小升初数学相遇问题专题(含解析)
小升初数学相遇问题习题及答案

小升初数学相遇问题习题及答案一.选择题(共3小题)1.A,B两地的铁路长660千米,甲、乙两列火车分别从A,B两地同时出发,相向而行,甲车每时行驶60千米,乙车每时行驶72千米。
相遇地点距离中点()千米。
A.300B.360C.60D.302.如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发,相向行走,他们在距A点80米处的C点第一次相遇,接着又在距B点60米处的D点第二次相遇.那么,这个圆的周长是()米.A.140B.240C.180D.3603.如图,甲、乙两人沿着边长为90米的正方形,按A→B→C→D→A…方向,甲从A以65米/分的速度,乙从B以72米/分的速度同时行走,当乙第一次追上甲时在正方形的()A.AB边上B.DA边上C.BC边上D.CD边上二.填空题(共11小题)4.如图,甲、乙两人分别从A、B两地同时出发相向而行,20分钟后在C地相遇。
根据图中信息,我知道:20×=30005.甲车从A城市到B城市要行驶3小时,乙车从B城市到A城市要行驶5小时。
两车同时分别从A城市和B城市出发,相向而行,小时后相遇。
6.甲、乙两人骑车同时分别从A、B两地相对出发,甲每小时行16千米,乙每小时行14千米,两人在距中点2千米处相遇,那么A、B两地的距离是千米.7.小明和小刚在广场四周跑步.小明跑一圈用6分钟,小刚跑一圈用9分钟.如果两人同时从同一地点出发,背向而行,至少分钟后两人相遇;如果两人同时从同一地点出发,同向而行,至少分钟后两人在起点相遇.8.某教授每天按固定的时间从家去学校上班,司机也按时从单位开车去接他。
一天教授提前出门,沿着汽车路线前行,行了10分钟遇到接他的汽车,然后乘车前往单位,结果比平时早到2分钟。
教授步行速度是汽车速度的。
9.AB两地相距240千米,同一时刻,甲车从A地出发,乙车丙车从B地出发,乙车的速度为10千米每小时,经过8小时后乙车与甲车相遇,要让丙车再过两个小时后与甲车相遇,那么丙车的速度应该为千米每小时.10.甲乙两人分别从相距10千米的A,B两地同时出发相向而行,他们在距A,B中点1千米处相遇.如果甲晚5分钟出发,则正好在中点相遇,此时甲行了分钟.11.A、B两地相距470千米,乙车以每小时40千米的速度,甲车以每小时46千米的速度先后从两地出发,相向而行,相遇时甲车行驶了230千米,则乙车比甲车早出发小时.12.东辰培训学校离人民公园有A、B、C三个站点,B站在A与C站之间,A与B相距1000米,东东和辰辰两人同时分别从A和B点出发向C点行进,出发后第20分钟,东东、辰辰两人离B点距离相等,第50分钟东东和辰辰两人在C点相遇,东辰培训学校离人民公园的距离是.13.三个老人绕圆形广场散步,甲行一圈要12分钟,乙行一圈要10分钟,丙行一圈要15分钟,三人同时自起点同向出发,分钟三人再在起点相遇,相遇时甲行了圈.14.学校和工厂的距离为300千米,一辆卡车和轿车同时从学校出发,轿车每小时行90千米,卡车每小时行60千米,轿车到达工厂后立刻返回,则再行千米之后和卡车相遇。
小升初数学相遇问题专题(含解析)

小升初数学专题(相遇问题)教学目标:1、会分析简单实际问题的数量关系,提高用方程解决简单实际问题的能力2、培养用方程解决问题的意识3、掌握运动中的物体,速度、时间、路程之间的数量关系,会根据此数量关系解答相向运动中求相遇时间的实际问题复习检查:此版块适用于除首课之外的课程设计,授课教师可灵活采用各种方式对学生上节课所学知识掌握情况进行效果检查。
如:放置需要学生作答的笔试题目或需要口头作答的提问。
1、数一数右图中总共有多少个角?÷⨯(个)11=551022、数一数图中长方形的个数分析:长边线段有:6×5÷2=15宽边线段有:4×3÷2=6共有长方形:15×6 = 90(个)答:共有长方形90个。
3、数一数图中有多少个正方形(其中每个小方格都是边长为1个长度单位的正方形)正方形总数为:551122334455=⨯+⨯+⨯+⨯+⨯(个)4、五年级甲,乙,丙,丁四个足球队举行了一次足球比赛,比赛成绩公布如下:甲队两胜一负,乙队三战全胜,丙队一胜两负。
