量子密码通信原理及应用前景探究
量子密码学在信息安全领域的应用前景

量子密码学在信息安全领域的应用前景随着信息技术的飞速发展,信息安全问题日益凸显。
在这个数字化时代,保护个人隐私和商业机密变得尤为重要。
幸运的是,量子密码学作为一种新兴技术,为信息安全领域带来了新的希望。
本文将探讨量子密码学在信息安全领域的应用前景。
首先,让我们来了解一下什么是量子密码学。
简单来说,量子密码学是一种利用量子力学原理进行加密和解密的技术。
它的核心思想是利用量子态的不确定性和不可克隆性来实现无条件安全的信息传输。
这种技术的出现,无疑为信息安全领域注入了一股强大的力量。
那么,量子密码学在信息安全领域的应用前景如何呢?我们可以从以下几个方面进行分析:1.提高信息传输的安全性:传统的加密技术存在被破解的风险,而量子密码学则可以实现无条件安全的信息传输。
这意味着,即使在极端情况下,攻击者也无法获取到任何有关明文的信息。
因此,量子密码学有望大大提高信息传输的安全性。
2.抵御量子计算攻击:随着量子计算机的发展,传统的加密技术可能面临被破解的风险。
然而,量子密码学具有抵御量子计算攻击的能力。
这是因为量子计算机在处理量子态时,会破坏其原有的状态,从而使攻击者无法获取到有用的信息。
因此,量子密码学有望成为抵御量子计算攻击的有效手段。
3.促进新型应用场景的发展:量子密码学的出现,为信息安全领域带来了新的应用场景。
例如,在物联网、智能交通等领域,大量的设备需要实时传输敏感信息。
传统的加密技术可能无法满足这些场景的需求。
而量子密码学则可以为这些场景提供更为安全可靠的信息传输解决方案。
4.推动相关产业的发展:随着量子密码学的不断发展和应用,相关的产业也将得到推动。
例如,量子通信设备、量子密钥分发系统等产业将得到快速发展。
这将有助于推动整个信息安全产业链的升级和完善。
当然,量子密码学在信息安全领域的应用也面临着一些挑战。
例如,量子通信设备的制造成本较高,且需要在特定的环境下运行;此外,量子密码学的标准化和兼容性问题也需要进一步解决。
量子密码学的发展趋势及应用

量子密码学的发展趋势及应用在现代生活中,信息安全是一项很重要的任务。
为了保护个人隐私和商业机密,人们使用了各种加密技术。
然而,随着科技的不断进步,传统的加密技术变得越来越容易被破解,这使得研究人员转而将目光投向了一种更安全的技术——量子密码学。
一、什么是量子密码学?量子密码学是一种基于量子力学原理的加密技术,它可以保护信息的安全性,使数据无法被黑客窃取或破解。
和传统的加密技术不同,量子密码学是基于量子信息和量子态之间的关系建立起来的。
二、量子密码学的特点在量子密码学中,信息的安全性建立在量子态测量时不可避免的干扰现象之上。
由于干扰会改变量子态,因此,任何派生量子态的操作都会留下一定的痕迹,从而实现了保密通信。
与传统的密码学技术相比,量子密码学具有以下优点:1、绝对安全量子密码学的绝对安全性建立在相关关系的量子测量上,并且不受信息窃取、窃听等攻击的影响。
2、实时检测在量子密码学中,如果数据受到攻击,就会通过特殊的测量方式来检测和确认数据是否被窃取。
3、波动信号处理对于信息传输中数据传输中的干扰和噪音,量子密码学采用波动信号处理,这样可以大大降低数据传输的误差,进而保证数据的安全性。
三、量子密码学的发展趋势1、量子网络技术量子网络技术是量子密码学的关键技术,它可以实现量子密钥的安全发布,从而保证量子加密通信的安全性。
目前,量子网络技术的发展速度非常快,研究人员正致力于进一步提高其积极性、噪音抑制能力和通信效率。
2、多用途量子密钥配送多用途量子密钥配送是量子密码学发展的重要方向之一。
通过将密钥配送应用到其他领域中,使得量子密码学的应用范围进一步扩大,有助于解决更多应用领域的安全问题。
3、基于云服务的量子密码学随着云计算和物联网的不断发展,相应的安全问题也日益突出。
为了更好地保护云存储中的数据安全性,研究人员正在建设基于云服务的量子密码学系统,这将为传统加密系统提供更有效和更安全的替代方案。
四、量子密码学应用实例1、量子通信卫星我国率先成功研发了量子通信卫星,可以为银行、政府等机构提供高度安全的通信保障。
