高三一轮复习电磁感应典型例题
高考一轮复习 专题11 电磁感应中的动力学能量和动量问题

专题十一电磁感应中的动力学、能量和动量问题考点一电磁感应中的动力学问题师生共研例1 如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1 T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T.一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r=0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动.金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m.求(g取10 m/s2):(1)金属棒在磁场Ⅰ运动的速度大小;(2)金属棒滑过cd位置时的加速度大小;(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小.【考法拓展1】在【例1】中,求金属棒从开始到刚离开磁场Ⅰ所经历的时间.【考法拓展2】在【例1】中,求金属棒由释放到ab连线滑过的距离x0.【考法拓展3】在【例1】中,求金属棒从开始到在磁场Ⅱ中达到稳定状态这段时间中电阻R产生的热量.练1 [2021·黑龙江大庆模拟](多选)在倾角θ=30°的斜面上固定两根足够长的平行金属导轨MN、EF,间距为L,导轨处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.有两根质量均为m、电阻均为R、长度均为L的金属棒ab、cd垂直导轨放置且与导轨接触良好,光滑的ab棒用平行于导轨的不可伸长的轻绳跨过光滑定滑轮与质量为2m的重物P连接,如图所示.初始时作用在ab棒上一个外力(题中未画出)使ab棒、重物P保持静止,cd棒也静止在导轨上且刚好不下滑.已知重力加速度大小为g,导轨电阻不计,最大静摩擦力等于滑动摩擦力.现撤去外力,ab棒和重物P从静止开始运动,到cd棒刚好要向上滑动的过程中,则( )A.重物P向下做加速度不断减小的加速运动B.cd棒刚好要向上滑动时,ab棒中的电流大小I=C.cd棒刚好要向上滑动时,重物P的速度大小为v=D.重物P减少的重力势能等于ab棒、重物P增加的动能与ab、cd棒产生的焦耳热之和练2 [2020·全国卷Ⅰ](多选)如图,U形光滑金属框abcd置于水平绝缘平台上,ab和dc边平行,和bc边垂直.ab、dc足够长,整个金属框电阻可忽略.一根具有一定电阻的导体棒MN置于金属框上,用水平恒力F向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN与金属框保持良好接触,且与bc边保持平行.经过一段时间后( )A.金属框的速度大小趋于恒定值B.金属框的加速度大小趋于恒定值C.导体棒所受安培力的大小趋于恒定值D.导体棒到金属框bc边的距离趋于恒定值练3 如图所示,间距为L的两根平行金属导轨弯成“L”形,竖直导轨面与水平导轨面均足够长,整个装置处于竖直向上大小为B的匀强磁场中.质量均为m、阻值均为R的导体棒ab、cd均垂直于导轨放置,两导体棒与导轨间动摩擦因数均为μ,当导体棒cd在水平恒力作用下以速度v0沿水平导轨向右匀速运动时,释放导体棒ab,它在竖直导轨上匀加速下滑.某时刻将导体棒cd所受水平恒力撤去,经过一段时间,导体棒cd静止,此过程流经导体棒cd的电荷量为q(导体棒ab、cd与导轨间接触良好且接触点及金属导轨的电阻不计,已知重力加速度为g),则下列判断错误的是( )A.导体棒cd受水平恒力作用时流经它的电流I=B.导体棒ab匀加速下滑时的加速度大小a=g-C.导体棒cd在水平恒力撤去后它的位移为s=D.导体棒cd在水平恒力撤去后它产生的焦耳热为Q=m-题后反思1.电磁感应中动力学问题的解题思路2.电磁感应中的动态分析导体受外力运动感应电动势感应电流导体受安培力―→合力变化加速度变化―→速度变化―→临界状态.考点二电磁感应中的能量问题多维探究1.能量转化2.求解焦耳热Q的三种方法3.解题的一般步骤(1)确定研究对象(导体棒或回路);(2)弄清电磁感应过程中哪些力做功,以及哪些形式的能量相互转化;(3)根据功能关系或能量守恒定律列式求解.题型1|由焦耳定律求解焦耳热例 2 小明设计的电磁健身器的简化装置如图所示,两根平行金属导轨相距l=0.50 m,倾角θ=53 °,导轨上端串接一个R=0.05 Ω的电阻.在导轨间长d=0.56 m的区域内,存在方向垂直导轨平面向下的匀强磁场,磁感应强度B=2.0 T.质量m=4.0 kg的金属棒CD水平置于导轨上,用绝缘绳索通过定滑轮与拉杆GH相连.CD棒的初始位置与磁场区域的下边界相距s=0.24 m.一位健身者用恒力F=80 N 拉动GH杆,CD棒由静止开始运动,上升过程中CD棒始终保持与导轨垂直.当CD棒到达磁场上边界时健身者松手,触发恢复装置使CD棒回到初始位置(重力加速度g取10 m/s2,sin 53°=0.8,不计其他电阻、摩擦力以及拉杆和绳索的质量).求:(1)CD棒进入磁场时速度v的大小.(2)CD棒进入磁场时所受的安培力F A的大小.(3)在拉升CD棒的过程中,健身者所做的功W和电阻产生的焦耳热Q.题型2|由安培力做功求解焦耳热例3 如图所示,足够长的粗糙斜面与水平面成θ=37°角放置,在斜面上虚线cc′和bb′与斜面底边平行,且两线间距为d=0.1 m,在cc′、bb′围成的区域内有垂直斜面向上的有界匀强磁场,磁感应强度为B=1 T;现有一质量为m=10 g,总电阻为R=1 Ω,边长也为d=0.1 m的正方形金属线圈MNPQ,其初始位置PQ边与cc′重合,现让金属线圈以一定初速度沿斜面向上运动,当金属线圈从最高点返回到磁场区域时,线圈刚好做匀速直线运动.已知线圈与斜面间的动摩擦因数为μ=0.5,取g=10 m/s2,不计其他阻力,求:(取sin 37°=0.6,cos 37°=0.8)(1)线圈向下返回到磁场区域时的速度大小;(2)线圈向上离开磁场区域时的动能;(3)线圈向下通过磁场区域过程中,线圈中产生的焦耳热.题型3|由能量守恒或功能关系求解焦耳热例4 [2021·广州市模拟]如图甲所示,空间存在B=0.5 T、方向竖直向下的匀强磁场,MN、PQ是水平放置的平行长直导轨,其间距L=0.2 m,R是连在导轨一端的电阻,ab是跨接在导轨上质量m=0.1 kg 的导体棒.从零时刻开始,对ab施加一个大小为F=0.45 N、方向水平向左的恒定拉力,使其从静止开始沿导轨滑动,滑动过程中棒始终保持与导轨垂直且接触良好,图乙是棒的v t图象,其中AO是图象在O 点的切线,AB是图象的渐近线.除R以外,其余部分的电阻均不计.设最大静摩擦力等于滑动摩擦力.已知当棒的位移为100 m时,其速度达到了最大速度10 m/s.求:(1)R的阻值;(2)在棒运动100 m过程中电阻R上产生的焦耳热.练4 [2020·济南模拟]如图所示,水平传送带上放置n个相同的正方形闭合导线圈,每个线圈的质量均为m,电阻均为R,边长均为L,线圈与传送带间的动摩擦因数均为μ,线圈与传送带共同以速度v0匀速向右运动.MN与PQ为匀强磁场的边界,平行间距为d(L<d),速度v0方向与MN垂直.磁场的磁感应强度为B,方向竖直向下.当线圈右侧边进入磁场时与传送带发生相对运动,线圈的右侧边到达边界PQ 时又恰好与传送带的速度相同.设传送带足够长,且线圈在传送带上始终保持右侧边平行于磁场边界.已知重力加速度为g,线圈间不会相碰.求:(1)线圈的右侧边刚进入磁场时,线圈的加速度大小;(2)线圈右侧边从MN运动到PQ经过的时间t;(3)n个线圈均通过磁场区域到恢复和传送带共速,线圈释放的焦耳热.练5 [2021·石嘴山模拟]如图所示,光滑且足够长的平行金属导轨MN、PQ固定在竖直平面内,两导轨间的距离为L=1 m,导轨间连接的定值电阻R=3 Ω,导轨上放一质量为m=0.1 kg的金属杆ab,金属杆始终与导轨接触良好,杆的电阻r=1 Ω,其余电阻不计,AB位置下方存在磁感应强度为B=1 T 的匀强磁场,磁场的方向垂直导轨平面向里.重力加速度g取10 m/s2.现让金属杆从AB水平位置由静止释放,忽略空气阻力的影响,求:(1)金属杆的最大速度.(2)若从金属杆开始下落到刚好达到最大速度的过程中,电阻R上产生的焦耳热Q=0.6 J,此时金属杆下落的高度为多少?(3)达到最大速度后,为使ab杆中不产生感应电流,从该时刻开始,磁感应强度B′应怎样随时间t 变化?推导这种情况下B′与t的关系式.