福建省莆田市2016_2017学年高一数学下学期第二次月考试题无答案
高一下学期数学第二次月考试卷

高一下学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共12小题,每小题5分,) (共12题;共60分)1. (5分)对有两个面互相平行,其余各面都是梯形的多面体,以下说法正确的是()A . 棱柱B . 棱锥C . 棱台D . 一定不是棱柱、棱锥2. (5分) (2016高一下·平罗期末) 已知△ABC的平面直观图△A′B′C′是边长为2的正三角形,则△ABC 的面积为()A . 2B .C . 2D . 43. (5分)三角形ABC中,,AB=3,BC=1 ,以边AB所在直线为旋转轴,其余各边旋转一周而形成的曲面所围成的几何体的体积为()A .B .C . .D .4. (5分) (2016高三上·沙市模拟) 某几何体的三视图如图所示,则该几何体的体积为()A .B .C .D .5. (5分)一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为()A .B .C .D .6. (5分) (2018高二上·万州期中) 已知水平放置的,按“斜二测画法”得到如图所示的直观图,其中,,那么原的面积是()A .B .C .D .7. (5分)如图,正方体ABCD-A1B1C1D1的棱长为2,动点E、F在棱A1B1上,动点P,Q分别在棱AD,CD 上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z大于零),则四面体PEFQ的体积().A . 与x,y,z都有关B . 与x有关,与y,z无关C . 与z有关,与x,y无关D . 与y有关,与x,z无关8. (5分)棱长为a的正方体可任意摆放,则其在水平平面上投影面积的最大值为()A . a2B . a2C . a2D . 2a29. (5分) (2016高一下·辽源期中) 已知{an}为等差数列,a3=7,a1+a7=10,Sn为其前n项和,则使得Sn 达到最大值的n等于()A . 4B . 5C . 6D . 710. (5分)等差数列{an}中,已知前15项的和S15=90,则a8等于()A .B . 12C .D . 611. (5分) (2019高三上·赤峰月考) 已知数列1,1,1,2,2,1,2,4,3,1,2,4,8,4,1,2,4,8,16,5,…,其中第一项是,第二项是1,接着两项为,,接着下一项是2,接着三项是,,,接着下一项是3,依此类推.记该数列的前项和为,则满足的最小的正整数的值为()A . 65B . 67C . 75D . 7712. (5分) (2019高二上·上海月考) 设等差数列前项和为,且满足,,则、、、、中,最大项为()A .B .C .D .二、填空题(本大题共4小题,每小题5分。
福建省莆田县2016_2017学年高一数学下学期第一次月测习题

福建省莆田县2016-2017学年高一数学下学期第一次月考试题一、选择题(每小题5分,共60分)1、过点P(-2,0),斜率是3的直线的方程是( )A .y =3x -2B .y =3x +2C .y =3(x +2)D .y =3(x -2) 2、点)1,2,3(-M 关于yoz 面对称的点的坐标是( )A .)1,2,3(-B .)1,2,3(--C .)1,2,3(-D .)1,2,3(-- 3、直线125=+yx 和坐标轴所围成的三角形的面积是( ) A .2 B .5 C .7 D .104、两条平行直线线0943=-+y x 和0286=++y x 的距离是( ) A .58 B .2 C .511 D .575、过点(-3,0)和点(-4的直线的倾斜角是( ) A .120° B .150° C .60° D .30°6.已知点(1,1),(1,1)--A B ,则以线段AB 为直径的圆的方程是( ).A .224+=x yB .222+=x yC .221+=x y D .22+=x y7、圆()221:11C x y -+=与圆()()222:324C x y ++-=的位置关系是( )A .内切B .外切C . 相离D .相交 8.直线30-+=x y 被圆22(2)(2)1++-=x y 截得的弦长为( )A.2B. C. 9、若直线x +2ay -1=0与(a -1)x -ay +1=0平行,则a 的值为( ) A.12 B.12或0 C .0 D .-210、过点()3,1作一直线与圆 ()2219x y -+=相交于,M N 两点,则MN 的最小值为( )A.2 C.4 D.611、圆221:20O x y x +-=和圆222:40O x y y +-=的公共弦长为( )312、已知直线:10()l x ay a R +-=∈是圆22:4210C x y x y +--+=的对称轴,过点()4,0A -作圆C 的一条切线,切点为B ,则AB =( )A.2B.C.D.6 二、填空题(每小题5分,共20分)13、在空间直角坐标系中,已知点()()1,0,1,1,1,2A B -,则线段AB 的长度为__________. 14、设O 为原点,点在圆()()22:341C x y -+-=上运动,则OM 的最大值为 . 15、点(4,5)A 关于直线l 的对称点为(2,7)B -,则直线l 的方程为__________. 16、不论m 取何值,直线(m -1)x - y +2m +1=0恒过定点的坐标是 . 三、解答题(17题10分,其他每小题12分,共70分)17、已知直线l 的方程为210x y +-=,点P 的坐标为()1,2-. (Ⅰ)求过P 点且与直线l 平行的直线方程; (Ⅱ)求过P 点且与直线l 垂直的直线方程.18、已知直线l 经过直线3420x y +-=与直线220x y ++=的交点P ,且垂直于直线210x y --=.(1)求直线l 的方程;(2)求直线l 与两坐标轴围成的三角形的面积S .19、求圆心在直线4=-y x 上,且与直线:10+-=l x y 相切于点(3,2)-P 的圆的标准方程,并化为圆的一般方程。
福建省莆田市2016-2017学年高一下学期期中数学试卷Word版含解析

福建省莆田市2016-2017学年下学期期中试卷高一数学一、选择题(每题5分,共60分)1.圆x2+y2﹣4x+6y=0的圆心坐标是()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)2.sin1200°的值是()A.B.C.D.﹣3.已知α=315°,则与角α终边相同的角的集合是()A.{α|α=2kπ﹣,k∈Z} B.{α|α=2kπ+,k∈Z}C.{α|α=2kπ﹣,k∈Z} D.{α|α=2kπ+,k∈Z}4.某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法B.随机数法 C.系统抽样法D.分层抽样法5.重庆市2013年各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()A.19 B.20 C.21.5 D.236.阅读如图所示的程序框图,运行相应的程序,输出的结果是()A.3 B.11 C.38 D.1237.掷两颗均匀的骰子,则点数之和为4的概率等于()A.B.C.D.8.如图所示,执行程序框图输出的结果是()A. +++…+B. +++…+C. +++…+D. +++…+9.某人午睡醒来,发现表停了,他打开收音机,想听电台整点报时,他等待的时间不多于15分钟的概率是()A.B.C.D.10.圆:x2+y2﹣2x﹣2y+1=0上的点到直线x﹣y=2的距离最大值是()A.2 B.C.D.11.