(完整版)2019年福建省高考文科数学试卷及答案【word版】

合集下载

2019年新课标全国卷高考文科数学试卷及答案(word版)

2019年新课标全国卷高考文科数学试卷及答案(word版)

2019年普通高等学校招生全国统一考试(课标I 文科卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}{}12|,31|≤≤-=≤≤-=x x B x x M ,则M B =( )A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(- (2)若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α (3)设i iz ++=11,则=||z A.21B. 22C. 23D. 2(4)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 25 D. 1 (5)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A. )()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数(6)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+ A. AD B.21 C. 21D. BC (7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( ) A.203B.72C.165D.15810.已知抛物线C :x y =2的焦点为F ,()y x A 0,是C 上一点,x F A 045=,则=x 0( )A. 1B. 2C. 4D. 8 (11)设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =(A )-5 (B )3(C )-5或3 (D )5或-3(12)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值 范围是(A )()2,+∞ (B )()1,+∞ (C )(),2-∞- (D )(),1-∞-第II 卷二、填空题:本大题共4小题,每小题5分(13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.(14)甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市; 由此可判断乙去过的城市为________.(15)设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.(16)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。

(精校版含官方答案)2019年高考真题——文科数学(全国卷Ⅰ) Word版含答案

(精校版含官方答案)2019年高考真题——文科数学(全国卷Ⅰ) Word版含答案

绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设3i12iz -=+,则z = A .2BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =ðA .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是a b c <<a c b <<c a b <<b c a <<A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos x xx x++在[—π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2B .-C .2D .8.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。

(word完整版)2019年高考文科数学全国1卷(附答案).docx

(word完整版)2019年高考文科数学全国1卷(附答案).docx

_ - __ - _ __-__:-号-学-__-___ - ___-______封__密___ - _:-名姓---班 - _ __-___ - _年 -______封_密__-___ - _ __-___ - ___-___ - ___ -:-12B-SX-0000022绝密★启用前2019 年普通高等学校招生全国统一考试文科数学全国I卷本卷共 23 小,分150 分,考用120 分(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福建)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、:本共12 小,每小 5 分,共 60 分。

在每个小出的四个中,只有一是符合目要求的。

1.z3i, z =12iA . 2B .3C.2 D .12.已知集合U1,2,3,4,5,6,7,A2,3,4,5,B2,3,6,7 ,BI e AUA .1,6B .1,7C.6,7D.1,6,7.已知 a0.20.3,3A . a b cB . a c bC. c a b D . b c a4.古希腊期,人最美人体的至肚的度与肚至足底的度之比是5 1(5 1≈0.618,称黄金分割比例),著名22的“断臂斯”便是如此.此外,最美人体的至咽喉的度与咽喉至肚的度之比也是5 1.若某人足2上述两个黄金分割比例,且腿105cm,至脖子下端的度26 cm,其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm5.函数 f(x)=sin x x2在 [ —π,π]的像大致cos x xA. B.C. D.6.某学校了解 1 000 名新生的身体素,将些学生号1, 2,⋯, 1 000,从些新生中用系抽方法等距抽取100 名学生行体.若 46 号学生被抽到,下面 4 名学生中被抽到的是A .8 号学生B . 200 号学生C. 616 号学生 D .815 号学生7.tan255 =°12B-SX-00000228.已知非零向量a ,b 满足 a = 2b ,且( a –b )b ,则 a 与 b 的夹角为A .ππ 2 π5 π6B .C .D .33619. 如图是求 21的程序框图,图中空白框中应填入2 12A. A=12 AB. A= 21AC. A=11 2 AD. A= 112 Ax 2 y 2 1(a 0,b 0) 的一条渐近线的倾斜角为130 °,则 C 的10.双曲线 C :b 2a 2 离心率为A . 2sin40 °B . 2cos40 °C .1 1 D .cos50sin5011. △ABC 的内角 A , B , C 的对边分别为 a , b ,c ,已知 asinA - bsinB=4 csinC ,cosA=- 1 ,则 b=4 cA . 6B . 5C . 4D . 312.已知椭圆 C 的焦点为 F 1( 1,0),F 2(1,0),过 F 2 的直线与 C 交于 A ,B 两点 .若| AF | 2| F B|, | AB| | BF |,则 C 的方程为22 1A . x 2 y 21B. x 2 y 21232x 2 y 2 1x 2 y 2 1C .3D .445二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

