(完整版)1.小升初数学行程问题专题总汇
小升初行程问题大全

例9 小英骑自行车从甲地到乙地,每小时行15千米。他出发1.2小时后,小玲乘汽车也从甲地出发,经过0.6小时追上的小英。汽车每小时行多少千米?
例10 两只轮船同地从甲、乙两港相对开出,客船每小时行42千米,货船的速度是客船的 。两只轮船在离甲、乙两港中点7千米处相遇。甲、乙两港间的距离是多少?
例14 甲、乙两车同时从A、B两地相对开出,40分钟相遇。相遇后以原速继续前进。乙车又经过5分钟到达A、B两地之中点。甲车每分钟行全程的几分之几?
例15 甲乙两列火车同时从两地相对开出,经过5小时在离中点30千米处相遇。快车每小时行60千米,慢车每小时行多少千米?
例16 一辆客车与一辆货车同时从A、B两地相对开出,经过6小时相遇,相遇后两车都以原速继续前进。以经过4小时客车到达B地,这时货车离A地还有188千米。A、B两地相距多少千米?
例17 甲、乙两车同时从A、B两城相向而行,6小时可以相遇。现在甲车从A城出发1小时后距B城210千米,乙车从B城出发1小时后距A城230千米。A、B两城相距多少千米?
例18 客、货两车分别从甲、乙两城同时出发相向而行,如果两车都按原定速度行驶,那么4小时相遇,现在两车都比原计划每小时少走15千米,结果5小时相遇。甲、乙两地相距多少千米?
例23 小华上学坐车,回家步行,在路上一共用90分钟,如果往返都坐车,全部行程只要30分钟。如果往返都步行,全部行程则需要多少时间。
例24 甲、乙二人同一天从北京出发到广州。甲每天行100千米,乙第一天行70千米,以后每天比前一天多行3千米。乙在出发后第几天追上甲?
例25 小建和小宏两人,从学校到少年宫,小建步行要30分钟,小宏步行要20分钟。如果小建离学校分钟后,小宏再出发,要走几分钟后才能追上小建?
小学数学30道“行程问题”专题归纳,公式+例题+解析!

小学数学30道“行程问题”专题归纳,公式+例题+解析!“行程问题”作为小学数学常用知识点之一,想必大家并不陌生。
然而面对各种古怪的命题陷阱,不少考生还是心内发苦,看不出解题思路,频频出错。
解答“行程问题”时,究竟该怎么做呢?“行程问题”离不开三个基本要素:路程、速度和时间。
这也是解题的关键所在!今天为大家分享一份行程问题资料,包含公式、例题和解析,有需要的为孩子收藏一下,希望对学习行程问题有帮助~题型公式行程问题核心公式:S=V×T,因此总结如下:当路程一定时,速度和时间成反比当速度一定时,路程和时间成正比当时间一定时,路程和速度成正比从上述总结衍伸出来的很多总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=(顺水速度-逆水速度)÷2船速=(顺水速度-逆水速度)×2两岸问题:S=3A-B,两次相遇相隔距离=2×(A-B)电梯问题:S=(人与电梯的合速度)×时间平均速度:V平=2(V1×V2)÷(V1+V2)5.列车过桥问题①火车过桥(隧道)火车过桥(隧道)时间=(桥长+车长)÷火车速度②火车过树(电线杆、路标)火车过树(电线杆、路标)时间=车长÷火车速度③火车经过迎面行走的人迎面错过的时间=车长÷(火车速度+人的速度)④火车经过同向行走的人追及的时间=车长÷(火车速度-人的速度)⑤火车过火车(错车问题)错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)⑥火车过火车(超车问题)错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?【解析】核心公式:时间=路程÷速度去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。
小升初数学专项 应用题练习:行程问题

