高中的文科数学平面向量知识点整理-共9页
高中数学平面向量知识点归纳总结

高中数学平面向量知识点归纳总结
1. 平面向量的定义
平面向量是具有大小和方向的有序数对,可以用箭头表示。
常
用字母表示向量,如a、b等。
向量的大小可以用模表示,记作|a|。
2. 平面向量的运算
2.1 向量的加法
向量的加法是指将两个向量按照相同的方向连接起来,得到一
个新的向量。
加法满足交换律和结合律。
2.2 向量的减法
向量的减法是指将两个向量相加的相反向量相加,得到一个新
的向量。
2.3 向量的数量积
向量的数量积(点积)是指两个向量相乘后的数量,用点表示,记作a · b。
数量积满足交换律和分配律。
2.4 向量的向量积
向量的向量积(叉积)是指两个向量相乘后的向量,用叉表示,记作a × b。
3. 平面向量的性质
3.1 平行向量
如果两个向量的方向相同或相反,则它们是平行向量。
平行向
量的数量积等于两个向量的模的乘积。
3.2 垂直向量
如果两个向量的数量积为0,则它们是垂直向量。
垂直向量的
点积为0。
3.3 向量的模
向量的模表示向量的大小,可以使用勾股定理求解。
4. 平面向量的应用
平面向量在几何中有广泛的应用,可以用来表示平移、旋转和
线段的位置关系等。
在物理学中,平面向量可以用来表示力的大小
和方向。
以上是关于高中数学平面向量的基本知识点归纳总结。
希望能够对你的学习和理解有所帮助!。
高考平面向量知识点总结

高考平面向量知识点总结高考平面向量的知识点总结如下:1. 平面向量的定义:平面上的向量是有大小和方向的有向线段,可以用有向线段的终点与起点之间的位移来表示。
2. 平面向量的表示:平面向量可以用坐标表示,形如AB→=(x2-x1, y2-y1)。
3. 平面向量的基本运算:a) 向量的加法:将两个向量的相应分量相加,得到一个新的向量。
b) 向量的减法:将两个向量的相应分量相减,得到一个新的向量。
c) 向量的数乘:将向量的每一个分量都乘以一个标量,得到一个新的向量。
d) 向量的数量积:将两个向量的相应分量相乘,再将这些乘积相加,得到一个标量。
e) 向量的模长:向量的模长等于对应坐标差的平方和的平方根。
4. 平面向量的运算规律:a) 加法的交换律:A+B=B+Ab) 加法的结合律:(A+B)+C = A+(B+C)c) 数乘的结合律:k(A+B) = kA+kBd) 数乘的分配律:(k+l)A = kA + lA5. 平面向量共线与平行:若向量a与向量b线性相关,则称向量a 与向量b共线;若向量a与向量b既共线又同向或反向,则称向量a与向量b平行。
6. 平面向量的数量积与夹角关系:a) 两个向量共线时,它们的数量积等于它们的模长的乘积。
b) 两个向量平行时,它们的数量积等于它们的模长的乘积乘以它们的夹角余弦值。
7. 平面向量的坐标表示与几何应用:a) 两个向量的坐标之间的关系:可以根据向量与坐标之间的关系,求解所有给出的向量的坐标。
b) 利用向量的坐标表示进行运算:可以通过向量的坐标表示来进行向量的加法、减法、数量积等运算。
c) 利用向量的几何应用:可以用向量的几何性质解决平面几何问题,如求线段的垂直平分线等。
这些是高考平面向量的基本知识点,掌握了这些知识点可以帮助理解和解决与平面向量相关的问题。
高中数学平面向量知识点总结

高中数学平面向量知识点总结一、平面向量的基本概念1. 定义:平面向量是有大小和方向的量,可以用有序实数对表示。
2. 表示法:通常用小写字母加箭头表示,如 $\vec{a}$。
3. 相等:两个向量大小相等且方向相同时,这两个向量相等。
4. 零向量:大小为零的向量,没有特定方向。
二、平面向量的运算1. 加法:- 规则:平行四边形法则或三角形法则。
- 交换律:$\vec{a} + \vec{b} = \vec{b} + \vec{a}$。
- 结合律:$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$。
2. 减法:- 规则:与加法类似,但方向相反。
- 逆向量:$\vec{a} - \vec{a} = \vec{0}$。
3. 数乘:- 定义:向量与实数相乘。
- 规则:$k\vec{a} = \vec{a}$ 的长度变为 $|k|$ 倍,方向与$k$ 的符号一致。
- 分配律:$(k + l)\vec{a} = k\vec{a} + l\vec{a}$。
- 结合律:$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$。
三、平面向量的坐标表示1. 坐标表示:$\vec{a} = (x, y)$,其中 $x$ 和 $y$ 是向量在坐标轴上的分量。
2. 几何意义:$x$ 分量表示向量在 $x$ 轴上的长度,$y$ 分量表示向量在 $y$ 轴上的长度。
3. 坐标运算:- 加法:$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$。