2019年高考数学试题及答案word版

2019年高考数学试题及答案word版

2019年高考数学试题及答案word版一、选择题(本题共8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是正确的。

)1. 若函数f(x)=x^2-4x+m,且f(1)=-3,则m的值为多少?A. 0B. 2C. 5D. 32. 已知等差数列{an}的首项a1=1,公差d=3,求该数列的第5项a5。

A. 13B. 16C. 19D. 223. 计算三角函数值:sin(π/6) + cos(π/3)。

A. 1B. √3/2C. √2D. 24. 已知圆C的方程为(x-2)^2 + (y+1)^2 = 9,求圆C的半径。

A. 1B. 2C. 3D. 45. 若直线l的方程为y=2x+3,且点P(1,2)在直线l上,则直线l的斜率是多少?A. 1/2B. 2C. 3D. 46. 已知复数z=3+4i,求|z|的值。

A. 5B. √7C. √13D. √257. 计算定积分∫(0到1) (x^2 - 2x + 1) dx。

A. 0B. 1/3C. 1D. 2/38. 已知向量a=(2, -1),b=(1, 3),求向量a与向量b的数量积。

A. 1B. 3C. 5D. 7二、填空题(本题共4小题,每小题4分,共16分。

)9. 若函数f(x)=x^3-6x^2+11x-6,求f'(x)。

________________。

10. 已知双曲线C的方程为x^2/a^2 - y^2/b^2 = 1,且双曲线C的渐近线方程为y=±(b/a)x,求双曲线C的离心率e。

________________。

11. 计算二项式展开式(1+x)^5的第3项。

________________。

12. 已知抛物线y=x^2-4x+4,求抛物线的顶点坐标。

________________。

三、解答题(本题共3小题,共52分。

解答应写出文字说明、证明过程或演算步骤。

)13. (本题满分12分)已知函数f(x)=x^3-3x^2+2,求证f(x)在区间[1,2]上单调递增。

2019年高考试题(福建卷)-数学(文)

2019年高考试题(福建卷)-数学(文)

2019年高考试题(福建卷)-数学(文)注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!无论是单选、多选还是论述题,最重要的就是看清题意。

在论述题中,问题大多具有委婉性,尤其是历年真题部分,在给考生较大发挥空间的同时也大大增加了考试难度。

考生要认真阅读题目中提供的有限材料,明确考察要点,最大限度的挖掘材料中的有效信息,建议考生答题时用笔将重点勾画出来,方便反复细读。

只有经过仔细推敲,揣摩命题老师的意图,积极联想知识点,分析答题角度,才能够将考点锁定,明确题意。

2018年普通高等学校招生全国统一考试〔福建卷〕数学〔文〕第I 卷〔选择题共60分〕【一】选择题:本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1、复数()12Z i i =--为虚数单位在复平面内对应的点位于A 、第一象限B 、第二象限C 、第三象限D 、第四象限2、设点(),,21:10P x y x y P l x y ==-+-=则“且”是“点在直线上”的 A 、充分而不必要条件B 、必要而不充分条件 C 、充分必要条件D 、既不充分也不必要条件3、假设集合{}{}=1,2,3=1,3,4A B ⋂,,则A B 的子集个数为A 、2B 、3C 、4D 、164、双曲线221x y -=的顶点到其渐近线的距离等于 A 、12B、2C 、1D5、函数()()2ln 1f x x =+的图像大致是6、假设变量,x y 满足约束条件21,20,x y x z x y y +≤⎧⎪≥=+⎨⎪≥⎩则的最大值和最小值分别为A 、43和B 、42和C 、32和D 、20和 7、假设221,xyx y +=+则的取值范围是A 、[]0,2B 、[]2,0-C 、[]2,-+∞D 、[],2-∞-8、阅读如下图的程序框图,运行相应的程序,如果输入某个正整数n 后,()10,20,S n ∈输出的那么的值为A 、3 B.4C.5D.69、将函数()()()sin 2122f x x ππθθϕϕ⎛⎫=+-<<> ⎪⎝⎭的图像向右平移个单位长度后得到函数()()()3,,0g x f x g x P ϕ⎛⎫⎪ ⎪⎝⎭的图像若的图像都经过点,,则的值可以是 A 、53πB 、56πC 、2πD 、6π10、在四边形()()1,2,4,2,ABCD AC BD ==-中,则该四边形的面积为A 、、5D 、10 11、x y 与之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为,y bx a =+若某同学根据上表()()1,02,2中的前两组数据和求得的直线方程为,y b x a '''=+那么以下结论正确的选项是A 、,b b a a ''>>B 、,b b a a ''><C 、,b b a a ''<>D 、,b b a a ''<<12、设函数()()()000f x R x x f x ≠的定义域为,是的极大值点,以下结论一定正确的选项是A 、()()0,x R f x f x ∀∈≤B 、()0x f x --是的极小值点C 、()0x f x -是-的极小值点D 、()0x f x --是-的极小值点第II 卷〔非选择题共60分〕 【二】填空题:本大题共4小题,每题5分.13.函数()32,0,4tan ,0,2x x f x f f x x ππ⎧<⎛⎫⎪⎛⎫==⎨ ⎪ ⎪-≤≤⎝⎭⎝⎭⎪⎩则.14.利用计算机产生0~1,10a a -<之间的均匀随机数则事件“3?发生的概率为.15.椭圆2222:1(0)x y r a b a b+=>>的左、右焦点分别为122.F F c 、,焦距为假设直线)12212,y x c M MF F MF F +∠=∠与椭圆r 的一个交点满足那么该椭圆的离心率等于.16、设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足: 〔i 〕{}();T f x x S =∈〔ii 〕对任意121212,,()(),x x S x x f x f x ∈<<当时,恒有 那么称这两个集合“保序同构”,现给出以下3对集合: ①,;A N B N *==②{}{}13,810;A x x B x x =-≤≤=-≤≤ ③{}01,.A x x B R =≤≤=其中,“保序同构”的集合对的序号是_______。

