单通道电液伺服系统的设计
第7章 电液伺服系统的设计和应用

最大负载力为:32900N; 最大负载速度:0.022m/s
找阀控缸动力机构的输出特性与该负载轨迹相切, 并使两者的最大功率点尽量靠近,负载轨迹的最大 功率点可通过求导数并令其为零求得,其值为:
F 24860 N
v 0.0193 m / s
液压动力机构的最大功率点公式为:
2 F Ps A 3
欢 迎 使 用
《液压伺服与比例控制系统》
多媒体授课系统
燕 山 大 学
《液压伺服与比例控制系统》课程组
第7章 电液伺服系统的设计和应用
本章摘要
工程上常用频率法设计液压伺服系统,这是一种 试探法。根据技术要求设计出系统以后,需要检 查所设计的系统是否满足全部性能指标。如不能 满足,可通过调整参数或改变系统结构(加校正) 等方法,重复设计过程,直至满足要求为小。因 为设计是试探件的,所以设计方法具有较大的灵 活性。
Q0 I 1.1 10 5 s2 2 * 0.56 ( s 1) 2 250 250
光电检测其和伺服放大器可看成比例环节:
I K E
增益K可通过改变伺服放大器的增益在较宽的范围 内调整。计算液压缸的容积时,考虑到管道容积, 加上系数:
Vt LA 1.15 0.15 94.25 10 4 1.15 1.626 10 3 m 3
y 0.5E 1 10 3 m
系统的开环增益为:
vm Kv 22(1 / s) y
对上述系统进行动态分析:
5、修改动力机构参数,改善系统性能 (1)、确定活塞面积 系统不加校正,为保证增益和足够的稳定裕量,至 少应有: 4K 4 22 88rad / s
2、方案选择 选择合理控制方案,拟定大体结构,绘制系统原理方块图; 3、静态计算 根据系统要求和负载条件,选择动力机构的形式和参数。 (1)、确定供油压力; (2)、通过负载轨迹,求驱动力机构的匹配参数; (3)、选择伺服阀,根据系统的工作状态及精度要求, 确定系统的开环增益,选择传感器、放大器和其他元件; 4、动态分析计算。 (1)、列出各元件运动方程,求传递函数;。 (2)、绘出系统方块图、开环和闭环频率特性,分析系 统的稳定性,校核系统的频宽和峰值; (3)、通过仿真分析系统动态品质指标。
电气工程中电液伺服系统的建模与控制

电气工程中电液伺服系统的建模与控制电液伺服系统在电气工程中扮演着重要的角色,它是将电力和液压技术相结合的一种控制系统。
本文将探讨电液伺服系统的建模与控制方法,旨在帮助读者深入了解该系统的原理和应用。
1. 引言电液伺服系统是一种将电力与液压技术相结合的控制系统,它具有快速、精确以及大扭矩输出的特点,广泛应用于工业自动化领域。
该系统通常由液压执行机构、液压装置、电机、传感器以及控制器等组成。
2. 电液伺服系统的建模电液伺服系统的建模是理解系统行为和进行控制设计的重要基础。
一般来说,电液伺服系统的建模可以分为力平衡模型和压力平衡模型两种。
2.1 力平衡模型力平衡模型是基于力学平衡原理建立的,它通过分析液体在液压缸内的流动以及液压缸和负载之间的力平衡关系来描述系统行为。
该模型主要考虑了负载的机械特性以及阀门的开度对液体流量和压力的影响。
2.2 压力平衡模型压力平衡模型是基于流体的压力平衡原理建立的,它通过分析液体在液压缸内的流动以及阀门的开度对液体流量和压力的影响来描述系统行为。
该模型不考虑负载的机械特性,主要关注液体流动的特性以及阀门对压力的调节。
3. 电液伺服系统的控制电液伺服系统的控制主要包括位置控制、速度控制和力控制三种。
在控制设计中,通常使用比例积分微分(PID)控制器或模糊控制器来实现系统性能的改善。
3.1 位置控制位置控制是电液伺服系统中最常见的一种控制方式。
它通过控制液压缸的位置来实现对负载的准确控制。
在控制设计中,可以根据负载的特性选择适当的控制方法,如PID控制器或模糊控制器。
3.2 速度控制速度控制是电液伺服系统中实现对负载速度精确控制的一种方式。
在速度控制中,控制器通常根据传感器反馈的速度信号来调节液压缸的速度。
PID控制器常被用于速度控制中,通过调节比例、积分和微分参数来改善系统的响应性能。
3.3 力控制力控制是电液伺服系统中实现对负载施加特定力的控制方式。
在力控制中,控制器通常调节液压缸施加的力来满足特定的要求。
电液伺服系统的建模与控制研究

电液伺服系统的建模与控制研究引言:电液伺服系统(Electro-Hydraulic Servo System)是一种广泛应用于机械领域的控制系统,其通过电气信号控制液压元件,实现对物体位置、速度和力的精确控制。
随着工业自动化技术的不断发展,电液伺服系统在工业生产中的重要性越来越突出。
本文将从电液伺服系统的建模与控制两个方面展开研究,深入探讨其原理和应用。
一、电液伺服系统的建模电液伺服系统的建模是研究其工作原理和特性的基础。
建模是将实际系统转化为数学模型,通过模型分析和仿真研究系统的性能。
电液伺服系统的建模过程涉及到液压传动、机械传动、电气传动以及控制算法等多个方面。
1. 液压传动的建模液压传动是电液伺服系统中最关键的部分,其负责将电信号转化为液压信号,并通过液压元件传递给执行机构。
液压元件包括液压泵、阀门、缸筒等。
液压泵将液体加压,并通过阀门控制液体的流动。
液压缸通过泵送的压力作用,实现对物体位置、速度和力的控制。
液压传动的建模需要考虑压力、流量、阀门开度等方面的变化,利用流体力学和控制理论进行数学描述。
2. 机械传动的建模机械传动是将液压力转化为机械力,实现力的传递和位置的控制。
机械传动包括齿轮传动、皮带传动、曲柄机构等,其目的是将液压系统提供的力矩和转速传递给负载。
机械传动的建模需要考虑传动效率、摩擦损耗等因素,通过机械动力学和力学原理进行数学描述。
3. 电气传动的建模电气传动是将输入信号转化为电气信号,并通过电子元件和电机来实现力和速度的控制。
电气传动包括信号转换、功率放大、速度控制等。
常见的电气传动元件有电阻、电容、电感等,电机则是实现力和速度控制的核心部件。
电气传动的建模需要考虑电路理论和电机原理,通过电路分析和电机模型进行数学描述。
4. 控制算法的建模控制算法是电液伺服系统中实现控制和调节的关键。
常见的控制算法有比例控制、PID控制、模糊控制等。
控制算法的建模需要考虑系统的动态特性和控制目标,通过控制理论和信号处理进行数学描述。
电液伺服控制系统的设计

Ap ——液压缸活塞的有效面积;x p ——活塞的位移; 液压缸活塞的有效面积; 活塞的位移; 液压缸活塞的有效面积 活塞的位移 Ctp--总泄漏系数;Vt——液压缸进油腔的容积;βe—— 总泄漏系数; 液压缸进油腔的容积; 总泄漏系数 液压缸进油腔的容积 系统的有效体积弹性模量。 系统的有效体积弹性模量。
电液位置伺服控制系统以液体作为动 电液位置伺服控制系统以液体作为动 力传输和控制介质,利用电信号进行控制 力传输和控制介质, 输入和反馈。 输入和反馈。只要输入某一规律的输入信 执行元件就能启动、 号,执行元件就能启动、快速并准确地复 现输入量的变化规律。 现输入量的变化规律。电液位置伺服控制 系统是最为常见的液压控制系统, 系统是最为常见的液压控制系统,实际的 伺服系统无论多么复杂, 伺服系统无论多么复杂,都是由一些基本 元件组成的。系统的核心是电液伺服阀, 元件组成的。系统的核心是电液伺服阀, 它的性能直接影响甚至决定整个系统的性 功用十分重大。 能,功用十分重大。
系统数学模型的建立
