2017年春季学期新版新人教版七年级数学下册期末复习五不等式与不等式组习题
最新人教版初中数学七年级数学下册第五单元《不等式与不等式组》检测题(含答案解析)

一、选择题1.若关于x 的不等式组0122x a x x ->⎧⎨->-⎩只有两个整数解,则a 的取值范围是( )A .21a -≤<-B .21a -≤≤-C .21a -<<-D .21a -<≤-2.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a的值为( )A .﹣1B .0C .1D .23.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( )A .3a ≤-B .3a <-C .3a >D .3a ≥4.关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则不等式组的解集是( )A .1x >-B .3x ≤C .13x -≤≤D .13x -<≤5.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( )x… -2 -1 0 1 2 3 … y …321-1-2…A .x <1B .x >1C .x <0D .x >06.若0a <,则关于x 的不等式221ax x -<+的解集为( ) A .32x a <- B .32x a >- C .32x a>- D .32x a<- 7.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( )A .2m >-B .2m >C .3m >D .2m <-8.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( )A .a <-2B .a ≤-2C .a >-2D .a ≥-29.若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .68m <<B .67≤<mC .67m ≤≤D .67m <≤10.若m n <,则下列各式中正确的是( ) A .33m n +>+B .33m n ->-C .33m n ->-D .33m n > 11.若关于x 的不等式组327x x a-<⎧⎨<⎩的解集是x a <,则a 的取值范围是( ).A .3aB .3a >C .3aD .3a <12.不等式1322x x -+>的解在数轴上表示正确的是( ) A . B .C .D .二、填空题13.若0a b c ++=,且a b c >>,以下结论: ①0a >,0c >;②关于x 的方程0ax b c ++=的解为1x =; ③22()a b c =+④||||||||a b c abc a b c abc +++的值为0或2; ⑤在数轴上点A .B .C 表示数a 、b 、c ,若0b <,则线段AB 与线段BC 的大小关系是AB BC >.其中正确的结论是______(填写正确结论的序号). 14.已知关于x 的不等式组221x a b x a b -≥⎧⎨-<+⎩的解集为55x -≤<,则ab 的值为___________.15.已知关于x 的不等式组010x a x -≥⎧⎨->⎩的整数解共有3个,则a 的取值范围是________.16.已知点N 的坐标为()8a a -,,则点N 一定不在第____象限 17.关于x 的不等式132x a x -≤⎧⎨-<⎩有5个整数解,则a 的取值范围是______.18.若不等式组30x ax >⎧⎨-≤⎩只有三个正整数解,则a 的取值范围为__________.19.不等式组()2x 15x 742x 31x 33⎧+>-⎪⎨+>-⎪⎩的解集为______20.已知关于x 的不等式组0{321x a x -≥->-的整数解共有5个,则a 的取值范围为_________.三、解答题21.解不等式组32,121.25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来.22.已知,点O 是数轴的原点,点A 、点B 是数轴上不重合的两个点,且点A 在点B 的左边,点M 是线段AB 的中点.在上述条件下,解决问题:(1)如果点A 表示的数是4,点B 表示的数是6,那么点M 表示的数是 ;(2)如果点A 表示的数是-3,点M 表示的数是2,那么点B 表示的数是 ;(3)如果点A 表示的数是a ,点B 表示的数是b ,那么点M 表示的数是 ;(用含a ,b 的代数式表示) ,所以AM =BM .因此得到关于x 的方程:x -a =b -x .你能解出这个方程吗?(4)如果点A 表示的数是-2,点C 表示的数是3,点B 是线段OC 上的一点,点M 表示的数为m ,则m 的取值范围是 ;(5)如果点E 表示的数是1,点F 表示的数是x ,点A 从点E 出发,以每分钟1个单位长度的速度向右运动,点B 从点F 出发,以每分钟3个单位长度的速度向右运动,设运动时间为t (t >0).①当x =5时,如果EM =6,那么t 的值是 ; ②当t ≤3时,如果EM ≤9,求x 的取值范围.23.解不等式组()41713843x x x x ⎧+≤+⎪⎨--<⎪⎩,并把它的解集在数轴上表示出来.24.某物流公司在疫情期间,要将300吨防疫物资运往某地,现有A 、B 两种型号的汽车可供调用.已知A 型汽车每辆比B 型车可多装5吨.6辆A 型车与2辆B 型车刚好能装完150吨物资.要求在每辆车不超载的条件下,把300吨防疫物资装运完. (1)求A 型车、B 型车各能装多少吨物资?(2)若确定调用5辆A 型车,则至少还需调用B 型车多少辆?25.某商店需要购进A 型、B 型两种节能台灯共160盏,其进价和售价如下表所示.1100元,问A 型、B 型两种节能台灯应分别购进多少盏(注:获利=售价-进价)?(2)若商店计划投入资金少于4300元,且销售完这批台灯后获利多于1260元,请问有哪几种进货方案?并直接写出其中获利最大的进货方案.26.解不等式组:263235x x x x +>-⎧⎨->-⎩①②【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先求出每个不等式的解集,再求出不等式组的解集,最后根据已知和不等式组的解集求解即可. 【详解】∵解不等式0x a ->得:x a >, 解不等式122x x ->-得:1x <, ∴不等式组的解集为1a x <<,又∵不等式组0122x a x x ->⎧⎨->-⎩只有两个整数解,即整数解为-1,0,∴21a -≤<-, 故选:A . 【点睛】本题考查了解一元一次不等式组,不等式组的整数解,能根据不等式组的解集和已知得出答案是解此题的关键.2.D解析:D 【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值. 【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩,解不等式1x a -<-得:1x a <-, 解不等式113x-≤得:2x ≥-, ∴不等式组的解集为:21x a -≤<-, 由数轴知该不等式组有3个整数解, 所以这3个整数解为-2、-1、0, 则11a -=, 解得:2a =, 故选:D . 【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.3.D解析:D 【分析】利用不等式组取解集的方法:大大小小找不到即可得到a 的范围. 【详解】∵关于x 的不等式组21x x a <⎧⎨>-⎩无解,∴a-1≥2, ∴a≥3. 故选:D. 【点睛】考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.4.D解析:D【分析】数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集. 【详解】由数轴知,此不等式组的解集为-1<x≤3, 故选D . 【点睛】考查解一元一次不等式组,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.A解析:A 【分析】将x=0、y=1和x=1、y=0代入ax+b=y 得到关于a 、b 的方程组,解之得出a 、b 的值,从而得到关于x 的不等式,解之可得答案. 【详解】解:根据题意,得:10b a b =⎧⎨+=⎩,解得a=-1,b=1,则不等式-ax-b <0为x-1<0, 解得x <1, 故选:A . 【点睛】本题考查了解一元一次不等式,解题的关键是根据题意列出关于x 的不等式,并熟练掌握解一元一次不等式的步骤和依据.6.B解析:B 【分析】先移项,再合并,最后把系数化为1,即可求出答案. 【详解】移项,得:212ax x -<+, 合并同类项得:(2)3a x -<, ∵0a <, ∴20a -<,∴32x a >-, 故选:B . 【点睛】本题主要考查了一元一次不等式的解法,要注意系数化为1时,因为0a <,所以不等号的方向要改变.7.A解析:A 【分析】首先解关于x 和y 的方程组,利用m 表示出x+y ,代入x+y >0即可得到关于m 的不等式,求得m 的范围. 【详解】解:2133x y m x y -+⋯⎧⎨+⋯⎩=①=②①+②得2x+2y=2m+4, 则x+y=m+2, 根据题意得m+2>0, 解得m >-2. 故选:A . 【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m 当作已知数表示出x+y 的值,再得到关于m 的不等式.8.D解析:D 【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得. 【详解】 解:3122x a x x ->⎧⎨->-⎩①②解①得:x >a+3, 解②得:x <1. 根据题意得:a+3≥1, 解得:a≥-2. 故选:D . 【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.9.D解析:D 【分析】首先确定不等式组的解集,先利用含m 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m 的不等式,从而求出m 的范围. 【详解】 解不等式0721x m x -<⎧⎨-≤⎩①②,由①式得,x m <,由②式得3x ≥,即故m 的取值范围是67m <≤,故选D . 【点睛】本题考查不等式组的整数解问题,利用数轴就能直观的理解题意,列出关于m 的不等式组,再借助数轴做出正确的取舍.10.C解析:C 【分析】根据不等式的基本性质依次分析各项即可得到结果. 【详解】 ∵m <n∴m+3<n+3,故A 选项错误; m-3<n-3,故B 选项错误; -3m >-3n ,故C 选项正确;33m n<,故D 选项错误; 故选C. 【点睛】本题考查了不等式的基本性质,解答本题的关键是熟练掌握不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.11.C解析:C 【分析】分别求出每一个不等式的解集,根据口诀:同小取小并结合不等式组的解集可得a 的范围. 【详解】解:327x x a -<⎧⎨<⎩①②,①式化简得:39,3x x <<又∵该不等式的解集为x a <,∴3a . 故选C . 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.B解析:B 【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得. 【详解】解:∵1322xx -+>, ∴3122x x >+, ∴3322x <, ∴1x <,将不等式解集表示在数轴上如下:故选:B . 【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.二、填空题13.②③⑤【分析】①根据a+b+c=0且a >b >c 推出a >0c <0即可判断;②根据a+b+c=0求出a=-(b+c )又ax+b+c=0时ax=-(b+c )方程两边都除以a 即可判断;③根据a=-(b+c )解析:②③⑤ 【分析】①根据a +b +c =0,且a >b >c 推出a >0,c <0,即可判断;②根据a +b +c =0求出a =-(b +c ),又ax +b +c =0时ax =-(b +c ),方程两边都除以a 即可判断;③根据a=-(b+c)两边平方即可判断;④分为两种情况:当b>0,a>0,c<0时,去掉绝对值符号得出aa+bb+cc-+abcabc-,求出结果,当b<0,a>0,c<0时,去掉绝对值符号得出aa+bb-+cc-+abcabc,求出结果,即可判断;⑤求出AB=a-b=-b-c-b=-2b-c=-3b+b-c,BC=b-c,根据b<0利用不等式的性质即可判断.【详解】解:(1)∵a+b+c=0,且a>b>c,∴a>0,c<0,∴①错误;∵a+b+c=0,a>b>c,∴a>0,a=-(b+c),∵ax+b+c=0,∴ax=-(b+c),∴x=1,∴②正确;∵a=-(b+c),∴两边平方得:a2=(b+c)2,∴③正确;∵a>0,c<0,∴分为两种情况:当b>0时,aa+bb+cc+abcabc=aa+bb+cc-+abcabc-=1+1+(-1)+(-1)=0;当b<0时,aa+bb+cc+abcabc=aa+bb-+cc-+abcabc=1+(-1)+(-1)+1=0;∴④错误;∵a+b+c=0,且a>b>c,b<0,∴a>0,c<0,a=-b-c,∴AB=a-b=-b-c-b=-2b-c=-3b+b-c,BC=b-c,∵b<0,∴-3b>0,∴-3b+b-c>b-c,∴AB>BC,∴⑤正确;即正确的结论有②③⑤.故答案为:②③⑤.【点睛】本题考查了比较两线段的长,数轴,有理数的加法、除法、乘方,一元一次方程的解,绝对值等知识点的综合运用,题目比较典型,但是一道比较容易出错的题目.14.【分析】先求出不等式组中两个不等式的解再根据不等式组的解集可得一个关于ab 的二元一次方程组解方程组可得ab 的值然后代入即可得【详解】解不等式①得:解不等式②得:由题意得:解得则故答案为:【点睛】本题 解析:1914-【分析】先求出不等式组中两个不等式的解,再根据不等式组的解集可得一个关于a 、b 的二元一次方程组,解方程组可得a 、b 的值,然后代入即可得.【详解】 221x a b x a b -≥⎧⎨-<+⎩①②, 解不等式①得:x a b ≥+,解不等式②得:212a b x ++<, 由题意得:52152a b a b +=-⎧⎪⎨++=⎪⎩, 解得1914a b =-⎧⎨=⎩, 则1914a b =-, 故答案为:1914-. 【点睛】本题考查了解一元一次不等式组、二元一次方程组,熟练掌握不等式组和方程组的解法是解题关键.15.【分析】表示出不等式组的解集由不等式组整数解有3个确定出a 的范围即可【详解】不等式组整理得:即由不等式组整数解有3个得到故答案为:【点睛】本题考查了一元一次不等式组的整数解熟练掌握运算法则是解本题的 解析:32a -<≤【分析】表示出不等式组的解集,由不等式组整数解有3个,确定出a 的范围即可.【详解】不等式组整理得:1x a x ≥⎧⎨<⎩,即1a x ≤<, 由不等式组整数解有3个,得到32a -<≤-,故答案为:32a -<≤-.本题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.16.二【分析】根据四个象限的符合特点列出相应的不等式组即可得出结果【详解】解:由题意得解这四组不等式组可知无解因此点N 横坐标为负纵坐标为正不能同时成立即点N 一定不在第二象限故答案为:二【点睛】本题考查平 解析:二【分析】根据四个象限的符合特点,列出相应的不等式组,即可得出结果.【详解】解:由题意得,080a a >⎧⎨->⎩,080a a >⎧⎨-<⎩,080a a <⎧⎨->⎩,080a a <⎧⎨-<⎩, 解这四组不等式组可知080a a <⎧⎨->⎩无解, 因此点N 横坐标为负,纵坐标为正,不能同时成立,即点N 一定不在第二象限. 故答案为:二【点睛】本题考查平面直角坐标系中各象限内点的坐标的符合,把符合问题转化为解不等式是解题关键.17.【分析】首先解每个不等式两个不等式的解集的公共部分就是不等式组的解集确定整数解据此即可写出a 的范围【详解】解:解不等式①得;解不等式②得:则不等式的解集为∵不等式有5个整数解∴一定是01234∴即故 解析:12a ≤<【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,确定整数解,据此即可写出a 的范围.【详解】解:132x a x -≤⎧⎨-<⎩①②, 解不等式①得,4x ≤;解不等式②得:2x a >-,则不等式的解集为24a x -<≤,∵不等式132x a x -≤⎧⎨-<⎩有5个整数解, ∴一定是0,1,2,3,4.∴120a ,即12a ≤<,故答案为:12a ≤<.此题考查的是一元一次不等式组的解法,根据x 的取值范围,得出x 的整数解,然后代入方程即可解出a 的值.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.【分析】先确定不等式组的整数解再求出的取值范围即可【详解】∵不等式组只有三个正整数解∴故答案为:【点睛】本题考查了解不等式组的整数解的问题掌握解不等式组的整数解的方法是解题的关键解析:01a ≤<【分析】先确定不等式组的整数解,再求出a 的取值范围即可.【详解】30x a x >⎧⎨-≤⎩30x -≤3x ≤∵不等式组只有三个正整数解∴01a ≤<故答案为:01a ≤<.【点睛】本题考查了解不等式组的整数解的问题,掌握解不等式组的整数解的方法是解题的关键. 19.