量子密码学在信息安全领域的应用前景分析

量子密码学在信息安全领域的应用前景分析随着信息技术的飞速发展和互联网的普及,人们对于信息安全的需求日益增高。
然而,传统密码学在面对未来的量子计算机攻击时,存在着严重的安全风险。
为了解决这个问题,量子密码学应运而生,其利用量子力学的原理来设计更安全的密码系统,被认为是未来信息安全领域的一项重要技术。
本文将分析量子密码学在信息安全领域的应用前景。
首先,量子密码学的核心技术是基于量子力学的不可克隆性原理。
传统密码学通过数学计算的复杂性来保护信息安全,而量子密码学则利用量子力学原理,通过“不可克隆性”来保障信息的安全。
量子密码学的基本思想是利用量子态的特殊性质,如量子叠加态和量子纠缠态,来实现信息的加密和解密。
由于量子态的特殊性质,量子密码学在信息传输过程中能够实现绝对安全性。
其次,量子密码学的应用前景主要体现在以下几个方面。
首先是量子密钥分发(Quantum Key Distribution, QKD)。
量子密钥分发是量子密码学最为成熟和实用的应用之一。
传统的密钥分发方法存在着被窃听和篡改的风险,而量子密钥分发在信息传输过程中利用量子态的特殊性质来实现密钥的安全分发。
量子密钥分发技术不仅能够抵御传统密码学攻击手段,如破译和破解等,还能够抵御未来高级的量子计算机攻击。
其次是量子安全通信。
量子安全通信是利用量子力学的原理来保障通信的安全性和可靠性。
与传统加密通信相比,量子安全通信具有更高的安全性和隐私保护性,能够有效抵御窃听、解密和篡改等安全攻击,为用户提供更可信赖的通信环境。
量子安全通信技术在政府、金融、军事等领域具有广阔的应用前景。
另外,量子计算机在破解传统密码学算法方面具有巨大的优势。
传统密码学算法的破解主要依赖于计算力的增加和数学算法的改进,而量子计算机的出现将会改变密码学的格局。
因此,为了应对量子计算机的威胁,量子密码学的发展非常重要。
量子密码学利用量子态的特殊性质构建了新的安全算法,为未来抵御量子计算机攻击提供了有力支持。
量子密码学技术的发展现状与未来趋势

量子密码学技术的发展现状与未来趋势随着科技的飞速发展,人们越来越依赖于互联网和数字化通信。
然而,传统的加密技术面临着巨大的挑战,因为量子计算机的崛起可能会让当前的加密算法变得脆弱。
因此,研究者们转向了量子密码学技术,探索这个新兴领域的发展现状与未来趋势。
量子密码学技术是一种基于量子力学原理的密码学方法,它利用了量子隐形传态、量子纠缠和不可克隆性等特性来保护通信中的机密信息。
与传统的密码学方法相比,量子密码学技术具有更高的安全性。
在当前的发展现状中,量子密码学技术已经取得了一些重要的突破。
例如,量子密钥分发(QKD)是量子密码学技术中的一个重要方向。
QKD可以通过量子纠缠和测量来生成一组随机的量子密钥,并且在传输过程中能够检测到任何窃听者的存在。
目前,QKD技术已经在实验室环境中得到了广泛的研究和验证,并且一些商业化的产品也开始逐步进入市场。
此外,量子签名和量子认证等技术也在不断发展和完善,为实现更安全的通信提供了更多的选择。
然而,量子密码学技术仍然面临着一些挑战和限制。
首先,目前的量子密码学技术在实际应用中存在一定的复杂性和高成本。
由于需要使用特殊的量子设备和复杂的算法,导致量子密码学技术的应用相对较为有限。
其次,量子密码学技术对通信距离和信道损耗等要求也比较高,这限制了其在长距离通信和复杂网络环境下的应用。
此外,量子密码学技术还需要解决一些实际问题,如量子存储和传输中的错误纠正等。
在未来的发展趋势中,量子密码学技术有望进一步突破现有的限制。
首先,随着量子技术的进一步发展和成熟,量子设备的性能和稳定性将不断提高,从而降低了量子密码学技术的成本和复杂性。
其次,研究者们正在努力寻找更高效的量子密码学算法和协议,以提高量子密码学技术的性能和可靠性。
例如,基于量子群论和复杂性理论的研究正在为量子密码学技术提供更深入的理论支持和指导。
此外,量子互联网络的建设和发展也将推动量子密码学技术在实际应用中的推广。
科普:量子通信和量子密码学的进展和应用

