《一次函数》知识点串讲及考点透视.

合集下载

一次函数经典讲义

一次函数经典讲义

一次函数复习讲义一.基础知识1、一次函数的概念:若两个变量x,y间的关系式可以表示为y=kx+b(k,b为常数,k≠0)的形式,则y是x的一次函数(x为自变量,y为因变量)特别地,当b=0时,称y是x的正比例函数。

2、一次函数的图象及其性质:(1)、图象:一次函数的图象是一条直线,所以画图象时只要先确定两点,再过这两点画一条直线就可以画出一次函数的图象。

一次函数的图象与k,b的关系如下图所示:3、函数表达式的确定:常用方法是待定系数法,一次函数y=kx+b 中含有两个待定系数k 、b ,根据待定系数法,只要列出方程组即可.4、一次函数的应用: (1)、一次函数与一元一次方程、二元一次方程组的关系。

一元一次方程的解就是一次函数与x 轴的交点坐标的横坐标的值。

二元一次方程组的解可以把方程组中的两个方程看作是两个一次函数,画出这两个函数的图象,那么它们的交点坐标就是方程组的解。

(2)、一次函数与不等式的关系:可以借助函数图象解决一元一次不等式的有关问题。

二、一次函数的概念典型例题1、当k_____________时,()2323y k x x =-++-是一次函数;2、当m_____________时,()21345m y m x x +=-+-是一次函数;3、函数中,当 时,它是一次函数,当它是正比例函数.4、下列函数中,是的一次函数的是( )、 、 、 、三、一次函数的图象与性质1.下列图形中的曲线不表示y 是x 的函数的是( )2、如图,已知直线b x y +=3与2-=ax y 的交点的横坐标为2-,根据图象有下列3个结论:①0>a ;②0>b ;③2->x 是不等式23->+ax b x 的解集.其中正确的个数是( ) A .0 B .1 C .2 D .33、对于函数y =5x+6,y 的值随x 值的减小而___________。

4、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__________。

一次函数知识点总结

一次函数知识点总结

一次函数知识点总结一次函数是数学中非常重要的一个概念,在我们的日常生活和学习中都有着广泛的应用。

接下来,就让我们一起来详细了解一下一次函数的相关知识点。

一、一次函数的定义一般地,形如 y = kx + b(k,b 是常数,k ≠ 0)的函数,叫做一次函数。

当 b = 0 时,即 y = kx(k 为常数,k ≠ 0),这时称 y 是 x的正比例函数,所以说正比例函数是一种特殊的一次函数。

理解一次函数的定义需要注意以下几点:1、 k 和 b 是常数,且k ≠ 0。

如果 k = 0,那么函数就变成了 y = b,这是一个常数函数,不是一次函数。

2、自变量 x 的次数是 1,不能有 x 的平方、立方等更高次项。

二、一次函数的图像一次函数 y = kx + b 的图像是一条直线。

当 k > 0 时,直线从左到右上升,y 随 x 的增大而增大;当 k < 0 时,直线从左到右下降,y 随 x 的增大而减小。

b 的值决定了直线与 y 轴的交点坐标。

当 x = 0 时,y = b,所以直线与 y 轴的交点坐标为(0,b)。

例如,函数 y = 2x + 1,k = 2 > 0,直线上升,b = 1,与 y 轴交于点(0,1)。

三、一次函数的性质1、增减性正如前面所说,k 的正负决定了函数的增减性。

2、对称性一次函数的图像是一条直线,所以它关于直线 x = b /(2k) 对称。

3、与坐标轴的交点与 x 轴的交点:令 y = 0,解得 x = b / k,所以与 x 轴的交点坐标为(b / k,0)。

与 y 轴的交点:前面已经提到,为(0,b)。

四、一次函数的解析式的确定要确定一个一次函数的解析式,通常需要两个条件,然后将这两个条件代入解析式中,得到一个方程组,解这个方程组就能求出 k 和 b的值。

常见的条件有:1、已知两点的坐标。

2、已知一个点的坐标和函数的图像经过的另一个特殊位置(如与x 轴或 y 轴的交点)。

一次函数的知识点总结

一次函数的知识点总结

一次函数的知识点总结一、一次函数的基本概念一次函数是数学中最基础的函数之一,它的表达式为y = ax + b,其中a和b是常数,a不等于0。

在这个函数中,x称为自变量,y称为因变量,a称为斜率,b称为截距。

斜率表示了函数图象的倾斜程度,而截距表示了函数图象与y轴的交点位置。

从函数的表达式中可以看出,一次函数的图象是一条直线,即直线函数。

一次函数的定义域为实数集R,值域也为实数集R。

它的图象可以延伸到整个坐标平面上。

当a大于0时,函数图象是上升的直线;当a小于0时,函数图象是下降的直线。

二、一次函数的性质1. 斜率和截距一次函数的斜率a表示了函数图象的倾斜程度,它的绝对值越大,直线的斜率越大。

当a大于0时,函数图象向右上方倾斜;当a小于0时,函数图象向右下方倾斜。

而截距b表示了函数图象与y轴的交点位置,当b大于0时,函数图象在y轴上方;当b小于0时,函数图象在y轴下方。

2. 函数值对于一次函数y = ax + b,当给定x的值时,我们可以通过代入x的值得到对应的函数值y。

一次函数的函数值可以用来描述一根直线上的点的位置。

3. 函数的奇偶性一次函数是一个奇函数,它的图象关于原点对称。

这意味着,如果(x, y)在函数的图象上,则(-x, -y)也在函数的图象上。

4. 函数的单调性当a大于0时,一次函数是递增的;当a小于0时,一次函数是递减的。

递增意味着函数图象自左向右是上升的,递减意味着函数图象自左向右是下降的。

三、一次函数的图象一次函数的图象是一条直线,在坐标平面上呈现出一种特定的形状。

它的位置、斜率、倾斜方向和截距等特征可以通过图象来直观地展现。

1. 斜率和截距斜率a决定了函数图象的倾斜程度,它的绝对值越大,直线的斜率越大。

当a大于0时,函数图象是上升的直线;当a小于0时,函数图象是下降的直线。

而截距b决定了函数图象与y轴的交点位置,它是函数图象与y轴的交点的纵坐标。

2. 基本图象y = x + 1是一次函数的基本图象,它是一条经过原点,斜率为1的直线。

考点10 一次函数(精讲)(解析版)

考点10 一次函数(精讲)(解析版)