【分析】先求出每个不等式的解集再求出不等式组的解集即可【详解】解不等式得:解不等式得:不等式组的解集为故答案为【点睛】本题考查了解一元一次不等式组能根据不等式的解集根据同大取大同小取小大小小大中间找 解析:1x 3-<<【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】()2x 15x 742x 31x 33⎧+>-⎪⎨+>-⎪⎩①②, 解不等式①得:x<3,解不等式②得:x 1>-,∴不等式组的解集为1x 3-<<,故答案为1x<3-<.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集根据“同大取大,同小取小,大小小大中间找,大大小小无解了”找出不等式组的解集是解此题的关键.20.-4<a≤-3【详解】试题分析:解不等式①得:x≥a 解不等式②得:x <2∴a≤x <2因为有5个整数解x 可取-3-2-101∴-4<a≤-3故答案为-4<a≤-3考点:不等式组的解解析:-4<a≤-3【详解】试题分析:0321x a x -≥⎧⎨->-⎩①② 解不等式①得:x≥a ,解不等式②得:x <2,∴a≤x <2.因为有5个整数解, x 可取-3,-2,-1,0,1,∴-4<a≤-3,故答案为-4<a≤-3.考点:不等式组的解三、解答题21.解集为:31x -<.在数轴上表示见解析.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】 解:32,12125x x x x <+⎧⎪⎨++≥⎪⎩①②, 由①得:1x <;由②得:3x ≥-,∴不等式组的解集为31x -≤<,表示在数轴上,如图所示:.【点睛】本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.22.(1)5;(2)7;(3)2a b +,2a b x +=;(4)﹣1≤m ≤12;(5)①2;②1<x ≤7 【分析】(1)设点M 表示的数是m ,分别表示出AM 和BM 的距离,再根据AM=BM 求解即可得出答案;(2)设点B 表示的数是b ,分别表示出AM 和BM 的距离,再根据AM=BM 求解即可得出答案;(3)设点M 表示的数是m ,分别表示出AM 和BM 的距离,再根据AM=BM 求解即可得出答案;x a b x -=-根据解一元一次方程的一般步骤即可得出答案;(4)设点B 表示的数是b ,根据点B 的位置在点O 和点C 之间建立不等式,再将点M 表示的数代入求解即可得出答案;(5)①分别表示出点M 表示的数、点A 表示的数及点B 表示的数,再根据2a b m +=代入求解即可得出答案;②先表示出A 、B 、M 所表示的数,得出EM 的值,再根据给出的范围建立不等式求解即可得出答案.【详解】(1)设点M 表示的数是m ,则AM 之间的距离是4m -,BM 之间的距离是6m -,点M 是线段AB 的中点,∴AM=BM ,即46m m -=-,解得:5m =, 点M 表示的数是5;(2)设点B 表示的数是b点A 表示的数是-3,点M 表示的数是2,∴AM=5,BM=2b -点M 是线段AB 的中点,且点A 在点B 的左边,∴AM=BM ,5=2b ∴-解得:7b =∴点B 表示的数是7;(3)设点M 表示的数是m ,点A 表示的数是a ,点B 表示的数是b ,则AM 之间的距离是m a -,BM 之间的距离是b m -,点M 是线段AB 的中点,∴AM=BM ,即m a b m -=-, 解得:2a b m +=, x a b x -=-移项,得x x b a +=+合并同类项,得2x a b将系数化为1,得2a b x += (4)设点B 表示的数是bO 是原点,点A 表示的数是-2,点C 表示的数是3,点B 是线段OC 上的一点, 03b ∴≤≤22b m -+= 112m ∴-≤≤;(5)①点E 表示的数是1,EM=6,∴点M 表示的数是16=7+点F 表示的数是x ,且x=5∴点A 表示的数是1t +,点B 表示的数为53t +15372t t +++∴= 解得:2t =;②由题意得点A 表示的数是1t +,点B 表示的数为3x t +,∴点M 表示的数是132t x t +++ 点E 表示的数是1,∴1312t x t EM +++=-,1x > 即13192t x t +++-≤ 化简得194x t -≤3t ≤ 1934x -∴≥ 解得:7x ≤∴x 的取值范围为17x <≤.【点睛】本题考查了根据数轴表示两点间的距离、一元一次方程的应用、一元一次不等式的应用,解题的关键是结合数轴将点表示成具体的数.23.-3≤x <2,数轴表示见解析【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:()41713843x x x x ⎧+≤+⎪⎨--<⎪⎩①② 解不等式①,得:x≥-3,解不等式②,得:x <2,则不等式组的解集为-3≤x <2,将不等式组的解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.24.(1)B 型车能装15吨,A 型车能装20吨;(2)14辆【分析】(1)设B 型车能装x 吨,根据题意列出方程,解之即可;(2)设还需调用y 辆B 型车,根据题意列出不等式,解之即可.【详解】解:(1)设B 型车能装x 吨,A 型车能装(5)x +吨,则有6(5)2150x x ++=,解得15x =,所以B 型车能装15吨,A 型车能装20吨;(2)设还需调用y 辆B 型车,则有20515300y ⨯+≥,解得1133y ≥,需要取整数,所以还需要调用14辆B 型车.【点睛】本题考查了一元一次方程和一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.25.(1)A 型台灯购进100盏,B 型台灯购进60盏;(2)有两种购货方案,方案一:A 型台灯购进66盏,B 型台灯购进94盏;方案二:A 型台灯购进67盏,B 型台灯购进93盏.其中获利最大的是方案一.【分析】(1)根据题意列二元一次方程组求解;(2)根据题意列出一元一次方程组求解 .【详解】(1)设分别购进A 型、B 型台灯x 盏、y 盏,根据题意,得160,5101100.x y x y +=⎧⎨+=⎩解得:100,60.x y =⎧⎨=⎩答:A 型台灯购进100盏,B 型台灯购进60盏.(2)设购进a 盏A 型台灯,则购进(160)a -盏B 型台灯,根据题意,得1535(160)4300,510(160)1260.a a a a +-<⎧⎨+->⎩解之,得6568a <<. ∵a 为非负整数,∴a 取66,67.∴160a -相应取94,93.∵当a=66时,5×66+10×94=1270(元),当a=67时,5×67+10×93=1265(元),∴方案一获利最大,答:有两种购货方案,方案一:A 型台灯购进66盏,B 型台灯购进94盏;方案二:A 型台灯购进67盏,B 型台灯购进93盏.其中获利最大的是方案一.【点睛】本题考查二元一次方程组与一元一次不等式的综合运用,在正确理解题意的基础上列出适合的二元一次方程组与一元一次不等式求解是解题关键.26.392x -<<- 【分析】先求出两个不等式的解集,再求其公共解.【详解】解:263235x x x x +>-⎧⎨->-⎩①②由①得,x >-9, 由②得,x <32-,所以不等式组的解集是392x-<<-.【点睛】本题考查的是一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).。
(常考题)人教版初中数学七年级数学下册第五单元《不等式与不等式组》检测题(含答案解析)(2)

一、选择题1.不等式组1322<4x x ->⎧⎨-⎩的解集是( )A .4x >B .1x >-C .14x -<<D .1x <-2.下列不等式的变形正确的是( ) A .由612m -<,得61m < B .由33x ->,得1x >- C .由03x>,得3x > D .由412a -<,得3a >-3.不等式-3<a≤1的解集在数轴上表示正确的是( ) A . B . C .D .4.不等式组64325x x x -<⎧⎨≥+⎩的解集是( )A .x ≥5B .x ≤5C .x >3D .无解5.不等式组1030x x -≤⎧⎨+>⎩中的两个不等式的解集在同一个数轴上表示正确的是( )A .B .C .D .6.若|65|56x x -=-,则x 的取值范围是( ) A .56x >B .56x <C .56x ≥D .56x ≤7.不等式组21x x ≥-⎧⎨<⎩的解集在数轴上表示正确的是( )A .B .C .D .8.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况A .胜一场积5分,负一场扣1分B .某参赛选手得了80分C .某参赛选手得了76分D .某参赛选手得分可能为负数9.关于x 的不等式620x x a-≤⎧⎨≤⎩有解,则a 的取值范围是( )A .a <3B .a≤3C .a≥3D .a >310.若关于x 的不等式组132(2)x a x x ≥-⎧⎨≤+⎩仅有四个整数解,则a 的取值范围是( )A .12a ≤≤B .12a ≤<C .12a <≤D .12a <<11.已知关于x 的方程:24263a x xx --=-的解是非正整数,则符合条件的所有整数a的值有( )种. A .3 B .2 C .1 D .0 12.若关于x?的不等式组2x 1x 3x a +<-⎧⎨>⎩无解,则实数 a?的取值范围是( )A .a 4<-B .a 4=-C .a 4?≥-D . a 4>-二、填空题13.已知点()6,29P m m --关于x 轴对称的点在第三象限,则m 的整数解是______. 14.不等式12x -<的正整数解是_______________. 15.己知不等式组1x x a≤⎧⎨≤⎩的解集是1x ≤,则a 的取值范围是______. 16.不等式组233225x x x -≥⎧⎨+>-⎩的解集是__________.17.已知关于x 的不等式组010x a x -≥⎧⎨->⎩的整数解共有3个,则a 的取值范围是________.18.小张同学在解一元一次不等式时,发现一个不等式右边的数被墨迹污染看不清了,所看到的部分不等式是13x -<■,他查看练习本后的答案知道这个不等式的解是2x >,则被污染的数是__________.19.定义[]x 表示不大于x 的最大整数、{}[]x x x =-,例如[]22=,[]2.83-=-,[]2.82=,{}20=,{}2.80.8=,{}2.80.2-=,则满足{}[]2x x =的非零实数x 值为_______.20.关于x 的不等式组460930x x ->⎧⎨-≥⎩的所有整数解的积是__________.三、解答题21.(1)解方程组:43220x y x y +=⎧⎨+=⎩(2)解不等式组:3(2)211124x x x x-<-⎧⎪⎨-≥-⎪⎩ 22.解下列不等式组,并把它的解集表示在数轴上.(1)35318x x +≥⎧⎨-<⎩;(2)()1212235xx x x ⎧+<-⎪⎪⎨+⎪>⎪⎩. 23.某商店需要购进A 型、B 型两种节能台灯共160盏,其进价和售价如下表所示.1100元,问A 型、B 型两种节能台灯应分别购进多少盏(注:获利=售价-进价)?(2)若商店计划投入资金少于4300元,且销售完这批台灯后获利多于1260元,请问有哪几种进货方案?并直接写出其中获利最大的进货方案. 24.若关于x 的方程23244x m m x -=-+的解不小于7183m--,求m 的取值范围. 25.阅读:我们知道,00aa a a a ≥⎧=⎨-<⎩于是要解不等式|3|4x -≤,我们可以分两种情况去掉绝对值符号,转化为我们熟悉的不等式,按上述思路,我们有以下解法: 解:(1)当30x -≥,即3x ≥时:34x -≤解这个不等式,得:7x ≤由条件3x ≥,有:37x ≤≤(2)当30x -<,即3x <时,(3)4x --≤ 解这个不等式,得:1x ≥- 由条件3x <,有:13x -≤<∴如图,综合(1)、(2)原不等式的解为17x -≤≤ 根据以上思想,请探究完成下列2个小题: (1)|1|2x +≤; (2)|2|1x -≥. 26.回答下列小题: (1)解不等式:211126x x -+-≤. (2)解不等式组:1132(1)4x x x +⎧-≤⎪⎨⎪->-⎩.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先求出不等式组中每一个不等式的解集,再求出其公共解集. 【详解】解:解不等式13x ->得4x >, 解不等式224x -<得1x >-, ∴不等式组的解集为4x >. 【点睛】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.D解析:D 【分析】根据不等式的性质对各个选项进行分析判断即可得到答案. 【详解】A 、由612m -<,得:63m <,原变形错误,故此选项不符合题意;B 、由33x ->,得:1x <-,原变形错误,故此选项不符合题意;C 、由03x>,得:0x >,原变形错误,故此选项不符合题意; D 、由412a -<,得:3a >-,原变形正确,故此选项符合题意; 故选:D . 【点睛】本题考查了不等式的基本性质,掌握不等式的基本性质是解题的关键.不等式的基本性质是:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.A解析:A 【分析】根据在数轴上表示不等式解集的方法求解即可. 【详解】 解:∵-3<a≤1,∴1处是实心原点,且折线向左. 故选:A . 【点睛】本题考查了在数轴上表示不等式的解集,掌握“小于向左,大于向右”是解题的关键.4.A解析:A 【分析】先分别求出每个不等式的解集,然后再确定不等式组的解集即可. 【详解】解:64325x x x -<⎧⎨≥+⎩,解不等式①得:x >34, 解不等式②得:x ≥5,所以不等式组的解集是x ≥5, 故答案为A . 【点睛】本题考查了解不等式组,正确求解每一个不等式和确定不等式组的解集是解答本题的关键.5.A解析:A 【分析】先分别解两个不等式得到x≤1和x >-3,然后利用数轴分别表示出x≤1和x >-3,于是可得到正确的选项. 【详解】解不等式x-1≤0得x≤1, 解不等式x+3>0得x >-3,所以不等式组的两个不等式的解集在同一个数轴上表示为:.故选:A . 【点睛】本题考查了在数轴上表示不等式的解集:用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.6.D解析:D 【分析】先根据绝对值的性质判断出65x -的符号,再求出x 的取值范围即可. 【详解】∵6556x x -=-, ∴650x -≤,∴56x ≤. 故选:D . 【点睛】本题考查了绝对值的性质以及解一元一次不等式,解答此题的关键是熟知绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.7.A解析:A 【分析】先解出不等式组的解集,然后再根据选项解答即可. 【详解】解:由题意可得:不等式组的解集为:21x , 在数轴上表示为:【点睛】本题主要考查了不等式组解集在数轴上的表示方法,在表示解集时“≥”或“≤”要用实心圆点表示,“<”,“>”要用空心圆点表示成为解答本题的关键.8.B解析:B 【分析】由参赛者A 可得:胜一场得100÷20=5分,设负一场扣x 分,根据参赛者B 的得分列出方程,求出方程的解即可得出负一场扣多差分;设参赛选手胜y 场,则负(20-y )场,根据胜场的得分+负场的得分=选手得分,分别建立方程求出其解即可. 【详解】A .由参赛者A 可得:胜一场得100÷20=5分,设负一场扣x 分,根据参赛者B 的得分:5181288x ⨯-⨯=,解得:1x =,所以负一场扣1分;故本选项正确;B .设参赛选手胜y 场,则负(20-y )场,则()512080y y ⨯-⨯-=,解得503y =,∵y 为整数,∴参数选手不可能得80分;故本选项错误;C .设参赛选手胜y 场,则负(20-y )场,()512076y y ⨯-⨯-=,解得16y =,所以参数选手胜了16场,负了4场;故本选项正确;D .设参赛选手胜y 场,则负(20-y )场,()51200y y ⨯-⨯-<,解得103y <,所以当参赛选手低于4场胜利时候,得分就可能是负数;故本选项正确; 故选:B 【点睛】本题考查了总数÷分数=每份数的运用,列一元一次方程解实际问题的运用,结论猜想试题的运用,解答时关键胜场的得分+负场得分=总得分是关键.9.C解析:C 【分析】解不等式6-2x ≤0,再根据不等式组有解求出a 的取值范围即可. 【详解】解不等式6-2x ≤0,得:x ≥3, ∵不等式组有解, ∴a ≥3. 故选:C . 【点睛】本题主要考查根据不等式组的解判断未知参数的范围,熟练掌握不等式组的解法是解题关键.10.C解析:C先解含参的不等式组,根据不等式组仅有四个整数解得到关于a 的不等式组,求解即可. 【详解】 解:132(2)x a x x ≥-⎧⎨≤+⎩①②,解不等式①,得1x a ≥-, 解不等式②,得:4x ≤, ∵不等式组仅有四个整数解, ∴011a <-≤,解得12a <≤, 故选:C . 【点睛】本题考查解不等式组,根据解集的情况得到关于a 的不等式组是解题的关键.11.A解析:A 【分析】先用含a 的式子表示出原方程的解,再根据解为非正整数,即可求得符合条件的所有整数a . 【详解】解:24263a x x x --=-()264212--=-x a x x 264+212-=-x a x x()24+8=-a x284+=-x a∵方程的解是非正整数,∴2804+-≤a ∴2804+≥a ∴24+=1a 或2或4或8 ∴a=0或2或-2,共3个 故选:A 【点睛】本题考查了一元一次方程的解法及解不等式,根据方程的解为非正整数列出关于a 的不等式是解题的关键.12.C【分析】先解出第一个不等式的解集,再根据题意确定a的取值范围即可.