已知每两队都要比一次塞,问:丁队比赛结果如何?丁全负根据这节课预设的教学目标设计题目,检测学生对相关知识点的掌握情况,精准定位学生的问题所在,以确定后面的针对性讲解的重点。
1、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,4小时后还相距20千米”?两地相距多少千米?()4202046040=+⨯+(千米)2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,?经过3小时相遇。
相遇时两车各行了多少千米?甲:120340=⨯(千米) 乙:180360=⨯(千米)3、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,?经过3小时相遇。
乙车行完全程要多少小时?()56036040=÷⨯+(小时)4、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米?20223126=-÷(千米/时)根据问题定位部分的题目,对学生可能出现的错误进行原因分析。
小升初相遇问题专项整理

小升初相遇问题专项整理一.解答题1.甲、乙两地相距294千米,一辆客车和一辆货车先后从两地出发,相向而行.货车先开出0.5小时后客车开出,已知货车每小时行60千米,客车的速度是货车的1.2倍.客车开出几小时后两车相遇?2.一天,熊猫胖胖和小白兔分别开着甲、乙两车从相距800千米的两地同时出发相向而行,甲车每小时行52千米,乙车每小时行48千米。
(1)几小时后两车还相距200千米?(2)几小时后两车相遇?(3)几小时后两车相遇后又相距400千米?3.小刚家住在公园的正南方向1300m处,小林家住在公园的正北方向1400m处。
周末两人约好下午3时到公园游玩。
两人下午2:30同时从家里出发走向公园。
小刚每分钟步行70m,小林每分钟步行65m。
2:45两人能在公园相遇吗?如果小刚先到公园后不停留继续向北走,从出发到两人相遇用了多长时间?相遇地点距离公园有多远?4.甲乙两站相距360千米.客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米,客车到乙站后停留0.5小时,又以原速返回甲站,两车对面相遇的地点离乙站多少千米?5.小明家住在电影院的正西1000米,小冬家住在电影院的正东1200米。
周末两人约好去看下午3时放映的电影。
两人下午2:35同时从家里出发走向电影院。
小明每分钟步行60米,小冬每分钟步行50米。
两人约定相遇后才一起去电影院,从出发到两人相遇用了多长时间?要想准时观看电影他们相遇后一起步行的速度至少是多少?6.客车、货车分别从甲、乙两地出发相向而行。
如果两车都在6:00出发,那么会在11:00相遇,如果客车和货车分别于7:00和8:00出发,那么会在12:40相遇,现在客车和货车分别于10:00和8:00出发,它们将在什么时候相遇?7.甲、乙、丙三人往返于A、B两地.甲从A地出发,丙同时从B地出发,30分钟后乙也从B出发,乙出发3小时后与甲相遇,又过了1小时,甲和丙才相遇.已知甲的速度是每小时12千米,乙的速度是丙速度的2倍,求A、B两地的距离和乙的速度.8.环形跑道400米,小百、小合背向而行,小百速度是6米/秒,小合速度是4米/秒,当小百碰上小合时立即转向跑,小合不改变方向,小百追上小合时也立即转向跑,小合仍不改变方向,问两人第11次相遇时离起点多少米?(按较短距离算,追上和迎面都算相遇)9.甲、乙两人分别从A、B两地同时出发,6小时后相遇在中点,如果甲延迟1小时出发,乙每小时少走4千米,两人仍在中点相遇,请问:甲、乙两地相距多少千米?10.宜宾到重庆沿长江的水路航程约为372千米,两艘轮船同时从重庆和宜宾相对开出。
小升初奥数数学专题---相遇问题试卷(含答案)

小升初奥数数学专题---相遇问题试卷(含答案)此版块适用于除首课之外的课程设计,授课教师可灵活采用各种方式对学生上节课所学知识掌握情况进行效果检查。
如:放置需要学生作答的笔试题目或需要口头作答的提问。
1、数一数右图中总共有多少个角?11=⨯(个)÷105522、数一数图中长方形的个数分析:长边线段有:6×5÷2=15 宽边线段有:4×3÷2=6共有长方形:15×6 = 90(个)答:共有长方形90个。
