一元一次不等式与一元一次不等式组复习课
一元一次不等式和一元一次不等式组

一元一次不等式和一元一次不等式组知识梳理(一)基本概念1.不等式:2.不等式的解:3.不等式的解集:4.一元一次不等式:5.一元一次不等式组的解集:(二)不等式的基本性质基本性质1:基本性质2:基本性质3:(三)基本方法1.不等式解集的表示方法:(1) (2)2.不等式的解法:【与解方程类似,不同之处就在:左右两边同时乘以(或除以)一个负数时,不等号的方向一定要改变。
】3.不等式组解法:“分开解,集中判”解出各个不等式,再判断所有解集的公共部分即为不等式组的解集。
4.不等式组解集规律:“同大取大,同小取小,不大不小中间找,又大又小无解了。
” 请用数轴展现:设 a > b :⎩⎨⎧bx a x ⎩⎨⎧b x a x ⎩⎨⎧b x a x ⎩⎨⎧bx a x(四)方法思想1.数形结合思想:不等式(组)解集的两种表示方法。
2.不等式与一次函数的关系,可以利用函数图像来分析解答。
如:一次函数y 1=k 1x+b 1,y 2=k 2x+b 2图像如右图所示,求不等式k 1x+b 1≤k 2x+b 2的解集。
专题一:不等式的有关概念与不等式的基本性质解不等式(组)(一)、不等式的基本性质练习1、已知a <b ,用“<”或“>”填空(1) a -3b -3;(2) 6a6b ;(3) -a -b ;(4) a -b 0;2aa+b2、若a <b ,则不等式○1a-5<b-5 ○2a+k <b+k ○32a <2b ○4ac <b 中成立的有( ) A、1个 B、2个 C、3个 D、4个3、不等式7+5x 〈24 的正整数解的个数是( )A.1个B.3个C.无数个D.4个4、已知32,5221+-=-=x y x y ,如果21y y <,则x 的取值范围是( )A .2>xB .2<xC .2->xD .2-<x5、当x 时,能使x+4>0和2x+1>0同时成立6、关于x 的方程632=-x a 的解是正数,那么a 的取值范围:__________(二)、解不等式(组)1(1)4352+>-x x (2)11237x x --≤2、解下列不等式组(1)⎪⎩⎪⎨⎧->->13132x x (2)⎩⎨⎧>+≤0312x x(3)⎩⎨⎧-≤+>+145321x x x x (4)24321<--<-x专题三、不等式组的特解1、求不等式x x 228)2(5-≤+的非负整数解2、解不等式组()⎪⎩⎪⎨⎧---+≥+-xx x x 81311323 并写出该不等式组的整数解当堂练习1、求不等式组⎪⎩⎪⎨⎧-≤+421121 x x 的整数解2、求不等式()⎪⎩⎪⎨⎧-+≤+3212352x x x x 的正整数专题三 用不等式或不等式组解答实际问题一、课堂练习1、小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元,每个练习本4角,那么他最多能买笔记本多少本?2、某校初一新生中有若干住宿生,分住若干间宿舍,若每间住4人,则还有21人无房住;若每间住7人,则有一间不空也不满,求住宿生人数.3、暑假,学校的老师将带领校、镇、市级“三好学生”去旅游.甲旅行社说:“其中一位带队老师买全票,全票价为240元,则其余老师和学生可享受半价优惠”;乙旅行社说:“包括带队老师和学生全部票价6折优惠”。
北师大版2019-2020八年级数学下册第二章 一元一次不等式与一元一次不等式组章末复习课件(共60张)

章末复习
解 解不等式组, 得xx≤≥b4,.5. 由题意知原不等式组有解, 所以原不等式 组的解集为4.5≤x≤b, 如图2-Z-2所示, 将x≥4.5表示在数轴上. 由整数解 有3个, 可知整数解为5, 6, 7.结合图形可知7≤b<8.
章末复习
链接1 [南宁中考]若m>n, 则下列不等式正确的是( ).
解析 ①分别求出两个不等式的解集;②求两个不等式解集的公共部分; ③在两个不等式解集的公共部分中确定整数解.