【详解】解:2x1x3 x a+<-⎧⎨>⎩①②解①的:x﹤﹣4,∵此不等式组无解,∴a≥﹣4,故选:C.【点睛】本题考查一元一次不等式组的解法,熟知不等式组解集应遵循的原则“同大取大,同小取小,大小小大取中间,大大小小无解”是解答的关键.二、填空题13.5【分析】利用平面直角坐标系中点的坐标特点得出m的取值范围【详解】解:∵点P(m﹣62m﹣9)关于x轴的对称点在第三象限∴点P在第二象限∴m﹣6<0且2m﹣9>0解得:<m<6∴m的取值范围是<m<解析:5【分析】利用平面直角坐标系中点的坐标特点得出m的取值范围.【详解】解:∵点P(m﹣6,2m﹣9)关于x轴的对称点在第三象限,∴点P在第二象限,∴m﹣6<0且2m﹣9>0,解得:92<m<6,∴m的取值范围是92<m<6,∴m的整数解为5;故答案为 5.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),要注意先判断出点P在第二象限.14.12【分析】先求出不等式的解集再从不等式的解集中找出适合条件的正整数即可【详解】解:∴∴正整数解为:12故答案为:12【点睛】本题考查了一元一次不等式的整数解属于基础题关键是根据解集求出符合条件的解解析:1,2. 【分析】先求出不等式的解集,再从不等式的解集中找出适合条件的正整数即可. 【详解】 解:12x -< ∴3x <∴正整数解为:1,2. 故答案为:1,2. 【点睛】本题考查了一元一次不等式的整数解,属于基础题,关键是根据解集求出符合条件的解.15.a≥1【分析】已知不等式组的解集为再根据不等式组解集的口诀:同大取大得到a 的范围【详解】解:∵一元一次不等式组的解集为∴a≥1故答案为:a≥1【点睛】本题考查了一元一次不等式组解集的求法将不等式组解解析:a≥1 【分析】已知不等式组的解集为1x ≤,再根据不等式组解集的口诀:同大取大,得到a 的范围. 【详解】解:∵一元一次不等式组1x x a ≤⎧⎨≤⎩的解集为1x ≤,∴a≥1,故答案为:a≥1. 【点睛】本题考查了一元一次不等式组解集的求法,将不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求a 的范围.16.【分析】把不等式组每个不等式的解集求出来后计算其交集即可得到答案【详解】解:不等式组由①得:由②得:x>-7∴不等式组的解集为:故答案为:【点睛】本题考查不等式组的求解掌握求每个不等式解集交集方法是 解析:71x -<≤-【分析】把不等式组每个不等式的解集求出来后计算其交集即可得到答案. 【详解】 解:不等式组233225x x x -≥⎧⎨+>-⎩①②,由①得: 1x ≤-,由②得:x>-7,∴不等式组的解集为:71x -<≤-,故答案为:71x -<≤-.【点睛】本题考查不等式组的求解,掌握求每个不等式解集交集方法是解题关键.17.【分析】表示出不等式组的解集由不等式组整数解有3个确定出a 的范围即可【详解】不等式组整理得:即由不等式组整数解有3个得到故答案为:【点睛】本题考查了一元一次不等式组的整数解熟练掌握运算法则是解本题的 解析:32a -<≤【分析】表示出不等式组的解集,由不等式组整数解有3个,确定出a 的范围即可.【详解】不等式组整理得:1x a x ≥⎧⎨<⎩,即1a x ≤<, 由不等式组整数解有3个,得到32a -<≤-,故答案为:32a -<≤-.【点睛】本题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.18.−5【分析】设被污染的数为a 表示出不等式的解集根据已知解集确定出a 的值即可【详解】解:设被污染的数为a 不等式为1−3x <a 解得:x >由已知解集为x >2得到=2解得:a =−5故答案为:−5【点睛】此题解析:−5【分析】设被污染的数为a ,表示出不等式的解集,根据已知解集确定出a 的值即可.【详解】解:设被污染的数为a ,不等式为1−3x <a .解得:x >1-3a , 由已知解集为x >2,得到1-3a =2, 解得:a =−5,故答案为:−5【点睛】此题考查了不等式的解集,熟练掌握运算法则是解本题的关键.19.【分析】20.6【分析】分别解出两不等式的解集再求其公共解然后求得整数解进行相乘即可【详解】解:由①得;由②得∴不等式组的解集为∴不等式组的解集中所有整数解有:23∴故答案为:6【点睛】此题考查了一元一次不等式组解析:6【分析】分别解出两不等式的解集,再求其公共解,然后求得整数解进行相乘即可.【详解】解:460930->⎧⎨-≥⎩①②x x 由①得32x >; 由②得3x ≤ ∴不等式组的解集为332x <≤, ∴不等式组的解集中所有整数解有:2,3,∴23=6⨯ ,故答案为:6.【点睛】此题考查了一元一次不等式组的整数解.解题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.三、解答题21.(1)12x y =-⎧⎨=⎩;(2)25x ≤<. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)43220x y x y +=⎧⎨+=⎩①②, 由①2-⨯②得:322y y -=,解得2y =,将2y =代入②得:220x +=,解得1x =-,则方程组的解为12x y =-⎧⎨=⎩; (2)3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩①②,解不等式①得:5x <,解不等式②得:2x ≥,则不等式组的解为25x ≤<.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.22.(1)23x ≤<;(2)3x >【分析】(1)先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可; (2)分别求出各不等式的解集,在数轴上表示出来即可.【详解】(1)解不等式35x +≥得2x ≥解不等式318x -<得3x <∴不等式的解集为23x ≤<,在数轴上表示如下:(2)解不等式()1212x x +<-得2x >, 解不等式235x x +>得3x >, ∴不等式的解集为3x >,在数轴上表示如下:【点睛】此题主要考查不等式组的解法及在数轴上表示不等式组的解集,解题的关键在熟练掌握不等式组的解法,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 23.(1)A 型台灯购进100盏,B 型台灯购进60盏;(2)有两种购货方案,方案一:A 型台灯购进66盏,B 型台灯购进94盏;方案二:A 型台灯购进67盏,B 型台灯购进93盏.其中获利最大的是方案一.【分析】(1)根据题意列二元一次方程组求解;(2)根据题意列出一元一次方程组求解 .【详解】(1)设分别购进A 型、B 型台灯x 盏、y 盏,根据题意,得160,5101100.x y x y +=⎧⎨+=⎩解得:100,60.x y =⎧⎨=⎩答:A 型台灯购进100盏,B 型台灯购进60盏.(2)设购进a 盏A 型台灯,则购进(160)a -盏B 型台灯,根据题意,得1535(160)4300,510(160)1260.a a a a +-<⎧⎨+->⎩解之,得6568a <<. ∵a 为非负整数,∴a 取66,67.∴160a -相应取94,93.∵当a=66时,5×66+10×94=1270(元),当a=67时,5×67+10×93=1265(元),∴方案一获利最大,答:有两种购货方案,方案一:A 型台灯购进66盏,B 型台灯购进94盏;方案二:A 型台灯购进67盏,B 型台灯购进93盏.其中获利最大的是方案一.【点睛】本题考查二元一次方程组与一元一次不等式的综合运用,在正确理解题意的基础上列出适合的二元一次方程组与一元一次不等式求解是解题关键.24.14m ≥- 【分析】先解方程2x−3m =2m−4x +4求得x ,然后再根据方程的解不小于7183m --列出关于m 的不等式组,最后求解即可.【详解】解:解方程23244x m m x -=-+ 得546m x +=由题意得5471683m m +-≥-,解得14m ≥- 所以m 的取值范围为14m ≥-. 【点睛】 本题主要考查了解一元一次方程和解不等式组,掌握一元一次方程和一元一次不等式组的解法成为解答本题的关键.25.(1)-3≤x≤1;(2)x≥3或x≤1.【分析】(1)分①x+1≥0,即x≥-1,②x+1<0,即x <-1,两种情况分别求解可得;(2)分①x -2≥0,即x≥2,②x -2<0,即x <2,两种情况分别求解可得.【详解】解:(1)|x+1|≤2,①当x+1≥0,即x≥-1时:x+1≤2,解这个不等式,得:x≤1由条件x≥-1,有:-1≤x≤1;②当x+1<0,即 x <-1时:-(x+1)≤2解这个不等式,得:x≥-3由条件x <-1,有:-3≤x <-1∴综合①、②,原不等式的解为:-3≤x≤1.(2)|x-2|≥1①当x-2≥0,即x≥2时:x-2≥1解这个不等式,得:x≥3由条件x≥2,有:x≥3;②当x-2<0,即 x <2时:-(x-2)≥1,解这个不等式,得:x≤1,由条件x <2,有:x≤1,∴综合①、②,原不等式的解为:x≥3或x≤1.【点睛】本题主要考查绝对值不等式的求解,熟练掌握绝对值的性质分类讨论是解题的关键. 26.(1)2x ≤;(2)13x -≤<.【分析】(1)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解集.【详解】(1)211126x x -+-≤, 不等式两边同乘以6去分母,得3(21)(1)6x x --+≤,去括号,得6316x x ---≤,移项,得6631x x -≤++,合并同类项,得510x ≤,系数化为1,得2x ≤;(2)1132(1)4x x x +⎧-≤⎪⎨⎪->-⎩①②,解不等式①得:1x ≥-,解不等式②得:3x <,则不等式组的解集为13x -≤<.【点睛】本题考查了解一元一次不等式和一元一次不等式组,熟练掌握不等式和不等式组的解法是解题关键.。
新人教版初中数学七年级数学下册第五单元《不等式与不等式组》测试卷(包含答案解析)(1)

一、选择题1.已知关于x 的不等式组15x a x b -≥⎧⎨+≤⎩的解集是3≤x ≤5,则+a b 的值为( ) A .6B .8C .10D .12 2.若a b >,则下列结论不一定成立的是( )A .a c b c ->-B .22ac ab >C .c a c b -<-D .a c b c +>+ 3.已知关于x 的不等式组1021x x x a -⎧<⎪⎨⎪+>⎩有且只有一个整数解,则a 的取值范围是( )A .11a -<≤B .11a -≤<C .31a -<≤-D .31a -≤<- 4.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( ) A .3a ≤-B .3a <-C .3a >D .3a ≥ 5.关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则不等式组的解集是( )A .1x >-B .3x ≤C .13x -≤≤D .13x -<≤ 6.不等式组23x x ≥-⎧⎨<⎩的整数解的个数是( ) A .4个 B .5个 C .6个 D .无数个 7.已知01m <<,则m 、2m 、1m ( ) A .21m m m >> B .21m m m >> C .21m m m >> D .21m m m>> 8.对于实数x ,规定[x ]表示不大于x 的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x ﹣2]=﹣1,则x 的取值范围为( )A .0<x ≤1B .0≤x <1C .1<x ≤2D .1≤x <2 9.不等式组43x x <⎧⎨≥⎩的解集在数轴上表示为( ) A . B .C .D .10.不等式组10840x x ->⎧⎨-≤⎩的解集在数轴上表示为( ) A . B . C . D . 11.不等式325132x x ++≤-的解集表示在数轴上是( ) A . B .C .D .12.若x (x +a )=x 2﹣x ,则不等式ax +3>0的解集是( )A .x >3B .x <3C .x >﹣3D .x <﹣3二、填空题13.若0a b c ++=,且a b c >>,以下结论:①0a >,0c >;②关于x 的方程0ax b c ++=的解为1x =;③22()a b c =+④||||||||a b c abc a b c abc +++的值为0或2; ⑤在数轴上点A .B .C 表示数a 、b 、c ,若0b <,则线段AB 与线段BC 的大小关系是AB BC >.其中正确的结论是______(填写正确结论的序号).14.不等式21302x --的非负整数解共有__个. 15.随着中秋节的逐渐临近,红梅超市计划购进甜味型、咸味型、麻辣味型三种共50盒月饼,其中咸味型月饼数量不超过甜味型月饼数量,且咸味型月饼数量不少于麻辣味型月饼数量的一半.已知甜味型月饼每盒60元,咸味型月饼每盒80元,麻辣味型月饼每盒100元.在价格不变的条件下,小王实际购进甜味型月饼是计划的56倍,麻辣味型月饼购进了12盒,结果小王实际购进三种月饼共35盒,且比原计划少支付1240元,则小王原计划购进甜味型月饼_____盒.16.“x 的4倍与1的差不大于3”用不等式表示为 ________________ .17.不等式组210360x x ->⎧⎨-<⎩的解集为_______. 18.在实数范围内规定一种新的运算“☆”,其规则是:a ☆b=3a+b ,已知关于x 的不等式:x ☆m>1的解集在数轴上表示出来如图所示.则m 的值是________ .19.已知关于x 的不等式组0{321x a x -≥->-的整数解共有5个,则a 的取值范围为_________. 20.若关于x 的一元一次不等式组21122x a x x ->⎧⎨->-⎩的解集是21x -<<,则a 的取值是__________.三、解答题21.解不等式组32,121.25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来. 22.为更好地推进长沙市生活垃圾分类工作,改善城市生态环境,2019年12月17日,长沙市政府召开了长沙市生活垃圾分类推进会,意味着长沙垃圾分类战役的全面打响.某小区准备购买A 、B 两种型号的垃圾箱,通过市场调研得知:购买3个A 型垃圾箱和2个B 型垃圾箱共需540元,购买2个A 型垃圾箱比购买3个B 型垃圾箱少用160元. (1)每个A 型垃圾箱和B 型垃圾箱分别是多少元?(2)若该小区物业计划用低于2150元的资金购买A 、B 两种型号的垃圾箱共20个,且至少购买6个B 型垃圾箱,请问有几种购买方案?23.一直关于x 的不等式()1a x 2->两边都除以1a -,得2x 1a<-. (1)求a 的取值范围;(2)试化简1a a 2-++.24.某校购买了A 型课桌椅100套和B 型课桌椅150套供学生使用,共付款53000元.已知每套A 型课桌椅比每套B 型课桌椅多花30元.(1)求该校购买每套A 型课桌椅和每套B 型课桌椅的钱数.(2)因学生人数增加,该校需再购买A 、B 型课桌椅共100套,只有资金22000元,求最多能购买A 型课桌椅的套数.25.受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元.(1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a 出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a,求a的最大值.26.解不等式(组),并将解集表示在数轴上:(1)6194x x->-(2)13215232(3)4x xx x-+⎧-≥⎪⎨⎪-->⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先求出两个不等式的解集,再求其公共解,再根据不等式组的解集列出求出a、b的值,再代入代数式进行计算即可得解.【详解】15x ax b-≥⎧⎨+≤⎩①②,由①得,x≥a+1,由②得,x≤b−5,∵不等式组的解集是3≤x≤5,∴a+1=3,b−5=5,解得a=2,b=10,所以,a+b=2+10=12.故选:D.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).2.B解析:B【分析】根据不等式的性质逐一分析四个选项的正误即可得出结论.【详解】解:A 、∵a >b ,∴a-c >b-c ,选项A 成立;B 、22ac ab >不一定成立;C 、∵a >b ,∴a b -<-∴c a c b -<-,选项C 成立;D 、∵a >b ,∴a c b c +>+,选项D 成立.故选:B .【点睛】本题考查了不等式的性质,牢记不等式的性质是解题的关键.3.D解析:D【分析】首先解每个不等式,然后根据不等式组的整数解的个数,确定整数解,从而确定a 的范围.【详解】 解:1021x x x a -⎧<⎪⎨⎪+>⎩①② 解①得1x <且0x ≠,解②得12a x ->. 若不等式组只有1个整数解,则整数解是1-.1212a -∴-≤<- 所以31a -≤<-,故选:D .【点睛】此题考查的是一元一次不等式组的解法和一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 4.D解析:D【分析】利用不等式组取解集的方法:大大小小找不到即可得到a 的范围.【详解】∵关于x 的不等式组21x x a <⎧⎨>-⎩无解, ∴a-1≥2,∴a≥3.故选:D.【点睛】考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.5.D解析:D【分析】数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.