(式中 k1=1/Ap) 计算得到负载扰动引起的稳态 误差为:ess=0.057×10-3(m)
(1)比例阀线性化流量方程 ) Q L = K q xv − K c p L (1) ) 式中K 比例阀流量增益; 比例阀流量- 式中 q——比例阀流量增益;K c ——比例阀流量-压力 比例阀流量增益 比例阀流量 系数; 负载压力; 比例阀阀芯位移。 系数;p L——负载压力;xv——比例阀阀芯位移。 负载压力 比例阀阀芯位移 (2)伺服油缸流量连续性方程 )
系统的阶跃响应曲线
从上两幅图中可以看出, 从上两幅图中可以看出,系统的幅值裕度 与相角稳定裕度均为负值, 与相角稳定裕度均为负值,阶跃响应曲线 为发散振荡,说明系统是不稳定的, 为发散振荡,说明系统是不稳定的,必须 校正。 校正。
电液伺服跑偏控制系统设计

前言随着20世纪自动化技术的巨大进步,自动控制理论得到不断地发展和完善。
本文正是针对设计任务,通过设计方案的分析比较之后,选择电液控制系统来设计此次任务。
本文首先介绍了液压控制的一些基本概念,对研究对象和任务作出了整体的介绍,并简述了液压控制技术的发展史。
然后在明确设计要求的情况下,对设计任务进行分析。
通过机液伺服跑偏控制系统和电液伺服跑偏控制系统的分析对比,最终选择了电液伺服跑偏控制系统的设计方案,从而进入本课题研究要点。
接着本文对电液伺服跑偏控制系统做了具体的设计,先是对电液伺服机构进行了分析,得出了电液伺服系统的数学模型,进而分析了其特点。
接着又对系统做了静、动态计算及分析,确定了供油压力,选取了伺服阀,并求取了各元件的传递函数,绘制了系统方块图,得出系统的各个参数。
然后还要对系统进行校正,得到更为优良的设计参数,使系统更加完善,以进一步提高系统的性能。
最后利用了先进电脑仿真技术MATLAB对所做的系统进行仿真,通过改变系统的各个参数进行分析、比较,从而可看出系统的各个参数对系统的响应速度和稳定性的影响,本论文在王慧老师的悉心教导之下,通过研读各著作期刊,经过多次的修改。
由于作者水平有限,论文中难免出现点差错,恳请读者指正。
1 绪论液压伺服控制系统是以液压动力元件作驱动装置所组成的反馈控制系统。
在这种系统中,输出量(位移、速度、力等)能够自动地、快速而准确地复现输入量的变化规律。
与此同时,还对输入信号进行功率放大,因此也是一个功率放大装置。
液压伺服控制系统是以液体压力能为动力的机械量(位移、速度和力)自动控制系统。
按系统中实现信号传输和控制方式不同分为机液伺服系统和电液伺服系统两种。
机液伺服系统的典型实例是飞机、汽车和工程机械主离合器操纵装置上常用的液压助力器,机床上液压仿形刀架和汽车与工程机械上的液压动力转向机构等。
电液伺服控制系统是以液压为动力,采用电气方式实现信号传输和控制的机械量自动控制系统。
电液位置伺服控制系统实验

减小Ki
正常参数
Ki减小为40
Ki变小,ωc=1.53<2.78, ωh=14.8不变,Kg=24.5>19.1
增大Kd1
正常参数
Kd1变大为35
Kd1变大,ωc=2.1<2.78, ωh=17.1>14.8 ,Kg=21.8>19.1
减小Kd1
正常参数
Kd1减小为20
Kd1变小,ωc=3.45>2.78, ωh=12.9<14.8 ,Kg=16.8<19.1
2)阀控缸微分方程
负载流量线性化方程 流量连续性方程
忽略阀腔和管道总容积,油液的压缩性影响忽略
液压缸活塞的动力学平衡方程
3)缸输出位移对伺服阀输入电信号的传递函数 或写成:
2 伪微分反馈控制算法
对输出信号C 微分的积分仍是C,这就说明没有必要对C 进行微分
2
微分反馈控制方框图
伪微分反馈控制方框图
增大Kd2
正常参数
Kd2变大为3.3
Kd2变大,ωc=2.78不变, ωh=14.8不变,Kg=20.4>19.1
减小Kd2
正常参数
Kd2减小为0.6
Kd2变小,ωc=2.95基本不变, ωh=14.8不变,Kg=7.51<19.1
斜坡输入1
正弦输入
正弦输入,幅值5,频率1
正弦输入,幅值5,频率2.95
为能量输出单元在线 性范围内的最大值
为输入信号在线性范 围内的最大值
2
系统开环传递函数
代入系数得到
正常参数时的ωc=2.78, ωh=14.8,Kg=19.1
增大Ki
正常参数
Ki变大为120
Ki变大,ωc=4.39>2.78, ωh=14.8不变,Kg=15<19.1
电液伺服系统的建模与控制

电液伺服系统的建模与控制1. 引言电液伺服系统是一种广泛应用于工业控制领域的系统,它可以通过控制液压执行器的输出来实现对机械运动的精确控制。
本文将介绍电液伺服系统的建模与控制方法,以帮助读者更好地了解和应用这一技术。
2. 电液伺服系统的概述电液伺服系统由液压执行器、电液伺服阀、传感器和控制器等组成。
液压执行器负责将液压能转化为机械能,电液伺服阀负责控制液压执行器的动作,传感器用于反馈系统状态信息,控制器根据传感器的反馈信息对电液伺服阀进行控制。
3. 电液伺服系统的建模建模是控制系统设计的第一步,对于电液伺服系统也是不可或缺的。
电液伺服系统的建模既可以基于理论模型,也可以基于实验数据进行。
3.1 理论模型在理论模型建模中,我们需要考虑液压执行器、电液伺服阀和控制器的动态特性。
液压执行器的动态特性可以用惯性、摩擦、密封等参数来描述。
电液伺服阀的动态特性可以用阀门的流量-压力特性和阀门饱和现象来描述。
控制器的动态特性通常可以用传统的PID控制算法进行建模。
3.2 实验模型在实验模型建模中,我们需要通过实验得到系统的频率响应和传递函数,并将其转化为数学模型。
这种方法对于实际系统的建模更加准确,但也需要大量的实验数据和较高的技术要求。
4. 电液伺服系统的控制控制是电液伺服系统中最关键的环节之一。
常用的电液伺服系统控制方法有位置控制、速度控制和力控制等。
4.1 位置控制位置控制是电液伺服系统中最基本的控制方法之一。
通过控制电液伺服阀的输出来控制液压执行器的位置。
传感器将执行器的位置信息反馈给控制器,控制器根据反馈信息进行调节,使得系统实现期望的位置跟踪。
4.2 速度控制速度控制是电液伺服系统中常用的控制方法之一。
通过控制电液伺服阀的输出来控制液压执行器的速度。
传感器将执行器的速度信息反馈给控制器,控制器根据反馈信息进行调节,使得系统实现期望的速度跟踪。
4.3 力控制力控制是电液伺服系统中一种高级的控制方法。
电液伺服系统的设计与实现

电液伺服系统的设计与实现随着科技的不断发展,机械设备的功能和性能要求也越来越高。
而在众多机械设备中,电液伺服系统以其优良的性能和高效的工作模式,已经成为了广泛应用的设备之一。
本文将就电液伺服系统的设计和实现进行讨论,以期提高其性能和工作效率。
一、电液伺服系统的组成电液伺服系统是由3个部分组成的:电子控制单元、电液传动系统和执行机构。
1. 电子控制单元电子控制单元包括控制器和信号处理器,控制器是整个系统的核心。
它可以接收来自传感器的反馈信息,根据内部程序计算出控制信号,并输出到执行机构,实现对执行机构的精确控制。
2. 电液传动系统电液传动系统是整个电液伺服系统的动力源,它包括电液转换器、电动机、泵、油箱、阀门等组成。
电动机通过传动装置,驱动泵产生压力液体,液体经过阀门进入执行机构,实现机械臂等动作。
3. 执行机构执行机构是电液伺服系统的输出节点,它通过接收液压驱动,转换为机械运动。
在典型的电液伺服系统中,执行机构通常包括液压缸、液压马达、液压单元等。
