酰基化反应
酰基化反应

酰基化反应酰基化反应是一种重要的有机反应,它可以使一种受体物(称为底物)在另一种物质(称为试剂)的作用下活化,并生成一种新的物质(称为产物)。
酰基化反应是一种多步的反应,大多是共价交换反应,由水中的负离子水解法得到反应物。
酰基化反应的底物可以是单碳酸酯或双碳酸酯,可以是氧化物,如醛、醛、酸、醇和羧酸,也可以是酯和键反应。
其中,最常见的是由醛和醇反应形成酰基化反应。
在这种反应中,醛与醇在水介质中通过双价交换反应形成双价酰基化物,它可以用底物与试剂开环而成。
酰基化反应是一种常见的有机反应,它在有机合成中起着重要作用,主要用于合成醇酸酯、醇醛酯、醇酰胺酯、多环芳香酮、多环烷醇、多环萜烯等物质。
它也可以用来制备有机酸、有机氨基酸、有机碱、多环芳香族化合物等物质。
酰基化反应还可用来制备共轭体系,如低卤代物、酯体系等物质。
酰基化反应的反应条件一般要求:①反应温度一般为常温或高温;②反应时间一般在1小时以内;③反应时,通常需要存在一定量的水以及合适的盐类;④反应物质中含有一定数量的酸或碱。
酰基化反应的反应机理一般分为三步:第一步,活化受体物,通过酸、碱的官能化作用将受体物活化,形成所谓的活化受体物;第二步,共价交换反应,试剂将活化受体物中的某一原子脱去,并把它官能化,形成新化合物;第三步,酰基化反应,活化试剂与活化受体物中的另一原子发生双价交换反应,形成新化合物,实现酰基化反应。
虽然经常运用于实际应用,但酰基化反应对环境的影响却不可忽视,如水中残留的酸或碱可能对水体引起污染。
因此,针对酰基化反应的反应条件必须进行改善,以尽量减少对环境的不良影响。
总之,酰基化反应是一种重要的有机反应,在有机合成中起着重要作用,但也可能污染环境,所以必须通过改善反应条件来控制以免对环境造成污染。
酰基化反应

NH2
NH2HCl
N=C=O
RNH2
2010-9-20
3
——应用 异氰酸酯是合成树脂的重要原料。例:甲苯二异氰酸酯 (TDI)与二元醇作用,可得聚氨基甲酸酯(聚氨酯树脂)
CH 3 N CO
2
CH 3 O CN HO(CH )nOH 2
CH 3 N CO
+
N CO
NH COO(CH )nOO CNH 2 CH 3 CH 3 NH CO--
4 3 2
COOH CH3 S SO3H 2-噻 噻 噻 吡 或 噻 噻 α- 噻 吡 N 3-吡 吡 吡 吡 或 吡 吡 γ-吡 吡 OH 8-羟 羟 羟 羟
14
H3C
5
O
1
N
2,5-二 羟 二 吡 二 或 α,α ˊ 吡 二 -二 羟 二
2010-9-20
15.10.2 杂环化合物的结构
——在呋喃、噻吩、吡咯和吡啶中,成环的碳原子和杂原子都在 一个平面内,且每一个原子都是sp2杂化,未参与杂化的p轨道相互 平行,形成一个与苯环结构相似的六电子闭合共轭体系,具有芳香 性。具有代表性的三个杂环化合物的结构
4
磺酰化——兴斯堡反应(Hinsberg reaction)。
——伯、仲胺与芳磺酰化试剂(可引入芳磺酰基ArSO2-的试剂)作 用生成磺酰胺,叔胺无此反应。伯胺磺酰化产物可溶于碱,仲胺磺 酰化的产物不溶于碱、酸 ——应用 常用于鉴别或分离伯、仲、叔胺:使伯、仲、叔胺的混 合物与磺酰化试剂在碱溶液中作用,析出的固体为仲胺的磺酰胺, 叔胺可蒸馏分离,余液酸化后,可得伯胺的磺酰胺。伯、仲胺的磺 酰胺在酸中水解可分别得到原来的胺。此法称兴斯堡试验法
2010-9-20
16
精细有机合成技术:酰基化反应

用AlCl3作催化剂的C-酰化一般可以在不太高的温度下进行反应,温度太高会引起 副反应甚至会生成结构不明的焦油物。AlCl3的用量一般要过量10%~50%,过量太多 将会生成焦油状化合物。
3. 用其它酰化剂的C-酰化 对于芳香族化合物如果芳环上含有羟基、甲氧基、二烷氨基、酰氨基。在C酰化时会发生副反应,为了避免副反应的发生,通常选用温和的催化剂,例如无 水氯化锌,有时也选用聚磷酸等。如间苯二酚与乙酸的反应:
生成的2,4-二羟基苯乙酮是制备医药的中间体。
第三节 C-酰化
三、生产实例 1. 米氏酮的合成 米氏酮又称4,4-双(二甲氨基)二苯甲酮,由N,N-二甲基苯胺与光气反应制得。
③另外加入适当的溶剂。当不宜采用某种过量的反应组分作溶剂时, 就需要加入另外的适当溶剂。常用的有机溶剂有硝基苯、二氯乙烷、四 氯化碳、二硫化碳和石油醚等。
第三节 C-酰化
硝基苯能与三氯化铝形成络合物,该络合物易溶于硝基苯而呈均相。但是 该络合物的活性低,所以只用于对AlCl3催化作用敏感的反应。
二硫化碳不能溶解三氯化铝,因此是非均相反应。另外,二硫化碳不稳定 而且常含有其它的硫化物而有恶臭,因此只用于需要温和条件的反应。
第Hale Waihona Puke 节 C-酰化2.C-酰化的影响因素 (1)被酰化物结构的影响 C-酰化属于傅列德尔-克拉夫茨(Friedel-Crafts)
反应,该反应是亲电取代反应 。因此,当芳环上有供电子基(—CH3、— OH、—OR、—NR2、—NHAc)时反应容易进行。因为酰基的空间位阻比较大, 所以酰基主要进入芳环上已有取代基的对位。当对位已被占据时,才进入邻位。 氨基虽然也是活化基,但是它容易发生N-酰化,因此在C-酰化以前应该先 对氨基进行过渡性N-酰化加以保护。
酰基化反应介绍

一、酰基化反应介绍 二、酰基化试剂
第一节 概述
一、酰基化反应介绍
1. 研究意义: (1) 在羟基或氨基等官能团上引入酰基后可改变原化合物性质和功能。如 染料的染色性能和牢度指标有所改变,药物分子中引入酰基可改变药性; (2)可用来保护氨基,反应完成后再将酰基水解去掉。
如:在苯胺上引入硝基时,我们一般用苯胺与混酸发生亲电取代反应即 可。但苯胺非常易被氧化,甚至空气中的氧气就能将无色透明的苯胺液体在 几个小时内氧化成黑色的苯醌染料,混酸更是一种强氧化剂,所以必须先将 氨基保护起来才能用混酸硝化。 O
O O H C OH H3C O C OH 苯 甲 酰基 C OH
甲 酰基
乙 酰基
或羧酸 C 酰基化反应,C原子上的H被酰基取代生成醛、酮 3. 分类: N原子上的H被酰基取代生成酰胺 N 酰基化反应,氨基 O 酰基化反应,O原子上的H被酰基取代生成酯,又 称为酯化反应
★二、酰基化试剂
★ 二、N-酰化方法
2. 用酸酐的N-酰化
NO 2 NCH 3
O
O O C CH 3
H 2SO4
NO 2
O
N C CH 3+ NhomakorabeaH 3C
C
CH 3
+ CH 3COOH
H
反应不可逆。最常用的酸酐是乙酸酐,它的酰化活性较高,在20℃~ 90℃时反应即能顺利完成。 对于二元胺类,如果希望只酰化其中的一个氨基时,可以先用等物质 的量比的盐酸,使二元胺中的一个氨基成为盐酸盐,加以保护,然后再 按一般的方法进行酰化。
NH 2
NH 2
H-Cl
NH 2
NHCOCH 3
(CH 3CO) 2O - CH 3COOH
酰基化反应【精有机合成课件】

• 酮的酰基化 酮的酰基化
CH3CCH3
+ CH3COOC2H5
O
O
CH3CCH2CCH3
O
O
• 酯的酰基化 酯的酰基化
2 CH3COOC2H5
CH3CCH2COC2H5
• 1,3-二羰基化合物的酰基化 二羰基化合物的酰基化 • α-酰基化 酰基化 • γ -酰基化 酰基化
O
3 2
O O O CH3CCH2COC2H5
O
+ CH3COCl
CH3CCHCOC2H5 COCH3
O
2 5
O
O
O
+ CH3COCl CH CCH COC H
CH3C CH2CCH2COC2H5
催化剂
+
O RCCl COR
催化剂有Lewis和质子酸两类 Lewis酸比 催化剂有Lewis和质子酸两类,Lewis酸比 和质子酸两类, 质子酸强, 最常用。 质子酸强,AlCl3最常用。
JPU
本节课结束! 本节课结束!
