于圆锥的底面周长.14.【分析】多边形的外角和是360度,内角和与外角和的比是4:1,则内角和是1440度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1440,解得:n=10.则此多边形的边数是10.故答案为:10.【点评】本题考查了多边形内角和定理和外角和定理:多边形内角和为(n﹣2)•180°,外角和为360°.15.【分析】由翻折变换的性质可知∠D′OE=∠DOE,故∠AOD′+2∠D′OE=180°,求出∠D′OE的度数即可.【解答】解:∵四边形ODCE折叠后形成四边形OD′C′E,∴∠D′OE=∠DOE,∴∠AOD′+2∠D′OE=180°,∵∠AOD′=36°,∴∠D′OE=72°.故答案为:72°.【点评】本题考查的是图形的翻折变换,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.【分析】由条件可求得B点坐标,可求得BF=BC的长,利用△BCF∽△BEC可求得BE的长,则可求得OE的长,可求得E点坐标;易知可知点D与F关于直线CE对称,连接BD交直线CE 于点P,则可知P点即为满足条件的动点,求出直线EC、直线BD的解析式构建方程组确定点P 坐标即可;【解答】解:∵C是AB的中点,∴AC=BC,∵四边形ABOD是正方形,∴∠A=∠CBF=90°,在△ACD和△BCF中,∴△ACD ≌△BCF (ASA ),∴CF =CD ,BF =AD =4∵CE ⊥DF ,∴CE 垂直平分DF ,∴D 、F 关于直线CE 对称,∵∠CBF =∠CBE =∠FCE =90°,∴∠CFB +∠FCB =∠FCB +∠ECB =90°,∴∠CFB =∠BCE ,∴△BCF ∽△BEC ,∴=,即=,解得BE =1,∴OE =OB ﹣BE =4﹣1=3,∴E 点坐标为(﹣3,0);如图,连接BD 交直线CE 于点P ,∵点D 与点F 关于直线CE 对称,∴PD =PF ,∴PB +PF =PB +PD ≥BD ,此时PF +PE 的值最小,∵直线CE 的解析式为y =﹣2x ﹣6,直线BD 的解析式为y =x +4,由,解得,∴P (﹣,).故答案为(﹣3,0),(﹣,).【点评】本题为一次函数的综合应用,正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质、轴对称的性质等知识.三.解答题(共8小题,满分80分)17.【分析】(1)直接利用绝对值的性质以及二次根式的性质、零指数幂的性质分别化简得出答案; (2)直接利用完全平方公式以及单项式乘以多项式分别化简得出答案.【解答】解:(1)原式=2﹣1﹣(﹣1)=;(2)原式=a 2+4a +4﹣a 2+a=5a +4.【点评】此题主要考查了完全平方公式以及单项式乘以多项式、实数运算,正确掌握相关运算法则是解题关键.18.【分析】(1)根据圆周角定理由AB 是半圆的直径得∠ADB =∠ACB =90°,加上∠ABC 的平分线交半圆于D ,根据等腰三角形的判定得BA =BE ,再根据等腰三角形的性质得AD =ED ,即可得到CD 为直角三角形ACE 斜边上的中线,所以CD =DE =AD ,因此可判断△EDC 是等腰三角形;(2)先利用BA =BE =5得到CE =EB ﹣CB =2,利用勾股定理,在Rt △ACE 中计算出AE =2,在Rt △ABC 中计算出AC =4,利用三角形面积公式得到S △ABE =AC •BE =10,再证明△ECD ∽△EAB ,利用相似的性质求出S △ECD =2,然后利用四边形ABCD 的面积=S △ABE ﹣S △ECD 进行计算..【解答】(1)证明:∵AB 是半圆的直径,∴∠ADB =∠ACB =90°,∵∠ABC 的平分线交半圆于D ,∴BA=BE,∴AD=ED,∴CD为直角三角形ACE斜边上的中线,∴CD=DE=AD,∴△EDC是等腰三角形;(2)解:∵BA=BE=5,∴CE=EB﹣CB=2,在Rt△ACE中,AE==2,在Rt△ABC中,AC==4,∴S△ABE=AC•BE=×4×5=10,∵∠EDC=∠EBA,而∠DEC=∠BEA,∴△ECD∽△EAB,∴=()2,即S△ECD=10×()2=2,∴四边形ABCD的面积=S△ABE ﹣S△ECD=10﹣2=8.【点评】本题考查了圆周角定理:圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了等腰三角形的判定与性质和相似三角形的判定与性质.19.【分析】(1)利用数形结合的思想解决问题即可.(2)利用数形结合的思想解决问题,根据平行四边形的面积公式计算即可.【解答】解:(1)如图,△ABC即为所求.(2)如图,平行四边形ABDC即为所求.S平行四边形ABCD=2×2=8.【点评】本题考查作图﹣应用与设计,等腰三角形的判定和性质,平行四边形的判定和性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.【分析】(1)比较A、B两位同学的概率解答即可;(2)根据游戏的公平性,列出方程=解答即可.【解答】解:(1)A同学获胜可能性为,B同学获胜可能性为=,因为≠,当x=3时,B同学获胜可能性大;(2)游戏对双方公平必须有:=,解得:x=4,答:当x=4时,游戏对双方是公平的.【点评】此题考查游戏的公平性问题,关键是根据A、B两位同学的概率解答.21.【分析】(1)将A点坐标,B点坐标代入解析式可求m,n的值(2)用待定系数法可求一次函数解析式,根据S△AOB =S△AOC﹣S△BOC可求△AOB的面积.(3)由图象直接可得【解答】解:(1)∵反比例函数y=过点A(﹣1,3),B(﹣3,n)∴m=3×(﹣1)=﹣3,m=﹣3n∴n=1故答案为﹣3,1(2)设一次函数解析式y=kx+b,且过(﹣1,3),B(﹣3,1)∴解得:∴解析式y =x +4∵一次函数图象与x 轴交点为C∴0=x +4∴x =﹣4∴C (﹣4,0)∵S △AOB =S △AOC ﹣S △BOC∴S △AOB =×4×3﹣×4×1=4(3)∵kx +b ≥∴一次函数图象在反比例函数图象上方∴﹣3≤x ≤﹣1故答案为﹣3≤x ≤﹣1【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法,利用函数图象上的点满足函数关系式解决问题是本题关键.22.【分析】(1)根据表格中电费收取方法计算即可得到结果;(2)根据题意确定出他们家12月的用电量范围,设为x 度,由表格中的电费收取方式列出方程,求出方程的解即可得到结果;(3)设12月用电y 度,则11月用电(480﹣y )度,根据11月份用电量少于12月份,得出y >240,分类讨论y 的范围确定出x 的值即可.【解答】解:(1)根据题意得:0.5×150=75,180×0.5+0.6×(250﹣180)=132; 故答案为:75;132;(2)设12月用电量为x 度,由题意,当用电量为400度时,电费222元;当用电量为180度时,电费90元;∴181≤x ≤400,180×0.5+(x ﹣180)×0.6=150,解得:x =280,即用电280度;(3)设12月用电y 度,则11月用电(480﹣y )度,由题意,y >240,①当y>400时,11月用电在180度内,(480﹣y)×0.5+180×0.5+(400﹣180)×0.6+(x﹣400)×0.8=262.6,解得:x=402,则11月用电78度,12月用电402度;②当300<y≤400时,11月用电在180度内,12月用电在181﹣400度,(480﹣y)×0.5+180×0.5+(y﹣180)×0.6,解得:y=406>400,舍去;③当240<y≤300时,两个月用电量都在181﹣400度,180×0.5+(y﹣180)×0.6+180×0.5+(480﹣y﹣180)×0.6=262.6,方程无解,综上,11月用电78度,12月用电402度.【点评】此题考查了一元一次方程的应用,弄清题意是解本题的关键.23.【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)过P作PE⊥x轴,交x轴于点E,交直线BC于点F,用P点坐标可表示出PF的长,则可表示出△PBC的面积,利用二次函数的性质可求得△PBC面积的最大值及P点的坐标.【解答】解:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得:,∴抛物线解析式为y=x2﹣3x﹣4;(2)∵点P在抛物线上,∴可设P(t,t2﹣3t﹣4),过P作PE⊥x轴于点E,交直线BC于点F,如图1,∵B (4,0),C (0,﹣4)∴直线BC 解析式为y =x ﹣4,∴F (t ,t ﹣4),∴PF =(t ﹣4)﹣(t 2﹣3t ﹣4)=﹣t 2+4t ,∴S △PBC =S △PFC +S △PFB ===, ∴当t =2时,S △PBC 最大值为8,此时t 2﹣3t ﹣4=﹣6,∴当P 点坐标为(2,﹣6)时,△PBC 的最大面积为8.【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、三角形的面积、方程思想等知识.在(1)中注意待定系数法的应用,在(2)中用P 点坐标表示出△PBC 的面积是解题的关键.24.【分析】(1)连接OA ,证明△DAB ≌△DAE ,得到AB =AE ,得到OA 是△BDE 的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明△CDF ∽△AOF ,根据相似三角形的性质得到CD =CE ,根据等腰三角形的性质证明.【解答】(1)证明:连接OA ,由圆周角定理得,∠ACB =∠ADB ,∵∠ADE =∠ACB ,∴∠ADE =∠ADB ,∵BD 是直径,∴∠DAB =∠DAE =90°,在△DAB 和△DAE 中,,∴△DAB ≌△DAE ,∴AB =AE ,又∵OB =OD ,∴OA ∥DE ,又∵AH ⊥DE ,∴OA ⊥AH ,∴AH 是⊙O 的切线;(2)解:由(1)知,∠E =∠DBE ,∠DBE =∠ACD ,∴∠E =∠ACD ,∴AE =AC =AB =6.在Rt △ABD 中,AB =6,BD =8,∠ADE =∠ACB ,∴sin ∠ADB ==,即sin ∠ACB =;(3)证明:由(2)知,OA 是△BDE 的中位线,∴OA ∥DE ,OA =DE .∴△CDF ∽△AOF ,∴==,∴CD =OA =DE ,即CD =CE ,∵AC =AE ,AH ⊥CE ,∴CH =HE =CE ,∴CD =CH ,∴CD =DH .【点评】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.。