- 减法:$(x_1, y_1) - (x_2, y_2) = (x_1 - x_2, y_1 - y_2)$。
- 数乘:$k(x, y) = (kx, ky)$。
四、平面向量的模与单位向量1. 模(长度):- 定义:向量从原点到其终点的距离。
高中数学必修(4)第二章平面向量(知识点汇总)

必修4第二章 平面向量1、向量的有关概念:(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模)。
(2)零向量:长度为0的向量叫做零向量,其方向是任意的。
(3)单位向量:长度等于1个单位长度的向量。
与a 同向且长度为1的向量,叫做a 的单位向量,记作0a ,||0a a a =。
(4)平行向量:方向相同或相反的两非零向量叫做平行向量。
任一组平行向量经过平移都可以移到同一条直线上,平行向量又叫做共线向量。
规定:0 与任一向量平行。
(5)相等向量:长度相等且方向相同的向量。
(6)相反向量:长度相等且方向相反的向量。
2、向量的表示法:(1)字母表示法:如a ,AB 等;(2)几何表示法:用一条有向线段表示向量;(3)代数表示法:在平面直角坐标系中,设向量OA 的起点O 在坐标原点,终点坐标为(x ,y ),则(x ,y )称为OA 的坐标,记为OA =(x ,y );3、向量的线性运算法则:(1)平行四边形法则(2)三角形法则4、向量的线性运算性质: a b b a +=+(交换律))()(c b a c b a ++=++(结合律)a a a =+=+0000 =a 00=⋅a 00 =λ||||||a a λλ=a a)()(λμμλ=a a a μλμλ+=+)(b a b a λλλ+=+)(⇔+=)(21OB OA OM M 是线段AB 的中点非零向量a 的单位向量为||a a ± 5、共线向量定理:如果b a λ=,则b a //;反之,如果b a //,且0 ≠b ,则一定存在唯一一个实数λ使b a λ=。
6、两个向量平行的充要条件:若a 与b 不共线且b a μλ=,则0==μλ;若a 与b 是两个非零向量,则它们共线的充要条件是存在两个均不是零的实数μλ、,使0 =+b a μλ。
7、平面向量基本定理:如果21,e e 是同一平面的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数21a a 、,使得2211e a e a a += ,我们把不共线的向量21,e e 叫做表示这个平面内所有向量的一组基底。
平面向量知识点梳理

平面向量知识点梳理平面向量是向量的一种特殊情况,它在平面上进行运算和表示。
平面向量的学习是解决平面几何问题的重要基础,同时也是向量的一个重要应用领域。
下面进行平面向量的知识点梳理:一、平面向量的定义和表示方法1. 平面向量的定义:平面上的向量是由两个有序数对(a,b)组成。
其中a称为向量的横坐标,b称为向量的纵坐标。
2. 平面向量的表示方法:平面向量可以用有向线段或点表示。
有向线段的起点和终点表示出向量的方向和大小。
二、平面向量的运算法则1. 平面向量的加法:两个向量的加法是将它们的对应坐标相加。
即(A, B) + (C, D) = (A+C, B+D)。
2. 平面向量的减法:两个向量的减法是将它们的对应坐标相减。
即(A, B) - (C, D) = (A-C, B-D)。
3. 常数与向量的乘法:将一个向量的每个坐标与一个常数相乘。
即k(A, B) = (kA, kB)。
4. 向量的数量积:向量的数量积等于它们的模长相乘再乘以夹角的余弦值。
设两个向量为(A, B)和(C, D),则数量积为AC+BD cosθ,其中θ为两个向量顺时针夹角。
5. 向量的叉积:向量的叉积是一个向量,其大小等于两个向量构成的平行四边形的面积。
设两个向量为(A, B)和(C, D),则叉积为AD-BC。
三、平面向量的基本性质1. 平面向量的模长:设向量为(A, B),则向量的模长为|AB| = √(A² + B²)。
2. 平行向量:如果两个向量的方向相同或相反,则它们是平行向量。
3. 垂直向量:如果两个向量的数量积等于0,则它们是垂直向量。
4. 向量共线:如果一个向量与另一个向量的数量积为0,则它们共线。
5. 向量的方向角:向量的方向角是与x轴的夹角,它可以根据向量的坐标来计算。
四、平面向量的应用1. 向量的分解:将一个向量分解为两个与坐标轴平行的向量,以方便计算。
2. 向量的平移:通过平移向量的起点和终点,将向量沿着平行线移动。
(完整版)高中数学平面向量知识点总结

高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。
2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。
高中数学平面向量知识点总结

高中数学平面向量知识点总结