量子通信和量子密码学的进展和应用引言在过去的几十年里,量子物理学的进展带来了许多颠覆性的技术,其中最为引人注目的就是量子通信和量子密码学。
量子通信和量子密码学基于量子力学的基本原理,为我们提供了一种全新的、安全的信息传输方式。
本文将详细介绍量子通信和量子密码学的进展和应用,并探讨未来的发展趋势和挑战。
一、量子通信的进展量子通信是一种前沿的科技,利用了量子力学的一些奇特特性,如量子叠加和量子纠缠,来进行信息的传输。
这种技术并非简单地发送和接收信息,而是涉及到复杂的制备、测量和传输过程。
在这个过程中,信息被编码在量子态中,这些量子态可以处于叠加态或纠缠态等奇特的状态。
叠加态是指一个量子系统可以同时处于多种状态,而纠缠态则是指两个或多个量子系统之间存在一种特殊的关系,它们的状态是相互依赖的。
这些状态在传输过程中不会泄露任何信息,保证了通信的安全性。
传统的通信方式容易被窃听和干扰,而量子通信则因为其独特的性质而无法被破解,从而保证了通信的安全性和保密性。
因此,量子通信是一种具有巨大潜力的技术,未来可能会在各个领域得到广泛应用,如金融、军事、政府等。
随着技术的不断发展,相信我们将会看到更多的应用场景出现。
量子通信的基本原理和技术量子通信是利用量子力学原理进行信息传输和处理的新型通信技术。
其基本原理涵盖了量子态的制备、测量和传输三个关键环节。
在量子态的制备阶段,信息被编码为量子态,这个过程通常涉及对光子或离子等基本粒子的操作。
这些粒子在特定的物理系统中被激发和操控,以产生携带有信息的量子态。
在测量环节,对量子态的观测是获取信息的关键步骤。
这种观测可以通过多种方式实现,如使用光子探测器或离子捕获技术。
当观测者对一个量子系统进行观测时,观测者的行为会干扰量子系统的状态,导致量子态发生塌缩。
塌缩后的量子态是一个经典态,可以直接读取并解码出原始信息。
量子态的传输则依赖于物理系统中的相互作用。
例如,在量子隐形传态协议中,传输者首先将量子态与自己之间的粒子进行纠缠,然后将纠缠态发送给接收者。
量子通信技术的原理及应用

量子通信技术的原理及应用量子通信技术是近年来备受关注的新兴技术,其原理和应用已引起广泛关注。
量子通信技术是基于量子力学的原理和技术,能够实现不可破解的加密、超高速传输、超远距离通信以及量子计算等多种功能。
本文将介绍量子通信技术的原理和应用,并探讨其未来发展方向。
一、量子通信技术的原理在传统的通信中,信息的传输是利用电子、光子、声波等载体完成的,而量子通信技术则是利用量子信息进行通信的。
量子通信技术的核心是量子比特(qubit)的存储、传输和操作。
由于量子比特具有量子纠缠、量子隐形传态、量子态复制不可能等基本特性,因此在信息的传递、存储、处理等方面有着传统通信技术无法比拟的优势。
在量子通信中,信息的传递是通过量子态的传输完成的。
量子态包括脉冲光子和自旋电子等物理量子,最常用的是使用光子作为量子比特来传递信息。
量子比特具有叠加态的特性,也就是说可以同时处理0和1两种信息。
因此,可以用一个量子比特同时处理多个信息,从而大大提高通信效率。
二、量子通信技术的应用量子通信技术不仅仅是一个学术话题,更是一个具有广泛应用前景的技术。
目前,量子通信技术主要应用于保密通信、量子密钥分发、量子计算、量子测量等领域。
1. 保密通信相信大家对于保密通信并不陌生,比如军事、情报、金融等领域中需要保密通信,这些信息的泄露都将会面临非常严重的后果。
而传统的保密通信技术基于复杂编码算法,而量子通信技术则依赖于量子物理学的基础。
利用随机的量子的结果来传递明文和密文,例如密钥分发技术,只要你存在偷窥,则将会改变原始密钥的行为,双方将可以立即确定这一事件并且重新生产一个新的密钥,这个正确性验证的过程基于量子隐形传态的原理,不能被第三方干扰。
2. 量子密钥分发量子密钥分发是一种利用量子纠缠的技术对密钥进行保密传输的方法。
在量子密钥分发中,发信人将量子比特发射给收信人,发信人和收信人在量子比特上测量值不同,但总是匹配的,从而确保量子比特在传输过程中没有被偷窥或篡改。
量子通信技术原理与发展前景分析