2019年初中毕业升学考试适应性考试数学卷参考答案及评分标准

2019年初中毕业升学考试适应性考试数学卷参考答案及评分标准

(第18题) 2019年初中毕业升学适应性考试数学卷参考答案及评分标准一、选择题二、填空题11.()22a - 12.17 13.23π 14.15.234 16.2.5三、解答题17.(1)解:原式11+= (2+2分) (2)解:原式=229292a a a a -+-=- (2+2分)18.(1)证明:∵BF =CE ,∴BE =CF ,∵AB =CD ,∠B =∠C∴△ABE ≌△DCF ,·······················(2分) ∴∠AEB =∠DFC ,∴AE ∥DF . ···········(2分)(2)解:∵△ABE ≌△DCF ,∴∠A =∠D ,∠C =∠B =30°, ∵∠A +∠D =144°,∠A =72°,·············(2分)∴∠AEC =∠A +∠B =72°+30°=102°.····(2分)19.解:(每小题3分)(本题答案众多,其他合理答案酌情给分)20.解:(1)m = 120 ,n = 0.3 (4分)(2)如图所示.(2分) (3) C 组.(3分)(第18题)(第20题)(第19题)(图甲)(图乙) (图丙)(图1)(第21题)21.解:(1)证明:∵∠ABC =90°,∴∠ABE +∠OBD =90°,又AB =AE ,∴∠ABE =∠AEB =∠DEF , ∵OB =OD ,∴∠OBD =∠ODB , ∴∠ODB +∠DEF =90°, ∴DO ⊥AC .(4分)(2)设AB =AE =x ,在Rt △ABC 中,222AC AB BC =+,∵CE =4,BC =8,∴()22248x x +=+,x =6,∴3sin 5OF AB ACB OC AC ∠===,312455OF =⨯=, 128455DF OD OF =-=-=,4cos 5CF BC ACB OC AC ∠===,416455CF =⨯=,164455EF CE CF =-=-=,在Rt △DEF中,DE ===(6分) (本题其他合理方法酌情给分)22.解:(1)①由题意,得()600800160310002x x x y +-+⨯=,∴200128000y x =+.(3分) ②由题意,得160312x -≤,解得3295x ≥, 又∵x 为整数,k =200>0,y 随x 的增大而增大,∴当x =30时,y 最小,为20030128000134000⨯+=(元),此时具体的购买方案是:A ,B ,C 三种型号的餐桌分别购买30套、70套、60套.(4分) (2)m =1230张,n =185套.(3分)23.解:(1)A (-1,0),B (3,0),C (0,3).(3分)(2)如图1,在□OBEF 中,EF =OB =3,∵MD 为抛物线的对称轴,∴EG =PE , ∵EG =PF ,∴OH =1.5,而OD =HE =1,∴PH =0.5令12x =-,211723224y ⎛⎫⎛⎫=--+⨯-+= ⎪ ⎪⎝⎭⎝⎭,∴74DE =.(3分)(图2)(3) ①如图2,∵EF =OB =3,OD =HE =1,∴FH =2,∵DE =1,∴F (-2,1),设直线FC 的解析式为y kx b =+,有213k b b -+=⎧⎨=⎩,1k =,∴直线FC 的解析式为3y x =+,易知点M (1,4),∴点M 在该直线上.(4分)②2不扣分.24.(1)①解:如图1,∵∠BAC =30°,AD =AE ,∴∠AED =∠ADE =75°,∠CEH =75°, 又∵∠ACB =∠ACH =90°,∴∠BHD =15°.…………(3分) ②证明:∵CD 是⊙A 的切线,∴∠CDA =90°,∠CDH +∠ADE =90°,又∵∠CHD +∠CEH =90°,∠CEH =∠AED =∠ADE , ∴∠CDH =∠CHD ,∴CD =CH .…(3分)(2)①解:如图2,作AM ⊥FG 于点M ,则FG =2MG , ∵∠ACB =90°,AC =4,BC =3,∴AB =5,∵FG ∥AB ,∠FGA =∠BAC ,AD ACFG CG=, 设AD =AG =5x ,在Rt △AMG 中, MG =AG ·cos ∠FGA =45cos 545x BAC x x =⨯=∠, ∴FG =8x ,54845x x x =+,1225x =, ∴⊙A 的半径长为125.(6分) ②245CD DF =.(2分) 提示:如图3,22DE EH PE EH CE AE ==,当2CE AE ==时,DE EH 达到最大值,此时,624222255CD DF CD DQ DR AD ===⨯⨯=.(图3)(图1)。

2019版中考数学第二次模拟联考试题答案

2019版中考数学第二次模拟联考试题答案

2019版中考数学第二次模拟联考试题答案一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1-5 DBACD 6-10BBCCA 11-16 CADDBA二、填空题(本大题共3个小题,17、18每小题3分,19题4分,共10分.把答案写在题中横线上)17. 28°18. 519.2三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.解:(1)由题意可得,4m <,…………………………………………………………2分 ∵m 为整数, ∴m 的最大值为3………………………………………………………4分(2)∵C 表示的数为-2,B 表示数的为4,∴点C 在点B 的左侧,当点C 在线段AB 上时,∵AB =2AC ,∴42(2)m m -=--,解之得,8m =-……6分 当点C 在射线BA 上时,∵AB =2AC ,∴42(2)m m -=+,解之得,0m =…………8分21.解:(1)∵四边形ABCD 是矩形,∴∠ABC =90°,……………………………2分∵AD =80,DC =60,∴AC……………………………………………4分(2)∵四边形ABCD 是矩形,∴AO =OB =1502AC =;∴AO +OB +BC =180∵AD =80,DC =60,∴AD +DC =140,设点P 每秒运动x 个单位,则点Q 每秒运动107x 个单位,依据题意 1801402107x x =-,………………………………………………………………………………7分 解这个方程,得7x =经检验,7x =是原方程的根,∴点P 每秒运动7个单位.…………………………………………………………………9分22.解:(1)如图所示:………………………………………………………………………………………………2分(2)琪琪的平均分为1(9996878880)905++++=(分)……………………………………4分 自小到大排列琪琪同学的得分为:80、87、88、96、99,处在正中间位置的得分为88分,所以琪琪的中位数为88(分)………………………………………………………………6分两名同学比赛成绩的折线统计图(3)嘉嘉和琪琪的平均分都是90分,平均分相同;……………………………………7分 中位数嘉嘉为92分,琪琪为88分,嘉嘉大于琪琪,……………………………………8分 从折线走势来看,嘉嘉五次呈上升趋势;而琪琪呈下降趋势,所以综合这三方面,推荐嘉嘉参加区教育局比赛比较合理。