向量的基本概念:向量是有大小和方向的量,通常用箭头表示。
向量的起点和终点可以表示为一个有序对,如AB(或→AB),其中A为向量的起点,B为向量的终点。
零向量是大小为0的向量,与任何向量都平行。
向量的负向量是与原向量大小相等、方向相反的向量。
向量的相等:两个向量相等当且仅当它们的大小相等且方向相同。
向量的加法:向量相加的结果称为向量的和,可以用平行四边形法则或三角形法则进行计算。
向量的数乘:一个向量乘以一个实数得到的向量。
即向量AB乘以实数k得到的向量为k→AB,大小为|k||→AB|,方向与→AB相同或相反。
向量的分解:可以将一个向量分解为两个或多个其他向量的和,这通常用于解决复杂的问题。
向量的坐标表示:在平面直角坐标系中,向量可以用坐标表示。
向量的x轴和y轴的分量分别为向量的坐标中的x分量和y分量。
向量的数量积:两个向量的数量积等于它们的模的乘积与它们夹角的余弦值的乘积。
数量积可以用来计算向量的夹角、判断向量的垂直关系等。
向量的应用:向量在物理、工程、计算机图形学等领域有广泛的应用。
例如,在物理学中,力、速度和加速度等都是向量;在计算机图形学中,向量用于表示方向和位置等。
以上就是高中数学平面向量的主要知识点。
学习这些知识时,需要注意理解向量的概念和运算,掌握向量的性质和定理,并能够应用这些知识解决实际问题。
平面向量知识点归纳总结

平面向量是指在平面上具有大小和方向的量。
下面是平面向量的一些重要知识点的归纳总结:1.平面向量的表示:●使用箭头或小写字母加上一个横线来表示,如a→或AB。
●平面向量通常用两个有序实数(分量)表示,如a = (a₁, a₂)。
2.向量的模/长度:●向量的模/长度表示为|a|,计算公式为|a| = √(a₁²+ a₂²)。
3.向量的方向角:●向量与正x 轴之间的夹角称为方向角。
●方向角可以使用三角函数来表示,如tanθ= a₂/a₁。
4.向量的运算:●向量的加法:a + b = (a₁+ b₁, a₂+ b₂)。
●向量的减法:a - b = (a₁- b₁, a₂- b₂)。
●数乘:k * a = (k * a₁, k * a₂),其中k 为实数。
5.向量的数量积(点积):●向量a 和向量b 的数量积(点积)表示为a ·b。
●计算公式为a ·b = a₁* b₁+ a₂* b₂。
●点积满足交换律:a ·b = b ·a。
●点积的几何意义:a ·b = |a| * |b| * cosθ,其中θ为a 和b 之间的夹角。
6.向量的矢量积(叉积):●向量a 和向量b 的矢量积(叉积)表示为a ×b。
●计算公式为a ×b = (0, 0, a₁* b₂- a₂* b₁),即得到一个垂直于平面的向量。
●矢量积满足反交换律:a ×b = - (b ×a)。
●矢量积的几何意义:|a ×b| = |a| * |b| * sinθ,其中θ为a 和b 之间的夹角。
7.平行向量和共线向量:●平行向量指方向相同或相反的向量。
●共线向量指在同一直线上的向量。
●如果两个向量平行,则它们的叉积为零。
8.向量的投影:●向量a 在向量b 上的投影表示为projₐb。
●计算公式为projₐb = (|a| * |b| * cosθ) * u,其中θ为a 和b 之间的夹角,u 为b 的单位向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中文科数学平面向量知识点整理1、概念向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 相反向量:a =-b ⇔b =-a ⇔a+b =0向量表示:几何表示法;字母a 表示;坐标表示:a =xi+yj =(x,y).向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a .( 222222||,||a x y a a x y =+==+。
)零向量:长度为0的向量。
a =O ⇔|a |=O .【例题】1.下列命题:(1)若a b =,则a b =。
(2)两个向量相等的充要条件是它们的起点相同,终点相同。
(3)若A B D C =,则ABCD 是平行四边形。
(4)若ABCD 是平行四边形,则AB DC =。
(5)若,a bb c ==,则a c =。
(6)若/,/a bbc ,则//a c 。