章末复习
解:解不等式 3x-1<x+5,得 x<3. 解不等式x-2 3<x-1,得 x>-1. ∴不等式组的解集为-1<x<3,它的整数解为 0,1,2.
章末复习
专题三 根据不等式(组)的解集确定字母的值(取值范围)
分析 由题意可得不等关系:购买乒乓球的花费+购买球拍的花≤200元, 由此可列不等式解决问题.
章末复习
解 设购买 x个球拍. 根据题意, 得1.5×20+22x≤200.
解这个不等式,
得x≤
8 711
. 因为x取整数,
所以x的最大值为7.
故孔明应该买7个球拍.
章末复习
相关题4 为加强中小学生安全和禁毒教育, 某校组织了“防溺水、 交通安全、禁毒”知识竞赛, 为奖励在竞赛中表现优异的班级, 学校准备从体育用品商场一次性购买若干个足球和篮球(每个足 球的价格相同, 每个篮球的价格相同). 已知购买1个足球和1个篮 球共需159元;1个足球的价格比1个篮球的价格的2倍少9元. (1)足球和篮球的单价各是多少? (2)根据学校实际情况, 需一次性购买足球和篮球共20个, 但要求 购买足球和篮球的总费用不超过1550元, 学校最多可以购买多少 个足球?
人教版七年级下册数学期末考复习专题05一元一次不等式及不等式组(知识点串讲)(解析版)

专题05 一元一次不等式及不等式组知识框架重难突破一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
2.一元一次不等式的解及解集(1)使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。
(2) 一元一次不等式的所有解组成的集合是一元一次不等式的解集。
(3)解集在数轴上表示3、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a <(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
备注:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x 解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!)移 项,得 23663-+≤-x x (移项,每一项要变号;但符号不改变)a a a a < > ≤ ≥合并同类项,得 73≤-x (计算要正确)系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了) 例1.(2019·湖南广益实验中学初一期中)下列不等式中,是一元一次不等式的是( )A .1x >3B .x 2<1C .x +2y >0D .x <2x +1【答案】D【解析】解:A 、1x 是分式,因此1x>3不是一元一次不等式,故此选项不合题意; B 、x 2是2次,因此x 2<1不是一元一次不等式,故此选项不合题意;C 、x +2y >0含有2个未知数,因此不是一元一次不等式,故此选项不合题意;D 、x <2x +1是一元一次不等式,故此选项符合题意;故选:D .练习1.(2018·六安市裕安中学初一期中)下列不等式中,一元一次不等式有( )①2x 32x +> ②130x -> ③ x 32y -> ④x 15ππ-≥ ⑤ 3y 3>- A .1 个B .2 个C .3 个D .4 个 【答案】B【解析】详解:①不是,因为最高次数是2;②不是,因为是分式;③不是,因为有两个未知数;④是;⑤是.综上,只有2个是一元一次不等式.故选B .例2.(2019·洋县教育局初二期中)若437m x -+≤是关于x 的一元一次不等式,则m =__________.【答案】3【解析】解:∵437m x -+≤是关于x 的一元一次不等式,∴4-m =1,∴m=3,故答案为:3.练习1.(2019·山东省初二期中)已知12(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±3【答案】A【解析】根据题意|m|﹣3=1且m+4≠0解得:|m|=4,m≠﹣4所以m=4.故选:A.例3.(2018·浙江省初二期中)一元一次不等式2(x﹣1)≥3x﹣3的解在数轴上表示为()A.B.C.D.【答案】B【解析】解: 2(x﹣1)≥3x﹣3去括号, 得2x-2≥3x-3,移项, 合并同类项, 得-x≥-1,得:x≤1故在数轴上表示为:故选B.练习1.(2020·万杰朝阳学校初一期中)如图,张小雨把不等式3x>2x-3的解集表示在数轴上,则阴影部分盖住的数字是____.【答案】-3【解析】由3x>2x-3,解得:x>-3,∴阴影部分盖住的数字是:-3.