谢谢! 谢谢!
由于反应后生成的芳酮与催化剂络合, 由于反应后生成的芳酮与催化剂络合,反应后需用水分 解。一般要将反应液倒入冰水中。 一般要将反应液倒入冰水中。
与F-C烷基化反应比较 烷基化反应比较
CH2CH2CH3
+ CH3CH2CH2Cl
CH(CH3)2 CH(CH3)2 (CH3)2CH
COCH2CH3
+ CH3CH2COCl
• 反应不可逆 , 如果是双氨基 , 只酰化一 反应不可逆, 如果是双氨基, 个的话, 用盐酸成盐。在酸催化下。 个的话,可用盐酸成盐。在酸催化下。
3、N-酰基化反应 、
酰基化反应

5.1 N—酰基化反应
6.酰基的水解 ➢酰胺在一定条件下可以水解,生成相应的羧酸和胺。
➢常用的简单酰基对水解的稳定性顺序为
5.2 C—酰基化反应
反应机理一般认为是甲酰胺与三氯氧磷生成加成物.然 后进一步离解为具有碳正离子的活性中间体,再对芳环 进行亲电取代反应,生成α— 氯胺后很快水解成醛。
5.2 C—酰基化反应
Vilsmeier反应是在N,N—二烷基苯胺、酚类、酚醚及 多环芳烃等较活泼的芳香族化合物的芳环上引入甲酰 基的最常用的方法。对多π电子的芳杂环如呋喃、噻吩、 吡咯及吲哚等化合物环上的甲酰化,该方法进行反应 也能获得较好的收率。
5.2 C—酰基化反应
一、芳环的碳酰化反应 1.Friedel—Crafts酰化反应(弗里德耳——克拉夫特)(付克反应)
➢定义:在三氯化铝或其他Lewis酸(或质子酸)催化下,酰化 剂与芳烃发生环上的亲电取代,生成芳酮的反应称为 Friedel—Crafts酰化反应。
5.2 C—酰基化反应
(1)反应机理 催化剂与酰化剂首先作用,生成酰基正离子活性中间体,进攻芳环上 电子云密度较大的碳,取代该碳上的氢,生成芳酮
➢应用:甲苯二异氰酸酯的制备
➢甲苯二异氰酸酯合成泡沫 塑料、涂料、耐磨橡胶和高 强度粘合剂的重要中间体。
5.1 N—酰基化反应
4.用二乙烯酮的N—酰化
➢二乙烯酮的制备
➢二乙烯酮与芳胺反应合成乙酰乙酰芳胺
5.1 N—酰基化反应
5.N—酰化终点的控制 ➢ 在芳胺的酰化产物中,未反应的芳胺能发生重
精细有机合成单元反应_05酰基化反应

6.羧酸盐与卤代烷的酯化
返回
5.3 O-酰基化(酯化)
• • • •
5.3.2 用酸酐的酯化
用酸酐酯化的方法主要用于酸酐较易获得的情况,如:乙酐、顺丁 烯二酸酐、丁二酸酐和邻苯二甲酸酐等。
1.单酯的制备
酸酐是较强的酯化剂,只利用酸酐的一个羧基制备单酯时,反应不 生成水,是不可逆反应,酯化可在较温和的条件下进行。酯化时可 以使用催化剂,也可不使用催化剂。酸催化的作用是提供质子。
•
一般来说,醇分子中有空间位阻时,其酯化速率和K值降低,即仲 醇的酯化速率和K值比相应的伯醇低一些。而叔醇的酯化速率和K 值相当低。苯酚由于苯环对羟基的共轭效应,其酯化速率和K值也 都相当低。 所以在制备叔丁基酯时,不用叔丁醇而改用异丁烯;在制备酚酯时, 不用羧酸而改用酸酐或羧酰氯作酯化剂。 2.酯化催化剂 对于许多酯化反应,温度每升高10℃,酯化速率增加一倍。因此, 加热可以增加酯化速率。 用羧酸进行酯化时,常加入强质子酸催化剂。氯化氢的催化作用最 强,但它的腐蚀性也很强。因此只用于制备氨基酸酯盐酸盐等。如:
O C O C O
R OH
O C OH C OR O
R OH
O C OR C OR O
H2O
•
第一步生成单酯非常容易,第二步由单酯生成双酯属于用羧酸的酯 化,需要较高的酯化温度,且要用催化剂。
返回
5.3 O-酰基化(酯化)
• •
5.3.3 用酰氯的酯化
用酰氯的酯化和用酰氯的N-酰化的反应条件基本相似。最常用的有 机酰氯是长碳链脂酰氯、芳羧酰氯、芳磺酰氯、光气、氨基甲酰氯、 氯甲酸酯和三聚氯氰等。 用酰氯进行酯化时,可以不加缚酸剂,释放出氯化氢气体。但有时 为了加速反应、控制反应方向或抑制氯烷的生成,需要加入缚酸剂, 常用的缚酸剂有:氨气、液氨、无水碳酸钾、氢氧化钠水溶液、氢 氧化钙溶液、吡啶、三乙胺、N,N-二甲基苯胺等。
酰基化反应的化学机制分析

酰基化反应的化学机制分析酰基化反应是有机合成中一种常见的反应类型,指的是在酸或碱的催化下,酸酐与醇或酚发生的酯化反应。
该反应具有广泛的应用,如可用于合成某些药物、香料、高分子材料等。
下面将对酰基化反应的化学机制进行详细分析。
一、反应机理酰基化反应是一类酯化反应,其发生的机理主要是通过酸酐和醇(或酚)之间的酯化反应来实现的。
具体反应机制如下:1.前期步骤:酸酐与催化剂生成酸酐催化剂复合物。
这里的催化剂可以使用硫酸、氢氯酸等强酸,也可以是路易斯酸类催化剂,如SnCl4、AlCl3、BF3等。
由催化剂与酸酐结合生成复合物之后,匹配到醇或酚的位置。
2.中间步骤:酸酐与醇发生酯化反应。
酸酐通过复合物的作用在醇或酚的位置上发生酯化反应。
在该反应中,酸酐的含氧双键会通过醇或酚的活性氢离子进攻,生成一个活性中间体。
3.后期步骤:生成酯物和水(或醇)。
反应的最后一步是中间活性体的脱水反应,生成酯和水。
若是碱性条件下,也可得到酯和醇。
总的来说,这就是酰基化反应的完整反应机理。
其中,复合物的生成是保证反应成功的关键,而酸催化则可以加速该反应。
二、反应条件与控制1.酸酐的选择及杂质去除在反应中,酸酐选择、杂质去除等都是比较重要的问题。
对于酸酐的选择,一般要选择反应活性高、稳定性好、易于分离纯化的酸酐,如乙酸酐、苯甲酸酐等。
对于杂质去除,也可以通过简单的蒸馏、过滤等物理方法去除。
2.催化剂的选择及优化催化剂的选择及优化,也是该反应中需要考虑的问题。
在反应条件的选择上,可以通过配合氢氧化钠、过氧化氢等得到更加理想的反应效果。
而在实际的实验操作中,通常也会对反应条件进行多次试验,以获得更佳的操作效果。
3.醇的质量及纯度在反应中,醇的质量和纯度也是至关重要的。
一般情况下,醇应为分子内含有氧原子的化合物,其质量和纯度应该得到较好的保证。