1.甲、乙两车同时从A、B两城出发相向而行.甲每小时行60千米,乙每小时行50千米,出发2小时后乙车行了全程的37,A、B两城相距多少千米?50×2=100(千米)100÷37=7003(千米)答:A、B两城相距7003千米2.甲乙两地相距405千米,一辆汽车从甲地开往乙地,4小时行驶了180千米.照这样的速度,再行驶多少小时,这辆汽车就可以到达乙地?180÷4=45(千米)405﹣180=225(千米)225÷45=5(小时)答:再行驶5小时,这辆汽车就可以到达乙地3.甲、乙两车同时从A地开往B地,乙车6小时达到,甲车每小时比乙车慢8千米,因此比乙车迟到一小时达到.A、B两地间的路程是多少千米?8÷(16﹣17)=8÷142=336(千米)答:A、B两地间的路程是336千米4.甲乙两港相距120千米,一艘轮船从甲港驶往乙港用了5.5小时,返回时因为顺水比去时少用了1小时,求这艘轮船往返的平均速度.120×2÷(5.5+5.5﹣1)=24(千米);答:这艘轮船往返的平均速度是24千米5.甲乙两人从东西两地同时出发,相向而行,甲每分钟行75米,乙每分钟行的是甲的23,经过123小时相遇,求东西两地的距离是多少?123小时=100分钟 75×23=50(米) 75×100+50×100=7500+5000=12500(米).答:东西两地的距离是12500米.6.甲、乙两站相距620千米,一列客车从甲站开往乙站,同时一列货车从乙站开往甲站,经过5小时在途中相遇,已知货车每小时行55千米,客车每小时行多少千米?(列方程解)设客车每小时行x 千米,根据题意列方程得,55×5+5x=620275+5x=6205x=620﹣2755x=345x=69答:客车每小时行69千米7.在一幅比例尺为1:9000000的地图上量得A、B两地的距离是5厘米,如果有两辆汽车同时从A、B两地相对开出,速度分别为每小时行30千米和45千米,问两辆汽车经过几小时后相遇?A、B两地相距:5÷19000000=45000000厘米=450(千米),两车相遇时间:450÷(30+45)=6(小时).答:两辆汽车经过6小时后相遇.8.甲车从A地开往B地要10小时,乙车从B地开往A地要15小时,某日两车分别从两地同时相向开出,结果在距中点120千米处相遇.A、B两地相距多少千米?甲乙速度比(也就是路程比):15:10=3:2,相遇时甲车比乙车多行了全程的:35-25=15,相遇时甲车比乙车多行:120×2=240(千米),AB两地路程是:240÷15=1200(千米).答:A、B两地相距1200千米.9.龟兔赛跑,全程2000米,龟每分钟爬25米,兔每分钟跑320米.兔自以为速度快,在途中睡了一觉,结果龟到终点时,兔离终点还有400米,兔在途中睡了几分钟?2000÷25﹣(2000﹣400)÷320=80﹣1600÷320,=80﹣5,=75(分钟).答:兔子在途中睡了75分钟。
(完整版)小升初行程问题经典试题

一、相遇问题1、一列快车和一列慢车,同时从甲、乙两站出发,相向而行,经过6小时相遇,相遇后快车继续行驶3小时后到达乙站。
已知慢车每小时行45千米,甲、乙两站相距多少千米?2、甲、乙二人分别以每小时3千米和5千米的速度从A、B两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达B地共行4小时,那么A、B两地相距多少千米?3.一列快车从甲城开往乙城,每小时行65千米,一列客车同时从乙城开往甲城,每小时行60千米,两列火车在距中点20千米处相遇,相遇时两车各行了多少千米4、兄弟两人同时从家里出发到学校,路程是1400米。
哥哥骑自行车每分钟行200米,弟弟步行每分钟行80米,在行进中弟弟与刚到学校就立即返回来的哥哥相遇。
从出发到相遇,弟弟走了多少米?相遇处距学校有多少米?5、有两只蜗牛同时从一个等腰三角形的顶点A出发(如图),分别沿着两腰爬行。
一只蜗牛每分钟行2.5米,另一只蜗牛每分钟行2米,8分钟后在离C点6米处的P点相遇,BP的长度是多少米?6、甲、乙两人同时从A、B两地相向而行,相遇时距A地120米,相遇后,他们继续前进,到达目的地后立即返回,在距A地150米处再次相遇,AB两地的距离是多少米?7、A、B两地相距38千米,甲、乙两人分别从两地同时出发,相向而行,甲每小时行8千米,乙每小时行11千米,甲到达B地后立即返回A地,乙到达A地后立即返回B地,几小时后两人在途中相遇?相遇时距A地多远?10、甲、乙两人从A地到B地,丙从B地到A地。
他们同时出发,甲骑车每小时行8千米,丙骑车每小时行10千米,甲丙两人经过5小时相遇,再过1小时,乙、丙两人相遇。
求乙的速度。
11、甲、乙、丙三人行走的速度依次分别为每分钟30米、40米、50米。
甲、乙在A地,丙在B地,同时相向而行,丙遇乙后10分钟和甲相遇。