考点10.一次函数(精讲)【命题趋势】一次函数的图象与性质是中考数学中比较重要的一个考点,也是知识点牵涉比较多的考点。

各地对一次函数的图象与性质的考查也主要集中在一次函数表达式与平移、图象的性质、图象与方程不等式的关系以及一次函数图象与几何图形面积等五个方面,年年考查,总分值为10分左右。

一次函数不仅是中考重要考点,也是反比例函数、二次函数学习的基础,而初中函数部分,更是和整个高中学习体系联系紧密,不管对于中考还是高中基础积累,一次函数学习都尤为重要。

故考生在复习这块知识点时,需要特别熟记对应考点的方法规律。

【知识清单】1:一次函数的相关概念(☆☆)1)正比例函数的概念:一般地,形如y =kx (k 是常数,k ≠0)的函数,叫正比例函数,其中k 叫正比例系数。

2)一次函数的定义:一般地,形如y =kx +b (k ,b 为常数,且k ≠0)的函数叫做x 的一次函数。

特别地,当一次函数y =kx +b 中的b =0时,y =kx ,所以说正比例函数是一种特殊的一次函数。

2:一次函数的图象与性质(☆☆☆)1)一次函数的图象特征与性质函数字母取值图象经过的象限函数性质y =kx +b (k ≠0)k >0,b >0一、二、三y 随x 的增大而增大k >0,b <0一、三、四k >0,b =0一、三y =kx +b (k ≠0)k <0,b >0一、二、四y 随x 的增大而减小k <0,b <0二、三、四k <0,b =0二、四2)k,b的符号与直线y=kx+b(k≠0)的关系在直线y=kx+b(k≠0)中,令y=0,则x=-bk,即直线y=kx+b与x轴交于(–bk,0)。

①当–bk>0时,即k,b异号时,直线与x轴交于正半轴。

②当–bk=0,即b=0时,直线经过原点.③当–bk<0,即k,b同号时,直线与x轴交于负半轴。

3)两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:①当k1=k2,b1≠b2,两直线平行;②当k1=k2,b1=b2,两直线重合;③当k1≠k2,b1=b2,两直线交于y轴上一点;④当k1·k2=–1时,两直线垂直。

专题06 一次函数(知识点串讲)(解析版)

专题06 一次函数(知识点串讲)(解析版)