若点P(1,1)为圆(x﹣3)2+y2=9的弦MN的中点,则弦MN所在直线方程为()A.2x+y﹣3=0 B.x﹣2y+1=0 C.x+2y﹣3=0 D.2x﹣y﹣1=012.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若|a﹣b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为()A.B.C.D.二、填空题(每题5分,共20分)13.已知α的顶点在原点,始边与x轴的非负半轴重合,终边过点(﹣3,4),则cos α的值为______.14.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为______.15.函数y=sin2x﹣sinx+1的最小值是______.16.甲、乙、丙三人进行传球练习,球首先从甲手中传出,则第3次球恰好传回给甲的概率是 ______.三、解答题(第17题10分,第18至22题每题12分)17.根据条件计算(Ⅰ)已知第二象限角α满足sinα=,求cosα的值;(Ⅱ)已知tanα=2,求的值.y(单位:百万元)之间有如表对应数据:(Ⅱ)请根据如表提供的数据,用最小二乘法求出y关于x的线性回归方程=x+x,并估计广告支出1千万元时的销售额(参考数值:2×30+4×40+5×50+6×60+8×70═1390)参考公式.=﹣, ==.19.某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,200),[220.240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(Ⅰ)求直方图中x的值;(Ⅱ)在月平均用电量为,[220,240),[240,260),[260,280)的三用户中,用分层抽样的方法抽取10居民,则月平均用电量在[220,240)的用户中应抽取多少户?(Ⅲ)求月平均用电量的中位数.20.在直角坐标系xOy中,以坐标原点O为圆心的圆与直线:相切.(1)求圆O的方程;(2)若圆O上有两点M、N关于直线x+2y=0对称,且,求直线MN的方程.21.设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽取的方法从这三个协会中抽取6名运动员组队参加比赛.(Ⅰ)求应从这三个协会中分别抽取的运动员的人数;(Ⅱ)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6,现从这6名运动员中随机抽取2人参加双打比赛.(i)用所给编号列出所有可能的结果;(ii)设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.22.已知直线l:y=kx﹣2,圆C:x2+y2﹣8x+4y﹣16=0.(Ⅰ)若k=,请判断直线l与圆C的位置关系;(Ⅱ)当|k|≥1时,直线l能否将圆C分割成弧长的比值为的两段圆弧?为什么?福建省莆田市2016-2017学年高一下学期期中数学试卷参考答案与试题解析一、选择题(每题5分,共60分)1.圆x2+y2﹣4x+6y=0的圆心坐标是()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)【考点】圆的标准方程.【分析】把圆的方程配方得到圆的标准方程后,找出圆心坐标即可.【解答】解:把圆的方程化为标准方程得:(x﹣2)2+(y+3)2=13,所以此圆的圆心坐标为(2,﹣3).故选D2.sin1200°的值是()A.B.C.D.﹣【考点】运用诱导公式化简求值.【分析】由条件利用诱导公式进行化简所给的式子,可得结果.【解答】解:sin1200°=sin(3×360°+120°)=sin120°=sin60°=,故选:B.3.已知α=315°,则与角α终边相同的角的集合是()A.{α|α=2kπ﹣,k∈Z} B.{α|α=2kπ+,k∈Z}C.{α|α=2kπ﹣,k∈Z} D.{α|α=2kπ+,k∈Z}【考点】终边相同的角.【分析】根据终边相同的角之间相差周角的整数倍,表示出与315°的角终边相同的角α的集合即可得答案.【解答】解:由α=315°,得与角α终边相同的角的集合是:{α|α=2kπ﹣,k∈Z}.故选:A.4.某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法B.随机数法 C.系统抽样法D.分层抽样法【考点】分层抽样方法.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:总体由男生和女生组成,比例为500:500=1:1,所抽取的比例也是1:1.故拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是分层抽样法.故选:D.5.重庆市2013年各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()A.19 B.20 C.21.5 D.23【考点】茎叶图.【分析】根据中位数的定义进行求解即可.【解答】解:样本数据有12个,位于中间的两个数为20,20,则中位数为,故选:B6.阅读如图所示的程序框图,运行相应的程序,输出的结果是()A.3 B.11 C.38 D.123【考点】程序框图.【分析】通过框图的要求;将第一次循环的结果写出,通过判断框;再将第二次循环的结果写出,通过判断框;输出结果.【解答】解;经过第一次循环得到a=12+2=3经过第一次循环得到a=32+2=11不满足判断框的条件,执行输出11故选B7.掷两颗均匀的骰子,则点数之和为4的概率等于()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件总数,再利用列举法求出点数之和为4包含的基本事件,由此能求出点数之和为4的概率..【解答】解:掷两颗均匀的骰子,观察点数之和,基本事件总数n=6×6=36,点数之和为4包含的基本事件有:(1,3),(3,1),(2,2),∴点数之和为4的概率p==.故选:D.8.如图所示,执行程序框图输出的结果是()A. +++…+B. +++…+C. +++…+D. +++…+【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟执行程序,可得S=0,n=2,k=1满足条件k≤10,执行循环体,S=,n=4,k=2满足条件k≤10,执行循环体,S=,n=6,k=3…满足条件k≤10,执行循环体,S=+…+,n=20,k=10满足条件k≤10,执行循环体,S=+…+,n=22,k=11不满足条件k≤10,退出循环,输出S=+…+.故选:D.9.某人午睡醒来,发现表停了,他打开收音机,想听电台整点报时,他等待的时间不多于15分钟的概率是()A.B.C.D.【考点】几何概型.【分析】由电台整点报时的时刻是任意的知这是一个几何概型,电台整点报时知事件总数包含的时间长度是60,而他等待的时间不多于15分钟的事件包含的时间长度是15,利用时间的长度比即可求出所求【解答】解:由题意知这是一个几何概型,∵电台整点报时,∴事件总数包含的时间长度是60,∵满足他等待的时间不多于15分钟的事件包含的时间长度是15,由几何概型公式得到P=;故选C10.圆:x2+y2﹣2x﹣2y+1=0上的点到直线x﹣y=2的距离最大值是()A.2 B.C.D.【考点】直线与圆的位置关系.【分析】先将圆x2+y2﹣2x﹣2y+1=0转化为标准方程:(x﹣1)2+(y﹣1)2=1,明确圆心和半径,再求得圆心(1,1)到直线x﹣y=2的距离,最大值则在此基础上加上半径长即可.