求A、B两地相距多少米?12、甲、乙两车分别从A、B两地同时相对开出,经过5小时相遇,相遇后各自继续前进,又经过3小时,甲车到达B地,这时乙车距A地还有120千米。
小升初数学行程问题专题总汇

小升初数学行程问题专题总汇行程问题(一)相遇问题(异地相向而行)三个大体数量关系:路程= 相遇时刻* 速度和(1)甲乙两人别离从相距20千米的两地同时动身相向而行,甲每小时走6千米,乙每小时走4千米.两人几小时后相遇?(2)甲乙两艘轮船别离从A、B两港同时动身相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,通过6小时两船在途中相遇.两地间的水路长多少千米?(3)一辆汽车和一辆摩托车同时别离从相距900千米的甲、乙两地动身,汽车每小时行40千米,摩托车每小时行50千米.8小时后两车相距多少千米?(4)甲乙两车别离从相距480千米的A、B两城同时动身,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时.两车动身后多少小时相遇?(5)甲车每小时行6千米,乙车每小时行5千米,两车于相隔10千米的两地同时相背而行,几小时后两人相隔65千米?(6)东西两镇相距20千米,甲、乙两人别离从两镇同时动身相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米.两人的速度各是多少?(二)追击问题(同向异速而行相遇)同向追及问题的特点是:两个物体同时沿同一方向运动,慢者在前面,快者在后面。
他们之间的距离不断缩短,直到快者追上慢者。
设V1 < V2 甲的速度为V1 乙的速度为V2 甲乙相距△S甲在乙前若同时同向而行当甲乙相遇即乙恰好追上甲时历时T则: △S + V1*T = V2*T它有三个大体的数量:追及时刻、速度差和路程差。
其大体的数量关系式是:追及时刻=路程差(即相隔路程)/速度差(快行速度-慢行速度)速度差=路程差/追及时刻路程差=速度差*追及时刻(1)小强和小英从相距80米的两地同时同向行走,小英在前面每分钟走50米,小强在后面每分钟走70米。
两分钟后小强和小英还相隔多少米?(2)甲、乙两艘轮船从相距60千米的码头同时动身相向而行,甲轮船每小时行驶25千米,乙轮船在后每小时行38千米,几小时后两轮船还相距21千米?(3)娟子和小平从相距140米的两地同时同向而行,小平在前每分钟走45米,娟子在后每分钟走65米,即分钟后娟子能够追上小平?(4)一辆汽车从甲地动身,速度是每小时50千米,在汽车开出1小时后,一辆摩托车以每小时75千米的速度从同一地址动身沿同一行驶线路去追这辆汽车,几小时能够追上?追上时距动身地的距离是多少?(5)甲、乙两车同时、同地动身去货场运货。
小升初数学专项题行程问题

小升初数学专项题行程问题- 行程问题是小学数学中的一个经典题型,也是中学数学中的常见题型。
它常常涉及到时间、速度、距离等概念,考察学生对这些概念的理解和运用能力。
下面是一个关于行程问题的例子:例题:小明骑自行车从A地到B地,全程120公里。
第一天他骑了3小时,剩余距离的3/4。
第二天他骑了4小时,剩余距离的1/3。
问小明第一天的平均速度和第二天的平均速度分别是多少?解析:首先,我们需要确定小明第一天和第二天所剩余的距离分别是多少。
设小明第一天所剩余的距离为x,那么根据题意,我们可以得到以下等式:3/4 * 120 = x解得 x = 90同理,设小明第二天所剩余的距离为y,那么根据题意,我们可以得到以下等式:1/3 * 120 = y解得 y = 40然后,我们可以利用速度=距离/时间的公式来计算小明第一天和第二天的平均速度。
第一天的平均速度 = 90 / 3 = 30公里/小时第二天的平均速度 = 40 / 4 = 10公里/小时所以,小明第一天的平均速度是30公里/小时,第二天的平均速度是10公里/小时。
通过这个例题,我们可以看到解决行程问题的关键在于确定所剩余的距离,并利用速度=距离/时间的公式来计算平均速度。
除了这个例题,行程问题还有很多其他的变形。
例如,给定两个地点之间的距离和速度,求到达目的地所需的时间;或者给定两个地点之间的距离和时间,求平均速度等等。
这些问题都要求学生能够熟练地应用相关的公式和概念来解决。
行程问题不仅在小学数学中经常出现,而且在高中数学和大学数学中也有所涉及。
因此,通过解决这类问题,可以帮助学生建立起对时间、速度、距离等概念的深入理解,为以后更复杂的数学问题打下坚实的基础。