专题06 一次函数知识框架重难突破一、正比例函数的概念、图象和性质1、正比例函数的概念:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.正比例函数中自变量的取值范围是全体实数.2、正比例函数的图象:一般地,正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线,我们称它为直线y=kx.图像如图:3、正比例函数的性质:当k>0时,y随x的增大而增大.当x<0时,y随x的增大而减小.备注:(1)正比例函数y=kx,也可以说成y与x成正比例.要求函数关系式只需通过x,y的一组对应值求出k,从而确定关系式.(2)正比例函数的图象是过原点的直线.当k>0时,直线从左到右呈上升趋势,经过第三、一象限;当k<0时,直线从左到右呈下降趋势,经过第二、四象限.画正比例函数的图象时.只需选取除原点外的一点,过原点和选取点画直线即可,选取的点一般为点(1,k).(3)正比例函数的性质也可以逆用.如当正比例函数y =kx (k ≠0)中y 随x 的增大而增大时,则k >0,反之k <0;再比如,正比例函数的图象过第一、三象限,则k >0等. 二、一次函数的概念、图象和性质1.一次函数的概念:一般地,形如y kx b =+(k ,b 是常数,k ≠0)的函数,叫做一次函数.备注:当b =0时,y kx b =+即y kx =,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数k ,b 的要求,一次函数也被称为线性函数. 2.一次函数b kx y +=(k 、b 为常数,且k ≠0)的图象与性质:正比例函数的图象是经过原点(0,0)和点(1,k )的一条直线;一次函数图像可由正比例函数图像平移得到;当b >0时,直线y kx b =+是由直线y kx =向上平移b 个单位长度得到的; 当b <0时,直线y kx b =+是由直线y kx =向下平移|b |个单位长度得到的. 一次函数(0)y kx b k =+≠图象和性质如下:备注:(1)一次函数的关系式是关于自变量的一次关系式,要确定一次函数关系式,只需确定k ,b . (2)一次函数的图象是一条直线,要画出图象只需确定图象上的两点,这两点一般选与x 轴、y 轴的交点⎪⎭⎫⎝⎛-0,k b ,(0,b ),过这两点画直线即可.(3)直线y =kx +b 也可以看做是把直线y =kx 向上(b >0)或向下(b <0时)平移b 个单位得到的. 3. k 、b 对一次函数b kx y +=的图象和性质的影响:k 决定直线y kx b =+从左向右的趋势,b 决定它与y 轴交点的位置,k 、b 一起决定直线y kx b =+经过的象限.备注:(1)由k ,b 的符号可以确定直线y =kx +b 的位置.反过来,由直线y =kx +b 的位置也可以确定k ,b 的符号.这种数形结合的思想方法,是我们解决图象问题的重要方法.由k ,b 的符号也可以不通过画图象,直接判定直线的位置,k 的符号决定直线的倾斜方向,b 的符号决定直线与y 轴交点的位置.(2)k 的大小决定直线的倾斜程度,即k 越大,直线与x 轴相交成的锐角度数越大;k 越小,直线与x 轴相交成的锐角度数越小.b 决定直线与y 轴交点的位置,b >0时,直线与y 轴的交点在y 轴的正半轴上;b <0时,直线与y 轴的交点在y 轴的负半轴上.4. 两条直线位置关系的确定:两条直线:1l 11b x k y +=:和2l :22b x k y +=的关系:(1)12k k ≠⇔1l 与2l 相交; (2)12k k =,且12b b ≠⇔1l 与2l 平行; 备注:(1)直线y =k 1x +b 1与直线y =k 2x +b 2的位置关系: 当k 1=k 2,b 1=b 2时,两直线重合. 当k 1=k 2,b 1≠b 2时,两直线平行.当k 1≠k 2,b 1=b 2时,两直线相交于y 轴上的一点(0,b 1). 当k 1≠k 2,b 1≠b 2时.两直线相交. 三、待定系数法待定系数法是确定函数关系式的基本方法. 1、用待定系数法确定一次函数表达式的步骤 (1)设出函数关系式的一般形式y =kx +b .(2)把自变量x 与函数y 的对应值代入函数关系式中,得到关于待定系数的方程或方程组. (3)求出待定系数. (4)写出函数关系式.备注:确定实际问题中一次函数关系式时,首先要将实际问题转化为数学问题,即建立数学模型,其次是建立函数与自变量之间的关系式,要注意确定自变量的取值范围. 例1.(2020·成都嘉祥外国语学校成华校区八年级期中)若函数23(2)m y m x -=-是关于x 的正比例函数,则常数m 的值等于( )A .±2B .﹣2C .3±D .3-【答案】B解:根据题意得,m 2﹣3=1且2﹣m≠0, 解得m =±2且m≠2, 所以m =﹣2. 故选:B .练习1.(2020·成都嘉祥外国语学校成华校区八年级期中)若y =(k ﹣1)2k x -+k+1是关于x 的正比例函数,则k =_____. 【答案】-1解:∵y =(k ﹣1)x 2﹣|k|+k+1,y 是x 的正比例函数, ∴2﹣|k|=1,且k ﹣1≠0,k+1=0, 解得:k =﹣1. 故答案为:﹣1.例2.(2018·四川宜宾市·八年级期中)若函数2(3)9y a x a =++-是正比例函数,则a=_______,图像过__________象限.【答案】3 一、三 【解析】解:根据正比例函数的定义,可得a+3≠0,a 2−9=0, ∴a=3,此时a+3=6>0, ∴图象过一、三象限. 故答案为:3;一、三.练习1.(2018·四川成都市·八年级期中)在平面直角坐标系xOy 中,点P (2,a )在正比例函数12y x =的图象上,则点Q (a ,3a ﹣5)位于第_________象限 【答案】四 【解析】∵点P (2,a )在正比例函数的图象上,∴a=1,∴a=1,3a ﹣5=﹣2,∴点Q (a ,3a ﹣5)位于第四象限. 故答案为四.例3.(2019·成都七中实验学校八年级期中)下列函数中y 是x 的一次函数的是( ) A .1y x=B .31y xC .21y x =D .231y x =+【答案】B A :1y x=,未知数x 充当了分母,不是(0)y kx b k =+≠的形式,故此选项错误; B :31y x ,是一次函数,故此选项正确;C :21y x=,未知数x 充当了分母,不是(0)y kx b k =+≠的形式,故此选项错误; D :231y x =+,未知数x 的次数为2,故此选项错误; 故答案选B练习1.(2020·渠县崇德实验学校八年级期中)下列函数:① y = -2x + 1;②2y x =;③ 12y x =;④ y =6x ;⑤y = 2x 2 + 1,其中y 是x 的一次函数有( ) A .4个 B .3个C .2个D .1个【答案】B解:符合函数()0y kx b k =+≠都是一次函数,∴①③④都是一次函数,②⑤不符合一次函数的解析式,故不是一次函数; ∴y 是x 的一次函数有3个; 故选B .例4.(2020·四川省内江市第六中学八年级期中)一次函数y =-3x -2的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 解:∵k=-3<0,∴函数经过第二、四象限,∵b=﹣2<0,∴函数与y 轴负半轴相交, ∴图象不经过第一象限. 故选A练习1.(2020·渠县天关中学八年级期中)一次函数y=kx+1(0k ≠)的图像可能正确的是( )A .B .C .D .【答案】C∵一次函数解析式中:b=1,即:该函数图象与y 轴交于正半轴, ∴符合题意的图象只有C , 故选:C例5.(2020·四川电子科大实验中学八年级期中)若直线y kx b =+经过第一、二、四象限,则k ,b 的取值范围是( ) A .0k >,0b > B .0k >,0b <C .0k <,0b >D .0k <,0b <【答案】C∵一次函数y kx b =+的图象经过第一、二、四象限,当k >0时,直线必经过一、三象限;当k <0时,直线必经过二、四象限; ∴k <0当b>0时,直线必经过一、二象限;当b<0时,直线必经过三、四象限; ∴b>0 故选C .练习1.(2020·成都七中万达学校八年级期中)已知一次函数y =kx +b 随着x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )A .B .C .D .【答案】A因为y 随着x 的增大而减小, 可得:k<0, 因为kb<0, 可得:b>0,所以图像经过一、二、四象限. 故选A.例6.(2020·四川成都市·成都外国语学校八年级期中)若一次函数1y kx k =++的图象不经过第三象限,则k 的取值范围是( ) A .10k -≤< B .10k -<<C .0k <D .1k ≤-【答案】A一次函数1y kx k =++的图象, 不经过第三象限,010k k <⎧∴⎨+≥⎩,解得10k -≤<. 故选A .练习1.(2020·四川雅安市·雅安中学八年级期中)已知正比例函数y kx =,且y 随x 的增大而减少,则直线2y x k =+的图像是( )A .B .C .D .【答案】D解:∵正比例函数y kx =,且y 随x 的增大而减少,∴k ﹤0, 在2y x k =+中, ∵2﹥0,k ﹤0,∴直线2y x k =+经过第一、三、四象限, 故选:D .例7.(2020·渠县崇德实验学校八年级期中)已知正比例函数y=kx 的图象经过点P(- 2,2), (1)求出该正比例函数的关系式;(2)若点Q(a ,- 4)在这个函数的图象上,求a 的值,并写出点Q 的坐标. 【答案】(1)y x =-;(2)4a =;点Q 为:(4,4-). 解:(1)∵点P (2-,2)在y kx =的图像上, ∴22k =-, ∴1k =-,∴正比例函数的解析式为:y x =-; (2)∵点Q 在y x =-的函数图像上, ∴4a -=-, ∴4a =;∴点Q 为:(4,4-).练习1.(2020·成都嘉祥外国语学校成华校区八年级期中)已知一次函数的图象经过(2,3)A --,()1,3B 两点.(1)求这个一次函数的表达式;(2)试判断点(1,1)P -是否在这个一次函数的图象上.【答案】(1)21y x =+;(2)点(1,1)P -不在这个一次函数的图象上. 解:(1)设这个一次函数的表达式为y kx b =+.由题意得23,3,k b k b -+=-⎧⎨+=⎩解得2,1,k b =⎧⎨=⎩∴这个一次函数的表达式为21y x =+. (2)当1x =-时,2(1)111y =⨯-+=-≠. ∴点(1,1)P -不在这个一次函数的图象上.例8.(2017·四川成都市·八年级期中)已知一次函数y=kx+b 的图象经过点(1,4)和(2,2). (1)求这个一次函数;(2)画出这个函数的图象,与x 轴的交点A 、与y 轴的交点B ;并求出△AOB 的面积;(3)在第四象限内,直线AB 上有一点C 使△AOC 的面积等于△AOB 的面积,请求出点C 的坐标. 【答案】(1)y=﹣2x+6;(2)9;(3)C (6,﹣6)。