考点三电磁感应与动量的综合问题多维探究题型1|动量定理在电磁感应中的应用在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.(1)求电荷量或速度:B lΔt=mv2-mv1,q=t.(2)求时间:Ft=I冲=mv2-mv1,I冲=BIlΔt=Bl(3)求位移:-BIlΔt=-=0-mv0,即-x=m(0-v0).例5 [2020·山东潍坊期末] (多选)如图所示,水平金属导轨P、Q间距为L,M、N间距为2L,P与M相连,Q与N相连,金属棒a垂直于P、Q放置,金属棒b垂直于M、N放置,整个装置处在磁感应强度大小为B、方向竖直向上的匀强磁场中.现给棒a一大小为v0、水平向右的初速度,假设导轨都足够长,两棒质量均为m,在棒a的速度由v0减小到0.8v0的过程中,两棒始终与导轨接触良好.以下说法正确的是( )A.俯视时感应电流方向为顺时针B.棒b的最大速度为0.4v0C.回路中产生的焦耳热为0.1mD.通过回路中某一截面的电荷量为题型2|动量守恒定律在电磁感应中的应用例6 [2019·全国卷Ⅲ,19](多选)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图象中可能正确的是( )练6 [2020·山东阳谷二中期末](多选)如图所示,在高为h的桌面上固定着两根平行光滑金属导轨,导轨左段弯曲,右段水平,两部分平滑连接,导轨间距为L,电阻不计,在导轨的水平部分有竖直向上的匀强磁场,磁感应强度为B,ab、cd为两根相同的金属棒,质量均为m,长度均为L,电阻均为r.开始时cd静置于水平导轨上某位置,将ab从弯曲导轨上距离桌面高为h处由静止释放,cd离开导轨水平抛出,落地点ef距轨道末端的水平距离也为h,金属棒在运动过程中没有发生碰撞且与导轨接触良好,重力加速度为g.以下说法正确的是( )A.cd在导轨上的最大加速度为B.cd在导轨上的最大加速度为C.ab的落地点在ef的右侧D.电路中产生的热量为mgh练7 如图甲所示,两足够长且不计其电阻的光滑金属轨道,如图所示放置,间距为d=1 m,在左端弧形轨道部分高h=1.25 m处放置一金属杆a,弧形轨道与平面轨道以光滑圆弧连接,在平直轨道右端放置另一金属杆b.杆a、b电阻分别为R a=2 Ω,R b=5 Ω,在平直轨道区域有竖直向上的匀强磁场,磁感应强度B=2 T.现杆b以大小5 m/s的初速度(设为v0)开始向左滑动,同时由静止释放杆a.杆a由静止滑到水平轨道的过程中,通过杆b的平均电流为0.3 A.从杆a下滑到水平轨道时开始计时,a、b杆运动图象如图乙所示(以杆a运动方向为正),其中m a=2 kg,m b=1 kg,g=10 m/s2,求:(1)杆a在弧形轨道上运动的时间;(2)杆a在水平轨道上运动过程中通过其截面的电荷量;(3)在整个运动过程中杆b上产生的焦耳热.专题十一 电磁感应中的动力学、能量和动量问题考点突破例1 解析:(1)金属棒进入磁场Ⅰ做匀速运动,设速度为v 0,由平衡条件得mgsin θ=F 安① 而F 安=B 0I 0L ,② I 0=B 0Lv 0R +r③代入数据解得v 0=2 m/s.④(2)金属棒滑过cd 位置时,其受力如图所示.由牛顿第二定律得 mgsin θ-F ′安=ma ,⑤ 而F ′安=B 1I 1L ,⑥ I 1=B 1Lv 0R +r,⑦代入数据可解得a =3.75 m/s 2.⑧(3)金属棒在进入磁场Ⅱ区域达到稳定状态时,设速度为v 1,则mgsin θ=F ″安,⑨ 而F ″安=B 1I 2L ○10 I 2=B 1Lv 1R +r,⑪代入数据解得v 1=8 m/s.⑫答案:(1)2 m/s (2)3.75 m/s 2 (3)8 m/s考法拓展1 解析:金属棒从静止开始到刚进入磁场Ⅰ的时间t 1=v 0gsin θ=0.4 s ,在磁场Ⅰ运动时间t 2=x 1v 0=0.5 s ,所以金属棒从开始到刚离开磁场Ⅰ所经历的时间为t =t 1+t 2=0.9 s.答案:0.9 s考法拓展2 解析:金属棒在未进入磁场前做初速度为0的匀加速直线运动a =gsin θ,由运动学公式得v 20=2ax 0,代入数据解得x 0=0.4 m. 答案:0.4 m考法拓展3 解析:金属棒从开始运动到在磁场Ⅱ中达到稳定状态过程中,根据能量守恒得 mg(x 0+x 1+x 2)sin θ=Q +12mv 21,Q R =R R +r Q =7.5 J.答案:7.5 J练1 解析:本题考查电磁感应中的楞次定律,通过分析安培力判断物体的运动状态,回路中的电流以及焦耳热.重物P 和ab 棒是一个系统,重物P 的重力不变,ab 棒的重力沿斜面向下的分力不变,而ab 棒切割磁感线的速度在增大,则沿斜面向下的安培力随之增大,则ab 与P 的加速度变小,所以重物P 向下做加速度不断减小的加速运动,A 正确;cd 棒刚开始恰好不下滑,则有mgsin θ=μmgcos θ,cd 棒刚好要向上滑动时,则有BIL =mgsin θ+μmgcos θ,联立解得I =mgBL ,B 正确;cd 棒刚好要向上滑动时,ab 棒切割磁感线产生的感应电动势E =BLv ,感应电流I =BLv 2R ,可得v =2mgRB 2L 2,C 正确;由能量守恒定律可知,重物P 减少的重力势能等于ab 棒、重物P 增加的动能、ab 棒增加的重力势能与ab 、cd 棒产生的焦耳热之和,D 错误.答案:ABC练2 解析:用水平恒力F 向右拉动金属框,bc 边切割磁感线产生感应电动势,回路中有感应电流i ,bc 边受到水平向左的安培力作用,设金属框的质量为M ,加速度为a 1,由牛顿第二定律有F -BiL =Ma 1;导体棒MN 受到向右的安培力,向右做加速运动,设导体棒的质量为m ,加速度为a 2,由牛顿第二定律有BiL =ma 2.设金属框bc 边的速度为v 时,导体棒的速度为v ′,则回路中产生的感应电动势为E =BL(v -v ′),由闭合电路欧姆定律i =E R =BL (v -v ′)R,F 安=BiL ,可得金属框bc 边所受安培力和导体棒MN 所受的安培力均为F 安=B 2L 2(v -v ′)R ,二者加速度之差Δa =a 1-a 2=F -F 安M -F 安m =F M -F 安⎝ ⎛⎭⎪⎫1M +1m ,随着所受安培力的增大,二者加速度之差Δa 减小,当Δa 减小到零时,F M =B 2L 2(v -v ′)R ·⎝ ⎛⎭⎪⎫1M +1m ,之后金属框和导体棒的速度之差Δv =v -v ′=FRmB 2L 2(m +M ),保持不变.由此可知,金属框的速度逐渐增大,金属框所受安培力趋于恒定值,金属框的加速度大小趋于恒定值,导体棒所受的安培力F 安=B 2L 2(v -v ′)R 趋于恒定值,选项A 错误,BC 正确;导体棒到金属框bc 边的距离x =⎠⎛0t (v -v ′)dt ,随时间的增大而增大,选项D 错误.答案:BC练3 解析:cd 切割磁感线产生感应电动势为E =BLv 0,根据闭合电路欧姆定律得I =E 2R =BLv 02R ,故A 项错误.对于ab 棒:根据牛顿第二定律得mg -F f =ma ,又F f =μF N ,F N =BIL ,联立解得,加速度大小为a =g -μB 2L 2v 02mR ,故B 项正确.对于cd 棒,由公式q =ΔΦR 总得q =BLs 2R ,则得,s =2Rq BL,故C 项正确.设导体棒cd 在水平恒力撤去后产生的焦耳热为Q ,由于ab 的电阻与cd 相同,两者串联,则ab 产生的焦耳热也为Q.根据能量守恒得2Q +μmgs =12mv 20,又s =2Rq BL ,解得Q =14mv 20-μmgRqBL ,故D 项正确.综上所述,应选择A.答案:A例2 解析:(1)由牛顿第二定律a =F -mgsin θm =12 m/s 2进入磁场时的速度v =2as =2.4 m/s. (2)感应电动势E =Blv 感应电流I =BlvR安培力F A =IBl代入得F A =(Bl )2vR =48 N.(3)健身者做功W =F(s +d)=64 J 由牛顿第二定律F -mgsin θ-F A =0 CD 棒在磁场区域做匀速运动 在磁场中运动的时间t =dv焦耳热Q =I 2Rt =26.88 J.答案:(1)2.4 m/s (2)48 N (3)64 J 26.88 J例3 解析:(1)金属线圈向下匀速进入磁场时,有mgsin θ=μmgcos θ+F 安 其中F 安=BId ,I =ER,E =Bdv解得v =(mgsin θ-μmgcos θ)RB 2d2=2 m/s. (2)设最高点离bb ′的距离为x ,线圈从最高点到开始进入磁场过程做匀加速直线运动,有v 2=2ax ,mgsin θ-μmgcos θ=ma 线圈从向上离开磁场到向下进入磁场的过程,根据动能定理有E k1-E k =μmgcos θ·2x ,其中E k =12mv 2得E k1=12mv 2+v 2μmgcos θgsin θ-μgcos θ=0.1 J.