因为如果用不纯的醇来进行反应,反应废物会被产生,而反应的产率也会受到极大的影响。
三、反应实例酰基化反应作为一种有机反应类型,在实际应用中也具有广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
胺类化合物的酰化是发生在氨基氮原子上的亲电取代反应。
常用的酰基化试剂
常用的酰化剂是酰氯、酸酐和羧酸。 如 乙酰氯、乙酸酐、顺丁烯二酸酐、甲酸、 乙酸、草酸等。
5.1 N—酰基化反应
(3)用光气酰化
①在水介质中酰化。光气在水介质中,在低温就能和两分子芳 胺反应生成二芳基脲衍生物,反应放出的氯化氢可用碱中和。例 如,J酸用光气酰化可制得猩红酸,它是重要的染料中间体。
5.1 N—酰基化反应
③在有机溶剂中酰化。 光气在有机溶剂(如甲苯、氯苯、邻二氯苯)中,在低温下能 与等摩尔量的芳胺作用,先生成芳胺基甲酰氯,再进行加热处 理转变为芳基异氰酸酯。
5.1 N—酰基化反应
3.用酰氯的N—酰化 用酰氯酰化的反应通式为
反应特征:反应是不可逆的。反应时需要加入碱性物质,如 NaOH、Na2CO3,NaHCO3、CH3COONa、N(C2H5)3 等,以中和生成 的氯化氢,使氨基保持游离状态,从而提高酰化反应的收率。
(1)脂肪酸酰氯酰化
脂肪酸酰氯为强酰化剂,向氨基上引入长碳链酰基时,它常被采 用。例如,壬酰氯在一定条件下.可将3,4—二氯苯胺进行酰化得 到壬酰化产物。
3. 分类:
C 酰基化反应, C原子上的 H被酰基取代生成醛、酮 或羧酸 N 酰基化反应,氨基 N原子上的 H被酰基取代生成酰胺 O 酰基化反应, O原子上的 H被酰基取代生成酯,又 称为酯化反应
5.1 N—酰基化反应
一、N—酰化的基本原理
N—酰化-是将胺类化合物与酰化剂反应,在氨基的氮原 子上引入酰基而成为酰胺化合物的反应。
其活性排列次序为:酰氯>酸酐>羧酸。
5.1 N—酰基化反应
酰化反应历程可表示为
H : NH
O
+ Cl C CH3
δ+
AlCl3
O HN C CH3
+
H-Cl
属于亲电取代反应
NH2
+ C8H17COCl
Cl Cl
吡啶
NHCOC8H17
+ H-Cl
Cl Cl
2. N-酰化影响因素:
(1)酰化剂的活性的影响 : 反应活性如下: 酰氯>酸酐>羧酸
应用:甲苯二异氰酸酯的制备
甲苯二异氰酸酯合成泡沫 塑料、涂料、耐磨橡胶和高 强度粘合剂的重要中间体。
5.1 N—酰基化反应
4.用二乙烯酮的N—酰化
二乙烯酮的制备
二乙烯酮与芳胺反应合成乙酰乙酰芳胺
5.1 N—酰基化反应
5.N—酰化终点的控制 在芳胺的酰化产物中,未反应的芳胺能发生
5.1 N—酰基化反应
羧酸、酸酐和酰氯反应活性的大小次序为:
芳香族酰氯的反应活性低于脂肪族酰氯(如乙酰氯)。
对于酯类,凡是由弱酸构成的酯(如乙酰乙酸乙酯)可用作酰化剂, 而由强酸形成的酯,因酸根的吸电子能力强,使酯中烷基的正电荷 增大,因而常用作烷化剂,而不是酰化剂,如硫酸二甲酯等。
5.1 N—酰基化反应