专题12 一次函数(知识点串讲)(解析版)

专题12 一次函数(知识点串讲)(解析版)

专题12 一次函数知识网络重难突破一. 一次函数的认识一般地,形如y=kx+b(k、b为常数,且k≠0)的函数叫做一次函数.正比例函数也是一次函数,是一次函数的特殊形式.典例1.(2018春•青龙县期末)下列关系式中:y=﹣3x+1、y、y=x2+1、y x,y是x的一次函数的有()A.1个B.2个C.3个D.4个【答案】B【解析】解:函数y=﹣3x+1,y,y=x2+1,y x中,是一次函数的是:y=﹣3x+1、y x,共2个.故选:B.【点睛】利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.典例2.(2018春•颍东区期末)已知函数y=(m﹣1)x|m|+5m是一次函数,则m的值为()A.1 B.﹣1 C.0或﹣1 D.1或﹣1【答案】B【解析】解:由题意可知:解得:m =﹣1 故选:B .典例3.(2018秋•浦东新区期末)已知函数y =(m ﹣1)x+m 2﹣1是正比例函数,则m =____. 【答案】﹣1【解析】解:由正比例函数的定义可得:m 2﹣1=0,且m ﹣1≠0, 解得:m =﹣1, 故答案为:﹣1.【点睛】由正比例函数的定义可得m 2﹣1=0,且m ﹣1≠0.本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y =kx 的定义条件是:k 为常数且k ≠0,自变量次数为1. 典例4.(2017秋•沙坪坝区校级期末)若函数y =(k ﹣2)x |k|﹣1是正比例函数,则k =____.【答案】-2【解析】解:∵函数y =(k ﹣2)x |k|﹣1是正比例函数,∴,解得k =﹣2, 故答案为:﹣2.【点睛】根据正比例函数的定义可得|k|﹣1=1,且k ﹣2≠0,再解方程即可.此题主要考查了正比例函数的定义,关键是掌握形如y =kx (k 是常数,k ≠0)的函数叫做正比例函数.二. 一次函数的图象与性质1.一次函数y =kx +b(k≠0)的图象是一条经过点(0,b )、()的直线,一次函数y =kx +b 的图象也称为直线y =kx +b. 2.一次函数y =kx +b 的性质(1)增减性⎩⎪⎨⎪⎧k >0,y 随x 的增大而增大k <0,y 随x 的增大而减小(2)图象所过象限⎩⎪⎨⎪⎧k >0,b >0:第一、二、三象限k >0,b <0:第一、三、四象限k <0,b >0:第一、二、四象限k <0,b <0:第二、三、四象限(3)倾斜度⎩⎪⎨⎪⎧|k|越大,直线越接近y 轴|k|越小,直线越远离y 轴典例1.(2017秋•太仓市期末)如图,三个正比例函数的图象分别对应函数关系式:①y =ax ,②y =bx ,③y =cx ,将a ,b ,c 从小到大排列并用“<”连接为( )A .a <b <cB .c <a <bC .c <b <aD .a <c <b【答案】D【解析】解:根据三个函数图象所在象限可得a <0,b >0,c >0, 再根据直线越陡,|k|越大,则b >c . 则b >c >a , 即a <c <b . 故选:D .【点睛】根据直线所过象限可得a <0,b >0,c >0,再根据直线陡的情况可判断出b >c ,进而得到答案.此题主要考查了正比例函数图象,关键是掌握:当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小.同时注意直线越陡,则|k|越大典例2 .(2018秋•雅安期末)直线l 1:y =kx+b 与直线l 2:y =bx+k 在同一坐标系中的大致位置是( )A .B .C.D.【答案】C【解析】解:根据一次函数的系数与图象的关系依次分析选项可得:A、由图可得,y1=kx+b中,k<0,b<0,y2=bx+k中,b>0,k<0,b、k的取值矛盾,故本选项错误;B、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b>0,k>0,b的取值相矛盾,故本选项错误;C、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k>0,k的取值相一致,故本选项正确;D、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k<0,k的取值相矛盾,故本选项错误;故选:C.【点睛】根据一次函数的系数与图象的关系依次分析选项,找k、b取值范围相同的即得答案.本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.典例3.(2018春•武昌区期末)已知一次函数y=(m﹣4)x+2m+1的图象不经过第三象限,则m的取值范围是()A.m<4 B.m<4 C.m≤4 D.m【答案】B【解析】解:根据题意得,解得m<4.故选:B.【点睛】依据一次函数y=(m﹣4)x+2m+1的图象不经过第三象限,可得函数表达式中一次项系数小于0,常数项不小于0,进而得到m的取值范围.本题考查了一次函数与系数的关系:对于一次函数y =kx+b(k≠0),k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.典例4.(2018春•德阳期末)若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象一定不经过()A.第四象限B.第三象限C.第二象限D.第一象限【答案】C【解析】解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),∵a<0,∴函数y=cx+a的图象与y轴负半轴相交,∵c>0,∴函数y=cx+a的图象经过第一、三、四象限.故选:C.【点睛】先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.本题主要考查了一次函数图象与系数的关系,先确定出a、c的正负情况是解题的关键,也是本题的难点.典例5.(2018春•大余县期末)下图中表示一次函数y=mx+n与正比例函数y=nx(m,n是常数,且mn <0)图象的是()A.B.C.D.【答案】B【解析】解:A、根据图中正比例函数y=nx的图象知,n<0;∵m,n是常数,且mn<0,∴m>0,∴一次函数y=mx+n的图象经过第一、三、四象限;故本选项错误;B、根据图中正比例函数y=nx的图象知,n>0;∵m,n是常数,且mn<0,∴m<0,∴一次函数y=mx+n的图象经过第一、二、四象限;故本选项正确;C、根据图中正比例函数y=nx的图象知,n<0;∵m,n是常数,且mn<0,∴m>0,∴一次函数y=mx+n的图象经过第一、三、四象限;故本选项错误;D、根据图中正比例函数y=nx的图象知,n>0;∵m,n是常数,且mn<0,∴m<0,∴一次函数y=mx+n的图象经过第一、二、四象限;故本选项错误;故选:B.【点睛】根据正比例函数的图象确定n的符号,然后由“两数相乘,同号得正,异号得负”判断出n的符号,再根据一次函数的性质进行判断.本题综合考查了正比例函数、一次函数图象与系数的关系.