(3)线圈向下匀速通过磁场区域过程中, 有mgsin θ·2d -μmgcos θ·2d +W 安=0 Q =-W 安解得Q =2mgd(sin θ-μcos θ)=0.004 J. 答案:(1)2 m/s (2)0.1 J (3)0.004 J例4 解析:(1)由图乙得ab 棒刚开始运动瞬间a =2.5 m/s 2, 则F -F f =ma , 解得F f =0.2 N.ab 棒最终以速度v =10 m/s 匀速运动,则所受到拉力、摩擦力和安培力的合力为零,F -F f -F 安=0.F 安=BIL =BL Blv R =B 2L 2vR .联立可得R =B 2L 2vF -F f=0.4 Ω.(2)由功能关系可得(F -F f )x =12mv 2+Q ,解得Q =20 J.答案:(1)0.4 Ω (2)20 J练4 解析:(1)线圈刚进入磁场时有:E =BLv 0 根据闭合电路欧姆定律:I =ER所以安培力F =B 2L 2v 0R根据牛顿第二定律:F -μmg =ma. a =B 2L 2v 0mR -μg ,方向向左(2)根据动量定理,对线圈: μmgt -I 安=0. 其中安培力的冲量:I 安=F 安t ′=B I -L ·t ′=BLq q =ΔΦR =BL 2R .综上解得t =B 2L 3μmgR.(3)自线圈进入磁场到线圈右侧边到达PQ 过程中,对于单个线圈,根据动能定理得 μmgd -W 安=0,所以克服安培力做功W 安=μmgd单个线圈离开磁场的运动情况和进入磁场相同,W ′安=W 安=μmgd , 所以对于n 个线圈有Q =2n μmgd答案:(1)B 2L 2v 0mR -μg (2)B 2L3μmgR(3)2n μmgd练5 解析:(1)设金属杆的最大速度为v m ,安培力与重力平衡,则有:F 安=mg 又F 安=BIL ,I =ER +r,E =BLv m 联立得:F 安=B 2L 2v mR +r解得:v m =4 m/s(2)电路中产生的总焦耳热: Q 总=R +r R Q =3+13×0.6 J =0.8 J由能量守恒定律得:mgh =12mv 2m +Q 总解得:h =1.6 m(3)为使ab 杆中不产生感应电流,应使穿过回路平面的磁通量不发生变化, 在该时刻穿过回路平面的磁通量为: Φ1=BLht 时刻的磁通量为: Φ2=B ′L ⎝ ⎛⎭⎪⎫h +v m t +12gt 2 由Φ1=Φ2得:B ′=Bhh +v m t +12gt2代入数据解得:B ′= 1.65t 2+4t +1.6T答案:(1)4 m/s (2)1.6 m (3)B ′= 1.65t 2+4t +1.6T例5 解析:本题考查电磁感应中的电荷量、能量等物理量的计算.棒a 向右运动,回路面积减小,根据楞次定律可知,俯视时感应电流方向为逆时针,A 错误;在棒a 的速度由v 0减小到0.8v 0的过程中,棒a 减速,棒b 加速,对棒a ,由动量定理可得B I -·Lt =BqL =mv 0-0.8mv 0,对棒b ,由动量定理可得B I -·2Lt =mv ,联立可得v =0.4v 0,q =mv 05BL ,B 正确,D 错误;根据能量守恒定律可得Q =12mv 20-12m(0.8v 0)2+12m(0.4v 0)2=0.1mv 20,C 正确.答案:BC例6 解析:由楞次定律可知ab 棒做减速运动,cd 棒做加速运动,即v 1减小,v 2增加.回路中的感应电动势E =BL(v 1-v 2),回路中的电流I =E R =BL (v 1-v 2)R ,回路中的导体棒ab 、cd 的加速度大小均为a =F m =BIL m =B 2L 2(v 1-v 2)mR ,由于v 1-v 2减小,可知a 减小,所以ab 与cd 的v t 图线斜率减小,I 也非线性减小,所以A 、C 正确,B 、D 错误.答案:AC练6 解析:本题从动量和能量两个角度考查双棒问题.当cd 受到的安培力最大时,cd 在导轨上的加速度最大,即ab 刚进入磁场时,cd 在导轨上的加速度最大,设此时ab 的速度为v ,根据机械能守恒定律可得12mv 2=mgh ,解得v =2gh ,此时回路中的感应电流I =BLv 2r ,cd 在导轨上的最大加速度a =BIL m =B 2L 22gh2mr,故A 正确,B 错误; 设cd 离开导轨时的速度为v 1,根据平抛运动规律可知,下落时间t =2h g ,则v 1=h t=gh2,设cd 离开导轨时ab 的速度为v ′,根据动量守恒定律可得mv =mv ′+mv 1,解得v ′=v 1=gh2,所以ab 的落地点也在ef 处,故C 错误;电路中产生的热量Q =mgh -12mv ′2-12mv 21=12mgh ,故D 正确.答案:AD练7 解析:(1)设杆a 刚滑到水平轨道时,杆b 的速度为v b ,杆a 在弧形轨道上运动的时间与杆b 从开始滑动到杆a 刚滑到水平轨道时所用时间相等,对杆b 应用动量定理有Bd I -t 1=m b v b -m b v 0其中v 0=-5 m/s ,v b =-2 m/s 解得t 1=5 s.(2)设杆a 下滑到水平轨道时的速度为v a ,由杆a 下滑的过程中机械能守恒有 m a gh =12m a v 2a解得v a =5 m/s设两杆最后共同的速度为v ,两杆在水平轨道上运动过程中动量守恒,有 m a v a +m b v b =(m a +m b )v 解得v =83m/s对杆a 在水平轨道上运动过程应用动量定理有 -Bd I -t 2=m a v -m a v a 又q =I -t 2解得q =73C.(3)由能量守恒定律得,两杆产生的总焦耳热Q 总=m a gh +12m b v 20-12(m a +m b )v 2=1616 J杆a 、b 串联,电流相等,则相同时间内产生的焦耳热与电阻成正比 故杆b 上产生的焦耳热Q =R b R a +R b Q 总=1156J. 答案:(1)5 s (2)73 C (3)1156 J。
高考物理一轮复习专题27法拉第电磁感应定律(原卷版+解析)

专题27 法拉第电磁感应定律目录题型一实验:探究影响感应电流方向的因素 (1)题型二感应电流的产生和方向判断 (4)题型三楞次定律推论的应用 (6)题型四“三定则、一定律”的应用 (9)题型五法拉第电磁感应定律的理解及应用 (10)题型六导体切割磁感线产生的感应电动势 (13)类型1 平动切割磁感线 (14)类型2 转动切割磁感线 (15)类型3 有效长度问题 (16)题型六自感现象 (17)题型一实验:探究影响感应电流方向的因素1.实验设计如图2所示,通过将条形磁体插入或拔出线圈来改变穿过螺线管的磁通量,根据电流表指针的偏转方向判断感应电流的方向。
2.实验结论当穿过线圈的磁通量增加时,感应电流的磁场与原磁场的方向相反;当穿过线圈的磁通量减小时,感应电流的磁场与原磁场的方向相同。
3.注意事项实验前应首先查明电流表中电流的流向与电流表指针偏转方向之间的关系,判断的方法是:采用如图所示的电路,把一节干电池与电流表及线圈串联,由于电流表量程较小,所以在电路中应接入限流变阻器R,电池采用旧电池,开关S采用瞬间接触,记录指针偏转方向。
【例1】探究感应电流方向的实验所需器材包括:条形磁体、电流表、线圈、导线、一节干电池(用来查明线圈中电流的流向与电流表中指针偏转方向的关系).(1)实验现象:如图所示,在四种情况下,将实验结果填入下表.①线圈内磁通量增加时的情况①线圈内磁通量减少时的情况请填写表格中的空白项.(2)实验结论:当穿过闭合线圈的磁通量增加时,感应电流的磁场与原磁场方向________(选填“相同”或“相反”).(3)总结提炼:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的________.(4)拓展应用:如图所示是一种延时继电器的示意图.铁芯上有两个线圈A和B.线圈A和电源连接,线圈B与直导线ab构成一个闭合回路.弹簧K与衔铁D相连,D的右端触头C 连接工作电路(未画出).开关S闭合状态下,工作电路处于导通状态.S断开瞬间,延时功能启动,此时直导线ab中电流方向为________(选填“a到b”或“b到a”).说明延时继电器的“延时”工作原理:________.【例2】在“探究电磁感应的产生条件”的实验中,先按如图甲所示连线,不通电时,电流计指针停在正中央,闭合开关S时,观察到电流表指针向左偏。
高三一轮复习:法拉第电磁感应定律(含解析)