3、数一数图中有多少个正方形(其中每个小方格都是边长为1个长度单位的正方形)正方形总数为:551122334455=⨯+⨯+⨯+⨯+⨯(个)4、五年级甲,乙,丙,丁四个足球队举行了一次足球比赛,比赛成绩公布如下:甲队两胜一负,乙队三战全胜,丙队一胜两负。
已知每两队都要比一次塞,问:丁队比赛结果如何?丁全负根据这节课预设的教学目标设计题目,检测学生对相关知识点的掌握情况,精准定位学生的问题所在,以确定后面的针对性讲解的重点。
1、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,4小时后还相距20千米” 两地相距多少千米?()4202046040=+⨯+(千米)2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米, 经过3小时相遇。
相遇时两车各行了多少千米?甲:120340=⨯(千米) 乙:180360=⨯(千米)3、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米, 经过3小时相遇。
乙车行完全程要多少小时?()56036040=÷⨯+(小时)4、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米?20223126=-÷(千米/时)根据问题定位部分的题目,对学生可能出现的错误进行原因分析。
小升初数学专项复习:相遇问题(含答案)

小升初数学专项复习:相遇问题一、填空题1.甲车从A城市到B城巿要行驶4小时,乙车从B城市到A城市要行驶6小时。
两车同时分别从A城巿和B城市出发,小时后相遇。
2.客车从甲城市到乙城市要4小时,货车从乙城市到甲城市要行驶5小时。
两车同时分别从甲城市和乙城市出发,小时后相遇。
3.甲、乙两辆汽车从相距660千米的东、西两地同时相对开出.甲车每小时行50千米,乙车速度是甲车的1.2倍.两车小时相遇?4.小明和小彬在400米长的环形跑道上练习跑步,小明每分钟跑360米,小彬每分钟跑280米,他们同时从起点出发,同向而跑,经过分钟后两人再次相遇.5.甲乙两地相距972km,一列火车从甲地开出,每小时行驶162km,另一列从乙地开出,每小时行驶108km.这两列火车同时开出,经过几小时相遇?可设经过x小时相遇,列方程是,求得x的值是.6.在比例尺1:3000000的地图上,甲、乙两地的距离是8cm,一辆客车和一辆货车同时从两地相对开出,经过3小时相遇,客车每小时行44km,货车每小时行km.7.甲和乙两人在A、B两地之间往返跑步,甲从A出发,乙从B出发,同时出发,相向而行,甲和乙的速度比为5:3,他们第一次相遇和第二次相遇的地点相距50m,则AB两地相距米. 8.甲、乙二人分别从一条笔直的公路上的A、B两地同时出发,相向而行,甲每分钟走60米,乙每分钟走48米,5分钟后两人相距20米,则A、B两地之间的距离为米。
9.一辆小轿车和客车同时从甲、乙两地相向而行,小轿车每小时行驶75km,客车的速度是小轿车的23。
相遇时,客车距中点还有25km,甲乙两地相距km。
10.甲乙两车分别从A、B两地同时出发,相向而行,4小时后两车相遇,然后各自继续行驶3小时。
此时甲车距离B地10千米,乙车距离A地80千米,那么A、B两地相距千米。
二、单选题11.甲、乙两车从A、B两地同时出发,相向而行。
如果甲车提前一段时间出发,那么两车将提前30分相遇。
小升初数学相遇问题专项练习题及答案

1、一列快车和一列慢车,同时从甲、乙两站出发,相向而行,经过6小时相遇,相遇后快车继续行驶3小时后到达乙站.已知慢车每小时行45千米,甲、乙两站相距多少千米?.解:45×6÷3=90(千米),90×(6+3)=810(千米);答:甲、乙两站相距810千米.2、甲、乙二人分别以每小时3千米和5千米的速度从A、B 两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达B地共行4小时,那么A、B两地相距多少千米?解:4×3÷5=2.4(小时)2.4×(3+5)=19.2(千米)3、一列快车从甲城开往乙城,每小时行65千米,一列客车同时从乙城开往甲城,每小时行60千米,两列火车在距中点20千米处相遇,相遇时两车各行了多少千米?解:(20×2)÷(65-60)=8(小时)65×8=520(千米)60×8=480(千米)答:相遇时快车行驶了520千米,慢车行驶了480千米.4、兄弟两人同时从家里出发到学校,路程是1400米。