二、电液伺服系统的优点1. 精度高因为电液伺服系统可以接收来自传感器的反馈信息,根据内部程序计算出控制信号,并输出到执行机构,实现对执行机构的精确控制,所以其控制精度很高,可以满足高精密度机械设备的要求。
2. 动态性能好电液伺服系统的调节速度快,反应灵敏。
它不仅可以适应于各种工况的需要,而且可以根据需要进行控制和调节。
相比之下,其他传动系统难以满足这些要求。
3. 可扩展性强电液伺服系统的结构比较清晰,它根据要求可以进行功能扩展。
同时,它也可以与其他的控制系统进行集成,如PLC、CAN总线等。
三、电液伺服系统的设计电液伺服系统的设计必须根据所需的实际应用来进行,下面简单介绍了一些设计方法。
1. 系统参数计算电液伺服系统的设计一定要进行系统参数计算,以确保正确的系统工作。
主要包括负载惯性、运动速度、加速度、油液流量、泵、马达的型号、离合器等参数的计算。
2. 控制系统设计控制系统设计是电液伺服系统设计的核心问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Design of Single Channel Electro-hydraulic ServoSystemWang XinNo. 586 mail box Northwestern Polytechnical University Xi’an 710072, Chinamatchboxchina@Yan Daiwei dwyan75@ Xi’an 710065, ChinaAbstract—In this paper an single channel electro-hydraulic servo system is designed to validateǃcompare and ex plore different control schemes on restraining Additional Torque inherent in force loading system. Also it is discussed how to improve loading performance by improving the electronic circuit. By the feedforward signals of velocity it is ex pected to ex pend the bandwidth or even higher and reduce the additional torque. The electronic design theory of loading system was mainly ex plored and was made experiments on subsystems and the whole system. The PID control technique was used to adjust the parameters.Keywords- Servo System; PID Control technique; Instrumentation AmplifierI.I NTRODUCTIONElectro-hydraulic servo loading system (referred to EHSLS) is in the design stage of vehicle loop simulation of test and is one of the main equipment used to simulate the role of manipulation. The dynamic loads on the controller for the new vehicle development and applications performance test data for the promotion of new technologies are to provide the reliable experimental data. It is a torque servo system, but the simulation process also needs to simulate the change of dynamic load, so EHSLS is a very complicated electric- hydraulic composite system. From the point of view of control, it is a strong coupling, time-varying controlled object. Study on the electro-hydraulic servo loading system involves the system dynamics, hydraulic transmission, and control theory and computer control technology with multidisciplinary content.II.D ESIGN OF E LECTRO-HYDRAULIC SERVO LOADINGSYSTEMSystem works as follows:(1) Electronic control system boot, the system closed-loop operation before the closed-loop system is the hardware work. Hardware closed loop is zero torque, and steering gear control system from one party to maintain the zero and an initial point of view, to ensure the safety of electro-hydraulic servo loading system.(2) Closed-loop simulation system operation, control computer system for real-time acquisition angle coded signal, and the AD signal acquisition, the amount of control by the control algorithm adopted after the formation of DA card output to the servo valve.(3) The object is loaded actuator position servo control system to simulate dynamic loads in a typical steering angle movement. Provided by the control computer commands the corner position, measured by the angle encoder as a feedback control of the actual amount of rotation to achieve closed-loop control of position servo system.