法拉第电磁感应定律【例1】穿过一个单匝的磁通量始终保持每秒均匀地减少2Wb ,则( )A .线圈中感应电动势每秒增加2VB .线圈中感应电动势每秒减少2VC .线圈中无感应电动势D .线圈中感应电动势大小不变答案 D【练习1】穿过闭合回路的磁通量Φ随时间t 变化的图象分别如图甲、乙、丙、丁所示,下列关于回路中产生的感应电动势的论述,正确的是 ( )A .图甲中回路产生的感应电动势恒定不变B .图乙中回路产生的感应电动势一直在变大C .图丙中回路在0~t 0时间内产生的感应电动势大于t 0~2t 0时间内产生的感应电动势D .图丁回路产生的感应电动势先变小再变大答案 CD解析 根据E =n ΔΦΔt可知:图甲中E =0,A 错;图乙中E 为恒量,B 错;图丙中0~t 0时间内的E 1大于t 0~2t 0时间内的E 2,C 正确;图丁中感应电动势先变小再变大,D 正确。
【例2】如图所示,在一磁感应强度B =0.5T 的匀强磁场中,垂直于磁场方向水平放置着两根相距h =0.1m 的平行金属导轨轨MN 和PQ ,导轨电阻忽略不计,在两根导轨的端点N 、Q 之间连接一阻值R =0.3Ω的电阻。
导轨上跨放着一根长为L =0.2m ,每米长电阻r =2.0Ω/m 的金属棒ab ,金属棒与导轨正交放置,交点为c 、d ,当金属棒在水平拉力作用于以速度v =4.0m /s 向左做匀速运动时,试求: (1)电阻R 中的电流强度大小和方向; (2)使金属棒做匀速运动的拉力; (3)金属棒ab 两端点间的电势差;解析 金属棒向左匀速运动时,等效电路如图所示。
在闭合回路中,金属棒cd 部分相当于电源,内阻r cd =hr ,电动势E cd = Bhv 。
(1)根据欧姆定律,R 中的电流强度为A .hrR Bhv r R E I cd cd 40=+=+=,方向从N 经R 到Q 。
(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F =F 安=BIh =0.02N 。
2022届高考物理一轮复习专题12电磁感应含解析新人教版

专题十二电磁感应考点1 电磁感应现象楞次定律1.[2021某某某某高三质量检测]为探讨磁场对脑部神经组织的影响与其在临床医学上的应用,某小组查阅资料得知:将金属线圈放置在头部上方几厘米处,给线圈通以上千安培、历时约几毫秒的脉冲电流,电流流经线圈产生瞬间的高强度脉冲磁场,磁场穿过头颅对脑部特定区域产生感应电场与感应电流,对脑神经产生电刺激作用,其装置如下列图.同学们讨论得出的如下结论正确的答案是()C.假如将脉冲电流改为恒定电流,可持续对脑神经产生电刺激作用D.假如脉冲电流最大强度不变,但缩短脉冲电流时间,如此在脑部产生的感应电场与感应电流会增强2.[2021某某某某高三调研,多项选择]如下列图,教师在课堂上做了一个实验:弹簧上端固定,下端悬挂一个磁铁,将磁铁托起到某一高度后放开,磁铁能上、下振动较长时间才停下来;如果在磁铁下方放一个固定的铝质圆环,使磁极上、下振动时穿过它,磁铁就会很快地停下来.某同学课后在家重做该实验,反复实验后发现:磁铁下方放置圆环,并没有对磁铁的振动产生影响,比照教师演示的实验,其产生的原因可能是()A.磁铁N、S极倒置3.[2020某某,3]如下列图,两匀强磁场的磁感应强度B1和B2大小相等、方向相反.金属圆环的直径与两磁场的边界重合.如下变化会在环中产生顺时针方向感应电流的是()B1减小B2B1增大B2B1和B2B1和B24.[新角度——LC振荡电路]如下列图的LC振荡电路中,某时刻线圈中磁场方向向上,且电路中的电流正在减小,如此此时()A.电容器上极板带负电,下极板带正电D.线圈中的磁通量变化率正在变小5.[2020某某统考,多项选择]竖直放置的长直密绕螺线管接入如图甲所示的电路中,通有俯视顺时针方向的电流,其大小按如图乙所示的规律变化.螺线管内中间位置固定有一水平放置的硬质闭合金属小圆环(未画出).圆环轴线与螺线管轴线重合,如下说法正确的答案是()A.t=时刻,圆环有扩X的趋势B.t=时刻,圆环有收缩的趋势C.t=和t=时刻,圆环内的感应电流大小相等D.t=时刻,圆环内有俯视逆时针方向的感应电流6.[2020某某七中第六次月考]某小组的同学做“探究影响感应电流方向的因素〞的实验. (1)首先按图甲连接电路,闭合开关后,电流计指针向右偏转;再按图乙连接电路,闭合开关后,电流计指针向左偏转.进展上述操作的目的是.(2)接下来用图丙所示的装置做实验,图中螺线管上的粗线标示的是导线的绕行方向.某次实验时在条形磁铁插入螺线管的过程中,观察到电流计指针向右偏转,说明螺线管中的电流方向(从上往下看)为(填“顺时针〞或“逆时针〞).(3)下表是该小组的同学设计的实验记录表的一局部,表中记录了实验现象,还有一项需要推断的实验结果未填写,请帮助该小组的同学填写(填“垂直纸面向外〞或“垂直纸面向里〞).操作N极朝下插入螺线管从上往下看的平面图(B0表示原磁场,即磁铁产生的磁场)原磁场通过螺线管的磁通量增加的变化感应电流的方向(从上往下看) 沿逆时针方向感应电流产生的磁场B'的方向(从上往下看)(4)该小组的同学通过实验探究,对楞次定律有了比拟深刻的认识.结合以上实验,有同学认为,理解楞次定律,关键在于理解(填“B0〞或“B'〞)总是要阻碍磁通量(填“B0〞或“B'〞)的变化.考点2 法拉第电磁感应定律自感1.[2021某某某某毕业班摸底]如图(a),纸面内,圆形金属框通过长导线与平行金属板MN和PQ连接,框内有如图(b)所示周期性变化的磁场(规定垂直纸面向里为磁场的正方向),导线上c、d 间接有电阻R,O1、O2是金属板上正对的两个小孔.t=0时刻,从O1孔内侧由静止释放一个离子(不计重力),离子能够在时间Δt内到达O2孔.Δt>2T,规定从c经R到d为电流I的正方向,从O1指向O2为离子速度v的正方向,如此如下图像可能正确的答案是()A BC D2.[2021某某某某高三摸底]如下列图,垂直于纸面的匀强磁场分布在长为L的虚线框内,边长为d的正方形闭合线圈在外力作用下由位置1匀速穿过磁场区域运动到位置2.假如L>2d,如此在运动过程中线圈中的感应电流随时间变化的图像可能正确的答案是()A BC D3.[2021某某某某高三摸底,多项选择]如图甲所示,20匝的金属线圈(图中只画了2匝)电阻为r=2 Ω,两端a、b与R=8 Ω的电阻相连.线圈内有垂直线圈平面(纸面)向里的磁场,磁通量按图乙所示规律变化.如此()R的电流方向为b→aB.线圈产生的感应电动势为5 VR两端的电压为8 V~0.1 s内通过线圈横截面的电荷量为0.1 C4.[2020某某某某调研]电磁炉具有升温快、效率高、体积小、安全性好等优点.关于电磁炉加热食物的过程(如下列图),如下说法正确的答案是()C.只要是环保、绝缘材料做成的锅具均可以加热食物5.[2020某某某某摸底]如下列图,长为L=1 m的金属直棒以v=1 m/s的速度沿倾角为60°的绝缘斜面匀速下滑,斜面处在方向竖直向下、磁感应强度为B=0.1 T的匀强磁场中,如此在金属棒匀速下滑的过程中()A.棒内电子受洛伦兹力作用,棒受安培力作用B.棒内电子不受洛伦兹力作用,棒不受安培力作用.05 V.1 V6.[2021某某12月联考,10分]如图甲所示是法拉第发明的铜盘发电机,也是人类历史上第一台发电机.利用这种发电机给平行金属板电容器供电,如图乙所示,铜盘的半径为L,加在盘水平直径下方的水平向左的匀强磁场的磁感应强度大小为B1,盘匀速转动的角速度为ω,每块平行板长度为d,板间距离也为d,板间加垂直纸面向内、磁感应强度大小为B2的匀强磁场,重力加速度为g.(1)请用一种方法求解铜盘产生的感应电动势大小E,并说明这种求解方法的优点;(2)假如有一带负电的小球从电容器两板中间水平向右射入,在复合场中做匀速圆周运动后恰好从极板右端射出,求小球射入的速度v.7.[生产生活实践问题情境——送货上架装置][12分]如下列图,某商场设计一个送货上架的装置,其工作过程简化为通过电动装置使装载额定质量货物的金属棒获得一个瞬时冲量,从而获得初速度v0,光滑平行金属导轨间距为L,与水平面夹角为θ,两导轨上端用阻值为R的定值电阻相连,该装置处于垂直于导轨平面的匀强磁场中,金属棒经历时间t运动到高度为h的货架上时,速度恰好为零,取走货物后金属棒由静止开始沿导轨先加速下滑,后匀速运动,到底端时速度大小为v=0.1 v0,金属棒在导轨间局部的电阻为r,金属棒的质量为m,在运动过程中,金属棒始终与导轨垂直且接触良好,不计导轨的电阻与空气阻力,重力加速度为g.求:(1)磁场的磁感应强度B的大小;(2)额定装载货物质量M与金属棒的质量m的关系和金属棒往上运送一次货物电路中产生的焦耳热.考点3 电磁感应的综合应用1.