其中正确的是_______(答:(4)(5))2.已知,a b 均为单位向量,它们的夹角为60,那么|3|a b +=_____;2、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++; ③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++.baCBAa b C C -=A -AB =B3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--.【例题】(1)①AB BC CD ++=___;②AB AD DC --=____;③()()AB CD AC BD ---=_____ (答:①AD ;②CB ;③0);(2)若正方形ABCD 的边长为1,,,AB a BC b AC c ===,则||a b c ++=_____(答:);(3)已知作用在点(1,1)A 的三个力123(3,4),(2,5),(3,1)F F F ==-=,则合力123F F F F =++的终点坐标是(答:(9,1))4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.【例题】(1)若M (-3,-2),N (6,-1),且1MP MN 3--→--→=-,则点P 的坐标为_______(答:7(6,)3--);5、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,(0b ≠)22()(||||)a b a b ⇔⋅=。
【例题】 (1)若向量(,1),(4,)a x b x ==,当x =_____时a 与b 共线且方向相同(答:2);(2)已知(1,1),(4,)a b x ==,2u a b =+,2v a b =+,且//u v ,则x =______(答:4);6、向量垂直:0||||a b a b a b a b ⊥⇔⋅=⇔+=-12120x x y y ⇔+=.【例题】(1)已知(1,2),(3,)OA OB m =-=,若OA OB ⊥,则m =(答:32); (2)以原点O 和A(4,2)为两个顶点作等腰直角三角形OAB ,90B ∠=︒,则点B 的坐标是________(答:(1,3)或(3,-1));(3)已知(,),n a b =向量n m ⊥,且n m =,则m 的坐标是________(答:(,)(,)b a b a --或)7、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0. ⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;22a a a a ⋅==或a a a =⋅.③a b a b ⋅≤.⑶运算律:①a b b a ⋅=⋅;②()()()a b a b a b λλλ⋅=⋅=⋅;③()a b c a c b c +⋅=⋅+⋅. ⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+. 若(),a x y =,则222a x y =+,或2a x y =+设()11,a x y =,()22,b x y =,则a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.则a ∥b ⇔a =λb (b ≠0)⇔x 1y 2= x 2y 1.设a 、b 都是非零向量,()11,a x y =,()22,b x y =,θ是a 与b 的夹角,则121cos a b a bx θ⋅==+;(注||||||a b a b ∙≤)【例题】(1)△ABC 中,3||=−→−AB ,4||=−→−AC ,5||=−→−BC ,则=⋅_________(答:-9);(2)已知11(1,),(0,),,22a b c a kb d a b ==-=+=-,c 与d 的夹角为4π,则k 等于____ (答:1);(3)已知2,5,3a b a b ===-,则a b +等于____ ); (4)已知,a b 是两个非零向量,且a b a b ==-,则与a a b +的夹角为____(答:30)(5)已知)2,(λλ=→a ,)2,3(λ=→b ,如果→a 与→b 的夹角为锐角,则λ的取值范围是______ (答:43λ<-或0λ>且13λ≠);(6)已知向量=(sinx ,cosx ), =(sinx ,sinx ), =(-1,0)。
(1)若x =3π,求向量、的夹角; (答:150°);8、b 在a 上的投影:即||cos b θ,它是一个实数,但不一定大于0。
【例题】已知3||=→a ,5||=→b ,且12=⋅→→b a ,则向量→a 在向量→b 上的投影为______ (答:512)平面向量高考经典试题一、选择题1.已知向量(5,6)a =-,(6,5)b =,则a 与bA .垂直B .不垂直也不平行C .平行且同向D .