(4) To load the device is loaded servo system, servo control computer corner and set according to the load factor to calculate the gradient of the command torque loading system; the size of load torque and the steering gear system by the loading system measured between the torque sensors. Electro-hydraulic servo loading bench in the work process tracking command torque signal, and torque sensors measure the signal used as feedback to achieve closed-loop control.(5) Control computer real-time monitoring system operation, to receive control commands through the man-machine interface, display system status and data. Finally, record the experimental data file for the operator to experiment result analysis and research.Active movement in the loading servo motor in the two chambers have forced flow, two-chamber pressure imbalances caused by changes in output torque, resulting in excess torque disturbance. The extra torque of the mixing, loading system will seriously affect the control performance [1]. As long as the steering system motion, the disturbance is inevitable, especially in the steering and reversing system startup when the extra torque will have a great impact, so that a serious deterioration in the performance of loading system. Thus removing the steering movement of the loading system to produce extra torque servo loading system problem is the key technical problems.III.E LECTRICAL S YSTEM C OMPONENTS Single-channel passive electro-hydraulic servo loading system consists of oil sources, the hydraulic system console, single load simulator test bed, and electrical control cabinet four major components [2].Hydraulic oil source and load test the system console in the main test bed for the load simulator to provide hydraulic power and its corresponding control.This work is supported by National Nature Science Foundation underGrant 61074194.532 978-1-4244-8756-1/11/$26.00c 2011IEEESingle load simulator test bed by the angle sensor (resolver), damping spring rod, torque sensors, load hydraulic motors, hydraulic motors and hydraulic servo steering gear off valve assembly formed. The side of the test rig, the installation of an amplifier junction box. Through the cable system will be test bed connecting electrical control cabinet.Electrical control cabinet system includes the following components:(1) power control box. (2) Power chassis. (3) control chassis. (4) computer system.(5) measured outside the terminal box.A.Torque motors and servo valvesAccording to technical requirements, select the Order PQ valve motor components of the main technical indicators are as follows: z Rated control pressure: 8 MPa z Rated current: 15 mA z Maximum torque: 200 Nm z maximum angular velocity: s deg/230zmaximum rotation angle: f deg40B.Torque SensorAccording to the technical requirements: The maximum load moment of 160N • m, load accuracy: 0.5%. Select torque sensor, model is AKC-17T. z Measuring range: 0 ~ 200 N • m z For the bridge voltage: 12V z Repeatability: 0.1% FS z Non-linear: 0.1% FS zSensitivity: 1.045mv / VC.Angle sensorSteering angle sensor is used to measure changes in angle sensor, especially