哥哥骑自行车每分钟行200米,弟弟步行每分钟行80米,在行进中弟弟与刚到学校就立即返回来的哥哥相遇。
从出发到相遇,弟弟走了多少分钟?1400×2÷(200+80)=2800÷280=10(分钟)答:弟弟走了10分钟。
5、A、B两地相距38千米,甲、乙两人分别从两地同时出发,相向而行,甲每小时行8千米,乙每小时行11千米,甲到达B地后立即返回A地,乙到达A地后立即返回B地,几小时后两人在途中相遇?相遇时距A地多远?解:38×3÷(8+11)=6(小时)11×6-38=28(千米)答:6小时后两人在途中相遇?相遇时距A地28千米.6、甲、乙两人从A地到B地,丙从B地到A地.他们同时出发,甲骑车每小时行8千米,丙骑车每小时行10千米,甲丙两人经过5小时相遇,再过1小时,乙、丙两人相遇.求乙的速度.解:(8+10)×5÷(5+1)-10=18×5÷6-10=15-10=5(千米)答:乙每小时行5千米.7、甲、乙、丙三人行走的速度依次分别为每分钟30米、40米、50米.甲、乙在A地,丙在B地,同时相向而行,丙遇乙后10分钟和甲相遇.求A、B两地相距多少米?解:(30+50)×[(50×10+40×10)÷(40-30)]=7200(米)答:A、B两地相距7200米.8、甲、乙两车分别从A、B两地同时相对开出,经过5小时相遇,相遇后各自继续前进,又经过3小时,甲车到达B地,这时乙车距A地还有120千米.甲、乙两车的速度各是多少?解:[120-120÷(5+3)×3]÷(5-3)×(5+3)=[120-120÷8×3]÷2×8=75÷2×8=300(千米)300÷(5+3)=37.5(千米)(300-120)÷(5+3)=180÷8=22.5(千米)答:甲、乙两车的速度分别是37.5千米、22.5千米.9、甲、乙两人从相距1100米的两地相向而行,甲每分钟走65米,乙每分钟走75米,甲出发4分钟后,乙才开始出发.乙带了一只狗和乙同时出发,狗以每分钟150米的速度向甲奔去,遇到甲后立即回头向乙奔去,遇到乙后又回头向甲奔去,直到甲、乙两人相遇时狗才停止.这只狗共奔跑了多少路程?解:(1100-65×4)÷(65+75)×150,=6×150=900(米)答:这只狗共奔跑了900米.。
小升初数学相遇问题专题(含解析)

小升初数学相遇问题专题(含解析)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN小升初数学专题(相遇问题)教学目标:1、会分析简单实际问题的数量关系,提高用方程解决简单实际问题的能力2、培养用方程解决问题的意识3、掌握运动中的物体,速度、时间、路程之间的数量关系,会根据此数量关系解答相向运动中求相遇时间的实际问题复习检查:此版块适用于除首课之外的课程设计,授课教师可灵活采用各种方式对学生上节课所学知识掌握情况进行效果检查。
如:放置需要学生作答的笔试题目或需要口头作答的提问。
1、数一数右图中总共有多少个角÷⨯(个)11=551022、数一数图中长方形的个数分析:长边线段有:6×5÷2=15宽边线段有:4×3÷2=6共有长方形:15×6 = 90(个)答:共有长方形90个。
3、数一数图中有多少个正方形(其中每个小方格都是边长为1个长度单位的正方形)正方形总数为:551122334455=⨯+⨯+⨯+⨯+⨯(个)4、五年级甲,乙,丙,丁四个足球队举行了一次足球比赛,比赛成绩公布如下:甲队两胜一负,乙队三战全胜,丙队一胜两负。
已知每两队都要比一次塞,问:丁队比赛结果如何?丁全负根据这节课预设的教学目标设计题目,检测学生对相关知识点的掌握情况,精准定位学生的问题所在,以确定后面的针对性讲解的重点。
1、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,4小时后还相距20千米” 两地相距多少千米?()4202046040=+⨯+(千米)2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米, 经过3小时相遇。