2019年初中学业适应性考试(二)数学参考答案及评分细则

2019年初中学业适应性考试(二)数学参考答案及评分细则

H 九年级数学答案 第1页(共4页)2019年初中学业适应性考试(二)数学参考答案及评分细则一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)第10题:由()024422≥-=+-=-c c c b a 可得b a ≥,联立两式易得12+=c b ,则04321122>+⎪⎭⎫ ⎝⎛-=+-=-c c c c b ,可得c b >,所以a b c ≤<.二、填空题(本题有6小题,每小题5分,共30分)11.5 12.()32--, 13.6114.321515.4021==x x , 16.76 第16题:方法一.该正方体可按如图方式分割,∴体积为8×8+12=76方法二.该正方体截面从上到下依次如下所示,∴体积为:20+16+4+16+20=76三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.(1)计算:︒---30cos 2)21(121232232⨯--=………………………………………..………..…….…3分23-=.…………………………………………………….....……………1分(2)解方程组:⎩⎨⎧=-=+,②,①152y x y x解:①+②得3x =6,解得x =2,…………………………………………......……2分把x =2代入②得y =1,…………………………………………………..……1分 ∴⎩⎨⎧==.12y x ,.……………………………………………………..…….…………1分H 九年级数学答案 第2页(共4页)频数分数/分607080 90 100 9618.解:原式=()1289622+--+-a a a a ……………………..……………………………2分1289622-+-+-=a a a a ………….....……………………..…………….…2分32-=a ……………………………………………………..………...….….…2分当a =1011时,原式2019310112=-⨯=.………....…………..……….…….…2分19.解:(1)把(1,a )代入21+=x y 得a =3.把A (1,3)代入xky =2得k =3.…………...…………..…………..…….…2分 令x x 32=+,解得3121-==x x ,. 当3-=x 时,1-=y .∴B ()13--,.…………………..........……………………..……………….…2分(2)当03<<-x 或1>x 时,21y y >.…………..……………………..…….....….…4分 20.(1)如下图(答案不唯一)……4分 (2) 如下图(答案不唯一)……………4分21.解:(1)0.12+0.18=0.3,15÷0.3=50,答:这次统计共抽取了50名学生.………..….…3分 (2)如图:………………….……….......….…....…4分(3)不能.(视回答的合理情况酌情给分)…….…...3分 22.(1)证明:连接OC∵OC =OD ,AB ⊥CD∴∠DOH =∠COH …………….….…….....……2分 ∵∠DOH =∠AOE∴∠COH =∠AOE …………….….……......……1分 ∴⌒AE =⌒BC …………….….……......…...….……2分H 九年级数学答案 第3页(共4页)(2)解:连接EC, ∵AB ⊥CD , ∴∠AHD =90°,∵sin D=35,不妨设OH =3,OD =5.∴DH =422=-OH OD .…………….…..1分 ∵AB ⊥CD , ∴CD =2DH =8∵DE 为⊙O 的直径, ∴∠ECD =90°∴CE =68102222=-=-CD DE …………….…….……….………….……..…1分 设FC =x ,则FH =x +4,∵∠AHD =∠ECD =90°, ∴EC ∥AH∴△EFC ∽△AFH …………….…….………….………….……….……….……..…2分 ∴AH EC FH FC =, 即864=+x x解得x =12…………….…….………….………….…....….….……….……..…2分∴21126tan ===FC EC F ….………….………….………...….….….……….……..…1分 23. .解:(1)设b kx y +=,把⎩⎨⎧==100,10y x 和⎩⎨⎧==85,13y x 代入得⎩⎨⎧=+=+.8513,10010b k b k 解得⎩⎨⎧=-=.150,5b k∴1505+-=x y .….………...….….….……….………….………….………..…3分 (2)设日销售利润为W 元,则()()150510+--=x x W 150020052-+-=x x ,….………………..…..…2分…......…2分 (3)()()15051010+---=x a x W ()a x a x 150015005020052--++-=,...…..…1分…2分 当a x 520+=时,()()[]40515052051010520=++---+a a a , 解得2.01=a ,8.32=a (舍去).∴综上所述,2.0=a .…………….…………….…………….………...…....…2分ABCDOEF H (第22题)H 九年级数学答案 第4页(共4页)24.(1)证明:∵∠EDC =90°,点M 为EC 的中点∴EC DM 21=.…………….………...…....…1分同理可得:EC BM 21=.…………...….....…1分 ∴DM =BM∴△DMB 是等腰三角形.…………….…..…1分(2)证明:过点D 作DF ⊥EA ,过点B 作BG ⊥AC ,∴∠DFM =∠BGM =90° ∴∠FDM +∠DMF =90°∵△DMB 是等腰直角三角形, ∴DM =BM ,∠DMB =90° ∴∠BMG +∠DMF =90°∴∠FDM =∠BMG∴△DFM ≌∠MGB (AAS)………….….……3分 ∴FM =BG ,DF =MG ∵BG =GC ,DF =EF ∴FM =GC ,MG =EF∵EM =EF +FM ,MC =MG +GC ∴EM =MC∴点M 是EC 的中点………….….…..……2分(3)取AE 中点F ,AC 中点G ,连接FD ,FM ,BG ,GM∵点M 是EC 的中点,点G 是AC 的中点∴,//,21AE GM AE GM =∵F 是AE 中点, ∴AE AF 21=∴GM AF GM AF =,∥…….….…...….…..….….…..….….…..….….…..………2分 ∴四边形AFMG 是平行四边形 ∴∠AFM =∠AGM∴∠EFM =∠MGC .….…..….….…..…....….…1分∴∠DFM =∠BGM∵GM =AF ,AF =DF , ∴DF =GM 同理可得 BG =FM∴△DFM ≌∠MGB (SAS )∴BM =DM ,∠FMD =∠GBM ..….….…..….…2分∵FM ∥AC , ∴∠FMG =∠CGM ∴∠DMB =∠FMD +∠FMG +∠GMB=∠GBM +∠CGM +∠GMB =BGC ∠︒-180 =90°∴△BMD 是等腰直角三角形..….….…..….…1分 ABCM D E 图2F GA BC E M图3F G图1ABCDEM。

2019年 中考适应性考试数学试卷及答案

2019年 中考适应性考试数学试卷及答案

2019年 中考适应性考试数学试卷说明1.全卷共4页,考试用时100分钟,满分120分.2.答题前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,请将试卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的, 请把答题卡对应题目所选的选项涂黑. 1.-34的相反数是A .-43B .-34C .-43D .342.化简(a 3)2的结果是 A .a 6B .a 5C .a 9D .2a 33.圆心角为60°,且半径为3的扇形的弧长为 A .π2B .πC .3π2D .3 π4.已知一组数据:4,-1,5,9,7,6,7,则这组数据的极差是 A .10 B .9C .8D .75.若分式2aa +b中的a 、b 的值同时扩大到原来的10倍,则此分式的值 A .是原来的20倍 B .是原来的10倍 C .是原来的110D .不变二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题 卡相应的位置上6.分解因式ax 2-4a =_ ▲ . ax 2-4a =a (x 2-4)=a(x +2)(x -2)。

7.方程组⎩⎨⎧x +y =62x -y =3的解为_ ▲ .8.写出一个图象位于第二、第四象限的反比例函数的解析式_ ▲ . 9.在ABCD 中,AB =6cm ,BC =8cm ,则ABCD 的周长为_ ▲ cm .10.不等式组⎩⎨⎧2x -6<4x >2的解集为_ ▲ .三、解答题(一)(本大题5小题,每小题6分,共30分) 11.计算:|-2|+(13)-1-(π-5)0-16.12.某校为了调查学生视力变化情况,从该校2008年入校的学生中抽取了部分学生进 行连续三年的视力跟踪调查,将所得数据处理,制成折线统计图和扇形统计图,如图所示:(1)该校被抽查的学生共有多少名?(2)现规定视力5.1及以上为合格,若被抽查年级共有600名学生,估计该年级在2010 年有多少名学生视力合格.13.如图,在Rt △ABC 中,∠C =90°.(1)求作:△ABC 的一条中位线,与AB 交于D 点,与BC 交于E 点.(保 留作图痕迹,不写作法)(2)若AC =6,AB =10,连结CD ,则DE =_ ▲ ,CD =_ ▲ .14.八年级学生到距离学校15千米的农科所参观,一部分学生骑自行车先走,过了40分钟后,其余同学乘汽车出发,结果两者同时到达.若汽车的速度是骑自行车同学速度的3倍,求 骑自行车同学的速度.15.如图,在正方形ABC 1D 1中,AB =1.连接AC 1,以AC 1为边作第二个正方形AC 1C 2D 2;连接AC 2,以AC 2 为边作第三个正方形AC 2C 3D 3.(1)求第二个正方形AC 1C 2D 2和第三个正方形的边长AC 2C 3D 3; (2)请直接写出按此规律所作的第7个正方形的边长. 四、解答题(二)(本大题4小题,每小题7分,共28分) 16.如图,在鱼塘两侧有两棵树A 、B ,小华要测量此两树之间的距离.他在距A 树30 m 的C 处测得∠ACBBAC 1C 2C 3D 3D 2D 1B=30°,又在B 处测得∠ABC =120°.求A 、B 两树之间的距离 (结果精确到0.1m )≈1.414≈1.732)17.某校为庆祝国庆节举办游园活动,小军来到摸球兑奖活动场地,李老师对小军说:“这里有A 、B 两个盒子,里面都装有一些乒乓球,你只能选择在其中一只盒子中摸球.”获将规则如下: 在A 盒中有白色乒乓球4个,红色乒乓球2个,一人只能摸一次且一次摸出一个球,若为红球则可获 得玩具熊一个,否则不得奖;在B 盒中有白色乒乓球2个,红色乒乓球2个,一人只能摸一次且一次 摸出两个球,若两球均为红球则可获得玩具熊一个,否则不得奖.请问小军在哪只盒子内摸球获得玩具 熊的机会更大?说明你的理由.18.如图,Rt △OAB 中,∠OAB =90°,O 为坐标原点,边OA 在x 轴上,OA =AB =1个单位长度.把Rt △OAB 沿x 轴正方向平移1个单位长度后得△AA 1B . (1)求以A 为顶点,且经过点B 1的抛物线的解析式; (2)若(1)中的抛物线与OB 交于点C ,与 y 轴交于点 D ,求点D 、C 的坐标.19.如图,将一个钝角△ABC (其中∠ABC =120°)绕点B 顺时针旋转得△A 1BC 1,使得C 点落在AB 的延长线上的点C 1处,连结AA 1.(1)写出旋转角的度数; (2)求证:∠A 1AC =∠C 1.五、解答题(三)(本大题3小题,每小题9分,共27分)20.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+22=(1+2)2,善于思考的小明进行了以下探索:设a +b 2=(m +n 2)2(其中a 、b 、m 、n 均为整数),则有 a +b 2=m 2+2n 2+2mn 2. ∴a =m 2+2n 2,b =2mn .这样小明就找到了一种把部分a +b 2的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若a +b 3=(m +n 3)2,用含m 、n 的式子分别表示a 、b ,得 a =_ ▲ ,b =_ ▲ ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n ,填空:_ ▲ +(_ ▲ +2; (3)若a +43=(m +n 3)2,且a 、m 、n 均为正整数,求 a 的值.21.已知:如图,锐角△ABC 内接于⊙O ,∠ABC =45°;点D 是⌒BC 上一点,过点D 的切线DE 交AC 的延长线于点E ,且DE ∥BC ;连结AD 、 BD 、BE ,AD 的垂线AF 与DC 的延长线交于点F . (1)求证:△ABD ∽△ADE ;(2)记△DAF 、△BAE 的面积分别为S △DAF 、S △BAE ,求证:S △DAF >S △BAE .22.如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =AB =1,BC =2.将点A 折叠到CD 边上,记折叠后A 点对应的点为P (P 与D 点不重合),折痕EF 只与边AD 、BC交点分别为E 、F .过点P 作PN ∥BC 交AB 于N 、交EF 于M 连结PA 、PE 、AM ,EF 与PA 相交于O . (1)指出四边形PEAM 的形状(不需证明);(2)记∠EPM =α,△AOM 、△AMN 的面积分别为S 1、S 2. ① 求证:1S tan2α=18PA 2. ② 设AN =x ,y =12S S tan2α-,试求出以x 为自变量的函数y 的解析式,并确定y 的取值范围.参考答案一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡对应题目所选的选项涂黑. 1.-34的相反数是A .-43B .-34C .-43D .34【答案】D 。