[2021某某红色七校第一次联考]如下列图,竖直放置的矩形导线框MNPQ,宽和长分别为L 和2L, M、N连接平行板电容器,两极板间距为d,虚线为线框中轴线,虚线右侧有垂直线框平面向里的匀强磁场.两极板间有一质量为m、电荷量大小为q的带负电油滴恰好处于平衡状态,重力加速度为g,如此磁场的磁感应强度大小B的变化情况与其变化率分别是()A.正在减小,=-B.正在增大,=C.正在增大,=D.正在减小,=-2.[2021某某某某高三摸底测试,多项选择]在如图甲所示的电路中,螺线管匝数n=2 000,横截面积S=50 cm2.螺线管导线电阻r=1.0 Ω,电阻R1=4.0 Ω,电阻R2=5.0 Ω,电容器电容C=40 μF.在一段时间内,穿过螺线管的磁场的磁感应强度B按如图乙所示的规律变化.如此()A.闭合S,电路中的电流稳定后,电容器上极板带正电E=2.5 VC.闭合S,电路中的电流稳定后,电阻R1的电功率P=0.25 WD.断开S后,流经R2的电荷量Q=6×10-5 C3.固定在绝缘平面上的正方形闭合线圈的匝数为n,边长为a,线圈平面与匀强磁场垂直,且一半处在垂直纸面向里的磁场中,另一半处在垂直纸面向外的磁场中,如图甲所示,图中虚线为磁场的分界限.以垂直纸面向外的方向为正方向,t=0时两边磁场的磁感应强度大小均为B0.假如虚线右边的磁场恒定不变,虚线左边的磁场按如图乙所示规律变化,线圈的总电阻为R,以水平向左为安培力的正方向,如此0~t1时间内,线圈受到的安培力随时间变化的规律可能为()A BC D4.[13分]由某种导电性能极好的新型材料制成的圆柱体物块(可以看成中间是均匀介质的电容器),质量为m,高为d,底面直径也为d.如下列图(截面图),物块放在绝缘斜面上,空间中存在平行于斜面、磁感应强度大小为B的水平匀强磁场.物块电阻可忽略不计,该材料的相对介电常数为ε,与斜面间的动摩擦因数为μ(μ<tan θ),静电力常量为k,重力加速度为g.现将物块在斜面上由静止释放,求:(1)当物块速度为v0时,物块上外表所带电荷量大小Q,并指出其电性.(2)任一时刻速度v与时间t的关系.5.[16分]如图甲所示,两根平行金属导轨平放在水平面上,左端连接一个定值电阻.一根金属棒ab垂直导轨放置,轻绳的一端固定在金属棒中央,另一端绕过光滑定滑轮系一重物,金属棒的电阻与定值电阻的阻值相等,金属棒和重物质量均为m,金属棒与导轨间的动摩擦因数为μ(0<μ<1).在导轨OO'dc区域存在垂直导轨平面向上的匀强磁场,磁场的宽度为s.以O点为坐标原点,沿导轨建立x轴.ab与磁场左边界的距离也为s,将金属棒由静止释放,金属棒恰好匀速进入磁场,当金属棒进入磁场瞬间,用一个水平的外力作用在金属棒上,金属棒在磁场中运动的v2-x图像如图乙所示,金属棒与导轨始终接触良好,重力加速度大小为g.求:(1)金属棒进入磁场瞬间的速度大小v0;(2)金属棒离开磁场瞬间,外力的大小;(3)假如s=0.1 m,m=1 kg,μ=0.75,g取10 m/s2,金属棒在磁场中运动的过程中棒上外力的冲量.图甲图乙一、选择题(共8小题,48分)1.[2020全国Ⅱ,14]管道高频焊机可以对由钢板卷成的圆管的接缝实施焊接.焊机的原理如下列图,圆管通过一个接有高频交流电源的线圈,线圈所产生的交变磁场使圆管中产生交变电流,电流产生的热量使接缝处的材料熔化将其焊接.焊接过程中所利用的电磁学规律的发现者为()A.库仑B.霍尔C.洛伦兹D.法拉第2.磁场的高斯定理指出通过磁场中任一闭合曲面的总磁通量恒等于0.如下列图,为一金属球壳的俯视图,CD过球心O,AB不过球心,在球心O的右侧放置一小磁针,以磁感线穿入球壳为正方向,如此如下说法正确的答案是()A.C、D点的磁感应强度方向相反B.AB左侧球壳处的平均磁感应强度小于AB右侧球壳的C.假如磁针沿DC运动,球壳上有感应电流D.AB左右两侧球壳上的磁通量大小相等3.[生产生活实践问题情境——“转笔〞]转笔是一项用手指来转动笔的休闲活动,深受广阔中学生的喜爱,其中也包含了许多的物理知识.如下列图某转笔高手能让笔绕其手指上的某一点O沿顺时针方向做角速度为ω的匀速圆周运动,O 点恰好是长为L的金属笔杆的中点,地磁场的磁感应强度在与笔杆转动平面垂直方向的分量大小为B,方向向外,如此()O点的电势最低B.O点与笔尖间的电势差为BL2ωC.O点与笔尖间的电势差为BL2ωBL2ω4.两条竖直放置的光滑平行金属导轨MN、PQ间有垂直导轨所在平面的水平匀强磁场,金属棒a、b平行且垂直导轨放置,始终与导轨接触良好,不计导轨的电阻.现有三种情境,图甲、乙中磁感应强度恒定不变,图丙中磁感应强度随时间均匀变化,如此如下对甲、乙、丙三种情境的相关说法正确的答案是()A.图甲中两棒下滑过程,两棒机械能之和减小b棒减小的机械能a、b棒一定有推力作用5.[生产生活实践问题情境——手机无线充电]如图甲所示为手机等用电器无线充电的原理图,如果圆形受电线圈的面积S=1×10-3m2,线圈匝数为n=100,线圈的电阻为R=5 Ω,垂直于线圈平面的磁场的磁感应强度随时间的变化情况如图乙所示,假如受电线圈给内阻为r=5 Ω的电池充电,如此 ()图甲图乙A.受电线圈中产生的感应电动势大小为0.05 VB.0~1.0 s内受电线圈中的感应电流方向不变C.1.5 s时刻,受电线圈中的感应电流为零D.充电过程中,电池的发热功率为1.25 W6.[2021某某红色七校第一次联考,多项选择]如下列图,两电阻可以忽略不计的平行金属长直导轨固定在水平面上,相距为L,另外两根长度为L、质量为m、电阻为R的一样导体棒垂直静置于导轨上,导体棒在长导轨上可以无摩擦地左右滑动,导轨间存在竖直向下的匀强磁场,磁感应强度大小为B.某时刻使左侧的导体棒a获得大小为v0的向左的初速度、右侧的导体棒b获得大小为2v0的向右的初速度,如此如下结论正确的答案是()BLv0a的速度大小为时,导体棒b的速度大小一定是v0a的速度为零时,两导体棒受到的安培力大小都是D.从开始运动到最终处于稳定状态的过程中,系统产生的热量为7.[多项选择]如下列图,竖直放置的线圈两端连接一个定值电阻构成的回路,一块强磁铁从线圈上方某一高度由静止释放后从线圈中穿过,如此如下说法正确的答案是( )a→b8.[2020某某某某高三摸底,多项选择]如下列图,两根平行光滑金属导轨固定在同一水平面内,其左端接有定值电阻R,建立Ox轴平行于金属导轨,在0≤x≤4 m的空间区域内存在着垂直导轨平面向下的磁场,磁感应强度B的大小随坐标x(以m为单位)的变化规律为B=0.8-0.2x(T),金属棒ab在外力作用下从x=0处沿导轨向右运动,ab始终与导轨垂直并接触良好,不计导轨和金属棒的电阻.设在金属棒从x1=1 m处经x2=2 m到x3=3 m的过程中,电阻R的电功率始终保持不变,如此( )x1与x2处受到磁场的作用力大小之比为3∶2x1到x2与从x2到x3的过程中通过R的电荷量之比为5∶3二、非选择题(共5小题,63分)9.[6分]如图甲所示是探究电磁感应现象的装置.(1)如图乙所示的四种方式,不能产生感应电流的是(填字母).(2)利用此装置探究感应电流方向与磁场方向与切割磁感线方向之间的关系,观察到的实验现象记录如下:实验序号磁场方向导体切割磁感线方向灵敏电流计指针偏转方向①向下向右向左②向上向右向右③向下向左向右在上述三次实验中,比拟①和②两次实验,可知感应电流方向与有关;比拟两次实验,可知同时改变方向和方向,如此感应电流方向不变.(3)在探究中还发现,导体ab水平向左(或向右)缓慢运动时,灵敏电流计的指针偏转角度较小;导体ab水平向左(或向右)快速运动时,灵敏电流计的指针偏转角度较大,说明感应电流的大小与有关.10.[13分]在如下列图的电路中,abcd为固定的100匝正方形导线圈,边长L=15 cm,总电阻r=2 Ω.电阻R1=4 Ω,R2=1.6 Ω,R3=4 Ω,R4=R5=6 Ω,电容器的电容C=29 μF,开关S处于闭合状态.假如线圈区域内存在方向垂直纸面向内且均匀分布的磁场,其磁感应强度随时间变化的规律为B=2t+2(T),电路稳定后,求:(1)通过R1的电流大小和方向;(2)开关S断开以后流过R5的总电荷量.11.[2021某某某某六校联合调研,16分]如下列图,两根间距L=1 m、足够长的平行金属导轨的倾角θ=37°,两导轨底端接一阻值为R=1 Ω的电阻,质量m=1 kg的金属棒通过跨过轻质定滑轮的细线与质量M=3 kg的重锤相连,滑轮左侧细线与导轨平行,金属棒电阻r=1 Ω(其他电阻均不计),金属棒始终与导轨垂直且接触良好,二者间的动摩擦因数μ=0.5,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度大小为B=2 T.