【详解】由数轴知,此不等式组的解集为-1<x≤3,故选D .【点睛】考查解一元一次不等式组,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.B解析:B【分析】本题首先求解该不等式组公共解集,继而在解集内确定整数解.【详解】由已知得:23x -≤<,该范围内包含5个整数解:2-,1-,0,1,2.故选:B .【点睛】本题考查求不等式的整数解,解题关键在于确定公共解集,其次确定答案时要确保不重不漏.7.C解析:C根据不等式的性质解答.【详解】解:∵01m <<,∴01m m m <⋅<⨯,即20m m <<(不等式的两边都乘以同一个正数,所得的不等式仍然成立)①10m m m <<,即101m<<(不等式的两边都除以同一个正数,所得的不等式仍然成立)② 由①②知21m m m >>; 故选:C.【点睛】此题考查不等式的性质:不等式两边都乘以同一个正数,所得的不等式仍然成立,不等式的两边都除以同一个正数,所得的不等式仍然成立,解题的关键是正确掌握不等式的性质. 8.D解析:D【详解】由题意得2021x x -<⎧⎨-≥-⎩ 解之得12x ≤<故选D .9.D解析:D【分析】根据不等式组的解集在数轴上的表示方法进行分析解答即可.【详解】A 选项中,数轴上表达的解集是:4x >;B 选项中,数轴上表达的解集是:34x -≤<;C 选项中,数轴上表达的解集是:3x ≤;D 选项中,数轴上表达的解集是:34x ≤<;∵不等式组43x x ⎧⎨≥⎩<的解集是34x ≤<, ∴选D.【点睛】本题考查的是在数轴上表示不等式组的解集,熟知:“小于向左,大于向右”是解答此题的10.A解析:A【分析】先对不等式组进行化简,找出它们的公共部分,然后在数轴上分别表示出x的取值范围.【详解】解:不等式组10 840 xx->⎧⎨-≤⎩①②由①得,x>1,由②得,x⩾2,故不等式组的解集为:x⩾2,在数轴上可表示为:故选:A.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,注意在数轴上表示解集时,空心圈和实心圈的区别.11.B解析:B【分析】根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.【详解】解:去分母,得,2(3x+2)≤3(x+5)﹣6,去括号,得6x+4≤3x+15﹣6,移项、合并同类项,得3x≤5,系数化为1,得,x≤53,在数轴上表示为:故选:B.【点睛】本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,>向右画,<向左画,≤与≥用实心圆点,<与>用空心圆圈.12.B解析:B【分析】直接利用单项式乘多项式得出a的值,进而解不等式得出答案.【详解】解:∵x(x+a)=x2﹣x,∴x2+ax=x2﹣x,∴a=﹣1,则不等式ax+3>0即为﹣x+3>0的解集是:x<3.故选:B.【点睛】此题主要考查了单项式乘多项式以及解不等式,正确得出a的值是解题关键.二、填空题13.②③⑤【分析】①根据a+b+c=0且a>b>c推出a>0c<0即可判断;②根据a+b+c=0求出a=-(b+c)又ax+b+c=0时ax=-(b+c)方程两边都除以a 即可判断;③根据a=-(b+c)解析:②③⑤【分析】①根据a+b+c=0,且a>b>c推出a>0,c<0,即可判断;②根据a+b+c=0求出a=-(b+c),又ax+b+c=0时ax=-(b+c),方程两边都除以a即可判断;③根据a=-(b+c)两边平方即可判断;④分为两种情况:当b>0,a>0,c<0时,去掉绝对值符号得出aa+bb+cc-+abcabc-,求出结果,当b<0,a>0,c<0时,去掉绝对值符号得出aa+bb-+cc-+abcabc,求出结果,即可判断;⑤求出AB=a-b=-b-c-b=-2b-c=-3b+b-c,BC=b-c,根据b<0利用不等式的性质即可判断.【详解】解:(1)∵a+b+c=0,且a>b>c,∴a>0,c<0,∴①错误;∵a+b+c=0,a>b>c,∴a>0,a=-(b+c),∵ax+b+c=0,∴ax=-(b+c),∴x=1,∴②正确;∵a=-(b+c),∴两边平方得:a2=(b+c)2,∴③正确;∵a>0,c<0,∴分为两种情况:当b>0时,aa+bb+cc+abcabc=aa+bb+cc-+abcabc-=1+1+(-1)+(-1)=0;当b<0时,aa+bb+cc+abcabc=aa+bb-+cc-+abcabc=1+(-1)+(-1)+1=0;∴④错误;∵a+b+c=0,且a>b>c,b<0,∴a>0,c<0,a=-b-c,∴AB=a-b=-b-c-b=-2b-c=-3b+b-c,BC=b-c,∵b<0,∴-3b>0,∴-3b+b-c>b-c,∴AB>BC,∴⑤正确;即正确的结论有②③⑤.故答案为:②③⑤.【点睛】本题考查了比较两线段的长,数轴,有理数的加法、除法、乘方,一元一次方程的解,绝对值等知识点的综合运用,题目比较典型,但是一道比较容易出错的题目.14.4【分析】不等式去分母合并后将x系数化为1求出解集找出解集中的非负整数解即可【详解】解:解得:则不等式的非负整数解为0123共4个故答案为:4【点睛】此题考查了一元一次不等式的非负整数解熟练掌握运算解析:4【分析】不等式去分母,合并后,将x系数化为1求出解集,找出解集中的非负整数解即可.【详解】解:2130 2x--,2160x--,27x,解得: 3.5x,则不等式的非负整数解为0,1,2,3共4个.故答案为:4.【点睛】此题考查了一元一次不等式的非负整数解,熟练掌握运算法则是解本题的关键. 15.18【分析】设小王原计划购进甜味型月饼x 盒咸味型月饼y 盒则麻辣味型月饼(50-x -y )盒根据题意列出二元一次方程然后根据xy 均为正整数求出方程的解再根据题意列出不等式组即可求出x 的取值范围从而求出结解析:18【分析】设小王原计划购进甜味型月饼x 盒,咸味型月饼y 盒,则麻辣味型月饼(50-x -y )盒,根据题意,列出二元一次方程,然后根据x 、y 均为正整数,求出方程的解,再根据题意列出不等式组即可求出x 的取值范围,从而求出结论.【详解】解:设小王原计划购进甜味型月饼x 盒,咸味型月饼y 盒,则麻辣味型月饼(50-x -y )盒根据题意可得()556080100506080351210012124066x y x y x x ⎛⎫++--=⨯+--+⨯+ ⎪⎝⎭整理可得:76216x y += ∴7366y x =- ∵x 、y 均为正整数∴x 为6的倍数∴629x y =⎧⎨=⎩,1222x y =⎧⎨=⎩,1815x y =⎧⎨=⎩,248x y =⎧⎨=⎩,301x y =⎧⎨=⎩由题意可得1(50)2y x y x y ≤⎧⎪⎨≥--⎪⎩ ∴7366717365036626x x x x x ⎧-≤⎪⎪⎨⎡⎤⎛⎫⎪-≥--- ⎪⎢⎥⎪⎝⎭⎣⎦⎩①② 解①,得81613x ≥ 解②,得1235x ≤ ∴811623135x ≤≤∴1815x y =⎧⎨=⎩故答案为:18.【点睛】此题考查的是二元一次方程的应用和不等式的应用,掌握实际问题中的等量关系和不等关系是解题关键.16.4x-13【分析】的4倍与1的差即4x-1不大于就是据此列不等式【详解】由题意得4x-13故答案为:4x-13【点睛】此题考查列不等式正确理解语句是解题的关键解析:4x-1≤3,【分析】x 的4倍与1的差即4x-1,不大于就是≤,据此列不等式.【详解】由题意得4x-1≤3,故答案为:4x-1≤3.【点睛】此题考查列不等式,正确理解语句是解题的关键.17.【分析】先求出两个不等式的解再找出它们的公共部分即为不等式组的解集【详解】解不等式①得:解不等式②得:则不等式组的解集为故答案为:【点睛】本题考查了解一元一次不等式组熟练掌握不等式组的解法是解题关键 解析:122x << 【分析】先求出两个不等式的解,再找出它们的公共部分即为不等式组的解集.【详解】210360x x ->⎧⎨-<⎩①②, 解不等式①得:12x >, 解不等式②得:2x <, 则不等式组的解集为122x <<, 故答案为:122x <<. 【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键. 18.-2【分析】根据新运算法则得到不等式3通过解不等式即可求的取值范围结合图象可以求得的值【详解】∵☆∴根据图示知已知不等式的解集是∴故答案为:【点睛】本题主要考查了数轴上表示不等式的解集及解不等式本题 解析:-2【分析】根据新运算法则得到不等式31x m +>,通过解不等式即可求m 的取值范围,结合图象可以求得m 的值.【详解】∵x ☆ 31m x m =+>, ∴13m x ->, 根据图示知,已知不等式的解集是1x >, ∴113m -=, 故答案为:2m =-.【点睛】本题主要考查了数轴上表示不等式的解集及解不等式,本题的关键是理解新的运算方法. 19.-4<a≤-3【详解】试题分析:解不等式①得:x≥a 解不等式②得:x <2∴a≤x <2因为有5个整数解x 可取-3-2-101∴-4<a≤-3故答案为-4<a≤-3考点:不等式组的解解析:-4<a≤-3【详解】试题分析:0321x a x -≥⎧⎨->-⎩①② 解不等式①得:x≥a ,解不等式②得:x <2,∴a≤x <2.因为有5个整数解, x 可取-3,-2,-1,0,1,∴-4<a≤-3,故答案为-4<a≤-3.考点:不等式组的解20.【分析】表示出不等式组中两不等式的解集根据x 的范围确定出a 的值即可【详解】解不等式得解不等式得∵不等式组的解集为解得:故答案为:【点睛】本题考查了解一元一次不等式组能根据不等式的解集和已知得出关于的 解析:5a =-【分析】表示出不等式组中两不等式的解集,根据x 的范围确定出a 的值即可.【详解】解不等式21x a ->得12a x +>, 解不等式122x x ->-得1x <,∵不等式组的解集为21x -<<,122a +=-, 解得:5a =-.故答案为:5a =-.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出关于a 的方程是解此题的关键.三、解答题21.解集为:31x -<.在数轴上表示见解析.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:32,12125x x x x <+⎧⎪⎨++≥⎪⎩①②,由①得:1x <;由②得:3x ≥-,∴不等式组的解集为31x -≤<,表示在数轴上,如图所示:.【点睛】本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.22.(1)每个A 型垃圾箱100元,每个B 型垃圾箱120元;(2)有2种购买方案.【分析】(1)设每个A 型垃圾箱x 元,每个B 型垃圾箱y 元,根据题意列出二元一次方程组,解方程组即可得出答案;(2)设购买m 个B 型垃圾箱,则购买(20)m -个A 型垃圾箱,根据题意列出不等式,解不等式,然后求得整数解即可.【详解】解:(1)设每个A 型垃圾箱x 元,每个B 型垃圾箱y 元,依题意,得:3254032160x y y x +=⎧⎨-=⎩, 解得:100120x y =⎧⎨=⎩, 答:每个A 型垃圾箱100元,每个B 型垃圾箱120元;(2)设购买m 个B 型垃圾箱,则购买(20)m -个A 型垃圾箱,依题意,得:100(20)12021506m m m -+<⎧⎨⎩, 解得:1562m <, 又m 为整数,m ∴可以为6,7,∴有2种购买方案.【点睛】 本题主要考查二元一次方程组和一元一次不等式组的应用,读懂题意列出方程组和不等式组是解题的关键.23.(1)a 1>;(2)2a 1+.【分析】(1)根据不等式的基本性质,得到关于a 的不等式,即可求解;(2)根据求绝对值的法则以及a 的范围,即可得到答案.【详解】(1)∵ 关于x 的不等式()1a x 2->两边都除以1a -,得2x 1a<-, ∴ 1a 0-<,∴ a 1>;2()由(1)得a 1>, ∴1a 0-<,a 20+>,∴1a a 2a 1a 22a 1-++=-++=+.【点睛】本题主要考查不等式的性质以及求绝对值的法则,熟练掌握不等式的性质是解题的关键. 24.(1)该校购买每套A 型课桌椅需230元,购买每套B 型课桌椅需200元.(2)最多能购买A 型课桌椅66套.【分析】(1)设该校购买每套B 型课桌椅需x 元,则购买每套A 型课桌椅需(x+30)元,根据购买A 型课桌椅100套和B 型课桌椅150套共需53000元,即可得出关于x 的一元一次方程,解之即可得出结论;(2)设可以购买A 型课桌椅m 套,则购买B 型课桌椅(100-m )套,根据总价=单价×数量结合总价不超过22000元,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,再取其中的最大整数值即可得出结论.【详解】解:(1)设该校购买每套B 型课桌椅需x 元,则购买每套A 型课桌椅需(30)x +元, 依题意得:100(30)15053000x x ++=,解得:200x =,30230x ∴+=.答:该校购买每套A 型课桌椅需230元,购买每套B 型课桌椅需200元.(2)设可以购买A 型课桌椅m 套,则购买B 型课桌椅(100)m -套,依题意得:230200(100)22000m m +-, 解得:2003m. 又m 为整数,m ∴可以取的最大值为66.答:最多能购买A 型课桌椅66套.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.25.(1)3月20日当天口罩的价格为每盒36元.(2)a 的最大值为25.【分析】(1)可设年初口罩的价格为每盒x 元,则3月20日当天口罩的价格为每盒1.5x 元,根据3月20日当天,王老师购买4盒口罩比年初多花了48元列出方程即可求解;(2)根据两种口罩销售的总金额比3月20日至少提高了1%10a ,列出不等式即可求解. 【详解】解:(1)设年初口罩的价格为每盒x 元,则3月20日当天口罩的价格为每盒1.5x 元,依题意有4 1.5448x x ⨯-=,解得24x = ,1.5 1.52436x =⨯=.∴3月20日当天口罩的价格为每盒36元.(2)1000×(1+20%)=1200(盒), 5120010006⨯==1000(盒), 1200-1000=200(盒),依题意有()13620010003610.7%1000361%10a a ⎛⎫⨯+⨯-≥⨯+⎪⎝⎭, 解得a≤25.故a 的最大值为25.【点睛】 本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.26.(1)x <1,数轴见解析;(2)﹣5≤x < 2,数轴见解析【分析】(1)先解一元一次不等式,再在数轴上表示出不等式的解集;(2)先解一元一次不等式组,再在数轴上表示出不等式组的解集;【详解】解:(1)6194x x ->-6941x x ->-+33x ->-解得:x <1,在数轴上表示如下:(2)13215232(3)4x x x x -+⎧-≥⎪⎨⎪-->⎩①②解不等式①得:x≥﹣5解不等式②得:x < 2∴不等式组的解集为﹣5≤x < 2 ;在数轴上表示如下:.【点睛】本题主要考查求一元一次不等式和一元一次不等式组的解集和数轴,解题的关键是熟练掌握解一元一次不等式和一元一次不等式组的方法.。
人教版七年级数学下册不等式与不等式组知识点及习题

三不等式与不等式组1. 不等式的概念不等式:用不等号表示不等关系的式子,叫做不等式。
不等式的解集:1)对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
2)对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
3)求不等式的解集的过程,叫做解不等式。
用数轴表示不等式的方法2. 不等式基本性质1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
3. 一兀一次不等式一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,不等式的两边都是整式,这样的不等式叫做一元一次不等式。
解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为4. 一元一次不等式组一元一次不等式组:1)几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2)几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3)求不等式组的解集的过程,叫做解不等式组。
当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
一元一次不等式组的解法:1)分别求出不等式组中各个不等式的解集2 )利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
四不等式与不等式组1•全面调查:考察全体对象的调查方式叫做全面调查。
2•抽样调查:一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。
显然,抽样调查虽然是非全面调查,但它的目的却在于取得反映总体情况的信息资料,因而, 也可起到全面调查的作用。
3抽样调查分类:根据抽选样本的方法,抽样调查可以分为概率抽样和非概率抽样两类。
概率抽样是按照概率论和数理统计的原理从调查研究的总体中,根据随机原则来抽选样本,并从数量上对总体的某些特征作出估计推断,对推断出可能出现的误差可以从概率意义上加以控制。
人教版七年级下册不等式与不等式组知识总结与练习题

和
7 / 12
的
图
象
交
点
为
,
则
不
等
式
的解集为
.