2019年中考适应性考试数学试卷及答案

2019年中考适应性考试数学试卷及答案

2019年中考适应性考试数学试卷说明:1.全卷共4页,考試時間為100分鐘,满分120分.2.选择题每小題选出答案后,用2B 铅笔把答题卡上对应题的标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,再用黑色字迹的钢笔或签字笔描黑.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生务必保持答题卡的整洁.考试结束时,将本试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母涂在相应题号的答题卡上. 1.—3的倒数是 A .3B .—3C .13D .— 132.数据2、2、3、4、3、1、3的众数是 A .1B .2C .3D .43.图中几何体的主视图是4.据媒体报道,我国因环境问题造成的经济损失每年高达680 000 000元,这个数用 科学记数法可表示为 A .0.68×109B .6.8×108C .6.8×107D .68×1075.下列选项中,与x y 2是同类项的是 A .—2x y 2B .2x 2yC .x yD .x 2y 26.已知∠α=35°,则∠α的余角是 A .35°B .55°C .65°D .145°7.不等式x —1>2的解集是 A .x >1B .x >2C .x >3D .x <38.如图,点A 、B 、C 在⊙O 上,若∠BAC =20º,则∠BOC 的度数为B . A .C .D .A .20ºB .30ºC .40ºD .70º9.一次函数2y x =+ 的图象大致是10.如图,若要使平行四边形 ABCD 成为菱形,则需要添加的条件是 A .AB =CDB .AD =BCC .AB =BCD .AC =BD二、填空题(本大题共6小题,每小题3分,共18分)请把下列各题的正确答案填写在相应师号的答题卡.11.计算:2x 2·5x 3= _ ▲ . 12.分解因式:2x 2-6x =_ ▲ . 13.反比例函数ky x=的图象经过点P(-2,3),则k 的值为 ▲ . 14.已知扇形的圆心角为60°,半径为6,则扇形的弧长为_ ▲ .(结果保留π)15.为了甲、乙、丙三位同学中选派一位同学参加环保知识竞赛,老师对他们的五次环保知识测验成绩进行了统计,他们的平均分均为85分,方差分别为S 2甲=18,S 2乙=12,S 2丙=23.根据统计结果,应派去参加竞赛的同学是 ▲ .(填“甲”、“乙”、“丙”中的一个) 16.如图,在ABCD 中,点E 是CD 的中点,AE 、BC 的延长线交于点F .若△ECF 的面积为1,则四边形ABCE 的面积为 _ ▲ .三、解答题(本大题共5小题,每小题6分,共30分) 17.计算:9+2cos60º+(12)-1-20110.18.解方程:x 2-x x -1=0.19.△ABC 在方格纸中的位置如图所示,方格纸中的每个小正方形的边长为1个单位. (1)△A 1B 1C 1与△ABC 关于纵轴 (y 轴) 对称,请你在图5中画出△A 1B 1C 1; (2)将△ABC 向下平移8个单位后得到△A 2B 2C 2,请你在图5中画出△A 2B 2C 2.20.先化简、再求值:21111x x x ⎛⎫-÷ ⎪+⎝⎭-,其中x =2+1. 21.如图,小明以3米/秒的速度从山脚A 点爬到山顶B 点,已知点B 到山脚的垂直距离BC 为24米,且山坡坡角∠A 的度数为28º,问小明从山脚爬上山顶需要多少时间?(结果精确到0.1).(参考数据:sin28º=0.46,cos28º=0.87,tan28º=0.53)四、解答题(本大题共3小题,每小题8分,共24分)22.如图,AB 是⊙O 的直径,AC 与⊙O 相切,切点为A ,D 为⊙O 上一点,AD与OC 相交于点E ,且∠DAB =∠C .(1)求证:OC ∥BD ;(2)若AO =5,AD =8,求线段CE 的长.23.在一个不透明的口袋中装有白、黄两种颜色的乒乓球(除颜色外其余相同),其中黄球有1个,从袋中任意摸出一个球是黄球的概率为13.(1)求袋中白球的个数;(2)第一次摸出一个球,做好记录后放回袋中,第二次再摸出一个球,请用列表或画状图 的方法求两次都摸到黄球的概率.24.如图,在矩形ABCD 中,E 是BC 边上的点,AE =BC ,DF ⊥AE ,垂足为F ,连接DE . (1)求证:AB =DF ;(2)若AD =10,AB =6,求tan ∠EDF 的值. 五、解答题(本大题共2小题,每小题9分,共18分)25.某电器城经销A 型号彩电,今年四月份每台彩电售价为2000元,与去年同期相比,结果卖出彩电的数量相同,但去年销售额为5万元,今年销售额只有4万元.AC(1)问去年四月份每台A型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B型号彩电.已知A型号彩电每台进货价为1800元,B型号彩电每台进货价为1500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,问有哪几种进货方案?(3)电器城准备把A型号彩电继续以原价每台2000元的价格出售,B型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获得最大?最大利润是多少?26.如图,抛物线y=(x+1)2+k 与x轴交于A、B两点,与y轴交于点C (0,-3).(1)求抛物线的对称轴及k的值;(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点M是抛物线上一动点,且在第三象限.①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点M的坐标.参考答案一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母涂在相应题号的答题卡上. 1.—3的倒数是 A .3 B .—3C .13D .— 13【答案】D 。

2019年浙江省温州市洞头区中考数学二模试卷(解析版)

2019年浙江省温州市洞头区中考数学二模试卷(解析版)