酰基化反应介绍
研究意义:
(1) 在羟基或氨基等官能团上引入酰基后可改变原化合物性质和功能。如 染料的染色性能和牢度指标有所改变,药物分子中引入酰基可改变药性;
(2)可用来保护氨基,反应完成后再将酰基水解去掉。
如:在苯胺上引入硝基时,我们一般用苯胺与混酸发生亲电取代反应即 可。但苯胺非常易被氧化,甚至空气中的氧气就能将无色透明的苯胺液体在 几个小时内氧化成黑色的苯醌染料,混酸更是一种强氧化剂,所以必须先将
5.1 N—酰基化反应
2.用酸酐的N—酰化 酸酐对胺类进行酰化反应的通式为:
反应特点:反应是不可逆的,反应可以在水介质中进行。
对于二元胺类,如果只酰化其中一个氨基时,可以先用等摩尔比的盐酸, 使二元胺中的一个氨基成为盐酸盐加以保护,然后按一般方法进行酰化。 例如.间苯二胺在水介质中加入适量盐酸后,再于40℃用乙酐酰化,先 制得间氨基乙酰苯胺盐酸盐.经中和可得间氨基乙酰苯胺,它是一个有用 的中间体。
(2)胺类结构的影响 : 氨基氮原子上电子云密度越高,碱性越强,则胺被酰化的反应性越强。
胺类被酰化的反应活性是:伯胺>仲胺,脂肪胺>芳胺。
对于芳胺,环上有供电子基时,碱性增强,芳胺的反应活性增强。反之,环 上有吸电子基时,碱性减弱,反应活性降低。
(3)空间位阻效应 : 无空间阻碍的胺的活性高于有空间阻碍的胺。
氮酰化-将酰基引人氮原子上合成酰胺化合物的 反应称为氮酰化.
碳酰化-将酰基引入碳原子上合成芳酮或芳醛的 反应称为碳酰化。
酰化反应可用下述通式表示
式中的RCOZ为酰化剂,其中的Z代表-X、-OCOR’、OH、-OR’、-NHR’ 等。GH为被酰化物,其中的G代 表ARNH-、R’NH-、R’O-、Ar等。
氨基保护起来才能用混酸硝化。
O
H NH
+ Cl
O C CH3
AlCl3 - H-Cl
O HN C CH3
HNO3 / H2SO4
HN C CH3
+
H3O
- CH3COOH
NH2
若不保护氨基,则:
HNO3 / H2SO4
NH2
氧化
O
NO2 O
NO2
黑色染料——苯醌
酰基化反应介绍
2. 定义:
酰基化反应指的是有机化合物分子中与碳原子、氮 原子、氧原子或硫原子相连的氢被酰基所取代的反应。
5.1 N—酰基化反应
氯代乙酰氯是一种非常活泼的酰化剂。由于甲基中的 氢原子被氯取代后,更增加了酰基碳原子上的部分正 电荷,因此酰化反应可以在低温下完成。如
5.1 N—酰基化反应
(2)用芳胺酰氯及芳磺酸氯酰化 常用的芳羧酰氯及芳磺酰氯有
芳香族伯胺或仲胺用芳磺酰氯酰化能生成许多有价值的中间体,பைடு நூலகம்如
二、N—酰化方法 1、用羧酸的N—酰化
用羧酸对胺类进行酰化的反应是一个可逆反应。酰化反应通式为
适用范围:碱性较强的胺类进行酰化 为了使反应进行到底用过量的羧酸,并同时不断移去反应生成的水 移去反应生成水的方法:①在反应物中加入甲苯或二甲苯进 行共沸蒸馏脱水②采用化学脱水剂如五氧化二磷、三氯氧磷等 移去反应生成的水。