【解答】解:圆x2+y2﹣2x﹣2y+1=0可化为标准形式:(x﹣1)2+(y﹣1)2=1,∴圆心为(1,1),半径为1圆心(1,1)到直线x﹣y=2的距离,则所求距离最大为,故选B.11.若点P(1,1)为圆(x﹣3)2+y2=9的弦MN的中点,则弦MN所在直线方程为()A.2x+y﹣3=0 B.x﹣2y+1=0 C.x+2y﹣3=0 D.2x﹣y﹣1=0【考点】直线与圆相交的性质.【分析】求出圆心坐标,求出PC的斜率,然后求出MN的斜率,即可利用点斜式方程求出直线MN的方程.【解答】解:圆心C(3,0),,∴MN方程为y﹣1=2(x﹣1),即2x﹣y﹣1=0,故选D.12.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若|a﹣b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】本题是一个古典概型,试验包含的所有事件是任意找两人玩这个游戏,其中满足条件的满足|a﹣b|≤1的情形包括6种,列举出所有结果,根据计数原理得到共有的事件数,根据古典概型概率公式得到结果.【解答】解:由题意知本题是一个古典概型,∵试验包含的所有事件是任意找两人玩这个游戏,共有6×6=36种猜字结果,其中满足|a﹣b|≤1的有如下情形:①若a=1,则b=1,2;②若a=2,则b=1,2,3;③若a=3,则b=2,3,4;④若a=4,则b=3,4,5;⑤若a=5,则b=4,5,6;⑥若a=6,则b=5,6,总共16种,∴他们“心有灵犀”的概率为.故选D.二、填空题(每题5分,共20分)13.已知α的顶点在原点,始边与x轴的非负半轴重合,终边过点(﹣3,4),则cos α的值为.【考点】任意角的三角函数的定义.【分析】可求得|OP|=5,由角的余弦的定义可得答案.【解答】解:∵α的终边经过点P(﹣3,4),∴|OP|=5,∴cosα=.故答案为:.14.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为x2+(y﹣2)2=1 .【考点】圆的标准方程.【分析】由圆心在y轴上,设出圆心的坐标(0,b),又圆的半径为1,写出圆的标准方程,由所求圆过(1,2),把(1,2)代入圆的方程即可确定出b的值,从而得到圆的方程.【解答】解:由圆心在y轴上,设出圆心坐标为(0,b),又半径为1,∴所求圆的方程为x2+(y﹣b)2=1,由所求圆过(1,2),代入圆的方程得:1+(2﹣b)2=1,解得:b=2,则所求圆的方程为:x2+(y﹣2)2=1.故答案为:x2+(y﹣2)2=115.函数y=sin2x﹣sinx+1的最小值是.【考点】三角函数的最值.【分析】根据正弦函数的值域,二次函数的性质,求得函数y=sin2x﹣sinx+1的最小值.【解答】解:∵sinx∈[﹣1,1],函数y=sin2x﹣sinx+1=+故当sinx=时,函数y取得最小值为,故答案为:.16.甲、乙、丙三人进行传球练习,球首先从甲手中传出,则第3次球恰好传回给甲的概率是.【考点】列举法计算基本事件数及事件发生的概率.【分析】球首先从甲手中传出,则第二个拿到球的是乙或丙,从乙的手中接到球的是甲或丙,从丙的手中拿到球的是甲或乙,这样完成了第二轮传球,第三轮和前两轮类似.第3次球恰好传回给甲的事件为A,可知满足条件的共有两种情况,而总的事件数是8,根据古典概型公式代入数据,得到结果【解答】解:用甲→乙→丙→甲表示一种传球方法所有传球方法共有:甲→乙→甲→乙;甲→乙→甲→丙;甲→乙→丙→甲;甲→乙→丙→乙;甲→丙→甲→乙;甲→丙→甲→丙;甲→丙→乙→甲;甲→丙→乙→丙;则共有8种传球方法.记求第3次球恰好传回给甲的事件为A,由共有两种情况,故P(A)==,故答案为:三、解答题(第17题10分,第18至22题每题12分)17.根据条件计算(Ⅰ)已知第二象限角α满足sinα=,求cosα的值;(Ⅱ)已知tanα=2,求的值.【考点】同角三角函数基本关系的运用.【分析】(Ⅰ)利用三角函数的平方关系即可得出.(Ⅱ)利用“弦化长”可得: =.【解答】解:(Ⅰ)∵第二象限角α满足sinα=,∴cosα=﹣=﹣.(Ⅱ)∵tanα=2,∴==﹣6.y(单位:百万元)之间有如表对应数据:(Ⅰ)请画出上表数据的散点图.(Ⅱ)请根据如表提供的数据,用最小二乘法求出y关于x的线性回归方程=x+x,并估计广告支出1千万元时的销售额(参考数值:2×30+4×40+5×50+6×60+8×70═1390)参考公式.=﹣, ==.【考点】线性回归方程.【分析】(Ⅰ)根据表中所给的五组数据,得到五个点的坐标,在平面直角坐标系中画出散点图.(Ⅱ)先求出横标和纵标的平均数,得到这组数据的样本中心点,利用最小二乘法求出线性回归方程的系数,代入样本中心点求出a的值,写出线性回归方程.将x=10代入回归直线方程求出y的值即可估计当广告支出1千万元时的销售额.【解答】解:(Ⅰ)根据条件中所给数据易得散点图如下图所示(Ⅱ)根据表格中数据, =5, =50,∴b==7a=50﹣7×5=15,∴线性回归方程为 y=7x+15.当x=10时, =85,广告支出1千万元时的销售额估计有8500万.19.某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,200),[220.240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(Ⅰ)求直方图中x的值;(Ⅱ)在月平均用电量为,[220,240),[240,260),[260,280)的三用户中,用分层抽样的方法抽取10居民,则月平均用电量在[220,240)的用户中应抽取多少户?(Ⅲ)求月平均用电量的中位数.【考点】频率分布直方图.【分析】(Ⅰ)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(Ⅱ)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数;(Ⅲ)由直方图可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095++0.011)×20+0.0125×(a﹣220)=0.5可得.【解答】解:(Ⅰ)由直方图的性质可得:(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得x=0.0075,∴直方图中x的值为0.0075;(Ⅱ)月平均用电量为[220,240)的用户有0.0125×20×100=25,月平均用电量为[240,260)的用户有0.0075×20×100=15,月平均用电量为[260,280)的用户有0.005×20×100=10,∴月平均用电量在[220,240)的用户中应抽取户.(Ⅲ)∵(0.002+0.0095+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a﹣220)=0.5可得a=224,∴月平均用电量的中位数为224;20.在直角坐标系xOy中,以坐标原点O为圆心的圆与直线:相切.(1)求圆O的方程;(2)若圆O上有两点M、N关于直线x+2y=0对称,且,求直线MN的方程.【考点】圆的标准方程;关于点、直线对称的圆的方程.【分析】(Ⅰ)设圆O的半径为r,由圆心为原点(0,0),根据已知直线与圆O相切,得到圆心到直线的距离d=r,利用点到直线的距离公式求出圆心O到已知直线的距离d,即为圆的半径r,由圆心和半径写出圆O的标准方程即可;(Ⅱ)设出直线方程,利用点到直线的距离以及垂径定理求出直线方程中的参数,即可得到直线方程.【解答】(本题满分14分)(1)依题设,圆O的半径r等于原点O到直线的距离,即.…得圆O的方程为x2+y2=4.…(2)由题意,可设直线MN的方程为2x﹣y+m=0.