小升初行程问题试题及答案

小升初行程问题试题及答案一、选择题1. 小明和小华同时从甲地出发去乙地,小明的速度是每小时5公里,小华的速度是每小时4公里。
如果两人同时到达乙地,那么小华比小明多用了多少时间?A. 1小时B. 2小时C. 3小时D. 4小时答案:B2. 一辆汽车从A地出发前往B地,速度为每小时60公里。
如果汽车在行驶了一半的路程后速度提高到每小时80公里,那么汽车全程的平均速度是多少?A. 60公里/小时B. 66.7公里/小时C. 72公里/小时D. 80公里/小时答案:B二、填空题3. 小丽和小芳相距1200米,两人同时从各自的位置出发相向而行,小丽的速度是每分钟50米,小芳的速度是每分钟40米。
请问两人几分钟后相遇?_______________________答案:15分钟4. 一艘船顺流而下,速度为每小时20公里;逆流而上时,速度为每小时15公里。
那么这艘船在静水中的速度是多少?_______________________答案:17.5公里/小时三、解答题5. 甲乙两地相距120公里,一辆汽车从甲地出发前往乙地,前一半的路程速度为每小时40公里,后一半的路程速度为每小时60公里。
请问汽车全程用了多少时间?解答:首先,我们需要计算前一半和后一半的路程各是多少。
甲乙两地相距120公里,所以前一半的路程是60公里,后一半的路程也是60公里。
接下来,我们计算前一半路程所用的时间。
汽车以每小时40公里的速度行驶60公里,所需时间为:时间 = 路程 / 速度 = 60公里 / 40公里/小时 = 1.5小时同样,我们计算后一半路程所用的时间。
汽车以每小时60公里的速度行驶60公里,所需时间为:时间 = 路程 / 速度 = 60公里 / 60公里/小时 = 1小时最后,我们将两段时间相加,得到汽车全程所用的时间:总时间 = 1.5小时 + 1小时 = 2.5小时答:汽车全程用了2.5小时。
四、应用题6. 小明和小华参加一个户外徒步活动,他们从同一起点出发,小明每分钟走80米,小华每分钟走70米。
小升初数学行程问题精选及详解

试题习题、尽在百度小升初数学行程问题精选及详解1、羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30米,马开始追它.问:羊再跑多远,马可以追上它?解:根据“马跑4步的距离羊跑7步”,可以设马每步长为7x米,则羊每步长为4x米.根据“羊跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则羊跑5*4x=20米.可以得出马与羊的速度比是21x:20x=21:20根据“现在羊已跑出30米”,可以知道羊与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是30÷(21-20)×21=630米2、甲乙辆车同时从 a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求 a b 两地相距多少千米?答案720千米.由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份.又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米.所以算式是(40+40)÷(10-8)×(10+8)=720千米.3、在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?答案为两人跑一圈各要6分钟和12分钟.解:600÷12=50,表示哥哥、弟弟的速度差600÷4=150,表示哥哥、弟弟的速度和(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数600÷100=6分钟,表示跑的快者用的时间百度文库:精选试题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学行程问题专题总汇
(一)相遇问题(异地相向而行)
三个基本数量关系:路程= 相遇时间⨯速度和
(1)甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米.两人几小时后相遇?