平行且反向2、已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( )A .1BC .2D .43、若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a a a b ⋅+⋅=______;4、在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( ) A .23B .13C .13-D .23-5、若O 、E 、F 是不共线的任意三点,则以下各式中成立的是 ( ) A .EF OF OE =+ B. EF OF OE =- C. EF OF OE =-+ D. EF OF OE =--6、已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( ) A.(21)--, B.(21)-,C.(10)-,D.(12)-,二、填空题1、已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是 .2、若向量a b ,的夹角为60,1a b ==,则()a ab -= . 3、在平面直角坐标系中,正方形OABC 的对角线OB 的两端点分别为(00)O ,,(11)B ,,则A B A C =.三、解答题:1、已知ΔABC 三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c ,0). (1)若0AB AC =,求c 的值;(2)若5c =,求sin ∠A 的值2、在ABC △中,角A B C ,,的对边分别为tan a b c C =,,,(1)求cos C ; (2)若52CB CA =,且9a b +=,求c .3、在ABC △中,a b c ,,分别是三个内角A B C ,,的对边.若4π,2==C a ,5522cos=B ,求ABC △的面积S .4、设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)若a =,5c =,求b .5、在ABC △中,1tan 4A =,3tan 5B =.(Ⅰ)求角C 的大小;(Ⅱ)若ABC △答案 选择题1、A. 已知向量(5,6)a =-,(6,5)b =,30300a b ⋅=-+=,则a 与b 垂直。
2、C 2(3,)n -a b =,由2-a b 与b 垂直可得:2(3,)(1,)30n n n n ⋅-=-+=⇒= 2=a 。
3、32 解析:1311122a a ab ⋅+⋅=+⨯⨯=, 4、A 在∆ABC 中,已知D 是AB 边上一点,若=2,=λ+31,则22()33CD CA AD CA AB CA CB CA =+=+=+-1233CA CB +=32。
5、B 由向量的减法知EF OF OE =- 6、D 1322-=a b (12).-,填空题1、解析:已知向量2411a b ()(),,,==.量(2,4)a b λλλ+=++,()b a b λ⊥+,则2+λ+4+λ=0,实数λ=-3.2、21【解析】()2211cos60122a a b a a b a a b -=-⋅=-⋅︒=-=。
3、解析:(0,1)(1,1)0(1)11 1.AB AC =⋅-=⨯-+⨯=解答题1、解: (1) (3,4)AB =-- (3,4)AC c =--由 3(3)162530AB AC c c =--+=-= 得 253c = (2) (3,4)AB =-- (2,4)AC =-cos5AB AC A AB AC∠===sin A ∠==2、解:(1)sin tan cos CC C=∴=又22sin cos 1C C += 解得1cos 8C =±.tan 0C >,C ∴是锐角. 1cos 8C ∴=.(2)52CB CA =, 5cos 2ab C ∴=, 20ab ∴=.又9a b +=22281a ab b ∴++=. 2241a b ∴+=.2222cos 36c a b ab C ∴=+-=. 6c ∴=.3、解: 由题意,得3cos 5B B =,为锐角,54sin =B ,10274π3sin )πsin(sin =⎪⎭⎫ ⎝⎛-=--=B C B A , 由正弦定理得 710=c , ∴ 111048sin 222757S ac B ==⨯⨯⨯=.4、解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)根据余弦定理,得2222cos b a c ac B =+-272545=+-7=.所以,b =5、本小题主要考查两角和差公式,用同角三角函数关系等解斜三角形的基本知识以及推理和运算能力,满分12分.解:(Ⅰ)π()C A B =-+,1345tan tan()113145C A B +∴=-+=-=--⨯.又0πC <<,3π4C ∴=.(Ⅱ)34C =π,AB ∴边最大,即AB =.又tan tan 0A B A B π⎛⎫<∈ ⎪2⎝⎭,,,,∴角A 最小,BC 边为最小边.由22sin 1tan cos 4sin cos 1A A A A A ⎧==⎪⎨⎪+=⎩,,且π02A ⎛⎫∈ ⎪⎝⎭,,得sin A =sin sin AB BC C A =得:sin 2sin ABC ABC== 所以,最小边BC =。