…则圆心O到直线MN的距离.…由垂径分弦定理得:,即.…所以直线MN的方程为:或.…21.设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽取的方法从这三个协会中抽取6名运动员组队参加比赛.(Ⅰ)求应从这三个协会中分别抽取的运动员的人数;(Ⅱ)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6,现从这6名运动员中随机抽取2人参加双打比赛.(i)用所给编号列出所有可能的结果;(ii)设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.【考点】古典概型及其概率计算公式.【分析】(Ⅰ)由题意可得抽取比例,可得相应的人数;(Ⅱ)(i)列举可得从6名运动员中随机抽取2名的所有结果共15种;(ii)事件A包含上述9个,由概率公式可得.【解答】解:(Ⅰ)由题意可得抽取比例为=,27×=3,9×=1,18×=2,∴应甲、乙、丙三个协会中分别抽取的运动员的人数为3、1、2;(Ⅱ)(i)从6名运动员中随机抽取2名的所有结果为:(A1,A2),(A1,A3),(A1,A4),(A1,A5),(A1,A6),(A2,A3),(A2,A4),(A2,A5),(A2,A6),(A3,A4),(A3,A5),(A3,A6),(A4,A5),(A4,A6)),(A5,A6),共15种;(ii)设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,则事件A包含:(A1,A5),(A1,A6),(A2,A5),(A2,A6),(A3,A5),(A3,A6),(A4,A5),(A4,A6)),(A5,A6)共9个基本事件,∴事件A发生的概率P==22.已知直线l:y=kx﹣2,圆C:x2+y2﹣8x+4y﹣16=0.(Ⅰ)若k=,请判断直线l与圆C的位置关系;(Ⅱ)当|k|≥1时,直线l能否将圆C分割成弧长的比值为的两段圆弧?为什么?【考点】直线与圆的位置关系.【分析】(Ⅰ)若k=,求出圆心C(4,﹣2)到直线l的距离,与半径的关系,即可判断直线l与圆C 的位置关系;(Ⅱ)判断.若直线l能将圆C分割成弧长的比值为的两段圆弧,则圆心C到直线l的距离,即可得出结论.【解答】解:(Ⅰ)圆C的圆心为C(4,﹣2),半径r=6.若,直线l:,即,则圆心C(4,﹣2)到直线l的距离,所以直线l与圆C相交.(Ⅱ)不能.直线l的方程为y=kx﹣2,其中|k|≥1.圆心C到直线l的距离.由|k|≥1得,又r=6即.若直线l能将圆C分割成弧长的比值为的两段圆弧,则圆心C到直线l的距离,因为,所以直线l不能将圆C分割成弧长的比值为的两段弧.。
福建省莆田一中2016-2017学年高一下学期期中数学试卷Word版含解析

2016-2017学年福建省莆田一中高一(下)期中数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填涂在答题卷的相应位置.1.圆(x+2)2+y2=5关于y=x对称的圆的方程是()A.(x﹣2)2+y2=5 B.x2+(y﹣2)2=5 C.(x+2)2+(y+2)2=5 D.x2+(y+2)2=52.如图正方形OABC的边长为1,它是水平放置的一个平面图形的直观图,则原图形的面积()A.B.1 C.D.2(1+)3.如图是正方体的平面展开图,则在这个正方体中的AB与CD的位置关系为()A.平行B.相交成60°角C.异面成60°角D.异面且垂直4.若直线l1:x﹣2y+1=0与l2:2x+ay﹣2=0平行,则l1与l2的距离为()A.B.C.D.5.某几何体的三视图如图所示,则其侧面积为()A.B.C.D.6.已知m,n是两条不同的直线,α,β是两个不同的平面,下列说法中:①若m⊥α,m⊥β,则α∥β②若m∥α,α∥β,则m∥β③若m⊥α,m∥β,则α⊥β④若m∥α,n⊥m,则n⊥α所有正确说法的序号是()A.②③④B.①③C.①②D.①③④7.直线x﹣2y﹣3=0与圆(x﹣2)2+(y+3)2=9交于E,F两点,则△EOF(O是原点)的面积为()A .B.C. D.8.设ω是正实数,函数f(x)=2cosωx在x∈上是减函数,那么ω的值可以是()A.B.2 C.3 D.49.已知圆x2+y2=4,过A(4,0)作圆的割线ABC,则弦BC中点的轨迹方程是()A.(x﹣2)2+y2=4 B.(x﹣2)2+y2=4(0≤x<1)C.(x﹣1)2+y2=4 D.(x﹣1)2+y2=4(0≤x<1)10.已知圆C1:(x﹣1)2+(y+1)2=1,圆C2:(x﹣4)2+(y﹣5)2=9.点M、N 分别是圆C1、圆C2上的动点,P为x轴上的动点,则|PN|﹣|PM|的最大值是()A.2+4 B.9 C.7 D.2+211.已知直线x+y﹣k=0(k>0)与圆x2+y2=4交于不同的两点A、B,O是坐标原点,且有,那么k的取值范围是()A.B.C. D.12.已知棱长为l的正方体ABCD﹣A1B1C1D1中,E,F,M分别是AB、AD、AA1的中点,又P、Q分别在线段A1B1,A1D1上,且A1P=A1Q=x,0<x<1,设面MEF ∩面MPQ=l,则下列结论中不成立的是()A.l∥面ABCD B.l⊥ACC.面MEF与面MPQ垂直D.当x变化时,l是定直线二、填空题:本大题共4小题,每小题3分,共12分.请把答案填在答题卷的相应位置.13.若||=1,||=2,( +)•=3,则与的夹角为.14.已知,则sin2x=.15.若曲线与曲线C2:(y﹣1)•(y﹣kx﹣2k)=0有四个不同的交点,则实数k的取值范围为.16.已知等边三角形ABC的边长为,M,N分别为AB,AC的中点,沿MN 将△ABC折成直二面角,则四棱锥A﹣MNCB的外接球的表面积为.三、解答题:本大题共6小题,共52分.解答应写出文字说明,证明过程或演算步骤.请在答题卷相应题目的答题区域内作答.17.已知圆C:x2+y2+2x﹣2y=0的圆心为C,A(4,0),B(0,﹣2)(Ⅰ)在△ABC中,求AB边上的高CD所在的直线方程;(Ⅱ)求与圆C相切且在两坐标轴上的截距相等的直线方程.18.已知函数(Ⅰ)求函数f(x)的最小正周期和单调递增区间;(Ⅱ)若函数g(x)=f(x)﹣m在区间上有两个不同的零点,求实数m的取值范围.19.已知向量,,,函数,已知y=f(x)的图象的一个对称中心与它相邻的一条对称轴之间的距离为1,且经过点(Ⅰ)求函数f(x)的解析式(Ⅱ)先将函数y=f(x)图象上各点的横坐标变为原来的π倍,纵坐标不变,再向右平移m(m>0)个单位长度,向下平移3个单位长度,得到函数y=g(x)的图象,若函数g(x)的图象关于原点对称,求实数m的最小值.20.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD||BC,PD⊥底面ABCD,∠ADC=90°,AD=2BC,Q为AD的中点,M为棱PC的中点.(Ⅰ)证明:PA∥平面BMQ;(Ⅱ)已知PD=DC=AD=2,求点P到平面BMQ的距离.21.如图,△ABC中,O是BC的中点,AB=AC,AO=2OC=2.将△BAO沿AO折起,使B点与图中B'点重合.(Ⅰ)求证:AO⊥平面B′OC;(Ⅱ)当三棱锥B'﹣AOC的体积取最大时,求二面角A﹣B′C﹣O的余弦值;(Ⅲ)在(Ⅱ)的条件下,试问在线段B′A上是否存在一点P,使CP与平面B′OA所成的角的正弦值为?证明你的结论.22.