故答案是:-3.例4.(2020·监利县新沟新建中学初一期中)解不等式:14232-+->-x x . 【答案】x <−2【解析】解:去分母:2(x −1)−3(x +4)>−12,去括号:2x −2−3x −12>−12,合并同类项:−x >2,系数化1:x <−2. 练习1.(2018·福建省永春第二中学初一期中)解不等式3(21)x +<13(43)x --,并把解集在数轴上表示出来.【答案】x <2,数轴见解析【解析】去括号,得 6x +3<13-4+3x ,移项,得 6x -3x <13-4-3,即3x <6,两边同除以3,得x <2,在数轴上表示不等式的解集如下:例5.(2019·重庆市凤鸣山中学初一期中)关于x 的不等式22x a -+≥的解集如图所示,则a 的值是( )A .0B .2C .2-D .4- 【答案】A【解析】解:解不等式22x a -+≥,得22a x- ,∵由数轴得到解集为x ≤-1, ∴212a -=- ,解得:a =0. 故选:A .练习1.(2019·陕西省初二期中)不等式-4x -k ≤0的负整数解是-1,-2,那么k 的取值范围是( ) A .812k ≤<B .812k <≤C .23k ≤<D .23k <≤ 【答案】A【解析】解:∵-4x -k ≤0,∴x ≥-4k , ∵不等式的负整数解是-1,-2,∴-3<-4k ≤-2, 解得:8≤k <12,故选:A .二、一元一次不等式组1、一元一次不等式组定义: 含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
一元一次不等式(组)专题复习

不等式(组)专题复习一、知识要点1.一元一次不等式的概念类似于一元一次方程,含有一个未知数,未知数的次数是1•的不等式叫做一元一次不等式.2.不等式的解和解集不等式的解:与方程类似,我们可以把那些使不等式成立的未知数的值叫做不等式的解. 不等式的解集:对于一个含有未知数的不等式,它的所有的解的集合叫做这个不等式的解集.它可以用最简单的不等式表示,也可以用数轴来表示. 3.不等式的性质基本性质1 不等式的两边同时加上(或减去)同一个整式,不等号方向不变。
用符号语言表达: 如果a >b ,那么a+c>b+c ,a-c >b-c 。
基本性质2 不等式的两边都乘(或都除以)同一个正数,不等号的方向不变。
符号语言表示: 如果a>b,且c>0,那么ac>bc ,c b c a >。
基本性质3 不等式的两边都乘(或都除以)同一个负数,不等号的方向改变。
符号语言表示: 如果a>b,且c<0,那么ac<bc ,cb c a <。
不等式的其他性质:①若a>b ,则b<a ;②若a>b ,b>c ,则a>c ;③若a ≥b ,且b ≥a ,•则a=b ;④若a ≤0,则a=0. 4.一元一次不等式的解法一元一次不等式的解法与一元一次方程的解法类似,•但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号要改变方向.5.一元一次不等式组及其解法:几个含有同一个未知数的—元一次不等式合在—起,构成了一元一次不等式组.这几个不等式的解集的______,叫做由它们所组成的不等式组的解集.一元一次不等式组的求解是先分别求出每一个不等式的______,然后利用数轴找出它们的公共部分,进而求出不等式组的解集.6.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.不等式组 (其中a<b )图示解集口诀x ax b ≥⎧⎨≥⎩x ≥b同大取大x ax b ≤⎧⎨≤⎩x ≤a 同小取小x ax b ≥⎧⎨≤⎩ a ≤x ≤b 大小、小大中间找 x ax b≤⎧⎨≥⎩空集小小、大大找不到7.列一元一次不等式组解决实际问题是中考要考查的一个重要内容,在列不等式解决实际问题时,应掌握以下三个步骤:(1)•找出实际问题中的所有不等关系或相等关系(有时要通过不等式与方程综合来解决),设出未知数,列出不等式组(•或不等式与方程的混合组);(2)解不等式组;(3)从不等式组(或不等式与方程的混合组)•的解集中求出符合题意的答案.◆典例精析 例1 解不等式2110136x x ++-≥54x-5,并把它的解集在数轴上表示出来.【分析】一元一次不等式的解法的一般步骤与一元一次方程相同,不等式中含有分母,应先在不等式两边都乘以各分母的最小公倍数去掉分母,在去分母时不要漏乘没有分母的项,再作其他变形. 【解答】去分母,得4(2x-1)-2(10x+1)≥15x-60. 