相遇时两车各行了多少千米?甲:120340=⨯(千米) 乙:180360=⨯(千米)3、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米, 经过3小时相遇。
小学相遇问题大全例题解析11道练习题21道

相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。
这类应用题叫做相遇问题。
【数量关系】相遇时间=总路程÷〔甲速+乙速〕总路程=〔甲速+乙速〕×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1、甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,两人几小时后相遇.分析:相遇时间=路程和÷速度和=20÷〔6+4〕=2小时例2、甲乙两人分别从A、B两地同时出发相向而行,甲每小时行48千米,乙每小时行42千米,两车在离中点18千米处相遇,求AB两地间的距离分析:“两车在离中点18千米处相遇〞,由于甲的速度更快,说明他们相遇时,甲过了中点18千米,而乙离中点18千米,那甲比乙多走了18+18=36千米,一小时甲比乙多走48-42=6千米,我们就可以算出相遇时间:36÷6=6小时,再依公式路程和=速度和×相遇时间=〔48+42〕×6=540千米例3、甲乙两人同时从A到B地,甲每分钟行250米,乙每分钟行90米,甲到达B地后立即返回A地,在离B地1200米处与乙相遇,A、B两地相距多少千米.分析:画图,从图中我们可以知道,甲比乙多走了2个1200,甲每分钟比乙多走250-90=160米,我们就可以求出总共走了多少时间:2×1200÷160=15分钟,则A、B两地相距:250×15-1200=2550米例4、甲乙两车同时从A、B两地相向而行,在距A地60千米处第一次相遇,各自到达对方出发点后立即返回,途中又在距A 地40千米处相遇,A、B两地相距多少千米.分析:第一次相遇时,两车合走了一个全程,此时甲走了60千米第二次相遇时,两车合走了三个全程,甲应走了60×3=180千米,这时甲离A地还有40千米,加上这40千米,甲正好走了两个全程,所以一个全程应为:〔180+40〕÷2=110千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学专题(相遇问题)教学目标:1、会分析简单实际问题的数量关系,提高用方程解决简单实际问题的能力2、培养用方程解决问题的意识3、掌握运动中的物体,速度、时间、路程之间的数量关系,会根据此数量关系解答相向运动中求相遇时间的实际问题复习检查:此版块适用于除首课之外的课程设计,授课教师可灵活采用各种方式对学生上节课所学知识掌握情况进行效果检查。
如:放置需要学生作答的笔试题目或需要口头作答的提问。
1、数一数右图中总共有多少个角?5521011=÷⨯(个)2、数一数图中长方形的个数分析: 长边线段有:6×5÷2=15 宽边线段有: 4×3÷2=6共有长方形:15×6 = 90(个)答:共有长方形90个。
3、数一数图中有多少个正方形(其中每个小方格都是边长为1个长度单位的正方形)正方形总数为:551122334455=⨯+⨯+⨯+⨯+⨯(个)4、五年级甲,乙,丙,丁四个足球队举行了一次足球比赛,比赛成绩公布如下:甲队两胜一负,乙队三战全胜,丙队一胜两负。
已知每两队都要比一次塞,问:丁队比赛结果如何? 丁全负根据这节课预设的教学目标设计题目,检测学生对相关知识点的掌握情况,精准定位学生的问题所在,以确定后面的针对性讲解的重点。
1、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,4小时后还相距20千米” 两地相距多少千米?()4202046040=+⨯+(千米)2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米, 经过3小时相遇。
相遇时两车各行了多少千米?甲:120340=⨯(千米) 乙:180360=⨯(千米)3、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米, 经过3小时相遇。