2019年浙江省温州市洞头区中考数学二模试卷一、选择题(本大题共10小题,共40.0分) 1.的倒数是( )A. B. 2C.D.2. 温州市2019年一季度生产总值(GDP )为129 800 000 000元.将129 800 000 000用科学记数法表示应为( ) A. B. C. D. 3. 如图所示的是三通管的立体图,则这个几何体的俯视图是( )A.B.C.D.4. 某班预开展社团活动,对全班42名学生开展“你最喜欢的社团”问卷调查(每人只选一项),并将结果制成如下统计表,则学生最喜欢的项目是( )篮球 足球 唱歌 D. 器乐 5. 五边形的内角和为( )A. B. C.D.6. 如图,要测量小河两岸相对的两点P ,A 的距离,可以在小河边取PA的垂线PB 上的一点C ,测得PC =8米,cos ∠PCA =,则PA 等于( ) A. 5米B. 6米C. 米D. 8米7. 我们知道方程组:的解是,则方程组的解是( )A.B.C.D.8. 已知二次函数y =-(x -1)2+2,当t <x <5时,y 随x 的增大而减小,则实数t 的取值范围是( )A. B. C. D.9. 如图,点A 是反比例函数y =在第一象限图象上一点,连接OA ,过点A 作AB ∥x 轴(点B 在点A 右侧),连接OB ,若OB 平分∠AOX ,且点B 的坐标是(8,4),则k 的值是( ) A. 6 B. 8 C. 12D. 1610. 移动通信公司建设的钢架信号塔(如图1),它的一个侧面的示意图(如图2).CD 是等腰三角形ABC底边上的高,分别过点A 、点B 作两腰的垂线段,垂足分别为B 1,A 1,再过A 1,B 1分别作两腰的垂线段所得的垂足为B 2,A 2,用同样的作法依次得到垂足B 3,A 3,….若AB 为3米,sinα=,则水平钢条A 2B 2的长度为( )A.米B. 2米C.米D.米二、填空题(本大题共6小题,共30.0分)11. 分解因式:a 2-4=______.12. 已知一组数据1,3,x ,x +2,6的平均数为4,则这组数据的众数为______. 13. 已知扇形的圆心角为160°,面积为4π,则它的半径为______.14. 甲、乙两班学生参加植树造林,一直甲班每天比乙班多植树5棵,甲班植80棵树所用天数与乙班植70棵树所用天数相等.若设甲班每天植树x 棵,则根据题意列出的方程是______. 15. 如图,在矩形ABCD 中,AB =4,BC =5,点E 是边CD 的中点,将△ADE 沿AE 折叠后得到△AFE .延长AF 交边BC 于点G ,则CG 为______.16. 我国古代数学家赵爽利用弦图证明了勾股定理,这是著名的赵爽弦图(如图1).它是由四个全等的直角三角形拼成了内、外都是正方形的美丽图案.在弦图中(如图2),已知点O 为正方形ABCD 的对角线BD 的中点,对角线BD 分别交AH ,CF 于点P 、Q .在正方形EFGH 的EH 、FG 两边上分别取点M,N ,且MN 经过点O ,若MH =3ME ,BD =2MN =4 .则△APD 的面积为______.三、解答题(本大题共8小题,共80.0分)17. (1)计算: -(-3)2+×(-4);(2)化简:(a +1)2-2(a +)18.如图,在▱ABCD中,CF⊥AB于点F,过点D作DE⊥BC的延长线于点E,且CF=DE.(1)求证:△BFC≌△CED;(2)若∠B=60°,AF=5,求BC的长.19.李老师为了解某校学生完成数学课前预习的具体情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.绘制成如下统计图.(1)李老师一共调查了多少名同学?并将下面条形统计图补充完整.(2)若该校有1000名学生,则数学课前预习“很好”和“较好”总共约多少人?(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,求出所选两位同学恰好是一位男同学和一位女同学的概率.(要求列表或树状图)20.如图,在7×7的方格纸中,点A,B,C都在格点上,请按要求找出D点,使得D点在格点上.(1)在图甲中画一个∠ADC,使得∠ABC=∠ADC.(2)在图乙中画一个三角形ADC,使得△ADC的面积等于△ABC面积的2倍.21.已知抛物线y=ax2+bx+c的对称轴为x=-1,且过点(-3,0),(0,-3).(1)求抛物线的表达式.(2)已知点(m,k)和点(n,k)在此抛物线上,其中m≠n,请判断关于t的方程t2+mt+n=0是否有实数根,并说明理由.22.已知,如图,BD为⊙O的直径,点A、C在⊙O上并位于BD的两侧,∠ABC=45°,连结CD、OA并延长交于点F,过点C作⊙O的切线交BD延长线于点E.(1)求证:∠F=∠ECF;(2)当DF=6,tan∠EBC=,求AF的值.23.温州茶山杨梅名扬中国,某公司经营茶山杨梅业务,以3万元/吨的价格买入杨梅,包装后直接销售,包装成本为1万元/吨,它的平均销售价格y(单位:万元/吨)与销售数量x(2≤x≤10,单位:吨)之间的函数关系如图所示.(1)若杨梅的销售量为6吨时,它的平均销售价格是每吨多少万元?(2)当销售数量为多少时,该经营这批杨梅所获得的毛利润(w)最大?最大毛利润为多少万元?(毛利润=销售总收入-进价总成本-包装总费用)(3)经过市场调查发现,杨梅深加工后不包装直接销售,平均销售价格为12万元/吨.深加工费用y (单位:万元)与加工数量x(单位:吨)之间的函数关系是y=x+3(2≤x≤10).①当该公司买入杨梅多少吨时,采用深加工方式与直接包装销售获得毛利润一样?②该公司买入杨梅吨数在______范围时,采用深加工方式比直接包装销售获得毛利润大些?24.在矩形ABCD中,AB=4,AD=10,E是AD的一点,且AE=2,M是AB上一点,射线ME交CD的延长线于点F,EG⊥ME交BC于点G,连接MG,FG,FG交AD于点N.(1)当点M为AB中点时,则DF=______,FG=______.(直接写出答案)(2)在整个运动过程中,的值是否会变化,若不变,求出它的值;若变化,请说明理由.(3)若△EGN为等腰三角形时,请求出所有满足条件的AM的长度.答案和解析1.【答案】A【解析】解:的倒数是-2,故选:A.根据乘积为1的两个数互为倒数,可得答案.本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.【答案】C【解析】解:129 800 000000=1.298×1011,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】A【解析】解:所给图形的俯视图是A选项所给的图形.故选:A.俯视图是从上往下看得到的视图,结合选项进行判断即可.本题考查了简单组合体的三视图,解答本题的关键是掌握俯视图是从上往下看得到的视图.4.【答案】B【解析】解:x=42-11-9-8=14,喜欢足球的人数最多,故选:B.求得x后找到众数即为本题的答案.考查了众数的定义,出现次数最多的数为该组数据的众数,比较简单.5.【答案】B【解析】解:五边形的内角和是(5-2)×180°=540°.故选B.n边形的内角和是(n-2)180°,由此即可求出答案.本题主要考查了多边形的内角和公式,是需要熟记的内容.6.【答案】B【解析】解:在Rt△APC中,∠APC=90°,PC=8米,cos∠PCA=,∴AC==10米,∴PA==6米.故选:B.在Rt△APC中,由PC的长及cos∠PCA的值可得出AC的长,再利用勾股定理即可求出PA的长.本题考查了解直角三角形的应用,通过解直角三角形求出AC,PA的长是解题的关键.7.【答案】C【解析】解:∵方程组:的解是,∴由方程组可得,解得.故选:C.由于方程组:的解是,则由方程组可得,依此即可求解.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.弄清题意是解本题的关键.8.【答案】C【解析】解:抛物线的对称轴为直线x=1,因为a=-1<0,所以抛物线开口向下,所以当x>1时,y的值随x值的增大而减小,而t<x<5时,y随x的增大而减小,所以1≤t<5.故选:C.先利用二次函数的性质求出抛物线的对称轴为直线x=1,则当x>1时,y的值随x值的增大而减小,由于t<x<5时,y的值随x值的增大而减小,于是得到1≤t<5.本题主要考查了二次函数的图象与系数的关系,熟练掌握二次函数的性质是解题的关键.9.【答案】C【解析】解:∵AB作∥x轴,∴∠2=∠B,∵∠1=∠2,∴∠1=∠B,∴OA=AB,过点A作AC⊥x轴于点C,∵点B的坐标是(8,4),∴AC=4,设A(a,4),则AB=8-a,∴OA=,∴=8-a,解得a=3,∴点A的坐标为(3,4),∵点A是反比例函数y=在第一象限图象上一点,∴k=3×4=12,故选:C.由AB∥x轴即可得∠1=∠B,得出OA=AB,过点A作AC⊥x轴于点C,设A(a,4),则AB=8-a,根据勾股定理表示出OA,根据OA=AB列出关于a的方程,解方程即可求得A的坐标,将点A 的坐标代入解析式求解可得.本题考查了反比例函数图象上点的坐标特征,等腰三角形的判定和性质,求得A点的坐标是解题的关键.10.【答案】C【解析】解:在Rt△ACB1中,∵sinα==,∴可以假设CB1=4k,AC=BC=5k,在Rt△CA2B1中,sinα=,∴CA2=k,∵A2B2∥AB,∴==,∴A2B2=×3=(米),故选:C.在Rt△ACB1中,由sinα==,可以假设CB1=4k,AC=BC=5k,在Rt△CA2B1中,sinα=,可得CA2=k,根据A2B2∥AB,可得==,由此即可解决问题.本题考查解直角三角形的应用,等腰三角形的性质,平行线分线段成比例定理等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.11.【答案】(a+2)(a-2)【解析】解:a2-4=(a+2)(a-2).有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.本题主要考查平方差公式分解因式,熟记公式结构是解题的关键.12.【答案】6【解析】解:∵一组数据1,3,x,x+2,6的平均数是4,∴=4,解得,x=4,∴这组数据是1,3,5,4,6,6,∴这组数据的众数是6,故答案为:6;根据题意可以求得x的值,从而可以求的这组数据的众数.本题考查众数、算术平均数,解答本题的关键是明确题意,利用众数的知识解答.13.【答案】3【解析】解:设扇形的半径为r.由题意:=4π,解得r=3.