重力加速度g=10 m/s2,sin 37°=0.6,现将重锤由静止释放.(1)求刚释放重锤瞬间,重锤的加速度a;(2)求重锤的最大速度v;(3)重锤下降h=20 m时,其速度已经达到最大速度,求电阻R上产生的焦耳热.12.[2020某某七校联考,12分]如图甲所示,电阻不计且间距L=1 m的光滑平行金属导轨竖直放置,上端接一阻值R=2 Ω的电阻,虚线OO'下方有垂直于导轨平面向里的匀强磁场,磁感应强度大小为B=2 T.现将质量m=0.1 kg、电阻不计的金属杆ab从OO'上方某处由静止释放,金属杆在下落的过程中与导轨保持良好接触且始终水平.金属杆从静止开始到下落0.3 m的过程中,加速度a与下落距离h的关系图像如图乙所示,g取10 m/s2.(1)求金属杆刚进入磁场时的速度大小v0;(2)求金属杆从静止开始到下落0.3 m的过程中,在电阻R上产生的热量Q;(3)在图丙的坐标系中,定性画出回路中电流随时间变化的图线,并说明图线与坐标轴围成图形的面积所表示的物理意义(以金属杆进入磁场时为计时起点).13.[2021某某、襄阳、某某、某某四地六校联考,16分]如下列图,一足够大的倾角θ=30°的粗糙斜面上有一个粗细均匀的由同种材料制成的矩形金属线框abcd,线框的ab边始终与斜面下端边缘平行,线框的质量m=0.6 kg,电阻R=1.0 Ω,ab边长L1=1 m,bc边长L2=2 m.斜面以EF 为界,EF上侧有垂直于斜面向上的匀强磁场,磁感应强度B=1 T.一质量为M的物体用绝缘细线跨过光滑定滑轮与线框相连,连接线框的细线与斜面平行且细线最初处于松弛状态.现先释放线框再释放物体,当cd边离开磁场时线框即以v=2 m/s的速度匀速下滑,在ab边运动到EF位置时,细线恰好被拉直绷紧(时间极短),随即物体和线框一起做匀速运动,t=1 s后开始做匀加速运动.不计细线与斜面间的摩擦,g取10 m/s2,求(结果均保存1位小数):(1)线框与斜面之间的动摩擦因数μ;(2)细线绷紧前,物体下降的时间t1;(3)系统在cd边离开磁场至重新进入磁场过程中产生的热量Q.答案专题十二电磁感应考点1 电磁感应现象楞次定律1.D脉冲电流流经线圈,产生磁场,属于电流的磁效应,不是电磁感应现象,选项A错误;脉冲磁场在线圈周围空间产生感应电场是变化的磁场产生电场,不是电流的磁效应,选项B错误;假如将脉冲电流改为恒定电流,只能产生恒定磁场,不能在线圈周围空间产生感应电场,不能对脑神经产生电刺激作用,选项C错误;假如脉冲电流最大强度不变,但是缩短脉冲电流时间,如此电流变化率增大,流经线圈产生的磁场的变化率增大,导致在脑部产生的感应电场与感应电流增强,选项D正确.2.CD分析该同学做的实验,如果磁铁的N、S极倒置或者弹簧的劲度系数过小,在磁铁的运动过程中,圆环中的磁通量都会发生变化,圆环中均能产生感应电流,圆环对磁铁都会产生阻碍作用,即会对磁铁的振动产生影响,选项A、B错误.如果该同学做实验时,铝制圆环中间某处断裂或者用了非金属材质圆环,都会导致圆环中无法产生感应电流,即圆环与磁铁之间没有相互作用力,圆环不会对磁铁的振动产生影响,选项C、D正确.3.B 当同时增大B1减小B2时,通过金属圆环的总磁通量增加,且方向垂直纸面向里,根据楞次定律知,感应电流产生的磁场方向应为垂直纸面向外,根据右手螺旋定如此知,此时金属圆环中产生逆时针方向的感应电流,A项错误;同理当同时减小B1增大B2时,金属圆环中产生顺时针方向的感应电流,B项正确;当同时以一样的变化率增大或减小B1和B2时,金属圆环中的总磁通量没有变化,仍然为0,金属圆环中无感应电流产生,C、D项均错误.4.B电路中电流减小,磁场能向电场能转化,即电容器处于充电状态,B项正确;由线圈中磁场方向可知,回路中电流方向为顺时针方向,所以电容器上极板带正电,A项错误;电容器充电过程中,两极板间场强正在增大,C项错误;线圈中电流减小,磁通量减小,磁通量变化率增大,D项错误.5.BC0~内,螺线管中通有顺时针逐渐增大的电流,如此螺线管中由电流产生的磁场向下且逐渐增加,由楞次定律可知,圆环有收缩的趋势,A错误,B正确;~T内,螺线管中通有顺时针逐渐减小的电流,如此螺线管中由电流产生的磁场向下且逐渐减小,由楞次定律可知,圆环中的感应电流为俯视顺时针方向,D错误;t=和t=时刻,螺线管中电流的变化率一致,即由螺线管中电流产生的磁场变化率一致,如此圆环中的感应电流大小相等,C正确.6.(1)C(2)顺时针(3)垂直纸面向外(4)B' B0解析:(1)题中操作与电流计的指针偏转方向说明电流从电流计的“+〞接线柱流入时,电流计指针向右偏转,电流从电流计的“-〞接线柱流入时,电流计指针向左偏转.进展上述实验的目的是推断电流计指针偏转方向与电流方向的关系,以便于在后续实验中根据电流计指针的偏转方向判断螺线管中的电流方向.(2)电流计指针向右偏转,说明电流从电流计的“+〞接线柱流入,如此螺线管中的电流方向(从上往下看)沿顺时针.(3)从上往下看,感应电流的方向沿逆时针,由安培定如此可判断出感应电流的磁场B'的方向垂直纸面向外.(4)理解楞次定律,关键在于理解感应电流产生的磁场B'总是要阻碍原磁场磁通量B0的变化.考点2 法拉第电磁感应定律自感1.C由楞次定律可知,前半周期内感应电流方向由d到c为负方向,B项错误;由E=S和I=可知,感应电流与磁感应强度的变化率成正比,故感应电流大小不变,A项错误;平行金属板与电阻R并联,两端电压相等,由U=IR、E电=、F=E电q可得F=I,可见离子所受电场力大小不变,由牛顿第二定律知,离子的加速度大小也不变,又v-t图线的斜率表示加速度,故斜率大小不变,C项可能正确,D项错误.2.D由于正方形闭合线圈匀速穿过磁场区域,根据法拉第电磁感应定律和闭合电路欧姆定律可知,在线圈进入磁场区域和从磁场区域出来的过程中,产生的感应电流大小恒定,由楞次定律可知,线圈进入磁场区域和从磁场区域出来的过程产生的感应电流方向相反,所以线圈中的感应电流随时间变化的图像可能正确的答案是D项.3.CD题中线圈相当于电源,由楞次定律可知a相当于电源的正极,b相当于电源的负极,故通过电阻R的电流方向为a→b,选项A错误;由法拉第电磁感应定律得线圈产生的感应电动势E=N=20×V=10 V,选项B错误;由闭合电路欧姆定律得电路中的感应电流I== A=1 A,又由局部电路欧姆定律得电阻R两端的电压U=IR=1×8 V=8 V,选项C正确;根据q=It 得,0~0.1 s内通过线圈横截面的电荷量为q=1×0.1 C=0.1 C,选项D正确.4.B 电磁炉的工作原理为通电线圈中通入交变电流,其产生的周期性变化的磁场在锅底中产生涡流,锅底发热,从而加热食物.结合上述分析可知,锅具一定要用非绝缘材料制成,通入恒定电流无法加热食物,故B项正确,A、C、D项错误.5.C 金属棒下滑时棒两端产生电动势,因棒不闭合,故没有感应电流,棒内电子受洛伦兹力作用,但金属棒不受安培力作用,A、B项错误;棒两端的电压U=E=BLv cos 60°=0.05 V,C项正确,D 项错误.6.(1)B1L2ω优点见解析(2)解析:(1)方法一:根据法拉第电磁感应定律有E=(2分)又ΔΦ=B1L2ωΔt,解得E=B1L2ω(1分)。
(完整版)电磁感应综合典型例题

电磁感应综合典型例题【例1】电阻为R的矩形线框abcd,边长ab=L,ad=h,质量为m,自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁场区域的宽度为h,如图所示,若线框恰好以恒定速度通过磁场,线框中产生的焦耳热是_______.(不考虑空气阻力)【分析】线框通过磁场的过程中,动能不变。
根据能的转化和守恒,重力对线框所做的功全部转化为线框中感应电流的电能,最后又全部转化为焦耳热.所以,线框通过磁场过程中产生的焦耳热为Q=W G=mg—2h=2mgh.【解答】2mgh。
【说明】本题也可以直接从焦耳热公式Q=I2Rt进行推算:设线框以恒定速度v通过磁场,运动时间从线框的cd边进入磁场到ab边离开磁场的过程中,因切割磁感线产生的感应电流的大小为cd边进入磁场时的电流从d到c,cd边离开磁场后的电流方向从a到b.整个下落过程中磁场对感应电流产生的安培力方向始终向上,大小恒为据匀速下落的条件,有因线框通过磁场的时间,也就是线框中产生电流的时间,所以据焦耳定律,联立(l)、(2)、(3)三式,即得线框中产生的焦耳热为Q=2mgh.两种解法相比较,由于用能的转化和守恒的观点,只需从全过程考虑,不需涉及电流的产生等过程,计算更为简捷.【例2】一个质量m=0.016kg、长L=0.5m,宽d=0.1m、电阻R=0.1Ω的矩形线圈,从离匀强磁场上边缘高h1=5m处由静止自由下落.进入磁场后,由于受到磁场力的作用,线圈恰能做匀速运动(设整个运动过程中线框保持平动),测得线圈下边通过磁场的时间△t=0.15s,取g=10m/s2,求:(1)匀强磁场的磁感强度B;(2)磁场区域的高度h2;(3)通过磁场过程中线框中产生的热量,并说明其转化过程.【分析】线圈进入磁场后受到向上的磁场力,恰作匀速运动时必满足条件:磁场力=重力.由此可算出B并由运动学公式可算出h2。