during the off steering gear test, the steering angle sensor is a false measurement of closed-loop control component, so its accuracy is very important. Need to select a high precision multi-angle resolver as a position measuring device. The Model: 72XFS12A-1/32, accuracy were better than 40"D.Amplifier junction boxTorque amplifier to control cabinets and junction box connected to the bridge test bed. It is installed in the test stand on the side. In addition to connecting the cable box, there is a preamplifier board; this board has two channels to enlarge the torque amplifier and the speed of a channel amplifier. Channel torque amplifiers are from three amplifiers and precision voltage source corresponding composition. Threefirst stage amplifier is an instrumentation Burr Brown company amplifier INA121 composed of the data amplifier[3][4]. Its technical parameters: z offset drift ˖C V r P 2z bias current ˖pA 4r z quiescent current ˖A P 450r z offset voltage ˖V P 200r z nonlinearity ˖%001.0z voltage input protection ˖V 40r zhigh CMR ˖106dBFig.1 Diagram of INA121 AmplifierVoltage gain can be selected by an external resistor, where selected 1001 K , then the amplifier 's bandwidth is 50KHz. The second level is composed with OP07 op amp inverting summation, the voltage gain is 52 K , the third level is composed of second-order low-pass OP07 active filter, the voltage gain is 23 K , filter parameters are as follows: z bandwidth ˖2357154109C C R R n Z z Bandwidth frequency ˖Hz f n 375 z gain ˖23 K zloading system damping ratio ˖21)1(5104934105949510C R C R K C R C R C R C R [zThe total gain of the amplifier ˖1000321 K K K K The speed of a channel amplifier is reserved for the system.In this design, the system does not install speed motor, steering20116th IEEE Conference on Industrial Electronics and Applications 533angular velocity signal is a signal by the resolver angle encoder by calculating derived. Added to the system when the motor speed, can be machine guns gave the signal through the amplifier conditioning system. Amplifier circuit speed and torque signal amplifier circuit of the structure of the same, but the choice of circuit parameters and the actual work status. Torque sensor bridge power supply of high precision, good stability, power quality directly affects the accuracy of the sensor output, it must be high-precision voltage source. The design selected as the Burr Brown's REF02 precision reference[5], the output is +5 V, stability characteristics is C ppm $/5.8.Precision reference voltage source output of +5 V through two external high-precision resistors OP07 and the same reverse-phase amplifier, converted to ± 5V precision voltage source output as a sensor bridge supply voltage. The sensitivity is V mV /045.1, and the sensor for the bridge voltage is 10V . The sensor output voltage is 10V when the loading torque ismN 200Channel plate is the most important functions of the system board, which is the name of the schematic: TDB. Channel plate channel were controlled loading system and hydraulic steering gear off channels.Channel board has integrated amplifiers on each channel, closed-loop