去括号,得8x-4-20x-2≥15x-60 移项合并同类项,得-27x ≥-54系数化为1,得x ≤2.在数轴上表示解集如图所示.2o【点评】①分数线兼有括号的作用,分母去掉后应将分子添上括号.同时,用分母去乘不等式各项时,不要漏乘不含分母的项;②不等式两边都乘以(或除以)同一个负数时,不等号的方向必须改变;③在数轴上表示不等式的解集,当解集是x<a 或x>a 时,不包括数轴上a 这一点,则这一点用圆圈表示;当解集是x ≤a 或x ≥a 时,包括数轴上a 这一点,则这一点用黑圆点表示;•④解不等式(组)是中考中易考查的知识点,必须熟练掌握.例2 若实数a<1,则实数M=a ,N=23a +,P=213a +的大小关系为( ) A .P>N>M B .M>N>P C .N>P>M D .M>P>N【分析】本题主要考查代数式大小的比较有两种方法:其一,由于选项是确定的,我们可以用特值法,取a>1内的任意值即可;其二,•用作差法和不等式的传递性可得M ,N ,P 的关系.【解答】方法一:取a=2,则M=2,N=43,P=53,由此知M>P>N ,应选D . 方法二:由a>1知a-1>0.又M-P=a-213a +=13a ->0,∴M>P ; P-N=213a +-23a +=13a ->0,∴P>N .∴M>P>N ,应选D .【点评】应用特值法来解题的条件是答案必须确定.如,当a>1时,A 与2a-2•的大小关系不确定,当1<a<2时,当a>2a-2;当a=2时,a=2a-2;当a>2时,a<2a-2,因此,•此时a 与2a-2的大小关系不能用特征法.例3 如图,若数轴的两点A 、B 表示的数分别为a 、b,则下列结论正确的是( ) A.12b-a>0 B.a-b>0 C.2a+b>0 D.a+b>0解:由点A 、B 在数轴上的位置可知: a<0,b>0,│a │>│b │. ∴12b>0,-a>0. ∴ 12b-a>0. 故选A. 【点评】先由A 、B 两点在数轴上的位置分析出a 、b 的符号和绝对值的大小关系,再根据有理数法则进行选择.例4 如果关于x 的不等式(a-1)x<a+5和2x<4的解集相同,则a 的值为_____________. 解:2x<4的解集是x<2,故不等式(a-1)x<a+5的解集也是x<2,所以a-1>0,且51a a +-=2,故解得a=7,因此答案填7.【点评】考查同解不等式的概念。
北师大版八年级数学下册《一元一次不等式和一元一次不等式组——不等式的解集》教学PPT课件(4篇)

创设情境
为确保安全,引火线的长度应满足什么条件?
引火线长度
4cm
6cm
燃放者撤离到安全 区域外的时间
引火线燃烧完所用 时间
结论
大于 10÷4=2.5(s)
0.04÷0.02=2(s)
0.06÷0.02=3(s)
不安全
安全
学习目标
1.经历探索发现不等关系的过程,进一步体会模型思想. 2.探索并掌握不等式的基本性质,体会类比的思想方法. 3.会解一元一次不等式(组)并直观表示其解集,发展几何直观. 4.能够用一元一次不等式解决一些简单的实际问题. 5.体会不等式、函数、方程之间的联系.
A.X>2
B. X>4
C.X>-2
D. X>-4
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
4.如图所示的不等式的解集是___x_<__3_______.
5.在数轴上表示下列不等式的解集.
(1)X<-2.5;
(2) X>2.5;
(3) X≥3
-3 -2.5 -2 -1
0
0
1
2 2.5 3
A.
B.
C.
D.
4.关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集 x≤2 .
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式
数学知识
思想方法
不等式的 解
不等式 的解集
用数轴表示不 等式的解集
类比思 想
数形结合 思想
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式的解集 解不等式
第二章《一元一次不等式与一元一次不等式组》小结与复习-八年级数学下册课件(北师大版)

巩固练习 拓展提高
6. 某公司为了扩大经营,决定购进6台机器用于生产某种活塞,
甲
乙
现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生 价格(万元/台) 7
5
产活塞的数量如下表所示,经过预算,本次购买机器所耗资金不能
每台日产量(个) 100 60
超过34万元,则按该公司的要求可以有几种购买方案?