8 / 12
5.已知: 3a b 2 .当 b =
时, 1< a ≤2 .
a
6.不等号填空:若 a<b<0 ,则
5
b1
;
5a
1 ; 2a 1 b
2b 1
7.某种品牌的八宝粥, 外包装标明: 净含量为 330g 10g,表明了这罐八宝粥的净含量 x 的
4.已知不等式组
2ax 6 a 的解集是 1< x< b.则 a+ b 的值? 6x 5 b
5.当 k 取何值时,方程 x-2k=3(x-k)+1 的解为负数
6.如果 1 x 0、0 y 1,则比较 x、 xy、 xy 2 的大小.
7.解不等式组:
2 (3 x ) 2 2,
3 2 (x 5) 1 5 3
四、一元一次不等式组
1、一元一次不等式组的概念: 几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。 3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数 x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
购的 3 只环保购物袋至少..应付给超市 ______ 元.
三. 解答题
1. x 取什么值时,代数式
5x 6
4
的值不小于
7 8
1x 3
的值,并求出
x 的最小值。
2.解下列不等式
3x 1 7x 3 2 2( x 2) .
3
人教版七年级数学下册名校课堂训练:期末复习(五)不等式与不等式组

期末复习(五)不等式与不等式组01知识结构图02重难点突破重难点1 一元一次不等式(组)的解法【例1】解不等式组514,14,23x xx x<+⎧⎪⎨-+⎪⎩①②并在数轴上表示不等式组的解集.【思路点拨】分别解两个不等式,然后确定两个不等式解集的公共部分.【解答】方法指导(1)找“不等式解集的公共部分”时,可借助数轴或口诀,其中确定不等式组解集的口诀为:大大取大,小小取小,大小小大中间找,大大小小无处找;(2)在数轴上表示解集时,大于向右画,小于向左画,合等号画实心点,不合等号画空心圆图.变式训练1.解不等式2133xx-<-,并把它的解集在数轴上表示出来.2.解不等式组230,5 50,3xx+≥⎧⎪⎨->⎪⎩①②并求出它的所有整数解.重难点2 一元一次不等式的实际应用【例2】某公司为了扩大规模,决定购进6台机器用来生产某种活塞.市场上现有甲、乙两种型号的机器可供选择,其中甲型机器的价格为7.5万元/台,乙型机器的价格为5.5万元/台.经过预算,本次购买机器所需资金不能超过37万元.请按公司要求求出所有的购买方案. 【解答】 方法指导列不等式解决实际问题时,解法与列一元一次方程解决实际问题的步骤相同,在列不等式解决实际问题时,设未知数时不能出现“至多、最少、最低”等表示不等关系的词语,但在问题的答中要出现这些表示不等关系的词语. 变式训练3.小聪用100元钱购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能买________支钢笔( ) A.10 B.11 C.12 D.134.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2000元. (1)该水果店两次分别购进多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有4%的损耗,该水果店希望售完这些水果获利不低于3780元,则该水果每千克售价至少为多少元? 思想方法1 化归思想【例3】(1)若不等式组1,21x m x m <+⎧⎨>-⎩无解,则m 的取值范围是________;(2)已知关于x 的不等式组0,320x a x ->⎧⎨->⎩的整数解共有6个,则a 的取值范围是________.【思路点拨】(1)因为原不等式组无解,所以121m m +-,解这个关于m 的不等式即可;(2)由已知结论探求字母a的取值范围,要先求出不等式组的解集,再来确定字母a的取值范围.不等式组的解集为32a x<<,则6个整数解为:1,0,1,2,3,4----,故a的范围可得.方法指导解决这类间题的思路一般是逆用不等式(组)的解集,售助不等式组解集的特点,构出不等式(组)来求出字母的取值范围.变式训练5.若不等式组20,210x ax b+->⎧⎨--<⎩的解集为01x<<,则,a b的值分别为()A.2,1a b== B.2,3 a b== C.2,3 a b=-= D.2,1a b=-=6.若不等式组,11x mx⎧⎨>⎩无解则m的取值范围是()A.11 m<B.11 m>C.11 mD.11m7.若不等式组10,13xa x+>⎧⎪⎨-<⎪⎩的解集是1x>-,则a的取值范围是________.思想方法2 类比思想【例4】阅读下列材料:求不等式(21)(3)0x x-+>的解集.解:根据“同号两数相乘,积为正”,可得①210,30xx->⎧⎨+>⎩或②210,30.xx-<⎧⎨+<⎩解①,得12x >. 解②,得3x <-.∴原不等式的解集为12x >或3x <-. 请你仿照上述方法解决问题: 求不等式(24)(2)0x x -+≤的解集. 【解答】 变式训练8.先阅读,再完成练习.一个数在数轴上所对应的点到原点的距离叫做这个数的绝对值.|| 3.x x <表示到原点距离小于3的数,从如图1所示的数轴上看:大于3-而小于3的数,它们到原点距离小于3,所以||3x <的解集是33x -<<;|| 3.x x >表示到原点距离大于3的数,从如图2所示的数轴上看:小于3-的数和大于3的数,它们到原点距离大于3,所以||3x >的解集是3x <-或3x >. 解答下面的问题:(1)不等式||(0)x a a <>的解集为________, 不等式||(0)x a a >>的解集为________; (2)解不等式:|5|3x -<; (3)解不等式:|3|5x ->. 03复习自测一、选择题(每小题3分,共30分)1.下列数值中是不等式217x +>的解的是( ) A.3- B.0C.3D.42.若33x y >-,则下列不等式中一定成立的是( ) A.0x y +> B.0x y -> C.0x y +< D.0x y -<3.把不等式组211,23x x +>-⎧⎨+⎩的解集表示在数轴上,正确的是( )A.B.C.D.4.甲种蔬菜保鲜适宜的温度是1~5℃,乙种蔬菜保鲜适宜的温度是3~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( ) A.1~3℃ B.3~5℃ C.5~8℃ D.1~8℃5.若关于x 的方程528x a -=的解是非正数,则a 的取值范围是( ) A.4a >- B.4a <-C.4a -D.4a -6.已知点(39,1)M a a --在第三象限,且它的横、纵坐标都是整数,则a =( ) A.1 B.2 C.3 D.47.某商店老板销售一种商品,他要以不低于进价20%的利润才能出售,但为了获得更多的利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,商店老板让价的最大限度为( ) A.82元 B.100元 C.120元 D.160元8.若不等式组21,23x a x b -<⎧⎨->⎩的解集为11x -<<,则()3(3)a b -+的值为( )A.1B.1-C.2D.2-9.已知45m <<,则关于x 的不等式组0,420x m x -<⎧⎨-<⎩的整数解共有( )A.1个B.2个C.3个D.4个10.使得关于x 的不等式组1,222141xm x m ⎧-≤-+⎪⎨⎪-+-⎩有解,且使得关于y 的方程1()2(2)m y y+-=-有非负整数解的所有的整数m有()A.0个B.1个C.2个D.3个二、填空题(每小题5分,共20分)11.写出一个解集为x>1的一元一次不等式:________.12.若|21|12x x-=-,则x的取值范围是________.13.王玲和李凯进行投球比赛,每人连投12次,投中一次记2分,投空一次记1分,王玲先投,投得16分李凯要想超过王玲,应至少投中________次.14.对于整数,,,a b c d,符号a bc d表示运算ad bc-,已知1134bd<<,则bd的值是________.三、解答题(共50分)15.(10分)(1)解不等式:5(2)2(1)3x x--+>;(2)解不等式1211232x x--,并把它的解集在数轴上表示出来.16.(8分)(2019·成都)解不等式组:3(2)45, 5211.42x xxx--⎧⎪⎨-<+⎪⎩①②17.(10分)某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票每张50元,持票者进入公园时需再购买每次2元的门票.游客一年中进入该公园至少多少次时,购买年票合算?18.(10分)若关于,x y的二元一次方程组21,33x y mx y+=+⎧⎨+=⎩①②的解满足,x y都是非负数,求m的取值范围.19.(12分)(2018·娄底)“绿水青山,就是金山银山”,某旅游景区为了保护环境,需购买,A B两种型号的垃圾处理设备共10台,已知每台A型设备日处理能力为12吨,每台B型设备日处理能力为15吨,购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买,A B两种设备的方案;(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.家为了促销产品,规定货款不低于40万元时,则按9折优惠.问:采用(1)设计的哪种方案,能使购买费用最少,为什么?参考答案【例1】解:解不等式①,得1x <,解不等式②,得x ≥-1,∴不等式组的解集为一1≤x<1.解集在数轴上表示略.【例2】解:设该公司购买甲型机器x 台,则购买乙型机器(6)x -台.由题意,得7.5 5.5(6)37x x +-.解得 2.x x ∴取整数0,1,2,∴有以下三种购买方案:方案一:购买甲型机器0台,乙型机器6台;方案二:购买甲型机器1台,乙型机器5台;方案三:购买甲型机器2台,乙型机器4台. 【例3】(1)2m (2)54a -<-【例4】解:根据“异号两数相乘,积为负”,可得①240,20x x -⎧⎨+⎩或②240,20.x x -⎧⎨+⎩解①无解.解②,得2 2.x -∴原不等式的解集为22x -. 变式训练1.解:2x <.不等式的解集在数轴上表示略.2.解:它的所有整数解为1,0,1,2-3.C4.解:(1)设水果店第一次购进水果x 元,第二次购进水果y 元,由题意,得2000,2.414x y y x +=⎧⎪⎨=⨯⎪⎩-解得800,1200.x y =⎧⎨=⎩答:水果店第一次购进800元的水果,第二次购进1200元的水果.(2)第一次购进水果8004200÷=(千克),第二次购进水果1200(41)400÷-=(千克),设该水果每千克售价为m 元,由题意,得[200(13%)400(14%)]20003780m ⨯-+⨯--.解得10m .答:该水果每千克售价至少为10元.5.A6.C7.13a -8解:(1)a x a x a -<<>或x a <- (2)28x <<. (3)8x >或2x <- 复习自测1.D2.A3.B4.B5.D6.B7.C8.D9.B 10.D11.23x +>(答案不唯一) 12.12x13.5 14.2 15.解:(1)5x >.(2)3x -.不等式的解集在数轴上表示略. 16.解:12x -<.17.解:设游客一年中进入该公园x 次,则50210x x +<.解得16.4x x >为整数,x ∴最小取7.答:游客一年中进入该公园至少7次时,购买年票合算.18.解:-②①,得222.1y m y m =-∴=- .把1y m =-代入②,得3(1)3,3.,x m x m x y +-=∴=都是非负数,30,0110m m m ⎧∴∴⎨-⎩.19.解:(1)设购买x 台A 型设备,则购买(10)x -台B 型设备,依题意,得1215(10)140x x +-,解得10.3x x 是非负整数,3,2,1,0,x B ∴=∴型设备相应的台数分别为7,8,9,10.∴共有4种方案:方案一:A 1台,B 7台;方案二:A 2台,B 8台;方案三:A 1台,B 9台;方案四:A 0台,B 10台.(2)当3x =时,33 4.4739.8⨯+⨯=(万元);当2x =时,23 4.4841.2⨯+⨯=(万元),41.20.937.08⨯=(万元);当1x =时,13 4.4942.6⨯+⨯=(万元),42.60,938,34⨯=(万元);当0x =时,03 4.41044⨯+⨯=(万元),440.939.6⨯=(万元).37.0838.3439.639.8,<<<∴购买2台A 型设备,8台B 型设备时,购买费用最少.。
最新人教版初中数学七年级数学下册第五单元《不等式与不等式组》测试题(包含答案解析)

一、选择题1.已知关于x 的不等式组15x ax b -≥⎧⎨+≤⎩的解集是3≤x ≤5,则+a b 的值为( )A .6B .8C .10D .122.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( )x… -2 -1 0 1 2 3 … y …321-1-2…A .x <1B .x >1C .x <0D .x >03.不等式组20240x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .4.下列变形中,不正确的是( ) A .若a>b ,则a+3>b+3 B .若a>b ,则13a>13b C .若a<b ,则-a<-bD .若a<b ,则-2a>-2b.5.不等式组64325x x x -<⎧⎨≥+⎩的解集是( )A .x ≥5B .x ≤5C .x >3D .无解6.已知01m <<,则m 、2m 、1m( ) A .21m m m >>B .21m m m >>C .21m m m >>D .21m m m>> 7.不等式组10,{360x x -≤-<的解集在数轴上表示正确的是( )A .B .C .D .8.已知点()121M m m --,在第四象限,则m 的取值范围在数轴上表示正确的是( ) A . B .C .D .9.若|65|56x x -=-,则x 的取值范围是( ) A .56x >B .56x <C .56x ≥D .56x ≤10.若实数3是不等式2x a 20--<的一个解,则a 可取的最小整数为( ) A .2B .3C .4D .511.若不等式组11x x m->⎧⎨<⎩无解,那么m 的取值范围是( )A .2m >B .2m <C .2m ≥D .2m ≤12.已知关于x 的方程:24263a x xx --=-的解是非正整数,则符合条件的所有整数a的值有( )种. A .3 B .2 C .1 D .0二、填空题13.若0a b c ++=,且a b c >>,以下结论: ①0a >,0c >;②关于x 的方程0ax b c ++=的解为1x =; ③22()a b c =+④||||||||a b c abca b c abc +++的值为0或2; ⑤在数轴上点A .B .C 表示数a 、b 、c ,若0b <,则线段AB 与线段BC 的大小关系是AB BC >.其中正确的结论是______(填写正确结论的序号).14.若()a 1x a 1-<-的解集为x 1>,则a 的取值范围是________.15.不等式组2173112x x x -<⎧⎪⎨+-≥⎪⎩的解集是____.16.对任意四个整数a 、b 、c 、d 定义新运算:a b c dad bc =-,若1<2 4 1x x -<12,则x的取值范围是____.17.当前我国的新冠疫情虽然有所控制,但防控仍不可掉以轻心,为做好秋季防疫工作,王老师带现金6820元为年级采购了额温枪和消毒酒精两种防疫物品,额温枪每个125元,消毒酒精每瓶55元,购买后剩余100元、10元、1元的钞票若干张(10元钞票和1元钞票剩余数量均不超过9张,且采购额温枪的数量大于消毒酒精的数量).若把购买两种防疫物品的数量交换,剩余的100元和10元的钞票张数恰好相反,但1元钞票的张数不变,则购买消毒酒精的数量为__________________瓶.18.关于x的不等式132xa x-≤⎧⎨-<⎩有5个整数解,则a的取值范围是______.19.在实数范围内规定一种新的运算“☆”,其规则是:a☆b=3a+b,已知关于x的不等式:x☆m>1的解集在数轴上表示出来如图所示.则m的值是________ .20.关于x、y的二元一次方程组3234x y ax y a+=+⎧⎨+=-⎩的解满足x+y>2,则a的取值范围为__________.三、解答题21.解关于x的不等式组:231123xxx x<+⎧⎪⎨<+⎪⎩22.解不等式,并把解集在数轴上表示出来.(1)()4521x x+≤+(2)()1113125y y y+<--23.受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元.