故答案为3.利用扇形的面积公式计算即可.本题考查扇形的面积,解题的关键是记住扇形的面积s=.14.【答案】=【解析】解:设甲班每天植树x棵,=.故答案为:=.设甲班每天植树x棵,根据甲班每天比乙班多植树5棵,甲班植80棵树所用天数与乙班植70棵树所用天数相等列出方程.本题考查由实际问题抽象出分式方程,设出未知数,以时间作为等量关系列方程求解.15.【答案】【解析】解:连接EG ;∵四边形ABCD为矩形,∴∠D=∠C=90°,DC=AB=4;由题意得:EF=DE=EC=2,∠EFG=∠D=90°;在Rt△EFG与Rt△ECG中,,∴Rt△EFG≌Rt△ECG(HL),∴FG=CG(设为x ),∠FEG=∠CEG;同理可证:AF=AD=5,∠FEA=∠DEA,∴∠AEG=×180°=90°,而EF⊥AG,由射影定理得:22=5•x,∴x=,∴CG=,故答案为:如图,作辅助线,首先证明△EFG≌△ECG,得到FG=CG(设为x ),∠FEG=∠CEG;同理可证AF=AD=5,∠FEA=∠DEA,进而证明△AEG为直角三角形,运用射影定理即可解决问题.此题考查矩形的性质,翻折变换的性质,以考查全等三角形的性质及其应用、射影定理等几何知识点为核心构造而成;对综合的分析问题解决问题的能力提出了一定的要求.16.【答案】5【解析】解:如图,连接FH,作EK∥MN,OL⊥DG∵四边形ABCD是正方形,且BD=2MN=4∴MN=2,AB=2∵四边形EFGH是正方形∴FO=HO,EH∥FG∴∠HMO=∠FNO,∠MHO=∠NFO,且FO=HO∴△MHO≌△FNO(AAS)∴MH=FN∵MH=3ME,∴MH=FN=3EM,EH=EF=4EM∴EK∥KN,EH∥FG∴四边形EMNK是平行四边形∴MN=EK=2,KN=EM∴FK=2EM∵EF2+FK2=EK2,∴16EM2+4EM2=20∴EM=1∴EH=4,∵AD2=(AE+4)2+DH2,且AE=DH ∴DH=AE=2∴AH=6∵PH∥OL∴∴PH=1∴AP=5∴S△APD=×5×2=5故答案为5连接FH,作EK∥MN,OL⊥DG,通过正方形的性质和全等三角形的性质以及勾股定理可求EM=1,可得EH=4,由勾股定理可求HD=2,AH=6,由平行线的性质可得PH=1,即可求解.本题考查了全等三角形的判定,正方形的性质,勾股定理等知识,求出HD的长是本题的关键.17.【答案】解:(1)原式=2-9-1=2-10;(2)原式=a2+2a+1-2a-1=a2.【解析】(1)先化简各个根式,然后合并同类项;(2)先去括号,然后合并同类项.本题考查了二次根式化简和整式的混合运算,熟练掌握二次根式的混合运算是解题的关键.18.【答案】证明:(1)∵四边形ABCD是平行四边形∴AB∥CD,AB=CD∴∠B=∠DCE ∵CF⊥AB,DE⊥BC,∴∠CFB=∠DEC=90°,且CF=DE,∠B=∠DCE∴△BFC≌△CED(AAS)(2)∵△BFC≌△CED∴BC=DC=AB设BC=x,∴CD=AB=x在Rt△BCF中,∠B=60°∴∠BCF=30°∴FB=BC∴(x-5)=x解得x=10∴BC=10.【解析】(1)由平行四边形的性质可得AB∥CD,可得∠B=∠DCE,由“AAS”可证△BFC≌△CED;(2)设BC=CD=AB=x,由直角三角形的性质可得(x-5)=x,可求x的值,即可求BC的长.本题考查了全等三角形的判定和性质,直角三角形的性质,平行四边形的性质,熟练运用这些性质进行推理是本题的关键.19.【答案】解:(1)抽查的总人数为3÷15%=20,C类中女生有:20×25%-2=3(名),D类中男生有20-3-10-5-1=1(人),条形统计图补充完整如图所示:(2)1000×65%=650人,答:数学课前预习“很好”和“较好”总共约650人;(3)根据题意画图如下:,由树状图可得共有6种可能的结果,其中恰好一名男同学和一名女同学的结果有3中,所以恰好是一名男同学和一名女同学的概率是.【解析】(1)利用A类学生总数除以A类学生所占百分比可得调查学生总数,用调查的学生总数乘以C 类所占的百分比,再减去C类的男生数,从而求出C类的女生数;用调查的学生总数减去A、B、C类的学生数和D类的女生数,从而求出D类的男生数,即可补全统计图;(2)利用样本估计总体思想求解可得.(3)根据题意先画出树状图,再根据概率公式即可得出答案.此题主要考查了条形统计图,以及概率,关键是掌握概率=所求情况数与总情况数之比.20.【答案】解:(1)如图甲所示:∠ABC=∠ADC;(2)如图乙所示:△ADC的面积等于△ABC面积的2倍.【解析】(1)利用网格即可得出符合∠ABC=∠ADC的答案;(2)利用三角形面积求法得出答案.此题主要考查了应用设计与作图,正确借助网格分析是解题关键.21.【答案】解:(1)抛物线y=ax2+bx+c的对称轴为x=-1,且过点(-3,0),(0,3)9a-3b+c=0解得a=1,b=2,c=-3∴抛物线y=x2+2x-3;(2)∵点(m,k),(n,k)在此抛物线上,∴(m,k),(n,k)是关于直线x=-1的对称点,∴=-1 即m=-n-2b2-4ac=m2-4n=(-n-2)2-4n=n2+4>0∴此方程有两个不相等的实数根.【解析】(1)将已知点的坐标代入二次函数列出方程组,解之即可;(2)因为(m,k),(n,k)是关于直线x=-1的对称点,所以=-1 即m=-n-2,于是 b2-4ac=m2-4n=(-n-2)2-4n=n2+4>0,所以此方程有两个不相等的实数根.本题考查了二次函数,熟练掌握二次函数的性质与二次函数上点的坐标特征是解题的关键.22.【答案】(1)证明:连结OC,∵CE切圆O于C,∴OC⊥CE,∴∠OCF+∠FCE=90°,∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∴∠F+∠OCF=90°,∴∠F=∠ECF;(2)解:设DC=x,∵OB=OC,∴∠OBC=∠OCB,∵BD为圆O的直径∴∠BCO+∠OCD=90°,∵∠ECD+∠OCD=90°,∴∠OBC=∠ECD,∵∠F=∠ECD,∴∠F=∠EBC,在Rt△BCD中,tan∠EBC=,则BC=2DC=2x,BD=x,∴OC=OA=x,在Rt△FOC中,tan F=tan∠EBC=∴FC=OC,即6+x=•x,解得,x=4,∴OF=2OC=4,∴AF=OF-AO=2.【解析】(1)连结OC,根据切线的性质得到OC⊥CE,根据圆周角定理得到∠AOC=90°,计算即可证明;(2)DC=x,根据正切的定义用x表示出BC、BD、OC,根据正切的定义列式计算即可.本题考查的是切线的性质、锐角三角函数的定义、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.23.【答案】3<x≤8【解析】解:(1)由图象可知,y是关于x的一次函数.∴设其解析式为y=kx+b,∵图象经过点(2,12),(8,9)两点,∴解得k=-,b=13,∴一次函数的解析式为y=-x+13,当x=6时,y=10,答:若杨梅的销售量为6吨时,它的平均销售价格是每吨10万元;(2)根据题意得,w=(y-4)x=(-x+13-4)x=-x2+9x,当x=-=9时,x=9不在取值范围内,∴当x=8时,此时W最大值=-x2+9x=40万元;(3)①由题意得:-x2+9x=9x-(x+3)解得x=-2(舍去),x=3,答该公司买入杨梅3吨;②当该公司买入杨梅吨数在3<x≤8范围时,采用深加工方式比直接包装销售获得毛利润大些.故答案为:3<x≤8.(1)设其解析式为y=kx+b,由图象经过点(2,12),(8,9)两点,得方程组,即可得到结论;(2)根据题意得,w=(y-4)x=(-x+13-4)x=-x2+9x,根据二次函数的性质即可得到结论;(3)①根据题意列方程,即可得到结论;②根据题意即可得到结论.本题是二次函数、一次函数的综合应用题,难度较大.解题关键是理清售价、成本、利润三者之间的关系.24.【答案】8 4【解析】解:(1)如图1,过G作GH⊥AD于H,∵点M为AB中点,AB=4,∴AM=2,∵AE=2,∴AE=AM=2,∴DE=10-2=8,∵四边形ABCD是矩形,∴∠A=∠CDA=90°,∴∠AEM=∠DEF=45°,∴DF=DE=8,∵EG⊥ME,∴∠MEG=90°,∴∠HEG=∠EGH=45°,∴GH=EH=4,∴CG=DH=10-2-4=4,Rt△FGC中,FG2=CG2+CF2,FG==4,故答案为:8,4;(2)在整个运动过程中,的值不会变化,理由是:如图1,过点G作GH⊥AD于点H,∵ME⊥EG,∴△AME∽△HEG,△EHG∽△FDE,∴===,===2,∴tan∠EGM==,tan∠EFG==,∴∠EGM=∠EFG.∵∠EGF+∠EFG=90°,∴∠EGF+∠EGM=90°,即∠MGF=90°,∴tan∠EFG==.(3)设AM=m,则BM=4-m,DF=4m,∴CF=4+4m.由(2)得∠MGF=90°,∴△MBG∽△GCF,∴==,∴==,∴CG=8-2m,BG=2+2m.分三种情况:ⅰ)当EG=NG时,如图2,过点G作GH⊥AD于点H,则EH=HN=2m,∴DN=(8-2m)-2m=8-4m.∵DN∥CG,∴,即,∴m=-1,解得m=-1+或m=-1-(舍去).∴AM=-1;ⅱ)当EN=NG时,∠NEG=∠NGE.∵AD∥BC,∴∠NEG=∠EGB,∴∠EGB=∠NGE.如图2,过点E作EK⊥BC于点K,则KG=8-(8-2m)=2m,∴tan∠EGK==═tan∠EGF==2,∴=2,∴m=1.ⅲ)当EN=EG时,如图4,∠ENG=∠EGN.∵AD∥BC,∴∠ENG=∠DGC,∴∠EGN=∠DGC.∴tan∠EGN=═tan∠DGC==2,∴=2∴m=.综上所述:当AM=-1+或1或时,△EGN为等腰三角形.(1)如图1,过G作GH⊥AD于H,先证明AE=AM=2,得∠AEM=∠DEF=45°,则DF=DE=8,再求CG的长,根据勾股定理计算FG的长;(2)根据ME⊥EG,证明△AME∽△HEG,△EHG∽△FDE,可得tan∠EGM==tan∠EFG==,可得∠EGM=∠EFG.可得∠MGF=90°,由三角函数定义可得结论;(3)设AM=m,则BM=4-m,DF=4m,证明△MBG∽△GCF,表示CG=8-2m,BG=2+2m.分三种情况进行讨论,根据平行线分线段成比例定理和三角函数定义列等式可得结论.本题是四边形综合题目,考查了矩形的性质,全等三角形的判定及性质,相似三角形的判定及性质,勾股定理以及三角函数的定义;本题综合性强,有一定难度,证明三角形相似是解决问题的关键.。