(2)甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇.两地间的水路长多少千米?
(3)甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时.两车出发后多少小时相遇?
(4)甲车每小时行6千米,乙车每小时行5千米,两车于相隔10千米的两地同时相背而行,几小时后两人相隔65千米?
(5)东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米.两人的速度各是多少?
(二)追击问题(同向异速而行相遇)
同向追及问题的特点是:两个物体同时沿同一方向运动,慢者在前面,快者在后面。
他们之间的距离不断缩短,直到快者追上慢者。
设V1 < V2 甲的速度为V1 乙的速度为V2 甲乙相距△S
甲在乙前若同时同向而行当甲乙相遇即乙刚好追上甲时
用时T
则: △S + V1⨯T = V2⨯T
它有三个基本的数量:追及时间、速度差以及路程差。
其基本的数量关系式是:
追及时间=路程差(即相隔路程)/速度差(快行速度-慢行速度)
速度差=路程差/追及时间
路程差=速度差 追及时间
(1)小强和小英从相距80米的两地同时同向行走,小英在前面每分钟走50米,
小强在后面每分钟走70米。
两分钟后小强和小英还相隔多少米?
(2)甲、乙两艘轮船从相距60千米的码头同时出发相向而行,甲轮船每小时行
驶25千米,乙轮船在后每小时行38千米,几小时后两轮船还相距21千米?
(3)一辆汽车从甲地出发,速度是每小时50千米,在汽车开出1小时后,一辆
摩托车以每小时75千米的速度从同一地点出发沿同一行驶路线去追这辆汽车,几小时可以追上?追上时距出发地的距离是多少?
(4)甲、乙两车同时、同地出发去货场运货。
甲车每小时行64千米,乙车每小
时行48千米。
途中甲车因出故障,停车修理3小时,结果乙车比甲车早1小时到达货场,问出发地到货场的路程是多少千米?
(三)环形跑道问题
环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
(1)一条环形跑道长400米,小强每分钟跑300米,小星每分钟跑250米,两人同时同地同向出发,经过多长时间小强第一次追上小星?
(2) 光明小学有一条长200米的环形跑道,亮亮和晶晶同时从起跑线起跑.亮亮每秒跑6米,晶晶每秒跑4米,问:亮亮第一次追上晶晶时两人各跑了多少米?
(3) 一环形公路周长是24千米,甲乙两人从公路上的同一地点同一时间出
发,背向而行,3小时后他们相遇。
已知甲每小时比乙慢0.5千米,求甲、乙两人速度各是多少?
(四)顺风顺水问题
顺风实际速度= 交通工具速度+ 风速
逆风实际速度= 交通工具速度- 风速
逆水同上
(1) 一艘轮船的静水速度为每小时18千米,水流速度为每小时3千米,这艘船从相距3.15千米的两个港口间来回一趟至少需要多少小时?
(2) 一架飞机在两城之间飞行,风速为24千米/时。
顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的航速和两城之间的航程。
(3) 两码头相距360千米,一艘汽艇顺水航行行完全程要9小时,逆水航行完全程要12小时。
这艘船在静水中的速度是多少千米?这条河水流速是多少千米?、
(五)火车过桥问题
(1)一列匀速行驶的火车通过800米长的隧道用时50s,通过600米长的大桥用时40s,求这列火车的长度为多少米?列车的速度为多少km/h?
(2)有一列客车长190米,另有一列货车长290米。
客车的速度与货车的速度比为5:3,已知它们同向行驶时,两车交叉时间为1分钟,问:它们相向行驶时,两车交叉的时间是多少?。