(1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a,求a的最大值.24.解下列不等式组,并把它的解集表示在数轴上.(1)35318x x +≥⎧⎨-<⎩;(2)()1212235xx x x ⎧+<-⎪⎪⎨+⎪>⎪⎩. 25.大润发超市用6800元购进A 、B 两种计算器共120只,这两种计算器的进价、标价如下表.(2)元旦活动期间,超市决定将A 型计算器按标价的9折出售,为保证这批计算器全部售出后盈利不低于1400元,则B 型计算器最多打几折出售?26.解下列一元一次不等式组:211132x x x x >-⎧⎪-⎨-<⎪⎩并把解集表示在数轴上.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先求出两个不等式的解集,再求其公共解,再根据不等式组的解集列出求出a 、b 的值,再代入代数式进行计算即可得解. 【详解】15x a x b -≥⎧⎨+≤⎩①②, 由①得,x≥a +1, 由②得,x≤b−5,∵不等式组的解集是3≤x≤5, ∴a +1=3,b−5=5, 解得a =2,b =10, 所以,a +b =2+10=12.故选:D.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).2.A解析:A【分析】将x=0、y=1和x=1、y=0代入ax+b=y得到关于a、b的方程组,解之得出a、b的值,从而得到关于x的不等式,解之可得答案.【详解】解:根据题意,得:10 ba b=⎧⎨+=⎩,解得a=-1,b=1,则不等式-ax-b<0为x-1<0,解得x<1,故选:A.【点睛】本题考查了解一元一次不等式,解题的关键是根据题意列出关于x的不等式,并熟练掌握解一元一次不等式的步骤和依据.3.C解析:C【解析】分析:先求出各不等式的解集,再求出其公共解集即可.详解:解不等式x+2>0,得:x>-2,解不等式2x-4≤0,得:x≤2,则不等式组的解集为-2<x≤2,将解集表示在数轴上如下:故选C.点睛:本题主要考查解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.C解析:C【解析】分析:根据不等式的基本性质进行判断.详解:A.在不等式a>b的两边同时加3,不等式仍成立,即a+3>b+3.故A正确;B .在不等式a >b 的两边同时乘以13,不等式仍成立,即13a >13b .故B 正确;C .在不等式a <b 的两边同时乘以﹣1,不等号方向改变,即﹣a >﹣b .故C 错误;D .在不等式a <b 的两边同时乘以﹣2,不等式仍成立,即-2a >-2b .故D 正确; 由于该题选择错误的. 故选C .点睛:主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变. (2)不等式两边乘(或除以)同一个正数,不等号的方向不变. (3)不等式两边乘(或除以)同一个负数,不等号的方向改变5.A解析:A 【分析】先分别求出每个不等式的解集,然后再确定不等式组的解集即可. 【详解】 解:64325x x x -<⎧⎨≥+⎩,解不等式①得:x >34, 解不等式②得:x ≥5,所以不等式组的解集是x ≥5, 故答案为A . 【点睛】本题考查了解不等式组,正确求解每一个不等式和确定不等式组的解集是解答本题的关键.6.C解析:C 【分析】根据不等式的性质解答. 【详解】 解:∵01m <<,∴01m m m <⋅<⨯,即20m m <<(不等式的两边都乘以同一个正数,所得的不等式仍然成立)①10m m m <<,即101m<<(不等式的两边都除以同一个正数,所得的不等式仍然成立)②由①②知21m m m>>; 故选:C.【点睛】此题考查不等式的性质:不等式两边都乘以同一个正数,所得的不等式仍然成立,不等式的两边都除以同一个正数,所得的不等式仍然成立,解题的关键是正确掌握不等式的性质.7.D解析:D 【解析】 试题分析:10{360x x -≤-<①②,由①得:x≥1,由②得:x <2,在数轴上表示不等式的解集是:,故选D .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.8.B解析:B 【分析】由点()121M m m --,在第四象限,可得出关于m 的一元一次不等式组,解不等式组即可得出m 的取值范围,再对照四个选项即可得出结论. 【详解】解:由点()121M m m --,在第四象限,得1-2010m m >⎧⎨-<⎩, ∴0.51m m <⎧⎨<⎩即不等式组的解集为:0.5m <, 在数轴上表示为:故选:B . 【点睛】此题考查了象限及点的坐标的有关性质、在数轴上表示不等式的解集、解一元一次不等式组,需要综合掌握其性质9.D解析:D 【分析】先根据绝对值的性质判断出65x -的符号,再求出x 的取值范围即可. 【详解】∵6556x x -=-, ∴650x -≤,∴56x ≤. 故选:D . 【点睛】本题考查了绝对值的性质以及解一元一次不等式,解答此题的关键是熟知绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.10.D解析:D 【分析】将x 3=代入不等式得到关于a 的不等式,求解即可. 【详解】根据题意,x 3=是不等式的一个解, ∴将x 3=代入不等式,得:6a 20--<, 解得:4a >,则a 可取的最小整数为5, 故选:D. 【点睛】此题考查不等式的解的定义,解一元一次不等式,正确理解不等式的解的定义将x=3代入得到关于a 的不等式是解题的关键.11.D解析:D 【分析】先求出11x ->的解,再根据不等式组无解,可得关于m 的不等式,根据解不等式,可得答案. 【详解】解:解11x ->得2x >. ∵不等式组11x x m->⎧⎨<⎩无解,∴2m ≤, 故选:D . 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.A解析:A 【分析】先用含a 的式子表示出原方程的解,再根据解为非正整数,即可求得符合条件的所有整数a .【详解】解:24263a x xx --=-()264212--=-x a x x 264+212-=-x a x x()24+8=-a x284+=-x a∵方程的解是非正整数,∴2804+-≤a ∴2804+≥a∴24+=1a 或2或4或8 ∴a=0或2或-2,共3个 故选:A 【点睛】本题考查了一元一次方程的解法及解不等式,根据方程的解为非正整数列出关于a 的不等式是解题的关键.二、填空题13.②③⑤【分析】①根据a+b+c=0且a >b >c 推出a >0c <0即可判断;②根据a+b+c=0求出a=-(b+c )又ax+b+c=0时ax=-(b+c )方程两边都除以a 即可判断;③根据a=-(b+c )解析:②③⑤ 【分析】①根据a +b +c =0,且a >b >c 推出a >0,c <0,即可判断;②根据a +b +c =0求出a =-(b +c ),又ax +b +c =0时ax =-(b +c ),方程两边都除以a 即可判断;③根据a =-(b +c )两边平方即可判断;④分为两种情况:当b >0,a >0,c <0时,去掉绝对值符号得出a a +b b +c c -+abc abc-,求出结果,当b <0,a >0,c <0时,去掉绝对值符号得出a a +b b -+c c -+abc abc,求出结果,即可判断;⑤求出AB =a -b =-b -c -b =-2b -c =-3b +b -c ,BC =b -c ,根据b <0利用不等式的性质即可判断. 【详解】解:(1)∵a+b+c=0,且a>b>c,∴a>0,c<0,∴①错误;∵a+b+c=0,a>b>c,∴a>0,a=-(b+c),∵ax+b+c=0,∴ax=-(b+c),∴x=1,∴②正确;∵a=-(b+c),∴两边平方得:a2=(b+c)2,∴③正确;∵a>0,c<0,∴分为两种情况:当b>0时,aa+bb+cc+abcabc=aa+bb+cc-+abcabc-=1+1+(-1)+(-1)=0;当b<0时,aa+bb+cc+abcabc=aa+bb-+cc-+abcabc=1+(-1)+(-1)+1=0;∴④错误;∵a+b+c=0,且a>b>c,b<0,∴a>0,c<0,a=-b-c,∴AB=a-b=-b-c-b=-2b-c=-3b+b-c,BC=b-c,∵b<0,∴-3b>0,∴-3b+b-c>b-c,∴AB>BC,∴⑤正确;即正确的结论有②③⑤.故答案为:②③⑤.【点睛】本题考查了比较两线段的长,数轴,有理数的加法、除法、乘方,一元一次方程的解,绝对值等知识点的综合运用,题目比较典型,但是一道比较容易出错的题目.14.【分析】根据不等式的性质2可得答案【详解】解:∵不等式的解集是∴解得故答案为:【点睛】本题考查了不等式的性质:不等式的两边都乘以或除以同一个正数不等号的方向不变解析:a1<.【分析】根据不等式的性质2,可得答案.【详解】解:∵不等式()a 1x a 1-<-的解集是x 1>,∴a 10-<,解得a 1<.故答案为:a 1<.【点睛】本题考查了不等式的性质:不等式的两边都乘以或除以同一个正数,不等号的方向不变. 15.1≤x <4【分析】分别求出每一个不等式的解集再找到公共部分即可得【详解】解:解不等式①得x <4解不等式②得x≥1所以不等式组的解集为:1≤x <4故答案为:1≤x <4【点睛】此题主要考查了求一元一次不解析:1≤x <4.【分析】分别求出每一个不等式的解集,再找到公共部分即可得.【详解】 解:217? 311?2x x x -<⎧⎪⎨+-≥⎪⎩①② 解不等式①得,x <4,解不等式②得,x≥1,所以,不等式组的解集为:1≤x <4.故答案为:1≤x <4.【点睛】此题主要考查了求一元一次不等式组的解集,正确求出每一个不等式解集是解答此题的关键.16.【分析】根据新定义列不等式组并求解集即可【详解】解:由题意得:1<2x-(-4)x <12即1<6x <12解得故答案为【点睛】本题主要考查了新定义运用解不等式组等知识点正确理解新运算法则是解答本题的关键 解析:126x << 【分析】根据新定义列不等式组并求解集即可.【详解】解:由题意得:1<2x-(-4)x <12,即1<6x <12,解得126x << . 故答案为126x <<. 【点睛】本题主要考查了新定义运用、解不等式组等知识点,正确理解新运算法则是解答本题的关键.17.30【分析】设额温枪的数量为消毒酒精的数量为剩余100元钞票的数量为a10元为b 根据题意列出方程组然后分别代入可能的a 和b 即可求得【详解】解:∵题中所有的钱数(68201255510010)均是0或解析:30【分析】设额温枪的数量为x ,消毒酒精的数量为y ,剩余100元钞票的数量为a ,10元为b ,根据题意列出方程组,然后分别代入可能的a 和b ,即可求得.【详解】解:∵题中所有的钱数(6820,125,55,100,10)均是0或5结尾,且1元钞票的数量不超过9张∴1元钞票的数量是5设额温枪的数量为x ,消毒酒精的数量为y ,剩余100元钞票的数量为a ,10元为b 根据题意得()()682012555100105682012555100105x y a b y x b a ⎧-+=++⎪⎨-+=++⎪⎩ 两式子相减可整理得:97x y b a -=- ∵9b ≤∴9x y -=,7b a -=∴b a -有三种情况①b=7,a=0②b=8,a=1③b=9,a=2将三种情况分别代入上述方程组计算得情况①和②算出x 和y 不是整数,不符合题意情况③情况符合题意:=39x 和=30y ,且39>30,符合题意故购买的消毒酒精的数量为30瓶故答案为:30【点睛】本题考查四元一次方程组与不等式的应用,找出题中数量关系,列出方程组,并整体得出两个未知数的方程是解题的关键,要注意钞票张数是整数. 18.【分析】首先解每个不等式两个不等式的解集的公共部分就是不等式组的解集确定整数解据此即可写出a 的范围【详解】解:解不等式①得;解不等式②得:则不等式的解集为∵不等式有5个整数解∴一定是01234∴即故 解析:12a ≤<【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,确定整数解,据此即可写出a 的范围.【详解】解:132x a x -≤⎧⎨-<⎩①②, 解不等式①得,4x ≤;解不等式②得:2x a >-,则不等式的解集为24a x -<≤,∵不等式132x a x -≤⎧⎨-<⎩有5个整数解, ∴一定是0,1,2,3,4. ∴120a ,即12a ≤<, 故答案为:12a ≤<.【点睛】此题考查的是一元一次不等式组的解法,根据x 的取值范围,得出x 的整数解,然后代入方程即可解出a 的值.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.-2【分析】根据新运算法则得到不等式3通过解不等式即可求的取值范围结合图象可以求得的值【详解】∵☆∴根据图示知已知不等式的解集是∴故答案为:【点睛】本题主要考查了数轴上表示不等式的解集及解不等式本题 解析:-2【分析】根据新运算法则得到不等式31x m +>,通过解不等式即可求m 的取值范围,结合图象可以求得m 的值.【详解】∵x ☆ 31m x m =+>, ∴13m x ->, 根据图示知,已知不等式的解集是1x >, ∴113m -=, 故答案为:2m =-.【点睛】本题主要考查了数轴上表示不等式的解集及解不等式,本题的关键是理解新的运算方法. 20.a <-2【解析】试题解析:a <-2.【解析】试题32{34x y a x y a +=++=-①②由①-②×3,解得2138a x +=-; 由①×3-②,解得678a y +=; ∴由x+y >2,得2136788a a ++-+>2, 解得,a <-2. 考点:1解一元一次不等式;2.解二元一次方程组.三、解答题21.16x -<<【分析】分别解两个不等式,取公共解集即可.【详解】解: 231123x x x x <+⎧⎪⎨<+⎪⎩①② 解不等式①,移项得:231x x -<,合并同类项得:1x -<,系数化为1得:1x >-,解不等式②得,去分母得:326x x <+,移项合并得:6x <,所以该不等式组的解集为:16x -<<【点睛】本题考查解不等式组.掌握取不等式解集的口诀“同大取大,同小取小,大小小大取中间,大大小小是无解”是解题关键.22.(1)32x ≤-,数轴见解析;(2)y >5,数轴见解析 【分析】先对不等式进行求解,求出解集,然后在数轴上表示出解集即可.【详解】解:(1)∵()4521x x +≤+,即4225x x -≤-,即32x ≤-, ∴不等式的解集为:32x ≤-;(2)()1113125y y y +<-- 即133522y y y +-<-, 即33102y -<-, 故5y >, 故不等式的解集为:5y >.【点睛】本题考查的是一元一次不等式的解法,解此类题目经常用到数轴,注意x 或y 是否取得到,若取得到则为实心否则为空心.23.(1)3月20日当天口罩的价格为每盒36元.(2)a 的最大值为25.【分析】(1)可设年初口罩的价格为每盒x 元,则3月20日当天口罩的价格为每盒1.5x 元,根据3月20日当天,王老师购买4盒口罩比年初多花了48元列出方程即可求解;(2)根据两种口罩销售的总金额比3月20日至少提高了1%10a ,列出不等式即可求解. 【详解】解:(1)设年初口罩的价格为每盒x 元,则3月20日当天口罩的价格为每盒1.5x 元,依题意有4 1.5448x x ⨯-=,解得24x = ,1.5 1.52436x =⨯=.∴3月20日当天口罩的价格为每盒36元.(2)1000×(1+20%)=1200(盒),5120010006⨯==1000(盒), 1200-1000=200(盒),依题意有()13620010003610.7%1000361%10a a ⎛⎫⨯+⨯-≥⨯+⎪⎝⎭, 解得a≤25.故a 的最大值为25.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.24.(1)23x ≤<;(2)3x >【分析】(1)先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可; (2)分别求出各不等式的解集,在数轴上表示出来即可.【详解】(1)解不等式35x +≥得2x ≥解不等式318x -<得3x <∴不等式的解集为23x ≤<,在数轴上表示如下:(2)解不等式()1212x x +<-得2x >, 解不等式235x x +>得3x >, ∴不等式的解集为3x >,在数轴上表示如下:【点睛】此题主要考查不等式组的解法及在数轴上表示不等式组的解集,解题的关键在熟练掌握不等式组的解法,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 25.(1)A 型计算机进购40只,B 形计算机进购80只;(2)B 型计算器最多打八折出售【分析】(1)设A 型计算器进购x 只,B 形计算器进购y 只,列二元一次方程组求解;(2)设B 型计算器打m 折,先算出A 型计算器和B 形计算器的单个利润,然后列不等式求解.【详解】解:(1)设A 型计算器购进x 只,B 形计算器购进y 只,列式:12030706800x y x y +=⎧⎨+=⎩,解得4080x y =⎧⎨=⎩, 答:A 型计算器购进40只,B 形计算器购进80只;(2)设B 型计算器打m 折,A 型计算器的单个利润是500.93015⨯-=(元),B 型计算器的单个利润是()10070107010m m ⎛⎫⨯-=- ⎪⎝⎭元, 列式:()15408010701400m ⨯+-≥60080056001400m +-≥8006400m ≥8m ≥,答:B 型计算器最多打八折出售.【点睛】本题考查二元一次方程组的应用和不等式的应用,解题的关键是根据题意列出方程组或不等式进行求解.26.x>-1,数轴表示见解析.【分析】根据不等式的性质分别求出两个不等式的解集即可求出不等式组的解集,表示在数轴上即可.【详解】解:211132x x x x >-⎧⎪-⎨-<⎪⎩ 解21x x >-得:x>-1,解1132x x --<得: x>-3, ∴原不等式组的解集为x>-1,表示在数轴上如图:【点睛】此题考查一元一次不等式组的解及数轴表示,难度一般.。