converters, preamplifier and power amplifier, and zero potentiometers used in the precision reference power supply and digital logic circuits. Look below to load the channel as an example the work of channel plate. N1 (OP07) is loaded channel integrated amplifier, which received from the torque signal on the bus, and receives the angular velocity signal, and integrated amplified output. K1 is a closed-loop load-channel conversion converter relay, its contacts K1-1 position depends entirely on the system working state. When the system hardware when the K1-1 in a closed-loop long closed position, N2 preamplifier integrated amplifier input signal from the N1 in the output. When the system when the software control loop, K1-1 in a long open position, N2 pre-amplifier DA1 to receive control signals to the computer to form a closed loop control software. Output signal from the N2 and added to an inverting amplifier input (N3), N3 as the adder, the main control signal not only receives, but also provide input resistor R11 receives zero signal input resistance to provide an incentive to receive 800Hz signal and these signals are integrated, the given amplifier OPA551 [6]. Power amplifier receiving the output voltage signal before the class, and enlarge, convert the current signal, to drive the solenoid valve. N4 is current depth of peripheral device form a negative feedback voltage amplifier, the circuit diagram shown in Figure 2.The gain of the circuit is:3.010314164R RK Fig. 2 valve driving circuitWhen the input of N4 plus 10V input signal, the output drive current is 30mA. Power amplifier output current through the normally closed contact relay K3 is applied to the solenoid valve coil, then through the sampling resistor R18 back to land. Sampling resistor R18 at the sampled voltage on the feedback, the formation of the power circuit loop. In order to ensure the accuracy of current control, the sampling resistor , the size of theR18 selected precision resistors, resistance to 100:.Sampling resistor voltage just reflects the current flowing through the resistor. When the 30mA current flows through the sampling resistor, will produce 3V voltage drop, which is consistent with the gain 3.04 K of the circuit. Therefore, the voltage magnitude of this point can be shot through the N6 to the bus with the device plug, used for system testing. Debug state in the system, the relay's normally open contacts K3 connected, power amplifier current through the "dummy load" resistor R17 to resistor R18 constitute a sampling circuit, to avoid large currents in the debugging process the impact on the valve coil. OPA551 amplifier used in the system for the Burr Brown products, their characteristics and performance parameters associated with the following: z Wide supply voltage: V 4r to V30r z Output drive capability: the ability to 200mA continuous output current; z Low noise: Hz nV /14;z full protection: thermal shutdown and output current limiting;z thermal shutdown instructions; z High slew rate: s VP /15;z unity gain bandwidth: 3MHz;zWide Temperature Working: -40 ° C to 125 ° C.REF02 chip provide precision reference source and the