> 大于,高出 大于
小于或等于 号
≤
不大于, 小于或 不超过 等于
大于或等于 号
≥
不小于, 大于或
至少
等于
不等号
≠
不相等 不等于
Hale Waihona Puke 创设情境 引入新课比较不等式与等式的基本性质:
变形 两边都加上(或减去)同一个整式 两边都乘以(或除以)同一个正数 两边都乘以(或除以)同一个负数
等式 仍成立 仍成立 仍成立
解不等式的应用问题的步骤包括审、设、列、解、 找、答这几个环节,而在这些步骤中,最重要的是 利用题中的已知条件,列出不等式(组),然后通 过解出不等式(组)确定未知数的范围,利用未知 数的特征(如整数问题),依据条件,找出对应的 未知数的确定数值,以实现确定方案的解答.
巩固练习 拓展提高
7. 暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家 旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的 优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅 行社?
创设情境 引入新课
一元一次不等式与一次函数在决策型应用题中的应用
实际问题
写出两个函数表达式
画出图象
分析图象
一元一次不等式复习说课稿

说课稿《一元一次不等式与不等式组》复习课金兰中学一、中考分析:《一元一次不等式与不等式组》是华东师大版义务教育课程标准实验教科书数学七年级下册第八章第三节的内容,是中考的必考内容之一,中考将会以填空、选择或解答题的方式考查不等式与不等式组的基本性质、解集的概念和把解集在数轴上表示出来,不等式的应用题还是近年中考的热点内容,考查可能与日常生活相联系,也可能与其它章节内容,如方程、函数及几何内容相结合。
因此本节课熟练掌握与否直接影响到不等式组的解法以及不等式应用题的掌握。
本节课为复习课,因此可在学生“三基”(基本知识,基本技能,基本方法)巩固的条件下向纵深发展,使知识结构化,网络化。
二、复习目标:1、知识与技能目标。
会用不等式的基本性质变形不等式,从而求出不等式(组)的解集;会将不等式(组)的解集在数轴上表示出来;会利用不等式(组)的知识解决简单的实际问题。
2、情感、态度、价值观目标。
通过自主学习与合作交流,把课堂交给学生,让他们成为学习的主人。
三、复习的重点和难点:1、复习重点:一元一次不等式(组)的解法及简单应用。
2、复习难点:熟练、正确的解一元一次不等式(组),并解决简单的实际问题。
四、说复习方法本节课增加形象思维的操作,从中感悟到自我建构知识的乐趣。
同时又注意培养学生学习的自信心,学习兴趣。
通过手势、眼神、语言、表情等多种教学媒体,来激发学生参与的积极性。
1、指导——自主学习法。
新课程要求改变学生的学习方式,教师根据学生的最近发展区实施分层教学。
同时注重培养学生的主体性,让不同层次的学生完成难度不等的题目是该课题的特色之一。
2、讨论式教学法。
“就是把学生从智力的惰性中挽救出来,就是要使学生在某一件事情上把自己的知识显示出来,在智力活动中表现自己。
”道出了小组讨论的重要性和优越性。
我在本节课里让同一层次的学生分组讨论,并上黑板展示讨论成果,激发了学生的学习积极性。
3、多媒体辅助教学法。
新课程标准指出:……现代教育手段和技术将有效的改善教学方式,提高教学效益。
北师大版数学八年级下第一章、一元一次不等式与不等式组培优复习讲义(一)

戴氏西门总校数学资料北师大版八年级下第一章、一元一次不等式与不等式组复习讲义(一)第一部分、要点概况(一)不等关系1、一般地,用符号“<”、“≤”、“>”、“≥”、“≠”连接的式子叫做不等式。
注意:⑴要弄清不等式和等式的区别:等式有等号,而不等式没有。
⑵常用的不等号有:<、≤、>、≥、≠。