由于通过磁场时动能不变,线圈重力势能的减少完全转化为电能,最后以焦耳热形式放出.【解答】线圈自由下落将进入磁场时的速度(l)线圈的下边进入磁场后切割磁感线产生感应电流,其方向从左至右,使线圈受到向上的磁场力.匀速运动时应满足条件(2)从线圈的下边进入磁场起至整个线圈进入磁场做匀速运动的时间以后线圈改做a=g的匀加速运动,历时所对应的位移所以磁场区域的高度(3)因为仅当线圈的下边在磁场中、线圈做匀速运动过程时线圈内才有感应电流,此时线圈的动能不变,由线圈下落过程中重力势能的减少转化为电能,最后以焦耳热的形式释放出来,所以线圈中产生的热量【说明】这是力、热、电磁综合题,解题过程要分析清楚每个物理过程及该过程遵守的物理规律,列方程求解。
高考物理一轮复习 第十章 电磁感应 第1讲 电磁感应现象 楞次定律练习(含解析)新人教版-新人教版高

第1讲电磁感应现象楞次定律一、单项选择题:在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的。
1.如下列图,一水平放置的N匝矩形线框面积为S,匀强磁场的磁感应强度为B,方向斜向上,与水平面成30°角,现假设使矩形框以左边的一条边为轴转到竖直的虚线位置,如此此过程中磁通量的改变量的大小是( C )A.3-12BS B.3+12NBSC.3+12BS D.3-12NBS[解析] sin θ磁通量与匝数无关,Φ=BS中,B与S必须垂直。
初态Φ1=B cos θ·S,末态Φ2=-B cos θ·S,磁通量的变化量大小ΔΦ=|Φ2-Φ1|=|BS(-cos 30°-sin30°)|=3+12BS,所以应选C项。
2.(2020·浙江诸暨模拟)有人设计了一种储能装置:在人的腰部固定一块永久磁铁,N 极向外;在手臂上固定一个金属线圈,线圈连接着充电电容器。
当手不停地前后摆动时,固定在手臂上的线圈能在一个摆动周期内,两次扫过别在腰部的磁铁,从而实现储能。
如下说法正确的答案是( D )A.该装置违反物理规律,不可能实现B.此装置会使手臂受到阻力而导致人走路变慢C.在手摆动的过程中,电容器极板的电性不变D.在手摆动的过程中,手臂受到的安培力方向交替变化[解析] D.在手摆动的过程中,线圈交替的进入或者离开磁场,使穿过线圈的磁通量发生变化,因而会产生感应电流,从而实现储能,该装置符合法拉第电磁感应定律,可能实现,选项A错误;此装置不会影响人走路的速度,选项B错误;在手摆动的过程中,感应电流的方向不断变化,如此电容器极板的电性不断改变。
选项C错误;在手摆动的过程中,感应电流的方向不断变化,手臂受到的安培力方向交替变化。
选项D正确。
3.如下列图,通电导线MN与单匝矩形线圈abcd共面,位置靠近ab且与线圈相互绝缘。
当MN中电流突然减小时,线圈所受安培力的合力方向( B )A.向左B.向右C.垂直纸面向外D.垂直纸面向里[解析] 解法一:当MN中电流突然减小时,单匝矩形线圈abcd垂直纸面向里的磁通量减小,根据楞次定律,线圈abcd中产生的感应电流方向为顺时针方向,由左手定如此可知ab边与cd边所受安培力方向均向右,所以线圈所受安培力的合力方向向右,B正确。
2023年高考物理一轮考点复习第十一章电磁感应第1讲电磁感应现象、楞次定律

练案[29] 第十一章电磁感应第1讲电磁感应现象楞次定律一、选择题(本题共14小题,1~10题为单选,11~14题为多选)1.(2023·江苏模拟预测)电吉他的工作原理是在琴身上装有线圈,线圈附近被磁化的琴弦振动时,会使线圈中的磁通量发生变化,从而产生感应电流,再经信号放大器放大后传到扬声器。
其简化示意图如图所示。
则当图中琴弦向右靠近线圈时( C )A.穿过线圈的磁通量减小B.线圈中不产生感应电流C.琴弦受向左的安培力D.线圈有扩张趋势[解析]琴弦向右靠近线圈时,穿过线圈的磁通量增大,线圈中产生感应电流,由“来拒去留”可知琴弦受到向左的安培力,由“增缩减扩”可知线圈有收缩趋势,故ABD错误,C正确。
2.(2023·北京通州模拟预测)安装在公路上的测速装置如图,在路面下方间隔一定距离埋设有两个通电线圈,线圈与检测抓拍装置相连,车辆从线圈上面通过时线圈中会产生脉冲感应电流,检测装置根据两个线圈产生的脉冲信号的时间差计算出车速大小,从而对超速车辆进行抓拍。
下列说法正确的是( B )A.汽车经过线圈上方时,两线圈产生的脉冲电流信号时间差越长,车速越大B.汽车经过通电线圈上方时,汽车底盘的金属部件中会产生感应电流C.当汽车从线圈上方匀速通过时,线圈中不会产生感应电流D.当汽车从线圈上方经过时,线圈中产生感应电流属于自感现象[解析]汽车经过线圈上方时产生脉冲电流信号,车速越大,汽车通过两线圈间的距离所用的时间越小,即两线圈产生的脉冲电流信号时间差越小,故A错误;汽车经过通电线圈上方时,汽车底盘的金属部件通过线圈所产生的磁场,金属部件中的磁通量发生变化,在金属部件中产生感应电流,金属部件中的感应电流产生磁场,此磁场随汽车的运动,使穿过线圈的磁通量变化,所以线圈中会产生感应电流,故B正确,C错误;当汽车从线圈上方经过时,线圈中产生的感应电流并不是线圈自身的电流变化所引起的,则不属于自感现象,故D错误。
高考物理:带你攻克电磁感应中的典型例题(附解析)

高考物理:带你攻克电磁感应中的典型例题(附解析)例1、如图所示,有一个弹性的轻质金属圆环,放在光滑的水平桌面上,环中央插着一根条形磁铁.突然将条形磁铁迅速向上拔出,则此时金属圆环将()A. 圆环高度不变,但圆环缩小B. 圆环高度不变,但圆环扩张C. 圆环向上跳起,同时圆环缩小D. 圆环向上跳起,同时圆环扩张解析:在金属环中磁通量有变化,所以金属环中有感应电流产生,按照楞次定律解决问题的步骤一步一步进行分析,分析出感应电流的情况后再根据受力情况考虑其运动与形变的问题.也可以根据感应电流的磁场总阻碍线圈和磁体间的相对运动来解答。
当磁铁远离线圈时,线圈和磁体间的作用力为引力,由于金属圆环很轻,受的重力较小,因此所受合力方向向上,产生向上的加速度.同时由于线圈所在处磁场减弱,穿过线圈的磁通量减少,感应电流的磁场阻碍磁通量减少,故线圈有扩张的趋势。
所以D选项正确。
一、电磁感应中的力学问题导体切割磁感线产生感应电动势的过程中,导体的运动与导体的受力情况紧密相连,所以,电磁感应现象往往跟力学问题联系在一起。
解决这类电磁感应中的力学问题,一方面要考虑电磁学中的有关规律,如安培力的计算公式、左右手定则、法拉第电磁感应定律、楞次定律等;另一方面还要考虑力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律等。
例2、如图1所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻。
一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。
整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。
让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。
(1)由b向a方向看到的装置如图2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab杆可以达到的速度最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精心整理电磁感应复习典型例题一、磁通量磁通量的变化例1、如图所示,线圈平面与水平方向成θ角,磁感线竖直向下,设磁感应强度为B ,线圈面积为S ,则穿过线圈的磁通量Φ=________.例2、面积为S 的矩形线框abcd ,处在磁感应强度为B 的匀强磁例3A B C D 例4、A 流计(A B C D 从产生感应电流的过程中能通过电磁感应转化成电能.例5、磁感应强度随时间的变化如图1所示,磁场方向垂直闭合线圈所在的平面,以垂直纸面向里为正方向。
t 1时刻感应电流沿方向,t 2时刻感应电流,t 3时刻感应电流;t 4时刻感应电流的方向沿。
例6、如图所示,条形磁铁从h高处自由下落,中途穿过一个固定的空心线圈,K断开时,落地时间为t1,落地速度为V1;K闭合时,落地时间为t2,落地速度为V2,则:t1t2,V1V2。