N14, N15 chips (OP07) together constitute the baseline power output to zero potentiometer for zero adjustment of the system. D1 (74LS04), D2 (74LS32), D3 (74LS11) is part of digital logic circuits. It is based on the commands on the bus to transform the state, the control circuit to work. When you load the software, such as closed-loop channel command is active (low voltage), D1: A high output, then load the channel if there is no alarm and emergency signal, D3: A will output high level, so that the work of three tubes V7 and drive the relay K1, to make contact K1-1 closes, the software will load the channel53420116th IEEE Conference on Industrial Electronics and Applicationsswitching to the closed state. If the event of an alarm or emergency, the circuit will immediately release the relay K1, the system switches to the hardware loop state.IV.E XPERIMENT AND PID PARAMETERS ADJUSTMENTServo loading station computer system is another core system; the task is monitoring the conduct of tests, including binding experiments, control, and monitoring, experimental data processing. Loading system used in the computer system is essentially a real-time monitoring and control system. Therefore, in the design of the system, not only to consider the control issues, but also on information display, data storage and processing, and many other tasks, the most important thing is to meet the requirements of real-time systems. And the need to take into account the real-time acquisition and processing of data, this design uses a dual CPU of the IPC to complete.The hardware of the computer system is a dual-CPU IPC and its accompanying multi AD, DA, and DIO cards. The key technology of computer control system parameters are: CPU speed, word length; memory capacity; A/D, D/A converter bits long, the system sampling frequency.System work is divided into two ways. A closed-loop hardware torque, the other one is computer-controlled closed-loop torque by way of instruction.Closed-loop mode in the hardware, the system does not accept command torque, is based on zero moment way. Integrated amplifier from the amplifier output to receive the torque from the torque feedback signal. Through the closed-loop converter, preamplifier, power amplifier control valves and motor components of PQ valve to follow the steering movement of loading system, constitute the system's zero-torque loop. Closed-loop mode in the hardware, the system is based on a simple way to control the ratio. Control accuracy is not high, but because of its simple structure, high reliability, so it usually runs on two conditions: First, the system boot and this time before a simulation run, the system has been in the hardware loop work; Second, When unexpected situations arise at work into the emergency in order to protect the security of steering the system from the closed-loop control into the hardware, computer software, closed-loop zero-torque work, the loader not to steering force, freedom of movement in the steering gear is equivalent to state.Closed-loop control software in the computer mode, on the one hand to receive the computer by DIO given steering angle encoder