一次函数y=kx+b(k≠0)的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.典例6.(2018春•镇原县期末)已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.【答案】见解析【解析】解:(1)∵函数图象经过原点,∴m﹣3=0,且2m+1≠0,解得:m=3;(2)∵函数图象在y轴的截距为﹣2,∴m﹣3=﹣2,且2m+1≠0,解得:m=1;(3)∵函数的图象平行直线y=3x﹣3,∴2m+1=3,解得:m=1;(4)∵y随着x的增大而减小,∴2m+1<0,解得:m.【点睛】(1)根据函数图象经过原点可得m﹣3=0,且2m+1≠0,再解即可;(2)根据题意可得m﹣3=﹣2,解方程即可;(3)根据两函数图象平行,k值相等可得2m+1=3;(4)根据一次函数的性质可得2m+1<0,再解不等式即可.此题主要考查了一次函数的性质,关键是掌握与y轴的交点就是y=kx+b中,b的值,k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.典例7.(2018春•确山县期末)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了研究,下面是小慧的研究过程,请补充完成:(1)函数y=|x﹣1|的自变量x的取值范围是______;(2)列表,找出y与x的几组对应值.其中,b=___;(3)在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:__________.【答案】见解析【解析】解:(1)∵x无论为何值,函数均有意义,∴x为任意实数.故答案为:任意实数;(2)∵当x=﹣1时,y=|﹣1﹣1|=2,∴b=2.故答案为:2;(3)如图所示;(4)由函数图象可知,函数的最小值为0.故答案为:函数的最小值为0(答案不唯一).【点睛】(1)根据一次函数的性质即可得出结论;(2)把x=﹣1代入函数解析式,求出y的值即可;(3)在坐标系内描出各点,再顺次连接即可;(4)根据函数图象即可得出结论.本题考查的是一次函数的性质,根据题意画出函数图象,利用数形结合求解是解答此题的关键.三. 待定系数法求一次函数解析式用待定系数法时需要根据两个条件列二元一次方程组(以k和b为未知数),解方程组后就能具体写出一次函数的解析式.用待定系数法求一次函数解析式的步骤如下:①设一次函数解析y=kx+b(k≠0);②代入两个已知点的坐标,得到关于k、b的方程组;③解方程组得到k、b的值;④写出一次函数的解析式.若一次函数为正比例函数,则b=0,只需代入一个点的坐标,求出系数k即可.典例1.(2018秋•蚌埠期末)已知y与(x﹣2)成正比例,当x=1时,y=﹣2.则当x=3时,y的值为()A.2 B.﹣2 C.3 D.﹣3【答案】A【解析】解:∵y与(x﹣2)成正比例,∴设y=k(x﹣2),由题意得,﹣2=k(1﹣2),解得,k=2,则y=2x﹣4,当x=3时,y=2×3﹣4=2,故选:A.【点睛】本题考查的是待定系数法求一次函数解析式,掌握待定系数法求一次函数解析式一般步骤是解题的关键.典例2.(2018春•泸县期末)如图,已知直线y=x+4与x轴、y轴交于A,B两点,直线l经过原点,与线段AB交于点C,并把△AOB的面积分为2:3两部分,求直线l的解析式.【答案】y x或y x【解析】解:直线l的解析式为:y=kx,对于直线y=x+4的解析式,当x=0时,y=4,y=0时,x=﹣4,∴A(﹣4,0)、B(0,4),∴OA=4,OB=4,∴S△AOB4×4=8,当直线l把△AOB的面积分为S△AOC:S△BOC=2:3时,S△AOC,作CF⊥OA于F,CE⊥OB于E,∴AO•CF,即4×CF,∴CF.当y时,x,则k,解得,k,∴直线l的解析式为y x;当直线l把△ABO的面积分为S△AOC:S△BOC=3:2时,同理求得CF,解得直线l的解析式为y x.故答案为y x或y x.【点睛】根据直线y=x+4的解析式可求出A、B两点的坐标,当直线l把△ABO的面积分为S△AOC:S=2:3时,作CF⊥OA于F,CE⊥OB于E,可分别求出△AOB与△AOC的面积,再根据其面积△BOC公式可求出两直线交点的坐标,从而求出其解析式;当直线l把△ABO的面积分为S△AOC:S△BOC=2:3时,同(1).本题考查的是待定系数法求一次函数的解析式,掌握待定系数法求一次函数解析式的一般步骤是解题的关键,涉及到三角形的面积公式及分类讨论的方法.典例3.(2018春•茌平县期末)已知一次函数y=kx+b的图象经过点A(﹣1,﹣1)和点B(1,﹣3).求:(1)求一次函数的表达式;(2)求直线AB与坐标轴围成的三角形的面积;(3)请在x轴上找到一点P,使得PA+PB最小,并求出P的坐标.【答案】见解析【解析】解:(1)设y与x的函数关系式为y=kx+b,把A(﹣1,﹣1)B(1,﹣3)带入得:﹣k+b=﹣1,k+b=﹣3,解得:k=﹣1,b=﹣2,∴一次函数表达式为:y=﹣x﹣2;(2)设直线与x轴交于C,与y轴交于D,把y=0代入y=﹣x﹣2,解得x=﹣2,∴OC=2,把x=0代入y=﹣x﹣2,解得:y=﹣2,∴OD=2,∴S△COD OC×OD2×2=2;(3)作A与A1关于x轴对称,连接A1B交x轴于P,则P即为所求,由对称知:A1(﹣1,1),设直线A1B解析式为y=ax+c,得﹣k+b=1,k+b=﹣3,解得:k=﹣2,b=﹣1,∴y=﹣2x﹣1,另y=0得﹣2x﹣1=0,解得:x,∴P(,0).【点睛】(1)设y=kx+b,把A与B坐标代入求出k与b的值,即可确定出一次函数解析式;(2)分别令x与y为0求出y与x的值,确定出OC与OD的长,即可求出三角形COD面积;(3)作A与A1关于x轴对称,连接A1B交x轴于P,则P即为所求,利用待定系数法求出直线A1B 解析式,确定出P点坐标即可.此题考查了待定系数法求一次函数解析式,一次函数图象上的点的坐标特征,以及轴对称﹣最短线路问题,熟练掌握待定系数法是解本题的关键.典例4.(2018春•郾城区期末)如图,过点A(3,0)的两条直线l1,l2分别交y轴于点B,C,其中点B 在原点上方,点C在原点下方,已知AB=5.(1)求点B的坐标;(2)若△ABC的面积为9,求直线l2的解析式.【答案】见解析【解析】解:(1)∵点A(3,0),AB=5∴BO 4∴点B的坐标为(0,4);(2)∵△ABC的面积为9∴BC×AO=9∴BC×3=9,即BC=6∵BO=4∴CO=2∴C(0,﹣2)设l2的解析式为y=kx+b,则,解得∴l2的解析式为y x﹣2.【点睛】(1)先根据勾股定理求得BO的长,再写出点B的坐标;(2)先根据△ABC的面积为9,求得CO的长,再根据点A、C的坐标,运用待定系数法求得直线l2的解析式.本题主要考查了两条直线的交点问题,解题的关键是掌握勾股定理以及待定系数法.注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解,反之也成立.四. 一次函数的图象变换1.