例7、如图所示,导线圈A水平放置,条形磁铁在其正上方,N极向下且向下移近导线圈的过程中,导线圈A中的感应电流方向是____,导线圈A所受磁场力的方向是____。
若将条形磁铁S极向下,且向上远离导例8A.P、C例9线圈MABC.逆时针方向,有收缩的趋势D.逆时针方向,有扩张的趋势例10、如下图甲所示,长直导线与闭合线框位于同一平面内,长直导线中的电流i随时间t的变化关系如图乙所示.在0~时间内,长直导线中电流向上,则线框中感应电流的方向与所受安培力情况是( )A.0~B.0~C.0~D.0例11ABC.势D例12R,导轨电阻可忽略不计.MN为放在ab和cd上的一导体杆,与ab垂直,其电阻也为R.整个装置处于匀强磁场中,磁感应强度的大小为B,磁场方向垂直于导轨所在平面向内.现对MN施力使它沿导轨方向以速度v做匀速运动.令U表示MN两端的电压的大小,则( )A.U=BLv,流过固定电阻R的感应电流由b到dB.U=BLv,流过固定电阻R的感应电流由d到bC.U=BLv,流过固定电阻R的感应电流由b到dD.U=BLv,流过固定电阻R的感应电流由d到b例13、如图所示,闭合导线框abcd的质量可以忽略不计,将它从图中所示的位置匀速拉出匀强磁场。
若第一次用0.3s时间拉出,拉动过程中导线ab所受安培力为F1,所受A.F1C.F1例14个平框架平面与水平面之间的夹角为θ,不计导体框架的电阻.整个装置处于匀强磁场中,磁场方向垂直于框架平面向上,磁感(1)(2)率.例15电阻r心有一个直径d2=20cm的有界圆形匀强磁场,磁感应强度按图(2)所示规律变化,试求:(1)通过电阻R的电流方向和大小;(2)电压表的示数.例16、如图所示,足够长的U型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN与PQ平行且间距为L,导轨平面与磁感应强度为B的匀强磁场垂直,导轨电阻不计。
金属棒ab由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab棒接入电路的电阻为R,当流过ab棒某一横截面的电量为q时,棒的速度大小为v,则金属棒ab在这一过程中( )A.运动的平均速度大小为vB.下滑的位移大小为C22例17量为m当cd(1)(2)求(3)例19磁场所示规律变化,则线框中的感应电流I(取逆时针方向的电流为正)随时间t的变化图线是()例20、如图4所示,等腰三角形内分布有垂直于纸面向外的匀强磁场,它的底边在x轴上且长为2L,高为L。
纸面内一边长为L的正方形导线框沿x轴正方向做匀速直线运动穿过匀强磁场区域,在t=0时刻恰好位于图中所示的位置。
以顺时针方向为导线框中电流的正方向,在下面四幅图中能够正确表示电流-位移(I-x)关系的是( )例21、在水平桌面上,一个圆形金属框置于匀强磁场B1中,线框平面与磁场垂直,圆形金属框与一个水平的平行金属导轨相连接,导轨上放置一根导体棒ab,导体棒与导轨接触良好,导体棒处于另一匀强磁场B2中,该磁场的磁感应强度恒定,方向垂直导轨平面向下,如图8甲所示。
磁感应强度B1随时间t的下。
(例22把abABCD例23.光滑曲面与竖直平面的交线是抛物线,如图所示,抛物线的方程为y=x2,其下半部处在一个水平方向的匀强磁场中,磁场的上边界是y=a的直线(图中的虚线所示),一个质量为m的小金属块从抛物线y=b(b>a)处以速度v沿抛物线下滑,假设抛物线足够长,则金属块在曲面上滑动的过程中产生的焦耳热总量是( ) A.mgb B.mv2隔C .mg(b -a)D .mg(b -a)+mv 2例24、如图甲所示,水平放置的平行金属导轨连接一个平行板电容器C 和电阻R ,导体棒MN 放在导轨上且接触良好,整个装置放于垂直导轨平面的磁场中,磁感应强度B 的变化情况如图乙所示(图示磁感应强度方向为正),MN 始终保持静止,则0~t 2时间()A .电容器C 的电荷量大小始终没变B .电容器C 的a 板先带正电后带负电C .MN 所受安培力的大小始终没变 、两根足够长的光滑导轨竖直放置,间距为L ,顶端接阻值为R 的电阻。
质量的导体直杆,单位长度电阻均为整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B 杆始终有两点与圆环良好()例27、如图所示,固定放置在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上、磁感应强度大小为B 的匀强磁场中.一质量为m(质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ.现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离l 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直).设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g.则此过程( )A .杆的速度最大值为:22F mgR B dμ- B .流过电阻R 的电量为BdL R r + C .恒力F 做的功与摩擦力做的功之和等于杆动能的变化量D .恒力F 做的功与安培力做的功之和大于杆动能的变化量例28值为R 下端,A B C 时,所受的安培力大小为D 例29B t∆∆阻R =0.4Ω。
在导轨上l =1.0m 处的右端搁一金属棒ab ,其电阻R 0=0.1Ω,并用水平细绳通过定滑轮吊着质量为M =2kg 的重物,欲将重物吊起,问:(1)感应电流的方向(请将电流方向标在本题图上)以及感应电流的大小;(2)经过多长时间能吊起重物。
例30、如图所示PQ 、MN 为足够长的两平行金属导轨,它们之间连接一个阻值Ω=8R 的电阻;导轨间距为kg m m L 1.0;1==一质量为,电阻Ω=2r ,长约m 1的均匀金属杆水平放置在导轨上,它与导轨的滑动摩擦因数53=μ,导轨平面的倾角为030=θ在垂直导轨平面方向有匀强磁场,磁感应强度为0.5T B =,今让金属杆AB 由静止开始下滑从杆静止开始到杆AB 恰好匀速运动的过程中经过杆的电量1C q =,求:(1)当AB 下滑速度为s m /2时加速度的大小(2)AB 下滑的最大速度(3)从静止开始到AB 匀速运动过程R 上产生的热量例31、光滑平行金属导轨水平面内固定,导轨间距L=0.5m ,导轨右端接有电阻R L =4ΩMN 、PQ GH 求:(1(2(3例32=0.3Ω棒MN 中,棒在水平向右的外力作用下,由静止开始以a 2 m/s 2时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q 1∶Q 2=2∶1。
导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触。
求:(1)棒在匀加速运动过程中,通过电阻R 的电荷量q ;(2)撤去外力后回路中产生的焦耳热Q 2;(3)外力做的功W F 。
例33、如图所示,质量为M的导体棒ab,垂直放在相距为l的平行光滑金属导轨上,导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中,左侧是水平放置、间距为d的平行金属板,R和Rx分别表示定值电阻和滑动变阻器的阻值,不计其他电阻。
(1)调节Rx=R,释放导体棒,当棒沿导轨匀速下滑时,求通过棒的电流(2)量为m例34ABCD例35L的A.B.C.D.断开开关S切断电路时,A1和A2都要过一会儿才熄灭例36、如图为演示自感现象实验的电路,实验时先闭合开关S,稳定后设通过线圈L 的电流为I1,通过小灯泡D的电流为I2,小灯泡处于正常发光状态,迅速断开开关S,则可观察到灯泡E闪亮一下后熄灭,在灯泡E闪亮的短暂过程中,下列说法正确的是:()A .圈L 中电流由I 1逐渐减为零。
B .圈L 两端a 端电势高于b 端。
C .灯泡E 中电流由I 1逐渐减为零,方向与I 2相反。
D .灯泡中的电流由I 2逐渐减为零,方向不变。
七、涡流例37穿过A ()A 、AB 、AC 、AD 、A 例38O ,A.B.产生C.线框开始摆动后,摆角会越来越小,摆角小到某一值后将不再减小D.线框摆动过程中,机械能完全转化为线框电路中的电能例39、如图所示,水平方向的磁场垂直于光滑曲面,闭合小金属环从高h 的曲面上端无初速滑下,又沿曲面的另一侧上升,则()A.若是匀强磁场,环在左侧上升的高度小于h B.若是匀强磁场,环在左侧上升的高度大于h C.若是非匀强磁场,环在左侧上升高度等于h D.若是非匀强磁场,环在左侧上升的高度小于h。