乙车行完全程要多少小时?()56036040=÷⨯+(小时)4、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米?20223126=-÷(千米/时)根据问题定位部分的题目,对学生可能出现的错误进行原因分析。
【学科问题】1. 考纲要求:掌握路程问题的公式转换,熟练运用不同类型路程问题的解题方法2.学习目标:(1)了解相遇问题中的单次相遇,不同时间时间出发如何判断相遇总路程(2)有距离差异的相遇问题准确计算出路程差(3)环形相遇问题区分同向、反向的解题思路,路程和、路程差要学会判断(4)多次往返相遇的问题找准两人所走路程和与两地的距离倍数关系3.知识类型:陈述性知识/程序性知识(1)基本掌握路程=时间×速度(2)能根据题目找出时间、速度、路程这三个量的条件(3)知道基础的相遇问题,能掌握相遇时间×速度和=两地距离4.学习条件:(1)必要条件:熟悉公式,能找准条件(2)支持性条件(外部条件):会画线段图表示两地距离以及两人之间的运动过程5. 起点能力:初步掌握路程公式、相遇问题公式的计算【学生问题】1.心理发展:学段()稳定性()抽象()/具体()2.学习风格分析:视觉型()/听觉型()/动觉型()/混合型()场独立性()/场依存性()3.认知准备:(1)准确找出路程倍数关系(2)计算过程中如何找出路程差、速度差(3)相遇路程和=速度和×相遇时间的逆运用4.情感准备:内部动机:已准备好学习外部动机:教师选择合适的方法激发学习动机根据学生对各知识点的掌握情况,针对相关知识点进行详细讲解。
(学生掌握得很好的知识点可略过不讲。
)考点一:简单的一次相遇问题例题1A、B两地甲、乙两车同时相向而行,A、B相距500km,出发后5小时相遇,甲车速度是60km/h,乙车速度是多少km/h?-÷(km/h)40500=560考点二:有距离的相遇问题距中点x千米处相遇的问题使用公式:路程差÷速度差=相遇时间,这里的路程差是指2千米。
快的人过了中点后还多走x千米,所以他们两个的路程差是x例题2小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米。
两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离。
{中点相遇问题}()2÷-⨯(小时)4521=()19⨯(千米)+2=45考点三:出发时间不同时的相遇问题例题3甲、乙两列火车从相距470千米的两城相向而行,甲车速度38千米/时,乙车速度40千米/时,乙车先出发2小时,甲车才出发。
甲车行几小时后与乙车相遇?()()5+470=-(小时)⨯÷2384040考点四:环形中的相遇问题(1)环形跑道的同向追及,速度差,每相遇一次,路程差1圈。
距离差= 圈数×跑道长=速度差×时间时间=(圈数×跑道长)÷速度差速度差=(圈数×跑道长)÷时间(2)环形跑道反向碰头,速度和,每相遇一次,路程和等于1圈。
距离和=圈数×跑道长=速度和×时间时间=(圈数×跑道长)÷速度和速度和= (圈数×跑道长)÷时间例题4 小明和小亮在一个圆形湖边跑步,小明每分跑100米,小亮每分跑120米,他们同时从同一地点出发,相背而行,5分钟相遇。
湖周长是多少米?如果同时从同一地点出发,同向而行,几分钟后两人相遇?()1100⨯(米)5=+100120()55÷(分钟)-1001201100=考点五:折返多次的相遇问题再次相遇问题相当于环形跑道,跑道距离相当于2倍总路程如果到对方出发点都又返回,再次相遇,与第一次相遇相比,二次相遇所走的总路程相当于环形跑道的总路程,即2倍总路程和2倍时间。
再次相遇与第一次相遇相比,共走3倍的总路程,花费3倍的总时间。
以后每次相遇,总路程等于环形跑道的距离即2倍总路程。
规律就是1、3、5、7倍的总路程(时间)时相遇。
例题5 甲乙两人同时从两地出发,相向而行,两地相距72千米,甲每小时走5千米,乙每小时走4千米,狗每小时跑10千米,这只狗与甲一同出发,到乙的时候,掉头向甲跑,碰到甲又回头向乙跑,直到甲乙相遇,狗共跑了多少千米?()84572=+÷(小时)80108=⨯(千米)例题6 甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回)。
在出发后40分钟两人第一次相遇。
小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇。