2019-2020年初中毕业生升学模拟考试(二)数学试题.docx

2019-2020年初中毕业生升学模拟考试(二)数学试题.docx

2019-2020 年初中毕业生升学模拟考试(二)数学试题本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120 分,考试时间为120 分钟.卷Ⅰ(选择题,共 42 分)注意事项: 1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共 16个小题, 1~6 小题,每小题 2 分; 7~16 小题,每小题 3 分,共42 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中,最大的数是A.3B.- 2C. 0D.12.下列运算正确的是A. a a3a3B. ab 3a3bC.a3 2a6D. a8 a 4a23.下列几何体中,主视图是三角形的是A.B.C.D.4.在一个不透明的口袋中,装有 5 个红球 3 个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为A.5B.1C .1D.3 83585.如图 1,点,,在同一直线上,若∠ 1=15°,∠2=105°,CB O D2B 1D O A图 1则∠ AOC的度数是A.75 °B.90°C.105°D.125°6.在平面直角坐标系中,点P(- 2, 3)关于 y 轴的对称点的坐标A.(-2,- 3) B . (2,- 3)C.( -2, 3) D .(2, 3)7.把多项式a24a 分解因式,结果正确的是A.a a 4B.(a 2)( a 2)C.a(a 2)(a 2)D. (a 2)248.如图 2 是一个正六边形,图中空白部分的面积等于20,则阴影部分的面积等于A. 10B. 102图 2 C. 20D. 2029.如图 3,反比例函数y=k的图象经过点M,则此反比例y xM函数的解析式为2A.y=-1B. y =-2- 1 O x 2x xC .y=1D. y =22x x图 310.已知a和b是有理数,若a+ b=0,ab ≠0,则在 a 和 b 之间一定A.存在负整数B.存在正整数C.存在负分数D.不存在正分数11.如图 4,AB是半圆的直径,点O是圆心,点 C是 AB延长线的一点,CD与半圆相切于点D D.若 AB=6, CD=4,则sin∠ C的值为A OB C图 4A .3B .345C . 4D.25312.若实数 x , y 满足 x4 + y8=0 ,则以 x , y 的值为两边长的等腰三角形的周长是A .12B .16C .16 或 20D . 2013.如图 5,P 为边长为2 的正三角形内任意一点,过 P 点分别做三边的垂线,垂足分别为,则的值为AD ,E ,FPD+PE+PF3FA .B.3DP2BCE. 23C . 2D图 514.某旅行团在一城市游览,有甲、乙、丙、丁四个景点,导游说:“①要游览甲,就得去乙;②乙、丙只能去一个;③丙、丁要么都去,要么都不去;”根据导游的说法,在下列选项中,该旅行团可能游览的景点是A .甲、丙B .甲、丁C .乙、丁D .丙、丁15 .如图 6, C 、 D 是线段 AB 上两点,已知图中所有线段的长度都是正整数,且总和为 29,则线ACDB段 AB 的长度是A . 8B . 9图 6C .8或 9D .无法确定16.如图 7,在等腰△ ABC 中, AB =AC=4cm,∠ B=30°,点 P 从点 B 出发,以3 cm/s的速度沿 BC 方向运动到点 C 停止,同时点 Q 从点 B 出发,以 1cm/s 的速度沿BA-- AC 方向运动到点 C 停止,若△ BPQ 的面积为y( cm2),运动时间为x(s),则下列最能反映y 与 x 之间函数图 7关系的图象是2015年邯郸市初中毕业生升学模拟考试(二)数学试卷卷Ⅱ(非选择题,共78 分)注意事项: 1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ 时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.三题号二212223242526得分得分评卷人二、填空题(本大题共 4 个小题,每小题 3 分,共 12 分.把答案写在题中横线上)1ABGCHD 2图 8lA17.若数a足a2a1, 2a 22a2015 =.18.如 8,射AB,CD分与直l相交于点G、 H,若∠ 1=∠ 2,∠C=65°,∠A的度数是.19.如 9,等腰△ABC片(AB=AC)按中所示方法,恰好能折成一个四形,首先使点A与点 B 重合,然后使点C与点 D重合,等腰△ ABC中∠ B 的度数是.ADB C B②C①③④图 920.有一个数学游,其是:一个“数串”中任意相的两个数,都用右的数减去左的数,所得之差写在两个数之,生一个新“数串”,称一次操作.例如:于数串 2, 7, 6,第一次操作后生的新数串2, 5, 7,- 1, 6;生的新数串行同的操作,第二次操作后生的新数串2,3,5,2,7,-8,- 1,7,6;⋯⋯数串 3, 1, 6 也行的操作,第30 次操作后所生的那个新数串中所有数的和.....是 ________.三、解答(本大共 6 个小,共66 分.解答写出文字明、明程或演算步)得分卷人21.(本小分10 分)(1)于,b 定一种新运算“☆”:a☆b= 2 -,例如: 5 ☆ 3 = 2×5-3 = 7.a ab 若( x☆ 5 )<- 2,求x的取范;(2)先化简再求值:x 22x ÷ x,其中 x 的值是( 1)中的正整数解.4 x 4x 2x 24得分评卷人22.(本小题满分 10 分)某公司共 20 名员工,员工基本工资的平均数为情况和各岗位人数,绘制了下列尚不完整的统计图表:2200 元.现就其各岗位每人的基本工资各岗位每人的基本工资情况统计表岗位经理技师领班助理服务员清洁工基本工资100004000240016001000人数各岗位人数统计图8 6 4 2经理 技师 领班 助理 服务员 清洁工 岗位请回答下列问题:( 1)将各岗位人数统计图补充完整;( 2)求该公司服务员每人的基本工资;(3)该公司所有员工基本工资的中位数是________元,众数是 _______元;你认为用基本工资的平均数和中位数来代表该公司员工基本工资的一般水平,哪一个更恰当?请说明理由.(4)该公司一名员工向经理辞职了,若其他员工的基本工资不变,那么基本工资的平均数就降低了.你认为辞职的可能是哪个岗位上的员工呢?说明理由.23.(本小题满分11 分)如图 10,点,,C 在一个已知圆上,通过一个基本的尺规作图作出的射线交已知A B AP圆于点 D,直线 OF垂直平分 AC,交 AD于点 O,交 AC于点,交已知圆于点.BE F(1)若∠BAC= 50 °,则∠BAD的度数为,∠ AOF的度数为;D(2)若点O恰为线段AD的中点.P O①求证:线段 AD是已知圆的直径;② 若∠= 80 °, =6,求弧的长;A图 11E CBAC AD DC③连接 BD, CD,若△ AOE的面积为 S,则四边形F的面积为.(用含S 的代数式表示)图 10ACDB24.(本小题满分11 分)如图11,抛物线y=ax2+ c 经过点A(0,2)和点B(-1,0).(1)求此抛物线的解析式;( 2)将此抛物线平移,使其顶点坐标为(2, 1),平移后的抛物线与x 轴的两个交点分别为点C, D(点 C 在点 D 的左边),求点C,D的坐标;( 3)将此抛物线平移,设其顶点的纵坐标为m,平移后的抛物线与x轴两个交点之间的距离为n,若1<m<3,直接写出n 的取值范围.yAB O x图 11得分评卷人25.(本小题满分11 分)如图 12-1 和 12-2,△ ABC 中,∠ BAC=90 °, AB=AC, AD ⊥ BC,垂足是D, AE 平分∠BAD ,交 BC 于点 E.过点 A 作 AF ⊥AE,过点 C 作 CF ∥ AD ,两直线交于点F.(1)在图 12-1 中,证明:△ ACF ≌△ ABE ;AFB CE D(2)在图 12-2 中,∠ ACB 的平分线交 AB 于点 M,交 AD 于点 N.①求证:四边形 ANCF 是平行四边形;②求证: ME=MA;③四边形 ANCF 是不是菱形?若是,请证明;若不是,请简要说明理由.图 12-2得分评卷人26.(本小题满分13 分)为了创建全国卫生城,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送.若两车合作,各运12 趟才能完成,需支付运费共4800元;若甲、乙两车单独运完此堆垃圾,则乙车所运趟数是甲车的 2 倍;已知乙车每趟运费比甲车少200 元.(1)分别求出甲、乙两车每趟的运费;(2)若单独租用甲车运完此堆垃圾,需运多少趟;( 3)若同时租用甲、乙两车,则甲车运x 趟,乙车运y 趟,才能运完此堆垃圾,其中为x,y 均为正整数.①当 x =10 时, y =当 y =10 时, x =②求 y 与 x 的函数关系式.;;探究:在(3)的条件下,设总运费为w(元).①求w 与 x 的函数关系式,直接写出w 的最小值;②当 x≥10且 y≥10时,甲车每趟的运费打7 折,乙车每趟的运费打9 折,直接写出w的最小值.2015 邯郸市中考二模数学试题参考答案及评分标准一.号12345678答案A C C A B D A A 号910111213141516答案B C B D B D C D 二、填空17. 201318 .115 ° 19.72° 20 . 100三、解答21. (1) 解: 2x-5<-2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分3x<⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分2(2)x( x2) ( x2)( x 2)5分解:原式 =2)2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( x x=x+2,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分∵x<3且 x 正整数解2∴x=1,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∴当 x=1,原式=x+2=3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 10分22. ( 1) 5 人(略)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分(2)解:( 2200×20 -10000- 4000×2- 2400×2- 1600×5- 1000×2)÷8=1400(元)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(3) 1500; 1400.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分答:中位数能代表公司工的基本工水平.理由:因平均数受极端的影响,不能真反映工的基本工水平,所以中位数能代表公司工的基本工水平 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分(4)辞的可能是技或班.理由:因向理辞,所以工位肯定比理低;又因基本工的平均数降低了,所以工的基本工比基本工的平均数高,所以辞的可能是技或班.⋯10分23. ( 1)25°;65°⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(2)① 明 : 接,CD∵直 OF垂直平分 AC,交 AC于点 E,∴∠AEO=90°,AE=CE,∵AO=OD,AE=CE,∴OE∥CD∴∠AEO=∠ACD=90°∴ 段是已知的直径⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分AD②解:接OC由作可知, AP是∠BAC的平分∴∠CAD=1∠CAB=40°,2∵弧 CD所的周角∠CAD、心角∠ COD∴∠ COD=2∠ CAD=80°∴弧的=80 34⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分CD1803③ 8 S⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11 分24. 解:( 1)∵抛物y=ax2+ c点A( 0, 2)和点B(- 1, 0) ;c2∴c0aa2,解得 :2c∴此抛物的解析式y2x2 2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2)∵此抛物平移后点坐(2, 1)2∴抛物的解析式y=-2(x - 2)+12令 y=0,即-2(x - 2)+1=0解得 x12x 2 2 -2 222∵点 C在点 D的左2,0)D(22⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯∴C(2-,0)22(3) 2 <n<6⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯25.( 1)明:∵∠ BAC=90 °, AB=AC ,∴∠ B=∠ACB=45°,∵AD ⊥ BC 4分9分11分1∴∠ DAC =∠ CAB=45°2∵C F ∥AD∴∠ DAC =∠ACF=45°,∴∠ B=∠AC F=45°∵A F ⊥AE∴∠ EAF=90°∵∠EAF= ∠ EAC+∠ CAF =90°∠B AC= ∠EAC+∠BAE=90°∴∠ CAF= ∠BAE∵A B=AC ,∴△ ACF≌△ ABE;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2)① 明:∵∠ BAC=90°, AB=AC , AD ⊥BC∴∠ BAD =45°,∵AE 平分∠ BAD ,∴∠ BAE= 1∠ DAB =22.5 °,2∵ △ ACF≌△ ABE;∴∠ BAE=∠ CAF =22.5 °,∵∠ ACB 的平分交AB 于点 M1∴∠ ACM=∠ACB=22.5°,2∵∠ ACM=∠ CAF=22.5°∴AF∥CN∵AD∥FC∴四形是平行四形;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分ANCF② 明:∵∠ BAC=90°,∠ BAE=22.5°,∴∠ EAC= 67.5 °,∵∠ BCA=45°,∴∠ AEC=67.5 °,∵∠ EAC=∠ AEC=67.5 °,∴CA=CE∵∠ ACB的平分交AB于点 M∴∠ ACM=∠ ECM∵MC=MC∴ △ ACM≌△ ECM∴AM=EM⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分③答:不是 .理由:∵∠ CAF=22.5°,∠ ACF=45°∴FA≠FC∴四形 ANCF不是菱形⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11 分26. ( 1)解:甲、乙两每趟的运分m元、n元,由意得m n20012( m n)4800m300解得 :n100答:甲、乙两每趟的运分300 元、 100 元 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(2)解:独租用甲运完此堆垃圾,需运 a 趟,由意得1112()=1a2a解得 a=18a=18是原方程的解答:独租用甲运完此堆垃圾,需运18 趟.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(3)① 16;13.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分x y1②解 :1836y=36-2 x⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分探究:① w=300x+100y=300x+100(36-2 x)=100 x+3600 (0< x<18, 且x正整数 )w的最小3700 元 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11 分②解:w=300×0.7 x+100×0.9 y=300×0.7 x+100×0.9(36 -2 x)=30 x+3240∵ x≥10且 y≥10∴10≤x≤13,且x正整数w的最小3540 元 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13 分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求 y 与 x 的函数表达式? (2)当销售数量为多少时,该经营这批杨梅所获得的毛利润
(w)最大?最大毛利润为多少万元? (毛利润=销售总收入-进价总成本-包装总费用) (3)经过市场调查发现,杨梅深加工后不包装直接销售,平
均销售价格为 12 万元/吨.深加工费用 s(单位:万元)与加工数量 t(单位:吨)之间
x