已知圆C:x2+(y﹣4)2=4,直线l:(3m+1)x+(1﹣m)y﹣4=0(Ⅰ)求直线l所过定点A的坐标;(Ⅱ)求直线l被圆C所截得的弦长最短时m的值及最短弦长;(Ⅲ)已知点M(﹣3,4),在直线MC上(C为圆心),存在定点N(异于点M),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点N的坐标及该常数.2016-2017学年福建省莆田一中高一(下)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填涂在答题卷的相应位置.1.圆(x+2)2+y2=5关于y=x对称的圆的方程是()A.(x﹣2)2+y2=5 B.x2+(y﹣2)2=5 C.(x+2)2+(y+2)2=5 D.x2+(y+2)2=5【考点】J6:关于点、直线对称的圆的方程.【分析】求出圆心坐标与半径,找出圆心C关于直线y=x的对称点坐标,即为对称圆心坐标,半径不变,写出对称后圆的标准方程即可.【解答】解:圆C方程变形得:(x+2)2+y2=5,∴圆心C(﹣2,0),半径r=,则圆心C关于直线l:y=x对称点坐标为(0,﹣2),则圆C关于直线l对称圆的方程为x2+(y+2)2=5.故选D.2.如图正方形OABC的边长为1,它是水平放置的一个平面图形的直观图,则原图形的面积()A.B.1 C.D.2(1+)【考点】LD:斜二测法画直观图.【分析】由题意求出直观图中OB的长度,根据斜二测画法,求出原图形平行四边形的高,即可求出原图形的面积.【解答】解:由题意正方形OABC的边长为1,它是水平放置的一个平面图形的直观图,所以OB=,对应原图形平行四边形的高为:2,所以原图形的面积为:1×2=2.故选A.3.如图是正方体的平面展开图,则在这个正方体中的AB与CD的位置关系为()A.平行B.相交成60°角C.异面成60°角D.异面且垂直【考点】LO:空间中直线与直线之间的位置关系.【分析】以CD所在平面为底面,将正方体的平面展开图还原成直观图,因为CE ∥AB,所以∠DCE即为直线AB,CD所成的角,在△CDE中求解即可.【解答】解:如图,直线AB,CD异面.因为CE∥AB,所以∠DCE即为直线AB,CD所成的角,因为△CDE为等边三角形,故∠DCE=60°故选C4.若直线l1:x﹣2y+1=0与l2:2x+ay﹣2=0平行,则l1与l2的距离为()A.B.C.D.【考点】IU:两条平行直线间的距离.【分析】根据直线平行求出a 的值,根据平行线间的距离公式计算即可. 【解答】解:若直线l 1:x ﹣2y +1=0与l 2:2x +ay ﹣2=0平行,则=≠,解得:a=﹣4,故l 1:x ﹣2y +1=0与l 2:x ﹣2y ﹣1=0的距离是:d==,故选:B .5.某几何体的三视图如图所示,则其侧面积为( )A .B .C .D .【考点】L!:由三视图求面积、体积.【分析】从三视图可以推知,几何体是四棱锥,底面是一个直角梯形,一条侧棱垂直底面,易求侧面积.【解答】解:几何体是四棱锥,底面是一个直角梯形,一条侧棱垂直底面. 且底面直角梯形的上底为1,下底为2,高为1,四棱锥的高为1. 四个侧面都是直角三角形,其中△PBC 的高PB===故其侧面积是S=S △PAB +S △PBC +S △PCD +S △PAD==故选A6.已知m ,n 是两条不同的直线,α,β是两个不同的平面,下列说法中: ①若m ⊥α,m ⊥β,则α∥β②若m∥α,α∥β,则m∥β③若m⊥α,m∥β,则α⊥β④若m∥α,n⊥m,则n⊥α所有正确说法的序号是()A.②③④B.①③C.①②D.①③④【考点】2K:命题的真假判断与应用.【分析】由垂直于同一直线的两平面平行,即可判断①;运用线面的位置关系,以及面面平行和线面平行的性质即可判断②;运用线面平行、垂直的性质定理和面面垂直的判定定理,即可判断③;运用线面的位置关系,结合线面平行的性质,即可判断④.【解答】解:m,n是两条不同的直线,α,β是两个不同的平面,①若m⊥α,m⊥β,由线面垂直的性质定理可得α∥β,故①正确;②若m∥α,α∥β,则m∥β或m⊂β,故②错;③若m∥β,过m的平面与β交于n,可得m∥n,由m⊥α,可得n⊥α,n⊂β,则α⊥β,故③正确;④若m∥α,n⊥m,则n∥α或n⊂α或n与α相交,故④错.故选:B.7.直线x﹣2y﹣3=0与圆(x﹣2)2+(y+3)2=9交于E,F两点,则△EOF(O是原点)的面积为()A.B.C. D.【考点】J8:直线与圆相交的性质.【分析】先求出圆心坐标,再由点到直线的距离公式和勾股定理求出弦长|EF|,再由原点到直线之间的距离求出三角形的高,进而根据三角形的面积公式求得答案.【解答】解:圆(x﹣2)2+(y+3)2=9的圆心为(2,﹣3)∴(2,﹣3)到直线x﹣2y﹣3=0的距离d==弦长|EF|=原点到直线的距离d=∴△EOF的面积为故选D.8.设ω是正实数,函数f(x)=2cosωx在x∈上是减函数,那么ω的值可以是()A.B.2 C.3 D.4【考点】HA:余弦函数的单调性.【分析】可知函数的最小正周期T=≥2(﹣0),解之可得ω的范围,结合选项可得答案.【解答】解:由题意可知函数的最小正周期T=≥2(﹣0),解得ω≤,结合选项可知只有A符合,故选A9.已知圆x2+y2=4,过A(4,0)作圆的割线ABC,则弦BC中点的轨迹方程是()A.(x﹣2)2+y2=4 B.(x﹣2)2+y2=4(0≤x<1)C.(x﹣1)2+y2=4 D.(x﹣1)2+y2=4(0≤x<1)【考点】JE:直线和圆的方程的应用;J3:轨迹方程.【分析】结合图形,不难直接得到结果;也可以具体求解,使用交点轨迹法,见解答.【解答】解:设弦BC中点(x,y),过A的直线的斜率为k,割线ABC的方程:y=k(x﹣4);作圆的割线ABC,所以中点与圆心连线与割线ABC垂直,方程为:x+ky=0;因为交点就是弦的中点,它在这两条直线上,故弦BC中点的轨迹方程是:x2+y2﹣4x=0如图故选B .10.已知圆C 1:(x ﹣1)2+(y +1)2=1,圆C 2:(x ﹣4)2+(y ﹣5)2=9.点M 、N分别是圆C 1、圆C 2上的动点,P 为x 轴上的动点,则|PN |﹣|PM |的最大值是( )A .2+4B .9C .7D .2+2【考点】JA :圆与圆的位置关系及其判定.【分析】先根据两圆的方程求出圆心和半径,要使|PN ||﹣|PM |最大,需|PN |最大,且|PM |最小,|PN |最大值为|PF |+3,PM |的最小值为|PE |﹣1,故|PN ||﹣|PM |最大值是 (|PF |+3)﹣(|PE |﹣1)=|PF |﹣|PE |+4,再利用对称性,求出所求式子的最大值.【解答】解:圆C 1:(x ﹣1)2+(y +1)2=1的圆心E (1,﹣1),半径为1, 圆C 2:(x ﹣4)2+(y ﹣5)2=9的圆心F (4,5),半径是3.要使|PN |﹣|PM |最大,需|PN |最大,且|PM |最小,|PN |最大值为|PF |+3,PM |的最小值为|PE |﹣1,故|PN |﹣|PM |最大值是 (|PF |+3)﹣(|PE |﹣1)=|PF |﹣|PE |+4F (4,5)关于x 轴的对称点F′(4,﹣5),|PN |﹣|PM |=|PF′|﹣|PE |≤|EF′|==5,故|PN |﹣|PM |的最大值为5+4=9, 故选:B .11.已知直线x +y ﹣k=0(k >0)与圆x 2+y 2=4交于不同的两点A 、B ,O 是坐标原点,且有,那么k的取值范围是()A.B.C. D.【考点】9V:向量在几何中的应用;J8:直线与圆相交的性质.【分析】利用平行四边形法则,借助于直线与圆的位置关系,利用直角三角形,即可求得结论.【解答】解:设AB中点为D,则OD⊥AB∵,∴∴∵∴∵直线x+y﹣k=0(k>0)与圆x2+y2=4交于不同的两点A、B,∴∴4>∴4>∵k>0,∴故选C.12.