一次函数平移的方法:左加右减,上加下减.2.一次函数图象的常见对称变换:对于直线y=kx+b(k≠0,且k,b为常数),①关于x轴对称,就是x不变,y变成﹣y:﹣y=kx+b,即y=﹣kx﹣b(关于x轴对称,横坐标不变,纵坐标是原来的相反数);②关于y轴对称,就是y不变,x变成﹣x:y=k(﹣x)+b,即y=﹣kx+b(关于y轴对称,纵坐标不变,横坐标是原来的相反数);③关于原点对称,就是x和y都变成相反数:﹣y=k(﹣x)+b,即y=kx﹣b(关于原点对称,横、纵坐标都变为原来的相反数).典例1.(2018春•永清县期末)若一次函数y=kx+b(x≠0)(k≠0)与一次函数y的图象关于x 轴对称,则一次函数y=kx+b的解析式为_____.【答案】y x﹣1【解析】解:∵y=kx+b与y x+1关于x轴对称,∴b=﹣1,∴k,∴y x﹣1.故答案为:y x﹣1.【点睛】根据一次函数y=kx+b(k≠0)与函数y x+1的图象关于x轴对称,解答即可.本题考查的是一次函数的图象与几何变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.典例2.(2018春•松滋市期末)在同一直角坐标系中,将一次函数y=x﹣3(x>1)的图象,在直线x=2(横坐标为2的所有点构成该直线)的左侧部分沿直线x=2翻折,图象的其余部分保持不变,得到一个新图象.若关于x的函数y=2x+b的图象与此图象有两个公共点,则b的取值范围是()A.8>b>5 B.﹣8<b<﹣5 C.﹣8≤b≤﹣5 D.﹣8<b≤﹣5【答案】B【解析】解:在y=x﹣3(x>1)中,令x=2,则y=﹣1,若直线y=2x+b经过(2,﹣1),则﹣1=4+b,解得b=﹣5;在y=x﹣3(x>1)中,令x=1,则y=﹣2,点(1,﹣2)关于x=2对称的点为(3,﹣2),若直线y=2x+b经过(3,﹣2),则﹣2=6+b,解得b=﹣8,∵关于x的函数y=2x+b的图象与此图象有两个公共点,∴b的取值范围是﹣8<b<﹣5,故选:B.【点睛】根据直线y=2x+b经过(2,﹣1),可得b=﹣5;根据直线y=2x+b经过(3,﹣2),即可得到b=﹣8,依据关于x的函数y=2x+b的图象与此图象有两个公共点,即可得出b的取值范围是﹣8<b<﹣5.解决问题给的关键是掌握一次函数图象上点的坐标特征:直线上任意一点的坐标都满足函数关系式y=kx+b.巩固练习1.(2017秋•简阳市期末)下列函数关系中表示一次函数的有()①y=2x+1 ②③④s=60t⑤y=100﹣25x.A.1个B.2个C.3个D.4个【答案】D【解析】解:①y=2x+1是一次函数;②y自变量次数不为1,不是一次函数;③y x是一次函数;④s=60t是正比例函数,也是一次函数;⑤y=100﹣25x是一次函数.故选:D.2.(2018春•柳林县期末)已知一次函数y=kx+b,若k•b<0,则该函数的图象可能()A.B.C.D.【答案】A【解析】解:∵在一次函数y=kx+b中k•b<0,∴y=kx+b的图象在一、三、四象限或一、二、四象限.故选:A.3.(2018春•德阳期末)对于函数y下列说法正确的是()A.当x<3时,y随x的增大而增大B.当x>3时,y随x的增大而减小C.当x<0时,y随x的增大而减小D.当x=4时,y=﹣2【答案】C【解析】解:A、当x<3时,y随x的增大而减小,错误;B、当x>3时,y随x的增大而增大,错误;C、当x<0时,y随x的增大而减小,正确;D、当x=4时,y=1,错误;故选:C.4.(2018春•遵义期末)函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置是()A.B.C.D.【答案】B【解析】解:分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,B选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,B选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选:B.5.(2018春•诸城市期末)若一次函数y=(3﹣m)x+5的函数值y随x的增大而减小,则()A.m>0 B.m<0 C.m>3 D.m<3【答案】C【解析】解:根据题意得3﹣m<0,解得m>3.故选:C.6.(2017秋•蜀山区期末)已知n>m,在同一平面直角坐标系内画出一次函数y=nx+m与y=mx+n的图象,则有一组m,n的取值,使得下列4个图中的一个为正确的是()A.B.C.D.【答案】B【解析】解:A、m<0,n>0,则y=mx+n过第一、二、四象限,y=nx+m经过第一、三、四象限;所以A错误;B、m>0,n>0,则y=mx+n过第一、二、三象限,y=nx+m经过第一、二、三象限;所以B正确;C、两直线与x轴的交点坐标为(,0)和(,0),所以C错误;D、m>0,n>0,则y=mx+n过第一、二、三象限,y=nx+m经过第一、二、三象限;所以D错误.故选:B.7.(2018春•繁昌县期末)八个边长为1的正方形如图所示的位置摆放在平面直角坐标系中,经过原点的直线l将这八个正方形分成面积相等的两部分,则这条直线的解析式是___.【答案】y x【解析】解:设直线l和八个正方形的最上面交点为A,过点A作AB⊥y轴于点B,过点A作AC⊥x 轴于点C,如图所示.∵正方形的边长为1,∴OB=3.∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO面积是5,∴OB•AB=5,∴AB,∴OC,∴点A的坐标为(,3).设直线l的解析式为y=kx,∵点A(,3)在直线l上,∴3k,解得:k,∴直线l解析式为y x.故答案为:y x.8.(2018春•营山县期末)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B 的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,线段BC 扫过的面积为()A.80 B.88 C.96 D.100【答案】B【解析】解:∵点A、B的坐标分别为(2,0)、(8,0),∴AB=6,∵∠CAB=90°,BC=10,∴CA8,∴C点纵坐标为:8,∵将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,∴y=8时,8=x﹣5,解得:x=13,即A点向右平移13﹣2=11个单位,∴线段BC扫过的面积为:11×8=88.故选:B.9.(2018春•廉江市期末)已知:如图,正比例函数y=kx的图象经过点A,(1)请你求出该正比例函数的解析式;(2)若这个函数的图象还经过点B(m,m+3),请你求出m的值;(3)请你判断点P(,1)是否在这个函数的图象上,为什么?12 【答案】见解析【解析】解:(1)由图可知点A(﹣1,2),代入y=kx得:﹣k=2,k=﹣2,则正比例函数解析式为y=﹣2x;(2)将点B(m,m+3)代入y=﹣2x,得:﹣2m=m+3,解得:m=﹣1;(3)当x时,y=﹣2×()=3≠1,所以点P不在这个函数图象上.。