最新人教版初中数学七年级数学下册第五单元《不等式与不等式组》检测题(答案解析)(1)

一、选择题1.若点A (a ,b )在第二象限,则点B (﹣a ,b+1)在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( ) A .3a > B .3a ≤ C .3a < D .3a ≥ 3.若关于x 的不等式组0122x a x x ->⎧⎨->-⎩只有两个整数解,则a 的取值范围是( ) A .21a -≤<- B .21a -≤≤-C .21a -<<-D .21a -<≤- 4.已知点()3,2P a a --关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是( ).A .B .C .D .5.不等式组1030x x -≤⎧⎨+>⎩中的两个不等式的解集在同一个数轴上表示正确的是( ) A . B .C .D .6.不等式组111x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( ) A . B . C . D .7.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-B .116a 2-<<-C .1162a -<-D .1162a -- 8.如果a 、b 表示两个负数,且a b >,则( )A .1a b >B .1b a >C .11a b >D .1ab < 9.若a b <,则下列各式中不一定成立的是( )A .11a b -<-B .33a b <C .a b ->-D .ac bc < 10.整数a 使得关于x ,y 的二元一次方程组931ax y x y -=⎧⎨-=⎩的解为正整数(x ,y 均为正整数),且使得关于x 的不等式组()1211931x x a ⎧+≥⎪⎨⎪-<⎩无解,则a 的值可以为( ) A .4B .4或5或7C .7D .11 11.不等式325132x x ++≤-的解集表示在数轴上是( ) A . B .C .D .12.在数轴上,点A 2,现将点A 沿数轴做如下移动,第一次点A 向左移动4个单位长度到达点1A ,第二次将点1A 向右移动8个单位到达点2A ,第三次将点2A 向左移动12个单位到达点3A ,第四次将点3A 向右移动16个单位长度到达点4A ,按照这种规律下去,第n 次移动到点n A ,如果点n A 与原点的距离不少于18,那么n 的最小值是( ) A .7 B .8 C .9 D .10二、填空题13.不等式组2173112x x x -<⎧⎪⎨+-≥⎪⎩的解集是____. 14.已知关于x 的不等式24132m x mx +-≤的解集是34x ≥,那么m 的值是________. 15.不等式组的解集为23113x x -<⎧⎨-≤⎩的解集为______. 16.令a 、b 两个数中较大数记作{}max ,a b 如{}max 2,33=,已知k 为正整数且使不等式{}max 21,33k k +-+≤成立,则关于x 方程21136x k x ---=的解是_____________. 17.已知关于x 的不等式组010x a x -≥⎧⎨->⎩的整数解共有3个,则a 的取值范围是________. 18.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________. 19.为改善教学条件,学校准备对现有多媒体设备进行升级改造,已知购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元.经过与经销商洽谈,键盘打八折,鼠标打八五折,若学校计划购买键盘和鼠标共50件,且总费用不超过1820元,则最多可购买键盘_____个.20.如果不等式组324x a x a +⎧⎨-⎩<<的解集是x <a ﹣4,则a 的取值范围是_______. 三、解答题21.某校准备组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案.(2)如果甲、乙两种汽车每辆车的租车费用分别为2500元和2000元,请你选择最省钱的一种方案.22.某商场销售A 、B 两种型号的计算器,两种计算器的进货价格分别为每台15元,20元.商场销售5台A 型号和1台B 型号计算器,可获利润38元;销售6台A 型号和3台型号计算器,可获利润6元.(1)求商场销售A 、B 两种型号计算器的销售价格分别是多少元?(2)商场准备用不多于1250元的资金购进A 、B 两种型号计算器共70台,且全部售出后至少获利460元.问:最少需要购进A 型号的计算器多少台?最多可购进A 型号的计算器多少台?23.若关于x 的方程23244x m m x -=-+的解不小于7183m --,求m 的取值范围. 24.已知方程组2523x y m x y m-=+⎧⎨+=⎩的解满足条件0x >,0y <,求m 的取值范围. 25.解不等式(组),并将解集表示在数轴上:(1)6194x x ->-(2)13215232(3)4x x x x -+⎧-≥⎪⎨⎪-->⎩26.解不等式组:()324112x x x ⎧+≥+⎪⎨-<⎪⎩.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据第二象限内的点的横坐标小于零,纵坐标大于零,可得关于a 、b 的不等式,再根据不等式的性质,可得B 点的坐标符号.【详解】解:∵点P (a ,b )在第二象限,∴a <0,b >0,∴-a >0,b+1>0,∴点B (﹣a ,b+1)在第一象限.故选A .【点睛】本题主要考查平面直角坐标系中象限内的点的坐标的符号特征和不等式的性质.注意第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 2.D解析:D【分析】求出方程的解,根据已知得出a-3≥0,求出即可.【详解】解:解方程a-x=3得:x=a-3,∵方程的解是非负数,∴a-3≥0,解得:a≥3,故选:D .【点睛】本题考查了一元一次方程的解,解一元一次不等式,解一元一次方程的应用,关键是得出一个关于a 的不等式.3.A解析:A【分析】先求出每个不等式的解集,再求出不等式组的解集,最后根据已知和不等式组的解集求解即可.【详解】∵解不等式0x a ->得:x a >,解不等式122x x ->-得:1x <,∴不等式组的解集为1a x <<,又∵不等式组0122x a x x ->⎧⎨->-⎩只有两个整数解,即整数解为-1,0, ∴21a -≤<-,故选:A .【点睛】本题考查了解一元一次不等式组,不等式组的整数解,能根据不等式组的解集和已知得出答案是解此题的关键.4.C解析:C【分析】根据点()3,2P a a --关于原点对称的点在第四象限,可得点P 在第二象限,因此就可列出不等式,解不等式可得a 的取值范围.【详解】解:∵点()3,2P a a --关于原点对称的点在第四象限,∴点()3,2P a a --在第二象限,∴3020a a -<⎧⎨->⎩, 解得:2a <.则a 的取值范围在数轴上表示正确的是:.故选C .【点睛】本题主要考查不等式的解法,根据不等式的解集,在数轴上表示即可,关键在于点P 的坐标所在的象限.5.A解析:A【分析】先分别解两个不等式得到x≤1和x >-3,然后利用数轴分别表示出x≤1和x >-3,于是可得到正确的选项.【详解】解不等式x-1≤0得x≤1,解不等式x+3>0得x >-3,所以不等式组的两个不等式的解集在同一个数轴上表示为:.故选:A .【点睛】本题考查了在数轴上表示不等式的解集:用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.6.B解析:B【分析】先根据不等式组求出解集,然后在数轴上准确的表示出来即可.【详解】111x x -<⎧⎨-⎩①② 由不等式①组得,x<2∴不等式组的解集为:21x x ⎧⎨≥-⎩< 其解集表示在数轴上为, 故选B .【点睛】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.A解析:A【分析】分别解两个不等式得到得x <20和x >3-2a ,由于不等式组只有5个整数解,则不等式组的解集为3-2a <x <20,且整数解为15、16、17、18、19,得到14≤3-2a <15,然后再解关于a 的不等式组即可.【详解】255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩①② 解①得x <20解②得x >3-2a ,∵不等式组只有5个整数解,∴不等式组的解集为3-2a <x <20,∴14≤3-2a <15, 1162a ∴-<-故选A【点睛】 本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a <15是解此题的关键.8.B解析:B【分析】根据不等式的性质,两边都除以b 判断出A 、B ,两边都除以ab ,判断出C 即可得解.【详解】∵a 、b 表示两个负数, ∴a b >两边都除以b 得,1a b<,故选项A 错误,不符合题意; a b >两边都除以a 得,1b a >,故选项B 正确,符合题意; ∵a 、b 表示两个负数,∴0ab >, ∴a b >都除以ab 得,11b a>,故选项C 错误,不符合题意; 只能判断出0ab >,但无法说明1ab <,故选项D 错误,不符合题意.故选:B .【点睛】本题考查了不等式的基本性质,(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.D解析:D【分析】根据不等式的性质进行解答.【详解】A 、在不等式的两边同时减去1,不等式仍成立,即11a b -<-,故本选项不符合题意.B 、在不等式的两边同时乘以3,不等式仍成立,即33a b <,故本选项不符合题意.C 、在不等式的两边同时乘以-1,不等号方向改变,即a b ->-,故本选项不符合题意.D 、当0c ≤时,不等式ac bc <不一定成立,故本选项符合题意.故选:D .【点睛】本题考查了不等式的性质,做这类题时应注意:在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.10.B解析:B【分析】先解方程组得83273xaaya⎧=⎪⎪-⎨-⎪=⎪-⎩,根据x、y为正整数可求得a,再解不等式组,根据不等式组无解可得a的取值范围,据此可求得a值.【详解】解:解二元一次方程组931ax yx y-=⎧⎨-=⎩,得:83273xaaya⎧=⎪⎪-⎨-⎪=⎪-⎩,∵方程组的解均为正整数,∴a=4、5、7、11,解不等式组()1211931xx a⎧+≥⎪⎨⎪-<⎩,得:81xx a≥⎧⎨<+⎩,∵不等式组无解,∴a+1≤8,即a≤7,∴满足题意的a值为4或5或7,故答案为:B.【点睛】本题考查二元一次方程的解法、一元一次不等式组的解法,熟练掌握它们的解法,会用不等式组无解求参数范围,会利用正约数求满足方程组的整数解是解答的关键.11.B解析:B【分析】根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.【详解】解:去分母,得,2(3x+2)≤3(x+5)﹣6,去括号,得6x+4≤3x+15﹣6,移项、合并同类项,得3x ≤5,系数化为1,得,x ≤53, 在数轴上表示为:故选:B .【点睛】本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,>向右画,<向左画,≤与≥用实心圆点,<与>用空心圆圈.12.C解析:C【分析】根据题意依次得出点A 移动的规律,当点A 奇数次移动时,对应表示的数为负数,当点A 偶数次移动时,对应表示的数为正数,得出对应规律,根据点n A 与原点的距离不少于18,列出不等式,求解可得.【详解】解:第一次:1A 24-,第二次:2A 24,第三次:3A 28,第四次:4A 28+,...当n 为奇数时,第n 1242n +⨯222n -, 当n 为偶数时,第n 242n ⨯22n , ∵点n A 与原点的距离不少于18, ∴22218n -≥2218n ≥,解得:282n ≥+,292n ≥-, ∵201<<, ∴n≥9,∴n 的最小值是9,故选C.【点睛】本题是数字类的变化规律题,考查了解不等式,还考查了数轴的性质:向左移→减,向右移→加;从第一个点移动开始分别计算出表示的数,大胆猜想,找出对应的规律,并验证,列式计算.二、填空题13.1≤x<4【分析】分别求出每一个不等式的解集再找到公共部分即可得【详解】解:解不等式①得x<4解不等式②得x≥1所以不等式组的解集为:1≤x<4故答案为:1≤x<4【点睛】此题主要考查了求一元一次不解析:1≤x<4.【分析】分别求出每一个不等式的解集,再找到公共部分即可得.【详解】解:217?311?2xxx-<⎧⎪⎨+-≥⎪⎩①②解不等式①得,x<4,解不等式②得,x≥1,所以,不等式组的解集为:1≤x<4.故答案为:1≤x<4.【点睛】此题主要考查了求一元一次不等式组的解集,正确求出每一个不等式解集是解答此题的关键.14.【分析】先移项合并然后根据不等式的解集得形式可得出关于m的方程解出即可得出答案【详解】解:由题意得:∵不等式的解为∴解得:故答案为:【点睛】本题考查解一元一次不等式的知识有一定的难度注意先表示出不等解析:9 10.【分析】先移项合并,然后根据不等式的解集得形式可得出关于m的方程,解出即可得出答案.【详解】解:由题意得:112 (2)323m x m-≥+,∵不等式的解为34x≥,∴123231423m m +=-, 解得:910m =. 故答案为:910. 【点睛】本题考查解一元一次不等式的知识,有一定的难度,注意先表示出不等式的解得形式,然后运用方程思想解答. 15.【分析】分别求出每个不等式的解集再取它们的公共部分即可得到不等式组的解集【详解】解:解不等式①得x <2解不等式②得x≥-2所以不等式组的解集为:故答案为:【点睛】此题考查了解一元一次不等式组解不等式 解析:22x -≤<【分析】分别求出每个不等式的解集,再取它们的公共部分即可得到不等式组的解集.【详解】解:23113x x -<⎧⎨-≤⎩①② 解不等式①得,x <2,解不等式②得,x≥-2所以,不等式组的解集为:22x -≤<故答案为:22x -≤<.【点睛】此题考查了解一元一次不等式组,解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大中间找,大大小小无法找(空集).16.【分析】根据新定义分两种情况分别列出不等式求解得出k 的值代入分别求解可得【详解】①当时解得:;②当时解得:;∵为正整数 解析:95【分析】根据新定义分213213k k k +>-+⎧⎨+≤⎩、21333k k k +≤-+⎧⎨-+≤⎩两种情况,分别列出不等式求解得出k 的值,代入分别求解可得.【详解】①当213213k k k +>-+⎧⎨+≤⎩时,解得:213k <≤; ②当21333k k k +≤-+⎧⎨-+≤⎩时, 解得:203k ≤≤; ∵k 为正整数,17.【分析】表示出不等式组的解集由不等式组整数解有3个确定出a 的范围即可【详解】不等式组整理得:即由不等式组整数解有3个得到故答案为:【点睛】本题考查了一元一次不等式组的整数解熟练掌握运算法则是解本题的 解析:32a -<≤【分析】表示出不等式组的解集,由不等式组整数解有3个,确定出a 的范围即可.【详解】不等式组整理得:1x a x ≥⎧⎨<⎩,即1a x ≤<, 由不等式组整数解有3个,得到32a -<≤-,故答案为:32a -<≤-.