2019年全国I卷文科数学高考试卷(原卷 答案)

2019年全国I卷文科数学高考试卷(原卷 答案)

绝密★启用前2019年普通高等学校招生全国统一考试(全国I 卷)(适用地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建、山东)文科数学本试卷共23题,共150分。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设3i12iz −=+,则z = A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512−(512−≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512−.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x++在[-π,π]的图像大致为 A . B .a b c <<a c b <<c a b <<b c a <<C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生 D .815号学生 7.tan255°= A .-2-3B .-2+3C .2-3D .2+38.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+ D .A =112A+10.双曲线C :22221(0,0)x y a b a b−=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F −,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。

(word完整版)2019年高考文科数学全国1卷(附答案)

(word完整版)2019年高考文科数学全国1卷(附答案)

学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -绝密★启用前2019年普通高等学校招生全国统一考试文科数学 全国I 卷本试卷共23小题,满分150分,考试用时120分钟(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福建) 注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、 选择题:本题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中, 只有一项是符合题目要求的。

1.设3i12iz -=+,则z = A .2 BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7UA B ===,,,则U B A =I ðA .{}1,6 B .{}1,7 C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名 的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足 上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下 端的长度为26 cm ,则其身高可能是 A. 165 cm B. 175 cm C. 185 cm D. 190cm5. 函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A.B.C.D.6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生 D .815号学生7.tan255°= a b c <<a c b <<c a b <<b c a <<8.已知非零向量a ,b 满足a=2b,且(a –b )⊥b ,则a 与b 的夹角为 A .π6 B .π3 C .2π3D .5π69. 如图是求112122++的程序框图,图中空白框中应填入A. A =12A +B. A =12A +C. A =112A+D. A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为 A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc=A .6B .5C .4D .3 12.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。

2019年高考真题——文科数学(全国卷Ⅰ)Word版含答案

2019年高考真题——文科数学(全国卷Ⅰ)Word版含答案

服务给出满意或不满意的评价,得到下面列联表:
满意
男顾客
40
不满意 10
女顾客
30
20
(1)分别估计男、女顾客对该商场服务满意的概率; (2)能否有 95%的把握认为男、女顾客对该商场服务的评价 bc) 2

(a b)(c d )(a c)(b d )
P( K2≥k) 0.050
A . 1,6
B. 1,7
C. 6,7
D. 1,6,7
3.已知 a log 2 0.2, b 20.2 , c 0.20.3 ,则
A. a b c
B. a c b
C. c a b
D. b c a
4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是
51 2