初二数学一次函数期末复习串讲讲义

初二数学一次函数期末复习串讲讲义

初二数学一次函数期末复习串讲讲义一.基础知识1、一次函数的概念:若两个变量x,y间的关系式可以表示为y=kx+b(k,b为常数,k≠0)的形式,则y是x的一次函数(x为自变量,y为因变量)特别地,当b=0时,称y是x的正比例函数。

2、一次函数的图象及其性质:(1)、图象:一次函数的图象是一条直线,所以画图象时只要先确定两点,再过这两点画一条直线就可以画出一次函数的图象。

一次函数的图象与k,b的关系如下图所示:b<03、函数表达式的确定:常用方法是待定系数法,一次函数y=kx+b中含有两个待定系数k、b,根据待定系数法,只要列出方程组即可.4、一次函数的应用:(1)、一次函数与一元一次方程、二元一次方程组的关系。

一元一次方程的解就是一次函数与x轴的交点坐标的横坐标的值。

二元一次方程组的解可以把方程组中的两个方程看作是两个一次函数,画出这两个函数的图象,那么它们的交点坐标就是方程组的解。

(2)、一次函数与不等式的关系:可以借助函数图象解决一元一次不等式的有关问题。

二.经典例题例1:(1)如图:三个正比例函数的图像分别对应的解析式是①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A、a>b>cB、c>b>aC、b>a>cD、b>c>a解:由正比例函数图像的性质可得:答案:C(2)一次函数y=x+1的图象,不经过的象限是()。

(A)第一象限(B)第二象限(C)第三象限(D)第四象限解:由一次函数y=kx+b的图象性质,有以下结论:题目中y=x+1,k=1>0,则函数图象必过一、三象限;b=1>0,则直线和y轴交于正半轴,可以判定直线位置,也可以画草图,或取两个点画草图判断,图像不过第四象限。

答案:D。

例2、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。

分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x的关系。

一次函数知识点(全)

一次函数知识点(全)