【点睛】本题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.18.0【分析】求出不等式组的解集确定出最小整数解即可【详解】不等式组整理得:不等式组的解集为:-1<x≤2最小的整数解为0故答案为:0【点睛】本题主要考查一元一次不等式组的整数解掌握一元一次不等式组的求 解析:0【分析】求出不等式组的解集,确定出最小整数解即可.【详解】不等式组整理得:21x x ≤⎧⎨>-⎩, ∴不等式组的解集为:-1<x ≤2,∴最小的整数解为0.故答案为:0.【点睛】本题主要考查一元一次不等式组的整数解,掌握一元一次不等式组的求解是解题关键. 19.20【分析】直接利用已知得出二元一次方程组求出键盘与鼠标的单价再利用总费用不超过1820元得出不等式求出答案【详解】解:设键盘每个价格为x 元鼠标每个价格为y 元根据题意可得:解得:则设购买键盘a 个则鼠解析:20【分析】直接利用已知得出二元一次方程组求出键盘与鼠标的单价,再利用总费用不超过1820元,得出不等式求出答案.【详解】解:设键盘每个价格为x 元,鼠标每个价格为y 元,根据题意可得:319023220x y x y +=⎧⎨+=⎩, 解得:5040x y =⎧⎨=⎩, 则设购买键盘a 个,则鼠标(50﹣a )个,根据题意可得:50×0.8a +40×0.85(50﹣a )≤1820,解得:a ≤20,故最多可购买键盘20个.故答案为:20.【点睛】本题咔嚓的是二元一次方程组与一元一次不等式,根据题意正确列式是解题的关键. 20.a≥﹣3【分析】根据口诀同小取小可知不等式组的解集解这个不等式即可【详解】解这个不等式组为x <a ﹣4则3a+2≥a ﹣4解这个不等式得a≥﹣3故答案a≥﹣3【点睛】此题考查解一元一次不等式组掌握运算法解析:a ≥﹣3.【分析】根据口诀“同小取小”可知不等式组32{4x a x a +-<<的解集,解这个不等式即可. 【详解】解这个不等式组为x <a ﹣4,则3a +2≥a ﹣4,解这个不等式得a ≥﹣3故答案a ≥﹣3.【点睛】此题考查解一元一次不等式组,掌握运算法则是解题关键 三、解答题21.(1)共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆;(2)最省钱的租车方案为:租用甲种汽车5辆,乙种汽车3辆.【分析】(1)可根据租用甲、乙两种型号的汽车座位总数不小于290,可载行李总数不小于100件列出不等式组,求出x 的取值,看在取值范围中x 可取的整数的个数即为方案数.(2)根据(1)中方案分别计算甲、乙所需要的费用,然后比较,花费较少的即为最省钱的租车方案.【详解】解:(1)由租用甲种汽车x 辆,则租用乙种汽车()8x -辆.由题意得:()()4030829010208100x x x x ⎧+-≥⎪⎨+-≥⎪⎩解得:56x ≤≤.即共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.(2)租汽车的总费用为:()25002000850016000x x x +-=+(元)当x 取最小值时,总费用最省,因此当5x =时,总费用最省当5x =时,总费用为:50051600018500⨯+=元最省钱的租车方案为方案一:租用甲种汽车5辆,乙种汽车3辆.【点睛】本题主要考查的是一元一次不等式组的应用,找出题目的不等关系是解题的关键. 22.(1)A 、B 两种型号计算器的销售价格分别为21元、28元;(2)最少需要购进A 型号的计算器30台,最多可购进A 型号的计算器50台【分析】(1)设A 种型号计算器的销售价格是x 元,B 种型号计算器的销售价格是y 元,根据题意可等量关系:①5台A 型号和1台B 型号计算器,可获利润38元;②销售6台A 型号和3台B 型号计算器,可获利润6元,由①②等量关系列出方程组,解方程即可; (2)根据题意表示出所用成本,进而得出不等式组求出即可.【详解】(1)设A 种型号计算器的销售价格是x 元,B 种型号计算器的销售价格是y 元,由题意得:551520386361532060x y x y +-⨯-=⎧⎨+-⨯-⨯=⎩, 解得:2128x y =⎧⎨=⎩ 答:A 、B 两种型号计算器的销售价格分别为21元、28元;(2)设购进A 型号的计算器z 台,则B 种计算器为(70-z )台,依题意得:1520(70)1250(2115)(2820)(70)460z z z z +-≤⎧⎨-+--≥⎩, 解得:3050z ≤≤,∴最少需要购进A 型号的计算器30台,最多可购进A 型号的计算器50台.答:最少需要购进A 型号的计算器30台,最多可购进A 型号的计算器50台.【点睛】考查了二元一次方程组和一元一次不等式组的应用,解题关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式组求解.23.14m ≥- 【分析】先解方程2x−3m =2m−4x +4求得x ,然后再根据方程的解不小于7183m --列出关于m 的不等式组,最后求解即可.【详解】解:解方程23244x m m x -=-+ 得546m x +=由题意得5471683m m +-≥-,解得14m ≥- 所以m 的取值范围为14m ≥-. 【点睛】本题主要考查了解一元一次方程和解不等式组,掌握一元一次方程和一元一次不等式组的解法成为解答本题的关键.24.21m -<<【分析】首先利用含m 的式子表示出x 、y ,再根据x >0,y >0可得关于m 的不等式组,再解不等式组即可.【详解】2523x y m x y m -=+⎧⎨+=⎩①② ②×2-①得:1y m =-,把1y m =-代入②得:2x m =+,∵0x >,0y <,∴2010m m +>⎧⎨-<⎩, 解得:21m -<<.【点睛】本题主要考查了二元一次方程组和一元一次不等式组,关键是用含m 的式子表示出x 、y . 25.(1)x <1,数轴见解析;(2)﹣5≤x < 2,数轴见解析【分析】(1)先解一元一次不等式,再在数轴上表示出不等式的解集;(2)先解一元一次不等式组,再在数轴上表示出不等式组的解集;【详解】解:(1)6194x x ->-6941x x ->-+33x ->-解得:x <1,在数轴上表示如下:(2)13215232(3)4x x x x -+⎧-≥⎪⎨⎪-->⎩①②解不等式①得:x≥﹣5解不等式②得:x < 2∴不等式组的解集为﹣5≤x < 2 ;在数轴上表示如下:.【点睛】本题主要考查求一元一次不等式和一元一次不等式组的解集和数轴,解题的关键是熟练掌握解一元一次不等式和一元一次不等式组的方法.26.﹣1≤x <3.【分析】先分别求出各不等式的解集,再求出其公共解集.【详解】解:不等式组3(2)4?11? 2x x x +≥+⎧⎪⎨-<⎪⎩①②, 由①得:x ≥﹣1,由②得:x <3,故不等式组的解集是:﹣1≤x <3.【点睛】本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末复习(五) 不等式与不等式组各个击破命题点1 一元一次不等式(组)的解法【例1】 (贵港中考)解不等式组⎩⎪⎨⎪⎧5x<1+4x ,①1-x 2≤x +43,② 并在数轴上表示不等式组的解集.【思路点拨】 分别解两个不等式,然后确定两个不等式解集的公共部分.【解答】 解①,得x <1.解②,得x ≥-1. ∴不等式组的解集为-1≤x <1. 把解集表示在数轴上为:【方法归纳】 (1)找“不等式解集的公共部分”时,可借助数轴或口诀.其中确定不等组解集的口诀歌为:“大大取大,小小取小,大小小大中间找,大大小小无处找”.(2)在数轴上表示解集时,大于向右画,小于向左画,含等号取实心点,不含等号取空心圆圈.1.(防城港中考)在数轴上表示不等式x +5≥1的解集,正确的是(B )2.(三明中考)解不等式2(x -2)<1-3x ,并把它的解集在数轴上表示出来.解:去括号,得2x -4<1-3x 移项、合并同类项,得5x <5. 系数化为1,得x <1. 其解集在数轴表示为:3.(北京中考)解不等式组⎩⎪⎨⎪⎧4(x +1)≤7x +10,①x -5<x -83,②并写出它的所有非负整数解. 解:解不等式①,得x ≥-2. 解不等式②,得x <72.∴不等式组的解集为-2≤x <72.∴不等式组的非负整数解为0,1,2,3.命题点2 由不等式(组)解的情况,求不等式(组)中字母的取值范围【例2】 (1)若不等式组⎩⎪⎨⎪⎧x<m +1,x>2m -1无解,则m 的取值范围是m ≥2;(2)已知关于x 的不等式组⎩⎪⎨⎪⎧x -a>03-2x>0的整数解共有6个,则a 的取值范围是-5≤a <-4.【思路点拨】 (1)由不等式组的解集,来确定字母m 的取值范围.因为原不等式组无解,所以可得到:m +1≤2m -1,解这个关于m 的不等式即可;(2)由已知结论探求字母的取值范围,要先求出不等式组的解集,再来确定字母a 的取值范围.不等式组的解集为a <x <32,则6个整数解为:1,0,-1,-2,-3,-4,故a 的范围可得.【方法归纳】 解决这类问题的思路一般是逆用不等式(组)的解集,借助不等式(组)解集的特点,构造出不等式(组)来求出字母的取值范围.4.(泰安中考)若不等式组⎩⎪⎨⎪⎧1+x<a ,x +92+1≥x +13-1有解,则实数a 的取值范围是(C )A .a<-36B .a ≤-36C .a>-36D .a ≥-365.(黔西南中考)一元一次不等式组⎩⎪⎨⎪⎧x -2>3x ,x<a 的解集为x <-1,则a 的取值范围是a ≥-1.6.(黑龙江中考)不等式组⎩⎪⎨⎪⎧x>-1,x<m 有3个整数解,则m 的取值范围是2<m ≤3.命题点3 不等式的实际应用【例3】 小宏准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买多少瓶甲饮料?【思路点拨】 先设小宏买了x 瓶甲饮料,则买了(10-x)瓶乙饮料,由买甲饮料的总费用+买乙饮料的总费用小于或等于50元列不等式求解,x 取最大整数即满足题意.【解答】 设小宏买了x 瓶甲饮料,则买了(10-x)瓶乙饮料,根据题意,得7x +4(10-x)≤50.解得x ≤103. 由于饮料的瓶数必须为整数,所以x 的最大值为3. 答:小宏最多能买3瓶甲饮料.【方法归纳】 列不等式解决实际问题时,解法与列一元一次方程解决实际问题的步骤相同,在列不等式解决实际问题时,设未知数时不能出现“至多、最少、最低”等表示不等关系的词语,但在问题的答中要出现这些表示不等关系的词语.7.(东营中考)东营市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x 千米,出租车费为15.5元,那么x 的最大值是(B )A .11B .8C .7D .58.(山西中考)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300 kg ,用去了1 520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1 520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1 050元,则该经营户最多能批发西红柿多少kg?解:(1)设批发西红柿x kg ,西兰花y kg ,由题意,得⎩⎪⎨⎪⎧x +y =300,3.6x +8y =1 520.解得⎩⎪⎨⎪⎧x =200,y =100. 则200×(5.4-3.6)+100×(14-8)=960(元). 答:这两种蔬菜当天全部售完一共能赚960元. (2)设批发西红柿a kg ,由题意,得(5.4-3.6)a +(14-8)×1 520-3.6a8≥1 050.解得a ≤100.答:该经营户最多能批发西红柿100 kg .整合集训一、选择题(每小题3分,共30分)1.如果不等式ax <b 的解集是x <ba,那么a 的取值范围是(C )A .a ≥0B .a ≤0C .a >0D .a <02.(广元中考)当0<x <1时,x ,1x,x 2的大小顺序是(C )A .1x <x <x 2B .x <x 2<1xC .x 2<x <1xD .1x<x 2<x3.(漳州中考)把不等式2x -4≤0的解集表示在数轴上,正确的是(B )4.(鞍山中考)不等式组⎩⎪⎨⎪⎧3x +4>7,6-x ≥-3+2x 的解集在数轴上表示为(A )5.已知点M(3a -9,1-a)在第三象限,且它的坐标都是整数,则a =(B )A .1B .2C .3D .46.(滨州中考)对于不等式组⎩⎪⎨⎪⎧12x -1≤7-32x ,5x +2>3(x -1),下列说法正确的是(B )A .此不等式组无解B .此不等式组有7个整数解C .此不等式组的负整数解是-3,-2,-1D .此不等式组的解集是-52<x ≤27.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.娜娜得分要超过90分,设她答对了x 道题,则根据题意可列不等式为(B )A .10x -5(20-x)≥90B .10x -5(20-x)>90C .10x -(20-x)≥90D .10x -(20-x)>908.(滑县二模)若不等式组⎩⎪⎨⎪⎧2x -a<1,x -2b>3的解集为-1<x <1,则(a -3)(b +3)的值为(D )A .1B .-1C .2D .-29.已知x =3是关于x 的不等式3x -ax +22>2x3的解,则a 的取值范围(A )A .a<4B .a<2C .a>-2D .a>-410.(南通中考)若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -1<0,x -a>0无解,则a 的取值范围是(A )A .a ≥1B .a >1C .a ≤-1D .a <-1二、填空题(每小题5分,共20分)11.(衢州中考)写出一个解集为x >1的一元一次不等式:x +2>3(答案不唯一). 12.一罐饮料净重500克,罐上注有“蛋白质含量≥0.4%”,则这罐饮料中蛋白质的含量至少为2克.13.(新疆中考)不等式组⎩⎪⎨⎪⎧2x +13>-3,1-2x>5的解集是-5<x <-2.14.某班级从文化用品市场购买签字笔和圆珠笔共15支,所付金额不超过27元.已知签字笔每支2元,圆珠笔每支1.5元,则最多购买签字笔9支.三、解答题(共50分)15.(12分)(1)(宁波中考)解不等式:5(x -2)-2(x +1)>3;解:去括号,得5x -10-2x -2>3. 移项,合并同类项,得3x>15. 系数化为1,得x>5.(2)(北京中考)解不等式12x -1≤23x -12,并把它的解集在数轴上表示出来.解:去分母,得3x -6≤4x -3.移项,得3x -4x ≤-3+6. 合并同类项,得-x ≤3. 系数化为1,得x ≥-3.原不等式的解集在数轴上表示为:16.(8分)(广安中考)解不等式组⎩⎪⎨⎪⎧3x +2≤2(x +3),①2x -13>x 2,②并写出不等式组的整数解.解:解不等式①,得x ≤4.解不等式②,得x >2.∴这个不等式组的解集为2<x ≤4. ∴不等式组的整数解为3,4.17.(10分)某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票每张50元,持票者进入公园时需再购买每次2元的门票.某游客一年中进入该公园至少要超过多少次时,购买年票才合算?解:设某游客一年中进入该公园x 次,则50+2x<10x.解得x>614.∵次数为整数, ∴x 最小取7.答:某游客一年进入该公园至少超过7次时,购买年票合算.18.(10分)(益阳中考)某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1 460个,那么至少要招录多少名男生?解:(1)设该班男生有x 人,女生有y 人,依题意,得⎩⎪⎨⎪⎧x +y =42,x =2y -3.解得⎩⎪⎨⎪⎧x =27,y =15. 答:该班男生有27人,女生有15人.(2)设招录的男生为m 名,则招录的女生为(30-m)名, 依题意,得50m +45(30-m)≥1 460. 解得m ≥22.答:工厂在该班至少要招录22名男生.19.(10分)(绥化中考)自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:x -2x +1>0;2x -3x +1-1<0等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a >0,b >0,则a b >0;若a <0,b <0,则ab >0;(2)若a >0,b <0,则a b <0;若a <0,b >0,则ab<0.反之:(1)若ab >0,则⎩⎪⎨⎪⎧a>0,b>0,或⎩⎪⎨⎪⎧a<0,b<0;(2)若ab <0,则⎩⎪⎨⎪⎧a>0,b<0,或⎩⎪⎨⎪⎧a<0,b>0.(填空)根据上述规律,求不等式x -2x +1>0解集.解:由上述规律,得⎩⎪⎨⎪⎧x -2>0,x +1>0,或⎩⎪⎨⎪⎧x -2<0,x +1<0.分别解得x >2或x <-1.。