问小张和小王的速度各是多少?解析:两人第一次相遇,共行一个全程,用时40分钟,第二次相遇,共行三个全程,所以时间为40×3=120(分钟)=2小时相遇。
小张走了两个全程减去2千米,小王走了一个全程多2千米。
小张的路程为:10226=-⨯(千米) 时间为:120340=⨯(分钟)=2小时 小张的速度为:5210=÷(km/h )小王的路程为:826=+(千米) 时间为:120340=⨯(分钟)=2小时小王的速度为:428=÷(km/h )提前对本节课的教学目标所涉及的所有知识点准备巩固练习,再根据学生的具体情况抽调相关题目进行巩固练习。
1、甲乙两地两车同时相向而行,甲乙相距520km ,5小时相遇,甲车比乙车快6km/h ,甲乙两车速度分别是多少?1045520=÷(km/h ) 甲车速度:()5526104=÷+(km/h )乙车速度:4955104=-(km/h )2、甲、乙两辆汽车同时从东、西两地相向出发,甲车的速度56千米/时,乙车速度48千米/时,两车离中点32千米处相遇。
求东西两地间距是多少千米?()84856232=-÷⨯(小时) ()83248568=+⨯(千米)3、两列火车从某站相背而行,甲车的速度是52千米/时,甲车先开出2小时后,乙车才开出,乙车速度是48千米/时,乙车开出5小时后,两列火车相距多远?()60454852252=⨯++⨯(千米)4、体育场的环形跑道长400米,小刚和小华在跑道的同一起跑线上,同时向相反方向起跑,小刚每分钟跑152米,小华每分钟跑148米。
几分钟后他们第3次相遇?()43148152400=⨯+÷(分钟)5、小张步行从甲村到乙村去,小李骑自行车以每小时15千米的速度从乙村到甲村去,他们同时出发,1小时后在途中相遇,他们分别继续前行,小李到达甲村后立即返回,在第一次相遇后40分钟,小李追上小张,他们又继续前行,当小李到达乙村后又立即返回,问追上后小李再行多少千米他与小张再次相遇?解析:从开始到第三次相遇用的时间为1×3=3(小时) 第二次到第三次相遇所用的时间是小时分钟小时小时3114013=-- 追上后小李与小张再次相遇所行的路程:2031115=⨯(千米)对本节课重点讲授的知识点进行总结和方法点拨。
行程问题总结相遇追及环形跑,清晰绘图很重要。
路程速度与时间,和差必定对应算。
复杂在于相等换,注意边界很简单。
1、A 、B 两地甲、乙两车同时相向而行, 出发后5小时相遇,甲车速度是60km/h ,乙车速度是40km/h ,甲乙两地距离是多少km ?()50040605=+⨯(千米)2、一列客车从甲站开往乙站,每小时行65千米,一列货车从乙站开往甲站,每小时行60千米,已知货车比客车早开出5分,两车相遇的地点距甲乙两站中点10千米,甲乙两站之间的距离是多少千米?560560=⨯(千米) ()()560655210=-÷+⨯(小时) ()630556065=+⨯+(千米)3、两列火车从两城同时相对开出,一列车的速度是40千米/时,另一列的速度是45千米/时,在途中先后各停车2次,每次15分钟,经过4小时两车相遇,两城相距多少千米?30215=⨯(分钟)=0.5(小时) 5.35.04=-(小时)()5.29745405.3=+⨯(千米)4、甲乙两人以匀速绕圆形跑道相向跑步,出发点在圆直径的两端。
如果他们同时出发,并在甲跑完60米时第一次相遇,乙跑一圈还差80米时俩人第二次相遇,求跑道的长是多少米?解析:两人第一次相遇,甲跑了60m ,那么第二次相遇时,甲要跑3个60m ,正好跑了环形跑道的一半过80米,所以减掉80m 就是跑道的一半。
()200280360=⨯-⨯(米)5、两名运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度每秒0.6米,他们同时分别从游泳池的两端出发,来回共游了10分,如果不计转身时间,那么这段时间内共相遇多少次?30130=÷(秒) 506.030=÷(秒) 经过150秒,两人同时到达两端530150=÷,350150=÷ 共相遇5次10分钟=600秒 4150600=÷有4个150秒,所以10分钟内的相遇次数为:2045=⨯(次)提前对本节课的教学目标所涉及的所有知识点准备相关题目,再抽调来进行检测。