量子通信技术原理与发展前景分析--- C114中国通信网随着电子商务、移动支付和互联网金融等新兴业务的蓬勃发展,通信与网络技术的触角已经深入到社会经济生活的各个角落,人们对网络的依赖越来越强,网络极大地改变了人们的生存模式,已成为人们日常生活中不可缺少的一部分;但是网络带给人们便利的同时,网络安全问题也日益凸显,尽管在网络中保障网络安全的各种设备和新技术已经层层部防,但是诸如12306网站包含用户身份证及密码信息的数据泄露、快递1400万信息外露、2014年的1·21我国互联网DNS 大劫难等等网络安全问题频频出现,这些不断曝光的监控窃听丑闻和用户隐私泄露事件进一步加剧了人们对于网络信息安全的忧虑与关注,有没有一种技术可以有效解决网络安全问题?量子通信技术具有极高安全性、通信容量大、传输速度快等优点,可以完成传统通信不能完成的特殊任务,利用无法破译的秘钥技术,实现了真正意义上的安全保密通信,近年得到了世界各国科学家的密切关注和深入研究,是通信技术的又一次革命。
1、量子通信的基本原理1.1基本概念量子通信是利用量子相干叠加、量子纠缠效应进行信息传递的一种新型通信技术,由量子论和信息论相结合而产生。
从物理学角度看,量子通信是在物理极限下利用量子效应现象完成的高性能通信,从物理原理上确保通信的绝对安全,解决了通信技术无法解决的问题,是一种全新的通信方式。
从信息学角度看,量子通信是利用量子不可克隆或者量子隐形传输等量子特性,借助量子测量的方法实现两地之间的信息数据传输。
量子通信中传输的不是经典信息,而是量子态携带的量子信息,是未来通信技术的重要发展方向。
1.2 量子通信的主要组成部分量子通信主要由量子密钥分配( QKD,Quantum Key Distribution)、量子隐形传态(Quantum Teleportation)、量子安全直接通信(QSDC,Quantum Secure Direct Communication) 、量子机密共享( QSS,Quantum Secret Sharing) 等4个方面。
量子加密技术的发展与应用

量子加密技术的发展与应用量子加密技术是一种基于量子物理原理的计算机网络安全通讯技术,它的出现是为了保障信息安全以及保护国家的国家安全。
随着信息技术的发展,人们越来越需要一个可靠的安全通讯系统来保护自己的信息不被窃取或篡改,而量子加密技术正是在这个背景下应运而生。
一、量子加密技术的原理量子加密技术是通过使用量子力学的原理来保障信息传输的安全。
在传统的计算机网络安全通讯技术中,信息的传输需要借助于加密算法来保证信息的安全,而在量子加密技术中,信息的传输会利用到量子物理学的特性,通过量子密钥分发来控制信息的安全。
所谓的量子密钥分发,就是通过量子隐私通道来传递密钥,利用量子物理学的不可逆性,将密钥的传输过程变得极为安全,从而保证数据的安全性。
二、量子加密技术的发展历程1. 1966年,Bennett和Brassard提出了用于分布秘密密钥的量子密钥分发方案(QKD)。
2. 1984年,Bennett和Brassard提出了BB84协议,该协议至今仍被广泛应用于量子保密通信中。
3. 1991年,Ekert提出了E91协议,该协议是一种基于纠缠态的保密通信协议。
4. 2002年,IBM在实验室中成功地实现了量子隐私保护。
5. 2010年,中国科学家研制出了基于卫星的量子保密通信技术。
三、量子加密技术的应用1. 军事保密通信在军事领域中,保密通信是至关重要的。
量子加密技术的出现,有效地解决了军事中传输数据的安全问题,为军队保障了信息交流的隐私和安全。
2. 金融交易保密在金融领域中,交易数据的保密也是非常关键的。
利用量子加密技术,可以有效地防止黑客的攻击和窃取,保障金融交易的安全。
3. 智能制造安全在智能制造领域中,信息的保密也是十分重要的。
利用量子加密技术,可以保障智能制造中的数据交换的隐私和安全,避免机密信息泄露。
4. 针对量子计算机的攻击量子加密技术不仅可以用于保障信息的安全,还可以用来针对量子计算机的攻击。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子密码通信原理及应用前景探究