已知棱长为l的正方体ABCD﹣A1B1C1D1中,E,F,M分别是AB、AD、AA1的中点,又P、Q分别在线段A1B1,A1D1上,且A1P=A1Q=x,0<x<1,设面MEF ∩面MPQ=l,则下列结论中不成立的是()A.l∥面ABCD B.l⊥ACC.面MEF与面MPQ垂直D.当x变化时,l是定直线【考点】LY:平面与平面垂直的判定.【分析】由已知条件推导出l∥EF,从而得到l∥面ABCD;由MN是运动的,得到面MEF与面MPQ所成二面角是不确定的,从而平面MEF与平面MPQ不垂直;EF∥BD,l∥EF,EF与AC所成的角为90°,从而l与AC垂直;M是一个确定的点,从而当x变化时,l是定直线.【解答】解:对于A,∵棱长为1的正方体ABCD﹣A1B1C1D1中,E,F,M分别是AB、AD、AA1的中点,又P、Q分别在线段A1B1、A1D1上,且A1P=A1Q=x,0<x<1,∵QP∥EF,EF∥中截面,由平面与平面平行的性质定理,可知:面MEF∩面MPQ=l,由平面与平面平行的性质定理可知:l∥面ABCD,故A结论正确;对于B,∵正方体ABCD﹣A1B1C1D1中,E,F,M分别是AB、AD、AA1的中点∴AC⊥EF,由三垂线定理可知:l⊥AC,故B结论正确.对于C,∵MN是运动的,∴面MEF与面MPQ所成二面角是不确定的,∴平面MEF与平面MPQ不垂直,故C不正确;对于D,∵M是AA1的中点,是一个确定的点,∴当x变化时,l是过M与EF 平行的定直线,故D正确.故选:C.二、填空题:本大题共4小题,每小题3分,共12分.请把答案填在答题卷的相应位置.13.若||=1,||=2,( +)•=3,则与的夹角为.【考点】9S:数量积表示两个向量的夹角.【分析】利用两个向量垂直的性质,两个向量的数量积的定义,求得与的夹角的余弦值,可得与的夹角.【解答】解:设与的夹角为θ,θ∈[0,π],∵若||=1,||=2,( +)•=3,∴(+)•=+=1•2•cosθ+4=3,cosθ=﹣,∴θ=,故答案为:.14.已知,则sin2x=.【考点】GS:二倍角的正弦.【分析】由诱导公式,二倍角的余弦函数公式化简所求,结合已知即可计算求值.【解答】解:∵,∴.故答案为:.15.若曲线与曲线C2:(y﹣1)•(y﹣kx﹣2k)=0有四个不同的交点,则实数k的取值范围为(,).【考点】54:根的存在性及根的个数判断.【分析】作出两曲线图象,根据交点个数判断直线的斜率范围即可.【解答】解:由y=1+得(x﹣1)2+(y﹣1)2=1(y≥1),曲线C1表示以(1,1)为圆心以1为半径的上半圆,显然直线y=1与曲线C1有两个交点,交点为半圆的两个端点.∴直线y=kx+2k=k(x+2)与半圆有2个除端点外的交点,当直线y=k(x+2)经过点(0,1)时,k=,当直线y=k(x+2)与半圆相切时,=1,解得k=或k=0(舍),∴当<k<时,直线y=k(x+2)与半圆有2个除端点外的交点,故答案为:16.已知等边三角形ABC的边长为,M,N分别为AB,AC的中点,沿MN 将△ABC折成直二面角,则四棱锥A﹣MNCB的外接球的表面积为52π.【考点】LG:球的体积和表面积.【分析】折叠为空间立体图形,得出四棱锥A﹣MNCB的外接球的球心,利用平面问题求解得出四棱锥A﹣MNCB的外接球半径R,则R2=AF2+OF2=13,求解即可.【解答】解:由,取BC的中点E,则E是等腰梯形MNCB外接圆圆心.F 是△AMN外心,作OE⊥平面MNCB,OF⊥平面AMN,则O是四棱锥A﹣MNCB的外接球的球心,且OF=DE=3,AF=2.设四棱锥A﹣MNCB的外接球半径R,则R2=AF2+OF2=13,所以表面积是52π.故答案为:52π.三、解答题:本大题共6小题,共52分.解答应写出文字说明,证明过程或演算步骤.请在答题卷相应题目的答题区域内作答.17.已知圆C:x2+y2+2x﹣2y=0的圆心为C,A(4,0),B(0,﹣2)(Ⅰ)在△ABC中,求AB边上的高CD所在的直线方程;(Ⅱ)求与圆C相切且在两坐标轴上的截距相等的直线方程.【考点】JE:直线和圆的方程的应用;J9:直线与圆的位置关系.【分析】(Ⅰ)求出圆心为C(﹣1,1),半径,求出AB的斜率,直线CD的斜率,然后求解直线CD的方程.(Ⅱ)①当两截距均为0时,设直线方程为y=kx,通过圆心C到直线的距离求解即可;②当两截距均不为0时,设直线方程为x+y=a,通过圆心C到直线的距离求解即可;【解答】解:(Ⅰ)依题意得,圆心为C(﹣1,1),半径,,∴直线CD的斜率为:,∴直线CD的方程为:y﹣1=﹣2(x+1),即2x+y﹣1=0.(Ⅱ)①当两截距均为0时,设直线方程为y=kx,则圆心C到直线的距离为,解得k=1,得直线为y=x,②当两截距均不为0时,设直线方程为x+y=a,则圆心C到直线的距离为,解得a=±2,得直线为x+y=2或x+y=﹣2,综上所述,直线方程为x﹣y=0或x+y﹣2=0或x+y+2=0.18.已知函数(Ⅰ)求函数f(x)的最小正周期和单调递增区间;(Ⅱ)若函数g(x)=f(x)﹣m在区间上有两个不同的零点,求实数m的取值范围.【考点】H1:三角函数的周期性及其求法;H5:正弦函数的单调性.【分析】(Ⅰ)利用查三角恒等变换化简函数f(x)的解析式,再利用正弦函数的周期性和单调性,求得函数f(x)的最小正周期和单调递增区间.(2)由题意利用正弦函数的定义域和值域,求得f(x)的值域,根据f(x)的图象和直线y=m在区间上有两个不同的交点,结合f(x)的图象求得m的范围.【解答】解:(Ⅰ)依题意得,=,故函数f(x)的最小正周期为;由,求得,∴函数f(x)单调递增区间为.(Ⅱ)∵,∴,∴,∴1≤f(x)≤3,由函数g(x)=f(x)﹣m在区间上有两个不同的零点,可知f(x)=m在区间内有两个相异的实根,即y=f(x)图象与y=m的图象有两个不同的交点.在区间上,2x+∈[,π],sin(2x+)∈[0,1],f(x)=2sin(2x+)+1∈[1,3],结合图象可知,当时,两图象有两个不同的交点,∴实数m的取值范围是.19.已知向量,,,函数,已知y=f(x)的图象的一个对称中心与它相邻的一条对称轴之间的距离为1,且经过点(Ⅰ)求函数f(x)的解析式(Ⅱ)先将函数y=f(x)图象上各点的横坐标变为原来的π倍,纵坐标不变,再向右平移m(m>0)个单位长度,向下平移3个单位长度,得到函数y=g(x)的图象,若函数g(x)的图象关于原点对称,求实数m的最小值.【考点】HJ:函数y=Asin(ωx+φ)的图象变换;9R:平面向量数量积的运算.【分析】(Ⅰ)利用两个向量的数量积的定义,正弦函数的周期性求得ω,再根据函数的图象经过点M,求得函数f(x)的解析式.(Ⅱ)依题意利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用正弦函数的奇偶性,求得m的最小值.【解答】解:(Ⅰ)=sin2(ωx+φ)+4﹣1﹣cos2(ωx+φ)=﹣cos(2ωx+2φ)+3,由题可知,,∴T=4,∴由得.又∵函数f(x)经过点,∴,∴,∵,∴,即,∴函数f(x)的解析式为f(x)=.(Ⅱ)先将函数y=f(x)=﹣cos(x+)+3图象上各点的横坐标变为原来的π倍,纵坐标不变,可得y=﹣cos(x+)+3的图象;再向右平移m(m>0)个单位长度,向下平移3个单位长度,得到函数y==的图象.∵函数g(x)关于原点对称,∴函数g(x)为奇函数,即,∴,∵m>0,∴当k=﹣1时,m的最小值为,∴综上所述,实数m的最小值为.20.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD||BC,PD⊥底面ABCD,∠ADC=90°,AD=2BC,Q为AD的中点,M为棱PC的中点.(Ⅰ)证明:PA∥平面BMQ;(Ⅱ)已知PD=DC=AD=2,求点P到平面BMQ的距离.【考点】LS :直线与平面平行的判定;MK :点、线、面间的距离计算. 