51
≈0.618,称为黄金分割比例
在[ — π, π]的图像大致为
C. 185 cm
A.
B.
D. 190cm
C.
D.
6.某学校为了解 1 000 名新生的身体素质,将这些学生编号为 1,2,…, 1 000,从这些新生 中用系统抽样方法等距抽取 100 名学生进行体质测验 .若 46 号学生被抽到,则下面 4 名学 生中被抽到的是
A . 8 号学生 7. tan255°=
绝密★启用前
2019 年普通高等学校招生全国统一考试
文科数学
注意事项:
1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需 改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年福建文科卷
一.选择题
1.若集合24,3,PxxQxx则PQ等于 ( )


.34.34.23.23AxxBxxCxxDxx

2.复数32ii等于 ( )
.23.23.23.23AiBiCiDi
3.以边长为1的正方形的一边所在所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于( )
.2..2.1ABCD


4.阅读右图所示的程序框图,运行相应的程序,输出的n的值为 ( )
.1.2.3.4ABCD

5.命题“30,.0xxx”的否定是 ( )



33
33
000000

.0,.0.,0.0.0,.0.0,.0AxxxBxxxCxxxDxxx


6.已知直线l过圆2234xy的圆心,且与直线10xy垂直,则l的方程是 ( )
.20.20.30.30AxyBxyCxyDxy

7.将函数sinyx的图象向左平移2个单位,得到函数yfx的函数图象,则下列说法正确的是
( )







...32.-02AyfxByfxCyfxxDyfx是奇函数
的周期是

的图象关于直线对称

的图象关于点,对称

8.若函数log0,1ayxaa且的图象如右图所示,则下列函数正确的是 ( )

9.要制作一个容积为34m,高为1m的无盖长方体容器,已知该溶器的底面造价是每平方米20元,侧面造价是
是每平方米10元,则该溶器的最低总造价是 ( )
.80.120.160.240ABCD元元元元
10.设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则
OAOBOCOD
uuuruuuruuuruuur
等于 ( )

..2.3.4AOMBOMCOMDOM
uuuuruuuuruuuuruuuur

11.已知圆22:1Cxayb,设平面区域70,70,0xyxyy,若圆心C,且圆C与x轴相切,则
22
ab

的最大值为 ( )

.5.29.37.49ABCD

12.在平面直角坐标系中,两点111222,,,PxyPxy间的“L-距离”定义为121212.PPxxyy则平面
内与x轴上两个不同的定点12,FF的“L-距离”之和等于定值(大于12FF)的点的轨迹可以是
( )

二、填空题
13、如图,在边长为1的正方形中,随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积
为___________

14、在ABC中,3,2,60BCACA,则AB等于_________
15、函数0,ln620,22xxxxxxf的;零点个数是_________
16. 已知集合2,1,0,,cba,且下列三个关系:2a2b0c有且只有一个正确,则
________10100cba
三.解答题:本大题共6小题,共74分.
17.(本小题满分12分)
在等比数列{}na中,253,81aa.
(1)求na;
(2)设3lognnba,求数列{}nb的前n项和nS.
18.(本小题满分12分)
已知函数()2cos(sincos)fxxxx.

(1)求5()4f的值;
(2)求函数()fx的最小正周期及单调递增区间.
19.(本小题满分12分)
如图,三棱锥ABCD中,,ABBCDCDBD.
(1)求证:CD平面ABD;
(2)若1ABBDCD,M为AD中点,求三棱锥AMBC的体积.

20.(本小题满分12分)
根据世行2019年新标准,人均GDP低于1035美元为低收入国家;人均GDP为1035-4085元为中等偏下收入国
家;人均GDP为4085-12616美元为中等偏上收入国家;人均GDP不低于12616美元为高收入国家.某城市有5
个行政区,各区人口占该城市人口比例及人均GDP如下表:

(1)判断该城市人均GDP是否达到中等偏上收入国家标准;
(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的
概率.
21.(本小题满分12分)
已知曲线上的点到点(0,1)F的距离比它到直线3y的距离小2.
(1)求曲线的方程;
(2)曲线在点P处的切线l与x轴交于点A.直线3y分别与直线l及y轴交于点,MN,以MN为直径
作圆C,过点A作圆C的切线,切点为B,试探究:当点P在曲线上运动(点P与原点不重合)时,线段
AB
的长度是否发生变化?证明你的结论.

22.(本小题满分12分)
已知函数()xfxeax(a为常数)的图像与y轴交于点A,曲线()yfx在点A处的切线斜率为1.
(1)求a的值及函数()fx的极值;
(2)证明:当0x时,2xxe
(3)证明:对任意给定的正数e,总存在0x,使得当0(,)xx时,恒有xxce

相关文档
最新文档