作者:侯林林
来源:《科学之友》2009年第04期
摘要:文章主要介绍量子密码通信研究的历史,量子密钥生成和分发的基本原理以及相关的实验进展。
首先介绍了经典密码学的基本原理及其保密方式,经典密码通信对更高安全性的追求,为量子密码通信的出现以及研究做了一个铺垫。
根据量子力学中的海伯森不确定性原理,量子不可克隆原理,任何人都不可能窃听量子密码通信中的信息而不被发现。
文章主要围绕BB84协议与B92协议,以及EPR佯谬的基本原理来展开讨论。
在此基础之上介绍了当前世界范围内相应的实验研究及研究成果,并详细介绍了量子密码通信在国内的有关实验及研究成果。
最后展望了量子密码通信的发展前景和今后的发展方向。
关键词:密码学;量子不确定性原理;量子密钥;量子密钥分配
中图分类号:TN913文献标识码:A文章编号:1000-8136(2009)11-0143-02
1917年,英国破译了德国外长齐默尔曼的电报,促成了美国对德宣战。
1942年,美国从破译日本海军密报中,获悉日军对中途岛地区的作战意图和兵力部署,从而能以劣势兵力击破日本海军的主力,扭转了太平洋地区的战局。
在保卫英伦三岛和其他许多著名的历史事件中,密码破译的成功都起到了极其重要的作用,这些事例也从反面说明了密码保密的重要地位和意义。
1 经典密码通信原理
保密通信的目的是让通信双方互相交流信息而不让非法第三者窃取或破坏信息的内容。
早密码中,发送者、接受者及窃听者各有惯用名,分别取为Alice,Bob和Eve,以下简称A,B和E。
通常说的对信息加密就是对信息明文M惊醒数据的变换GK,得出密文C:GK(M)=C
密文发给合法的接受者,通过逆变换进行解密,恢复原明文M:GK-1(C)=M.
明文和密文之间的变换借密码算法在参数K作用下完成,这样的参数可称为密钥,保密通信的关键就在于密钥K的生成。
这种加密、解密使用同样的或可互推的密钥称为对称密码,其缺点是必须经常更换密钥,否则容易被破译,而这意味着通信双方之间必须经常传送密钥,这更增加了被窃听的危险。
2 量子密钥本分发的原理
首先,基于两种共轭基的四态方案,其代表为BB84协议:BB84协议采用四个非正交态作为量子信息态,且这四个态分属于两组共轭基,每组基内的两个态是相互正交的。
两组基互为共轭是指一组基矢在另一组基中的任何基矢上的投影都相等。
对于某一基的基矢量子态,以另一组共轭基对其进行测量会消除它测量前具有的全部信息而使结果完全随机,也就是说测量一组基中的两将会对另一组基中的两产生干扰。
其次,是基于两个非正交的两态方案的B92协议:在B92协议中,A以0°45°,两个偏振方向的光子代表0,1比特,向B随机发光子脉冲,B随机选90°或135°两个检偏方向。
可见,若B的检偏方向垂直于A所选方向(50%几率),探测器接收不到任何光子;若成45°,则有50%几率接收到光子。
一旦测到光子,B就会知道光子的偏振方向,因为只有一种可能性。
这样,B若以90°(135°)方向测到光子,他就知道A发出的光子态是45°(0°),对应着1(0)比特。
B 只需告诉A他什么时候测到光子,双方就可建立密钥本。
这种方法比BB84协议简单,发射光子源及探测器减少一半,但代价是传输率也减少一半,因为只有25%的光子被接收到。
最后,我们谈一谈基于EPR佯谬的EPR纠缠态方案,如E91协议:在EPR公钥分配协议中,相关粒子源可用非线性光学晶体参量下转换过程中产生的光子对,其中一个光子由A接收和测量,另一个孪生光子则由B接收和测量,同BB84协议类似,A,B双方都随机选择共轭基进行测量,基相同的测试结果保留作为密码本。
3 量子密钥分配的有关实验
3.1 国外的有关试验
1993年,瑞士的Muller等人首次在光纤中实现了利用偏振编码的量子密码传输。
他们利用经强烈衰减的激光(平均每个脉冲含有0.12个光子)来模拟单光子源,工作波长0.81um,通过选择偏振片来选择发送不同偏振态的光子。
考虑到光子在光纤中的损耗是限制传输距离的主要因素,1996年,他们改用1.3 um的脉冲半导体激光作为光源,实现传输距离23 km,误码率仅为34‰。