【分析】(1)连结AC 交BQ 于N ,连结MN ,只要证明MN ∥PA ,利用线面平行的判定定理可证;(2)由(1)可知,PA ∥平面BMQ ,所以点P 到平面BMQ 的距离等于点A 到平面BMQ 的距离.【解答】解:(1)连结AC 交BQ 于N ,连结MN ,因为∠ADC=90°,Q 为AD 的中点,所以N 为AC 的中点.…当M 为PC 的中点,即PM=MC 时,MN 为△PAC 的中位线, 故MN ∥PA ,又MN ⊂平面BMQ ,所以PA ∥平面BMQ .…(2)由(1)可知,PA ∥平面BMQ ,所以点P 到平面BMQ 的距离等于点A 到平面BMQ 的距离,所以V P ﹣BMQ =V A ﹣BMQ =V M ﹣ABQ ,取CD 的中点K ,连结MK ,所以MK ∥PD ,,…又PD ⊥底面ABCD ,所以MK ⊥底面ABCD .又,PD=CD=2,所以AQ=1,BQ=2,,…所以V P ﹣BMQ =V A ﹣BMQ =V M ﹣ABQ =.,… 则点P 到平面BMQ 的距离d=…21.如图,△ABC 中,O 是BC 的中点,AB=AC ,AO=2OC=2.将△BAO 沿AO 折起,使B 点与图中B'点重合. (Ⅰ)求证:AO ⊥平面B′OC ;(Ⅱ)当三棱锥B'﹣AOC 的体积取最大时,求二面角A ﹣B′C ﹣O 的余弦值; (Ⅲ)在(Ⅱ)的条件下,试问在线段B′A 上是否存在一点P ,使CP 与平面B′OA所成的角的正弦值为?证明你的结论.【考点】MT:二面角的平面角及求法;LW:直线与平面垂直的判定;MI:直线与平面所成的角.【分析】(Ⅰ)证明AO⊥OB',AO⊥OC,然后利用直线与平面垂直的判定定理证明AO⊥平面B'OC.(Ⅱ)在平面B'OC内,作B'D⊥OC于点D,判断当D与O重合时,三棱锥B'﹣AOC的体积最大,解法一:过O点作OH⊥B'C于点H,连AH,说明∠AHO即为二面角A﹣B'C﹣O 的平面角,然后就三角形即可得到结果.解法二:依题意得OA、OC、OB'两两垂直,分别以射线OA、OC、OB'为x、y、z轴的正半轴建立空间直角坐标系O﹣xyz,求出平面B'OC的法向量为,求出平面AB'C的法向量为,利用空间向量的数量积求解二面角的余弦值.(Ⅲ)解法一:存在,且为线段AB'的中点,证明设,求出,以及平面B'OA的法向量,利用空间向量的距离公式求解即可.解法二:连接OP,因为CO⊥平面B'OA,得到∠OPC为CP与面B'OA所成的角,通过就三角形即可求出即P为AB'的中点.【解答】解:(Ⅰ)∵AB=AC且O是BC中点,∴AO⊥BC即AO⊥OB',AO⊥OC,又∵OB'∩OC=O,∴AO⊥平面B'OC…(Ⅱ)在平面B'OC内,作B'D⊥OC于点D,则由(Ⅰ)可知B'D⊥OA又OC∩OA=O,∴B'D⊥平面OAC,即B'D是三棱锥B'﹣AOC的高,又B'D≤B'O,所以当D与O重合时,三棱锥B'﹣AOC的体积最大,…解法一:过O点作OH⊥B'C于点H,连AH,由(Ⅰ)知AO⊥平面B'OC,又B'C⊆平面B'OC,∴B'C⊥AO∵AO∩OH=O,∴B'C⊥平面AOH,∴B'C⊥AH,∴∠AHO即为二面角A﹣B'C﹣O的平面角.…,∴,∴,故二面角A﹣B1C﹣O的余弦值为…解法二:依题意得OA、OC、OB'两两垂直,分别以射线OA、OC、OB'为x、y、z轴的正半轴建立空间直角坐标系O﹣xyz,设平面B'OC的法向量为,可得设平面AB'C的法向量为,由…,故二面角A﹣B′C﹣O的余弦值为:.…(Ⅲ)解法一:存在,且为线段AB'的中点证明如下:设…又平面B'OA的法向量,依题意得…解得舍去)…解法二:连接OP,因为CO⊥平面B'OA,所以∠OPC为CP与面B'OA所成的角,…故,,∴…又直角OB'A中,OA=2,OB'=1,∴即P为AB'的中点…22.已知圆C:x2+(y﹣4)2=4,直线l:(3m+1)x+(1﹣m)y﹣4=0(Ⅰ)求直线l所过定点A的坐标;(Ⅱ)求直线l被圆C所截得的弦长最短时m的值及最短弦长;(Ⅲ)已知点M(﹣3,4),在直线MC上(C为圆心),存在定点N(异于点M),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点N的坐标及该常数.【考点】JE:直线和圆的方程的应用;J9:直线与圆的位置关系.【分析】(Ⅰ)利用直线系方程的特征,直接求解直线l过定点A的坐标.(Ⅱ)当AC⊥l时,所截得弦长最短,由题知C(0,4),r=2,求出AC的斜率,利用点到直线的距离,转化求解即可.(Ⅲ)法一:由题知,直线MC的方程为y=4,假设存在定点N(t,4)满足题意,则设P(x,y),,得|PM|2=λ2|PN|2(λ>0),且(y﹣4)2=4﹣x2,求出λ,然后求解比值.法二:设直线MC上的点N(t,4)取直线MC与圆C的交点P1(﹣2,4),则,取直线MC与圆C的交点P2(2,4),则,通过令,存在这样的定点N满足题意,则必为,然后证明即可.【解答】解:(Ⅰ)依题意得,m(3x﹣y)+(x+y﹣4)=0,令3x﹣y=0且x+y﹣4=0,得x=1,y=3∴直线l过定点A(1,3),(Ⅱ)当AC⊥l时,所截得弦长最短,由题知C(0,4),r=2,∴,得,∴由得m=﹣1,∴圆心到直线的距离为,∴最短弦长为.(Ⅲ)法一:由题知,直线MC的方程为y=4,假设存在定点N(t,4)满足题意,则设P(x,y),,得|PM|2=λ2|PN|2(λ>0),且(y﹣4)2=4﹣x2∴(x+3)2+(y﹣4)2=λ2(x﹣t)2+λ2(y﹣4)2∴(x+3)2+4﹣x2=λ2(x﹣t)2+λ2(4﹣x2)整理得,(6+2tλ2)x﹣(λ2t2+4λ2﹣13)=0∵上式对任意x∈[﹣2,2]恒成立,∴6+2tλ2=0且λ2t2+4λ2﹣13=0解得或t=﹣3,λ=1(舍去,与M重合)综上可知,在直线MC上存在定点,使得为常数法二:设直线MC上的点N(t,4)取直线MC与圆C的交点P1(﹣2,4),则取直线MC与圆C的交点P2(2,4),则令,解得或t=﹣3(舍去,与M重合),此时若存在这样的定点N满足题意,则必为,下证:点满足题意,设圆上任意一点P(x,y),则(y﹣4)2=4﹣x2∴==,∴综上可知,在直线MC上存在定点,使得为常数.2017年6月12日。
2016-2017年福建省莆田七中高一(下)第二次月考数学试卷(解析版)

【解答】解:对于①,长度为 0 的向量都是零向量,①正确; 对于②,零向量的方向是任意的,②错误; 对于③,单位向量的长度都为 1,相等,③正确; 对于④,单位向量的方向不一定相同,④错误; 对于⑤,零向量的方向是任意的, ∴任意向量与零向量都共线,⑤正确. 综上,正确的命题是①③⑤. 故选:D. 2. (4 分)下列说法正确的是( A.若 C.若 ) B.若 D.若
9. (4 分)设 x,y∈R,向量 =(2,﹣4) , =(x,1) , =(1,y) ,且 ⊥ , ∥ , 则| + |=( A. ) B. |=1,| |= C. , D.10 =0,点 C 在线段 AB 上,且∠AOC )
10. (4 分)如图所示,已知| =30°,设 =m +n
(m,n∈R) ,则 m﹣n 等于(
18. (8 分)在△OAB 中, 以 、 为基底表示 .
,AD 与 BC 交于点 M,设
,
19. (9 分)已知 , , 是一个平面内的三个向量,其中 =(1,3) . (1)若| |=2 (2)若| |= , ∥ ,求 及 ;
,且 ﹣3 与 2 + 垂直,求 与 的夹角. , , ,其中 x>0
5. (4 分)下列式子中,不能化简为 A. C. 6. (4 分)在△ABC 中, A. +
7. (4 分) 若向量 、 满足| |=| |=2, 与 的夹角为 60°, 在向量 上的投影等于 ( A. B.2 )
第 1 页(共 14 页)
C.