⑶列不等式是数学化与符号化的过程,它与列方程类似,列不等式注意找到问题中不等关系的词,如: “正数(>0)”, “负数(<0)”, “非正数(≤0)”, “非负数(≥0)”, “超过(>0)”, “不足(<0)”, “至少(≥0)”, “至多(≤0)”, “不大于(≤0)”, “不小于(≥0)”⑷除了⑶常见不等式所表示的基本语言与含义还有: ①若a -b >0,则a 大于b ; ②若a -b <0,则a 小于b ; ③若a -b ≥0,则a 不小于b ; ④若a -b ≤0,则a 不大于b ;⑤若ab >0或0ab >,则a 、b 同号; ⑥若ab <0或0ab<,则a 、b 异号。
⑸不等号具有方向性,其左右两边不能随意交换:a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
例1:判断下列哪些式子是不等式,哪些不是不等式。
①32>-; ②21x ≤; ③21x -; ④s vt =; ⑤283m x <-;⑥124x x ->-;⑦38x ≠;⑧5223x x -≈-+;⑨240x +>;⑩230xπ+>。
不等式: 。
变式训练1:已知下列各式:①-1<0,②2+3=5 ③3x>7 ④2x-3y=1 ,其中不等式有不等式: 。
例2:⑴a 是正数: ;⑵x 的平方是非负数: ; ⑶a 不大于b : ;⑷x 的3倍与-2的差是负数: ;⑸长方形的长为x cm ,宽为10cm ,其面积不小于200cm 2: 。
变式训练2:用不等式表示:(1)x 与1的差不大于y 的3倍; (2)a 与b 的平方和是非负数;例3:试判断237a a -+与32a -+的大小变式训练3-1:比较1415-与1314-的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b 讨论:2a一定比a大吗?
2。一元一次不等式的定义
只含有一个未知数,并且未知数的最高次数 是一次的整式不等式,叫做一元一次不等式。 解一元一次不等式步骤: 去分母 去括号 移项 系数化为1.
合并同类项
在去分母和系数化为1的这一步中,要特别注 意不等式的两边都乘以(或除以)一个负数时, 不等号的方向必须改变方向.
的整数解.
解: 由不等式①得: x>2
由不等式②得: x≤4
-1 0 1 2 3 4 5 6 7 8
∴ 不等式组的解集为:2<x≤4
不等式组的整数解为:3、4
(1)关于x的不等式 的解集 3 ≤x<5
2 3x 7 8
3x a (2)已知不等式 x 2 的解集是x<5,求a的值 2
解: 2x-4>3x+a 2x-3x>a+4
;
-x>(a+4)
∴解集是:x<-a-4
∵解集是x<5
∴-a-4=5
思维 拓展
得a=-9
步骤:
16、一元一次不等式组的解法:
(1)先分别解不等式组中的每一个不等式,分别求出它们 的解集; (2)将每个不等式的解集在同一条数轴上表示出来,找 出它们的公共部分,注意:公共部分可能没有,也可能是 一个点; (3)根据公共部分写出不等式组的解集,若没有公共 部分,则说明不等式组无解。
1:解不等式组:
2x 1 5 x 5① 3 4 ② 2( x 4) 3 x 3
解: 由不等式①得: x≤8
由不等式②得: x≥5
-1 0 1 2 3 4 5 6 7 8
∴ 原不等式组的解集为:5≤x≤8
2.求不等式组
2 x 1 5 ① 1 ② ( x 2) 3 2
特别注意:用数轴表示不等式的解集时,<、 同大取大,同小取小 >用空心,≤、≥用实心。 >、≥向右画,<、 大小小大取中间, ≤向左画。
大大小小题无解.
解下列不等式组: 5x 6 4x ( 1) 15 9x 10 4x
3(x 2) x 4 ( 2) x 1 x 0 2 3
特别注意:用数轴表示不等式的解集时,<、 同大取大,同小取小 >用空心,≤、≥用实心。 >、≥向右画,<、 大小小大取中间, ≤向左画。
大大小小题无解.