y

2 1
B.
x

y
1 2
C.
x y
-1 5
D.
x y
5 -1
8.已知二次函数 y -(x - 1)2 2 ,当 t x 5 时, y 随着 x 的增大而减小,则实数 t 的取值
范围是( ▲ )
A. t 0
B. 0 t 1
C.1 t 5
2019 年洞头区初中毕业升学考试第二次适应性考试
数学试题卷
姓名:
准考证号:
亲爱的同学: 欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平,答题时,请注意以下几点: 1.全卷共 4 页,有三大题,24 小题,全卷满分 150 分,考试时间 120 分钟. 2.答案必须写在答题纸相应位置,写在试题卷,草稿纸上均无效. 3.答题前,认真阅读答题纸上的《注意事项》,按规定答题.
社团名称 人数(人)
篮球 11
足球 x
唱歌 9
器乐 8
最喜欢的项目是( ▲ )
A.篮球
B.足球
C.唱歌
D.器乐
5.七边形的内角和为( ▲ )
A.360°
B.540°
C. 720°
D.900°
6.如图,要测量小河两岸相对的两点 P,A 的距离,可以在小河边取 PA
的垂线 PB 上的一点 C,测得 PC=8 米,cos PCA 4 ,则 PA 等于(▲) 5

.
14.甲、乙两班学生植树造林,已知甲班每天比乙班多植 5 棵树,甲班植 80 棵树所用的天数与乙班
植 70 棵树所用的天数相等.若设乙班每天植树 x 棵,则根据题意列出的方程是


15.如图,在矩形 ABCD 中,AB=4,BC=5,点 E 是边 CD 的中点,将△ADE 沿 AE 折叠后得到△AFE.
延长 AF 交边 BC 于点 G,则 CG=


16.我国古代数学家赵爽利用弦图证明了勾股定理,这是著名的赵爽弦图(如图 1).它是由四个全
数学试题卷 第 2页(共 5页)
等的直角三角形拼成了内、外都是正方形的美丽图案.在弦图中(如图 2),已知点 O 为正方形 ABCD 的对角线 BD 的中点,对角线 BD 分别交 AH,CF 于点 P、Q.在正方形 EFGH 的 EH、FG
1 的函数关系是 s= 2 t+3(0<t≤8)
①当该公司销售杨梅多少吨时,采用深加工方式与直接包装销售获得毛利润一样? ②该公司销售杨梅吨数在 ▲ 范围时,采用深加工方式比直接包装销售获得毛利润大些?
24.(本题 14 分)在矩形 ABCD 中,AB=4,AD=10,E 是 AD 的一点,且 AE=2,M 是 AB 上一点, 射线 ME 交 CD 的延长线于点 F,EG⊥ME 交 BC 于点 G,连结 MG,FG,FG 交 AD 于点 N. (1)当点 M 为 AB 中点时,则 DF= ▲ ,EG= ▲ . (2)在整个运动过程中,MFGG 的值是否会变化,若不变,求出它的值;若变化,请说明理由. (3)若△EGN 为等腰三角形时,请求出所有满足条件的 AM 的长度.
表示应为( ▲ )
A.1298×108
B.1.298×108
C.1.298×1011
D.1.298×1012
3.三通管的立体图如图所示,则这个几何体的俯视图是( ▲ )
第 3 题图
A.
B.
C.
D.
4.某班预开展社团活动,对全班 42 名学生开 展“你最喜欢的社团”问卷调查(每人只选一 项),并将结果制成如右统计表,则学生
1
20.(本题 8 分)如图,在 7×7 的方格纸中,点 A,B,C 都在格点上,请按要求找出 D 点,使得 D 点在格点上. (1)在图甲中画一个∠ADC,使得∠ABC=∠ADC. (2)在图乙中画一个三角形 ADC,使得△ADC 的面积等于△ABC 面积的 2 倍.
数学试题卷 第 3页(共 5页)
A.5 米
B.6 米
C.7.5 米
D.8 米
第6题
7.我们知道方程组:
2x 3x
3y 2y

7
的解是
4

x y

2 1

则方程组
(2 x (3 x
- 3) (3 y - 3) (2 y
2) 2)
7

4
数学试题卷 第 1页(共 5页)
解是( ▲ )
A.
4
2
18.(本题 8 分)如图,在ABCD 中,CF⊥AB 于点 F,过点 D 作 DE⊥BC 的延长线于点 E,且 CF=DE. (1)求证:△BFC≌△CED; (2)若∠B=60º,AF=5,求 BC 的长.
19.(本题 8 分)李老师为了解某校学生完成数学课前预习的具体情况,对部分学生进行了跟踪调 查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.绘制成如下统计图。 (1)李老师一共调查了多少名同学?并将下面条形统计图补充完整. (2)若该校有 1000 名学生,请估计数学课前预习“很好”和“较好”总共有多少人? (3)为了共同进步,李老师想从被调查的 A 类和 D 类学生中各随机选取一位同学进行“一帮一” 互助学习,求出所选两位同学恰好是一位男同学和一位女同学的概率(. 要求列表或树状图)
D. 12 米 5
第9题
(第 10 题图 1)
卷Ⅱ
(第 10 题图 2)
二、填空题(本题有 6 小题,每小题 5 分,共 30 分)
11.分解因式: a2 - 4


12.已知一组数据 1,3,x,x+2,6 的平均数为 4,则这组数据的众数为

.
13.已知扇形的圆心角为 160°,面积为 4 ,则它的半径为
D. t 5
9.如图,点 A 是反比例函数 y k 在第一象限图象上一点,连接 OA,过点 A 作 AB∥x 轴(点 B 在 x
点 A 右侧),连接 OB,若∠1=∠2,且点 B 的坐标是(8,4),则 k 的值是( ▲ )
A.6
B.8
C.12
D.16
10.移动通信公司建设的钢架信号塔(如图 1),它的一个侧面的示意图(如图 2).CD 是等腰三角
(图甲)
(图乙)
21.(本题 10 分)已知抛物线 y ax2 bx c 的对称轴为 x 1 ,且过点( 3 ,0),(0,3 ).
(1)求抛物线的表达式.
(2)已知点(m,k)和点(n,k)在此抛物线上,其中 m≠n,请辨别关于 t 的方程 t 2 mt n 0
根的情况,并说明理由.
22.(本题 10 分)已知,如图,BD 为 O 的直径,点 A、C 在 O 上
并位于 BD 的两侧,
,连结 CD、OA 并延长交于点 F,
过点 C 作 O 的切线交 BD 延长线于点 E。
(1)求证:

(2)当 DF=6, tan EBC 1 ,求 AF 的值。 2
23.(本题 12 分)温州茶山杨梅名扬中国,某公司经营茶山杨梅业务,以 3 万元/吨的价格买入杨 梅(购买的数量不超过 8 吨),包装后直接销售,包装成本为 1 万元/吨,它的平均销售价格 y(单位:万元/吨)与销售数量 x(单位:吨)之间的函数关系如图所示。
两边上分别取点 M,N,且 MN 经过点 O,若 MH=3ME,BD=2MN= 4 5 .则△APD 的面积为 ▲ .
第 15 题
(16 题图 1)
(16 题图 2)
三、解答题:(本题有 8 小题,共 80 分.解答需写出必要的文字说明、演算步骤或证明过程)
17.(本题 10 分)(1)计算: 20 32 1 4; (2)化简: (a 1)2 2(a 1 )
数学试题卷 第 4页(共 5页)
数学试题卷 第 5页(共 5页)
形 ABC 底边上的高,分别过点 A、点 B 作两腰的垂线段,垂足分别为 B1,A1,再过 A1,B1 分别作
两腰的垂线段所得的垂足为 B2,A2,用同样的作法依次得到垂足 B3,A3,….若 AB 为 3 米,
sin

4 ,则水平钢条 5
A2B2 的长度为(


A. 9 米 5
B.2 米
C. 48 米 25
祝你成功!
卷Ⅰ
一、选择题:(本题有 10 小题,每小题 4 分,共 40 分.每小题只有一个选项是正确的,不选,多选,
错选均不给分)
1. 1 的倒数为( ▲ ) 2
A. 2
B. 1
C.2
D. 1 2
2.温州市 2019 年一季度生产总值(GDP)为 129 800 000 000 元.将 129 800 000 000 用科学记数法
相关文档
最新文档