D.1
8. (4 分)下列命题正确的是(
A.单位向量都相等 B.若 C.| + |=| ﹣ |,则 • =0 D.若 与 是单位向量,则 • =1
13. (4 分)已知正方形 ABCD 的边长为 4,E 是 CD 的中点,则 14 . ( 4 分 ) 已 知 tan ( 3π+α
2016-2017学年福建省高一下学期第二次联考(5月)数学试题7

高一下学期第二次联考(5月)数学试题(考试时间:120分钟 总分:150分)一、选择题(每题5分,共60分,在每小题给出的四个选项中只有一项是符合题目要求的)1.数列1111,,,24816-- 的一个通项公式可能是( ) A .1(1)2n n - B .1(1)2n n - C .11(1)2n n -- D .11(1)2n n-- 2.设△ABC 内角A ,B ,C 的对边分别是a ,b ,c ,已知,3,22,32π=∠==A c a则∠C 的大小为( )A .B .或C .D .或3.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为,则此球的体积为( )A .πB .4πC .4πD .6π4.若实数0543,,=--y x y x 满足,则22y x +的最小值是( )A .B .5C .D .15.数列中,若211=a ,2111+=+nn a a ,则这个数列的第20项为( ) A .772 B .40 C .401 D . 391 6. 等比数列中,若的值为则公比q S a ,21,733==( ) A .321或 B .321-或 C .121或 D .121或- 7. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹六丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹六丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为( )A .尺B .2918尺C .尺 D .尺8. 设等差数列{}n a 的前n 项和为n S ,已知13510,8a a a =-+=-,则当n S 取最小值时,n 等于 ( )A.5B.6C.5或6D.11 9.已知圆C :()()52322=-+-y x ,一束入射光线从点A (-1,1)出发经直线02=++y x 反射后与圆C 相交于点P ,求入射光线从点A 到点P 的最短路程为( )A. .B 3± .C . 312. 如图所示,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且22=EF ,则下列结论中正确的个数是( ) ①EF ∥平面ABCD ;②平面ACF ⊥平面BEF ;③三棱锥E ﹣ABF 的体积为定值;④存在某个位置使得异面直线AE 与BF 成角30o ..A 1 .B 2 .C 3 D . 4二、填空题(每小题5分,共20分)13.在等差数列}{n a 中,已知693,6,a a ==则12a =14. 如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为060,再由点C 沿北偏东015方向走10米到位置D ,测得0=45BDC ∠,则塔AB 的高度为 .15.在等比数列{a n }中,若a 5+a 6+a 7+a 8=15,a 6a 7=5-,56781111a a a a +++=16. 如图,在平面直角坐标系中,分别在x 轴与直线y =k A 、k B ,1,2,k =⋅⋅⋅,其中1A 是坐标原点,使1k k k A B A +∆都是等边三角形,则101011A B A ∆ 的周长是 .三、解答题。
福建省莆田市第二十五中学2016-2017学年高一下学期期

莆田第二十五中学2016-2017学年下学期期中质量检测试卷高一数学一、选择题(12×5=60分)1、直线023=-+y x 的倾斜角为( ) A 、30︒ B 、120︒ C 、150︒ D 、602.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么互斥不对立的两个事件是( ).A .至少有1名男生与全是女生B .至少有1名男生与全是男生C .至少有1名男生与至少有1名女生D .恰有1名男生与恰有2名女生3.A ,B 两名同学在5次数学考试中的成绩统计如下面的茎叶图所示,若A ,B 两人的平均成绩分别是B A x x ,,观察茎叶图,下列结论正确的是( ). A.B A x x <,B 比A 成绩稳定 B. B A x x >,B 比A 成绩稳定 C. B A x x <,A 比B 成绩稳定 D. B A x x >,A 比B 成绩稳定4、总体由编号为001,002,003,…,299,300的300个个体组成.利用下面的随机数表选取5个个体,选取方法是从该随机数表第1行的第3,4,5列数字开始由左到右依次选取三个数字,则选出来的第5个个体的编号为( )A.080B.263C.140D.2805、我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 ( ) A.134石B.169石C.338石D.1365石6、某产品的广告费用x 与销售額y 的统计数据如下表:根据上表可得回归方程y bx a =+中的b 为9.4,据此模型预报广告费用为6万元时销售额约为( )A.63.6万元B.65.5万元C.67.7万元D.72.0万元 7、下左图的程序框图输出S 的值为( )A .62B .126C .254D .5108、上右图给出的是计算201614121+⋅⋅⋅+++的值的一个程序框图,其中判断框内应填入的条件是 ( ) A. 9i >B. 10i >C. 11i >D. 12i >9、某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A .4B .5C .6D .710、过点()2,3A 且垂直于直线250x y +-=的直线方程为( ) A .240x y -+= B .270x y +-= C .230x y -+=D .250x y -+=11、.若以连续掷两次骰子分别得到的点数m ,n 作为点P 的坐标,求点P 落在圆x 2+y 2=16外部的概率是( ).A .95 B .32 C .97 D .98 12、若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+(y -1)2=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D .(x -3)2+(y -1)2=1二、填空题(4×5=20分)13、 直线0143=+-y x 与直线0186=--y x 间的距离为 14、先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是______(用分数表示). 15.如右图,在正方形内有一扇形(见阴影部分),扇形对应的圆心是正方形的一顶点,半径为正方形的边长。
福建莆田市2016-2017学年高一数学6月月考试题a

福建省莆田市2016-2017学年高一数学6月月考试题A(时间120分钟,满分150分)第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、不等式21x x ≥+的解集是( ) A .{x |211x x -≤<-≥或} B .{x |21x x ≤-≤<或-1} C .{x |211x x ≤--<≤或} D .{x |2x ≤-}2、已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( ) A .64B .100C .110D .1203、已知,,a b c R ∈,则下列选项正确的是 ( )A.22a b am bm >⇒>B.a ba b c c>⇒> C.11,0a b ab a b >>⇒< D.2211,0a b ab a b>>⇒<4、若变量x ,y 满足约束条件11y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,且z =2x +y 的最大值和最小值分别为m 和n ,则m-n =( )A .5B .6C .7D .85、已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99,以n S 表示{}n a 的前n 项和, 则使得n S 达到最大值的n 是( )A .21B . 20C .19D .186、已知x y R +∈、,且8x y xy ++=,则xy 的取值范围是( ) A.[]2,4 B.[]2,4- C.(]0,2 D. (]0,4 7、若不等式220x ax ++≥对一切x ∈10,2⎛⎤ ⎥⎝⎦成立,则a 的最小值为( )A .-25B. -2C. 92-D. -38、已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是( ) A (],1-∞- B.()(),01,-∞+∞ C.[)3,+∞ D.(][),13,-∞-+∞9、已知等比数列{}n a 的公比为q ,记(1)1(1)2(1)...nm n m n m n m b a a a -+-+-+=+++,*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )A.数列{}n b 为等差数列,公差为mq B.数列{}n b 为等比数列,公比为2mq C.数列{}n c 为等比数列,公比为2m q D.数列{}n c 为等比数列,公比为mm q10、如图,点列{}{},n n A B 分别在某锐角的两边上,且*1122,,n n n n n n A A A A A A n ++++=≠∈N , *1122,,n n n n n n B B B B B B n ++++=≠∈N .(P ≠Q 表示点P 与Q 不重合)若n n n d A B =,n S 为1n n n A B B +△的面积,则( )A.{}n S 是等差数列B.{}2n S 是等差数列C.{}n d 是等差数列D.{}2n d 是等差数列11、已知各项都为正的等比数列{}n a 满足7652a a a =+,存在两项m a ,n a 使得14a =,则14m n+的最小值为 ( ) A. 32 B .53 C. 256 D .43 12、数列{}n a 的通项222(cos sin )33n n n a n ππ=-,其前n 项和 为n S ,则30S 为 ( )A .470B .490C .495D .510第Ⅱ卷二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省莆田市2016-2017学年高一数学下学期第二次月考试题(无答案)
时间:120分钟满分:150分
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知,,则( )
A. B. C. D.
2.有20位同学,编号从1至20,现在从中抽取4人作问卷进行调查,用系统抽样方法所确定的编号有可能是( )
A.3,8,13,18
B. 2,6,10,14
C. 2,4,6, 8
D. 5,8,11,14
3.已知,那么角的终边在( )
A.第一象限
B.第三象限或第四象限
C.第三象限
D.第四象限
4.若根据10名儿童的年龄 (岁)和体重 ()数据用最小二乘法得到用年龄预报体重的回归方程是
,已知这10名儿童的年龄分别是 2、3、3、5、2、6、7、3、4、5,则这10名儿童的平均体重是( )
A.14 B.15 C.16 D.17
5.已知为圆上的两点,且,则所对的圆心角的度数为( )
A. B. C. D.
6.右边程序框图的算法思路来源于我国古代
数学名著《九章算术》中的“更相减损术”,
执行该程序框图,若输入的分别为
14,18,则输出的为()
A. B. C. D.
7.已知,那么
( )
A. B. C. D.
8.若,则( )
A. B. C. D.
9.在某次测量中得到的样本数据如下:2,4,4,6,6,6,8,8,8,8,若样本数据恰好是样本数据都加2后所得数据,则两样本的下列数字特征对应相同的是( )
A.众数
B.平均数
C.中位数
D.标准差
10.函数的最小值为( )
A.B.C.D.
11. 已知函数为奇函数,且其图像上相邻一个最高点和最低点之间的距离为,则( )
A. B. C. D.
12.已知等腰梯形中,,向量满足,
则下列式子不正确的是( )
A. B. C. D.
二、填空题:本大题共4小题,每小题5分.
13.阅读如右图所示的程序框图,运行相应程序,
输出的结果是_________.
14.若两个单位向量的夹角为,则
向量在向量方向上的投影为 _________.
15.一个社会调查机构就某地居民的月收入调
查了10000人,并根据所得数据画了样本的频率分布直方图(如右图),为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样的方法抽出100人作进一步调查,则在(元)月收入段。