1.解不等式组
2x 1 5 x5 3 4 2( x 4) 3 x 3
2 x 1 5 2.求不等式组 1 的整数解. ( x 2) 3 2
不等式组
大小等同 取等值
步骤:
16、一元一次不等式组的解法:
(1)先分别解不等式组中的每一个不等式,分别求出它们 的解集; (2)将每个不等式的解集在同一条数轴上表示出来,找 出它们的公共部分,注意:公共部分可能没有,也可能是 一个点; (3)根据公共部分写出不等式组的解集,若没有公共 部分,则说明不等式组无解。
(4) a与b的和是非负数. (5) 3与x的倒数的差小于5 .
a+b ≥ 0
1 3 5 x
上述不等式中那些是一元一次不知a<b,用“<”或“>”填空 (1) a-3 < b-3; (2) 6a < 6b; (3) -a > -b; (4) a-b < 0;2a < a+b a >1 (5) 若a<b<0,则 a2 > a ,
3、解不等式:求不等式解集的过程
其实质就是把不等式化为“x>a或x≥a或x<a或x≤ a”的形式。
4、数轴表示不等式解集:大向右,小向左,注意空实心 x≤a x<a x>a x≥a
a a a a )
例: 如图,表示的是不等式的解集,或中错误的是( C
-2 -1 0 1 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
2。不等式的性质
<1> 若a>b, 则a+c>b+c
<2>若a>b, c>0 则ac>bc
若c<0, 则ac<bc
<3>若a>b, c>d 则a+c>b+d 同向不等式可以相加但不能相减
用不等式表示下列数量关系:
(1) 2x与1的和小于零. 2x+1<0 x. y ≤2
(2) x的一半与y的差不大于2. (3) a是负数. a<0
图形
当a>b时,
数学语言
X>a
X>b X<a X<b X<a X≥b X>a X<b X≥a X≤a 的解集是 X>a
文字记忆 同大取大
b b b b a
a a a a
当a>b时, 当a>b时, 当a>b时,
的解集是 X<b 的解集是 b ≤ X<a
同小取小
大小小大 取中间 大大小小 题无解
的解集是 无解 的解集是 X=a
同乘最简 公分母12, 方向不变
x≤8
同除以-7, 方向改变
-1 0 1 2 3 4 5 6 7 8
解一元一次不等式
y 1 y 1 y 1 3 2 6
解:去分母 2( y 1) 3( y 1) y 1
去括号 2 y 2 3 y 3 y 1
移项
2 y 3 y y 1 2 3
一元一次不等式(组) 复习课
自学指导
1,什么是一元一次不等式? 2,不等式有哪些基本性质? 3,解一元一次不等式的一般步骤是什么?
一. 主要知识点:
1. 2. 3. 4. 不等关系 不等式的基本性质 解一元一次不等式 解一元一次不等式组
知识点一:不等关系
1。不等式的定义
用符号“>、≥、<、≤、≠”连接的式子叫 做不等式.
x≥-1 A
x<1
B
x≥0 C
x>0 D
用数轴表示不等式的步骤: (1)画数轴;(2)定界点;(3)定方向.
知识点四· :解一元一次不等式
(1)关于x的不等式 2 x 1 3 的解集 x < 2
-2 -1 0 1 2
;
2x 1 5 例1.解不等式 x 5, 3 4 并把它的解集在数轴上表示出来.
-2 -1 2
0
1
-2
-1
0
1
2
-1 <x ≤2
x >-1
议一议:
在① X>-1 X≤2
(用数轴来解释)
② X>-2 X>-1 ③ X<-2 X <2 ④ X <-1 X >1
-2 -1 2
0
1
-2
-1
0
1
2
-1 <x ≤2
x >-1
-2 -1 0
1 2
-1
1
x <-2
无解
二、一元一次不等式组的解集及记忆方法
合并同类项 两边除以-2得
2 y 6
y3
议一议:
在① X>-1 X≤2
(用数轴来解释)
② X>-2 X>-1 ③ X<-2 X <2 ④ X <-1 X >1
-1<x≤2
-2 -1 2
0
1
议一议:
在① X>-1 X≤2
(用数轴来解释)
② X>-2 X>-1 ③ X<-2 X <2 ④ X <-1 X >1
2x 1 5 例1.解不等式 x 5, 3 4 并把它的解集在数轴上表示出来. 解:去分母得: 4(2 x 1) 12( 5 x 5)
4 去括号得: 8x-4≥15x-60
知识点四· :解一元一次不等式
移项得: 8x-15x≥-60+4 合并同类项得: 化系数为1得:
-7x≥-56