position signal, with instructions to calculate the load torque gradient signal; the other hand, computer acquisition given by the torque sensor torque feedback angle encoder signals and the angular velocity signal is given, together with them and the command torque signal through the control signal calculated by the D/A output, after a closed-loop converters, preamplifier, power amplifier control valves and motor components of movement PQ valve, and through the torque sensor, torque by torque feedback signal amplifier to form a closed loop torque, so that the loader according to instructions to apply torque to the steering gear, to achieve torque servo load.Post-processing of data using sophisticated and powerful processing software GV32, it calls the data generated by each module files (extension. Fig files), and the curve displayed in the work area. The default setting in the horizontal axis is time, vertical axis means different things depending on the signal distinction. With the data in the G V32 transferred, display, zoom, and data processing and printing. G V32 softwareinterface is shown in Figure 3.Fig. 3 GV32 software GUIUsing PQ valve, Model HY141-0205, the standard sine signal amplitude 20deg, 1Hz. PID control parameters are different the actual angle tracking standard sine curve results as shown in Figure 4. Not specified, 1 is the standard sine curve; Curve 2 in the control of PID parameters Kp = 1.0 Ti = 5 cases by the actual angle of the curve; Curve 3 in the control PID parameters Kp = 1.0 Ti = 10 in obtained under the curve of the actual angle; curve 4 in the control of PID parameters Kp = 0.8 Ti = 10 received the case of the curve of the actual angle; curve 5 in the control of PID parameters Kp = 0.6 Ti = 10 in obtainedunder the curve of the actual angle.Fig. 4 PID controlled loading torqueV.CONLUSIONAt last a summary of my paper is made to the readers as follows:(1) Design the Electro-Hydraulic Servo Loading System (EHSLS) and the electric subsystem. Use the PQ servo valve in the system.20116th IEEE Conference on Industrial Electronics and Applications535(2) Write the code for computer control system. Debugthe hardware and software.(3) Adjust the parameters by PID control theory.(4) Do experiments on EHSLS and analyze the data andresults.R EFERENCES[1]Shang Yaoxing, Jiao Zongxia, Wang Shaoping, et al. Dynamic robustcompensation control to inherent high-frequency motion disturbance onthe electro-hydraulic load simulator. International Journal of ComputerApplications in Technology, August 2009,Volume 36, p117-124.[2]Li Jian-Ying, Shao Jun-Peng, Han Gui-Hua, et al. Study of the electro-hydraulic load simulator based on flow-press servo valve and flow servovalve parallel control. 2009 International Conference on IntelligentHuman-Machine Systems and Cybernetics, Volume 2, p70-74.[3]Lloyd, Alastai. Exploiting the instrumentation amplifier, ElectronicProduct Design. December 1993, Volume 14, p43-44.[4][EB/OL]/docs/prod/folders/print/ina121.html.[5][EB/OL]/docs/prod/folders/print/ref02.html.[6][EB/OL]/lit/ds/symlink/opa552.pdf53620116th IEEE Conference on Industrial Electronics and Applications。