自从英国BT实验室的Townsend等人1993年首次完成光纤中相位编码方式的量子密钥分配实验以来,光纤量子密码术在不到十年的时间内取得了惊人的发展。
他们正是利用了这种方案与技术,并利用比以前实验中用到的灵敏度和信噪比更高的锗探测器,实现了30 km的密钥分配,比特率为1比特每秒,误码率仅40‰。
3.2 国内的有关实验
我国在量子密码通信方面的若干研究方向,即更纯的单光子源、高效单光子探测器、防窃听技术、量子放大以及适应市场竞争。
中科大郭小灿小组解决了这个稳定性和安全性统一的难题。
在实验上研究了光纤系统不稳定性的物理根源,在理论上给出稳定性条件,进而设计出满足稳定性条件的迈克逊—法拉第干涉仪,在实验室内实现150 km的量子密钥分配,在北京与天津之间的125 km商用光纤上实现了量子密钥分配和加密图像传送潘建伟及其奥地利的同事分别在1998年和2003年在实验上实现了纠缠交换和纠缠纯化,但是量子存储的实验实现却一直存在着很大的困难。
为了解决这一问题,段路明教授及其奥地利、美国的合作者曾于2001年提出了基于原子系综的另一类量子中继器方案,但由于这一类量子中继器方案存在着对于信道长度抖动过于敏感、误码率随距离增加而增长过快等严重问题,无法被用于实际的远距离量子通信中。
为了解决上述困难,潘建伟和他的同事陈增兵、赵博等,于2007年提出了具有存储功能并且对信道长度抖动不敏感、误码率低的高效率量子中继器的理论方案。
4 量子通信系统的发展及未来的发展前景
从量子理论的最基本概念出发,由理论上提出设想,到今天几十公里远的密钥分配,接近实用化的量子密码传输系统,这一切都是最近几年发生的由于Internet及各种局域网的开通,银行业务中电子支付系统的广泛应用等,安全性就成为首先考虑的问题之一,这给量子密码的应用提供了巨大的空间。
4.1 寻找量子密码应用的新领域
如签名,身份认证协议,量子投票等。
量子密码作为经典密码的自然扩展和升级,而不是代替了经典密码。
如何将量子力学的优势和公钥体制结合起来是一个值得探讨的问题。
4.2提高比特传输率
量子密码要想成为真正的便签式密码体制,用来加密通信的海量数据,对密钥的长度和数量的要求会越来越高。
在此方面,连续变量密码系统也许是一个可能的研究方向。
4.3量子密码通信即将获得应用
量子因特网正处于关键性科学和技术问题有待突破的阶段,量子计算仍处于基础理论和实验的研究阶段, 预计20年之后可望研制成功量子计算机。
4.4量子密码技术被认为是绝对安全的加密技术
近年来,在美国、德国、日本和中国,相关研究都取得了明显进展。
2004年6月,世界上第一个量子密码通信网络在美国马萨诸塞州剑桥城正式投入运行,标志着这一技术迈上了新台阶。
A Introduction to the euantum Cryptography
Hou Linlin
Abstract:Quantum key distribution is based on the Heisenberg uncertainty principle which guarantees that no eavesdropper can escape detection. In this paper, we introduce some conceptions of quantum information and the basic principles of quantum key distribution. We also introduce the progress of the experimental research on quantum cryptography. Lastly, we present a review on the prospect of the application of the quantum communication.
Key Words:cryptography ; Heisenberg uncertainty principle ;Quantum key; Quantum key distribution;。