一次函数知识点一、函数与变量常量与变量的概念:我们在现实生活中所遇到的一些实际问题,存在一些数量关系,其中有的量永远不变,同时也出现了一些数值会发生变化的两个量,且这两个量之间相互依赖、密切相关.在某一变化过程中,可以取不同数值的量,叫做变量.在某一变化过程中,有两个量,例如x 和y ,对于x 的每一个值,y 都有惟一的值与之对应,其中x 是自变量,y 是因变量,此时也称y 是x 的函数.在一些变化过程中,还有一种量,它的取值始终保持不变,我们称之为常量.例如:圆的面积S 与圆的半径r 存在相应的关系:2πS r =,这里π表示圆周率;它的数值不会变化,是常量,S 随着r 的变化而变化,r 是自变量,S 是因变量;◆ “y 有唯一值与x 对应”是指在自变量的取值范围内,x 每取一个确定值,y 都唯一的值与之相对应,否则y 不是x 的函数.◆ 判断两个变量是否有函数关系,不仅要有关系式,还要满足上述确定的对应关系.x 取不同的值,y 的取值可以相同. 例如:函数2(3)y x =-中,2x =时,1y =;4x =时,1y =.◆ 函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对应关系.数学上表示函数关系的方法通常有三种:⑴解析法:用数学式子表示函数的方法叫做解析法.譬如:30S t =,2S R π=. ⑵列表法:通过列表表示函数的方法.⑶图象法:用图象直观、形象地表示一个函数的方法.关于函数的关系式(即解析式)的理解:● 函数关系式是等式. 例如4y x =就是一个函数关系式. ● 函数关系式中指明了那个是自变量,哪个是函数.通常等式右边代数式中的变量是自变量,等式左边的一个字母表示函数. 例如:y x =是自变量,y 是x 的函数.● 函数关系式在书写时有顺序性.例如:31y x =-+是表示y 是x 的函数,若写成13yx -=就表示x 是y 的函数. ● 求y 与x 的函数关系时,必须是只用变量x 的代数式表示y ,得到的等式右边只含x 的代数式.自变量的取值范围:很多函数中,自变量由于受到很多条件的限制,有自己的取值范围,例如y =自变量x 受到开平方运算的限制,有10x -≥即1x ≥;当汽车行进的速度为每小时80公里时,它行进的路程s 与时间t 的关系式为80s t =;这里t 的实际意义影响t 的取值范围t 应该为非负数,即0t ≥. 在初中阶段,自变量的取值范围考虑下面几个方面: ⑴根式:当根指数为偶数时,被开方数为非负数. ⑵分母中含有自变量:分母不为0. ⑶实际问题:符合实际意义.函数图象:函数的图象是由平面直角中的一系列点组成的.描点法画函数图象的步骤:⑴列表; ⑵描点; ⑶连线.函数解析式与函数图象的关系:⑴满足函数解析式的有序实数对为坐标的点一定在函数图象上; ⑵函数图象上点的坐标满足函数解析式.二、一次函数及其性质● 知识点一 一次函数的定义一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,这时即是前一节所学过的正比例函数.⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.● 知识点二 一次函数的图象及其画法 ⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线.⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.①如果这个函数是正比例函数,通常取()00,,()1k ,两点;②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,,0b k ⎛⎫- ⎪⎝⎭,,即直线与两坐标轴的交点.⑶由函数图象的意义知,满足函数关系式y kx b =+的点()x y ,在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标()x y ,满足y kx b =+,也就是说,直线l 与y kx b =+是一一对应的,所以通常把一次函数y kx b =+的图象叫做直线l :y kx b =+,有时直接称为直线y kx b =+.● 知识点三 一次函数的性质⑴当0k >时,一次函数y kx b =+的图象从左到右上升,y 随x 的增大而增大;⑵当0k <时,一次函数y kx b =+的图象从左到右下降,y 随x 的增大而减小.● 知识点四 一次函数y kx b =+的图象、性质与k 、b 的符号⑵一次函数y kx b =+中,当0k >时,其图象一定经过一、三象限;当0k <时,其图象一定经过二、四象限.当0b >时,图象与y 轴交点在x 轴上方,所以其图象一定经过一、二象限;当0b <时,图象与y 轴交点在x 轴下方,所以其图象一定经过三、四象限.反之,由一次函数y kx b =+的图象的位置也可以确定其系数k 、b 的符号.● 知识点五 用待定系数法求一次函数的解析式 ⑴定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待字系数法.⑵用待定系数法求函数解析式的一般步骤: ①根据已知条件写出含有待定系数的解析式;②将x y ,的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程(组),得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式.1.一次函数与一元一次方程的关系:直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章《一次函数》知识点串讲及考点透视 同学们已经知道了一次函数是研究函数的入门知识,也是今后学习其它函数的基础.为了使大家能牢固地掌握一次函数的性质与简单应用,现从以下几个方面帮助同学们搞好一次函数重点知识的回顾.一、要点解读1,知识总揽一次函数是函数大家族中的主要成员之一,是研究两个变量和学习其它函数的基础,它的表达式简单,性质也不复杂,但在我们的日常生活中的应用却十分广泛,与其它函数的联系也十分密切,许多实际问题只要我们注意细心观察,认真分析,及时将问题转化为一次函数模型,再得用一次函数的性质即可求解.2,疑点、易错点(1)若两个变量x 、y 间的关系式可以表示成y =kx +b (k ≠0),则称y 是x 的一次函数.特别地,当b =0时,称y 是x 的正比例函数,就是说,正比例函数是一次函数的特例,而一次函数包含正比例函数,是正比例函数一定是一次函数,但一次函数不一定是正比例函数.如y =-x 是正比例函数,也是一次函数,而y =-2x -3是一次函数,但并不是正比例函数.因此,同学们在复习时一定要注意正确理解正比例函数和一次函数的概念,注意掌握它们之间的区别和联系.(2)一次函数的图象是一条直线,它所经过的象限是由k 与b 决定的,所以在复习巩固一次函数的性质时可以通过函数图象来巩固,从而可以避免因k 与b 的符号的干扰.如,在如图中,表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )对于两不同函数图象共存同一坐标系问题,常假设某一图象正确而后根据字母系数所表示的实际意义来判定另一图象是否正确来解决问题.例如,假设选项B 中的直线y =mx +n 正确则m <0,n >0,mn <0则正比例函数y =mnx 则应过第二、四象限,而实际图象则过第一、三象限,所以选项B 错误.同理可得A 正确.故应选A .(3)虽然一次函数的表达式简单,性质也并不复杂,且一次函数y =kx +b (k ≠0)的图象是一条直线,它的位置由k 、b 的符号确定.但是,涉及实际问题的一次函数图象与自变量的取值范围,画出来的图象不一定是直线,可能是线段或其他图形,这一点既是学习一次函数的疑点,也是难点,更是解题量的易错点.如,拖拉机开始工作时,油箱中有油40L ,如果每小时耗油5L ,那么工作时,油箱中的余油量Q (L)与工作时间t (h)的函数关系用图象可表示为( )依题意可以得到油箱中的余油量Q (L)与工作时间t (h)的函数关系为Q =40-5t ,就这个一次函数的解析式而言,它的图象是一条直线,所以不少同学就会选择A ,而事实上,自变量t 有一个取值范围,即0≤t ≤8,所以正确的答案应该选择C .二、思想方法408Ot Q A 408O t Q D O x y A O x yBO x y C O x y D复习一次函数这一章的知识一定注意数学思想方法的巩固.具体地说,一次函数的知识涉及常见的思想方法有:(1)函数思想所谓的函数思想就是用一个表达式将两个变量表示出来其两个变量之间是一个对应的关系.确定两个变量之间的关系和列一元一次方程解应用题基本相似,即弄清题意和题目中的数量关系,找到能够表示应用题全部含义的一个相等的关系,根据这个相等的数量关系式,列出所需的代数式,从而列出两个变量之间的关系式.例1长方形的长是20,宽是x,周长是y.写出x和y之间的关系式.简析(1)由长方形的周长公式,得y=2(x+20)=2x+40;说明在依据题意写出两个变量之间的关系式时,会经常用到以前学到的各种公式,所以对以前常用的公式我们要熟练掌握,分析每一个公式的结构特征,做到运用自如,方可避免常见错误.(2)数形结合思想数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使问题的数量关系巧妙、和谐地结合起来,通过数与形的相互转化来解决数学问题的思想.例2某博物馆每周都吸引大量中外游客前来参观.如果游客过多,对馆中的珍贵文物会产生不利影响.但同时考虑到文物的修缮和保存等费用问题,还要保证一定的门票收入.因此,博物馆采取了涨浮门票价格的方法来控制参观人数.在该方法实施过程中发现:每周参观人数与票价之间存在着如图2所示的一次函数关系.在这样的情况下,如果确保每周4万元的门票收入,那么每周应限定参观人数是多少?门票价格应是多少元?解设每周参观人数与票价之间的一次函数关系式为y=kx+b.由题意,得107000,154500.k bk b+=⎧⎨+=⎩解得500,12000.kb=-⎧⎨=⎩所以y=-500x+12 000.而根据题意,得xy=40 000,即x(-500x+12 000)=40 000,x2-24x+80=所以方程变形为(x-12)2=64,两边开平方求得x1=20,x2=4.把x1=20,x2=4分别代入y=-500x+12 000中得y1=2 000,y2=10 000.因为控制参观人数,所以取x=20,y=2 000.即每周应限制参观人数是2 000人,门票价格应是20元.说明本题中得到方程x2-24x+80=0,虽然没有学过不会解,但通过适当变形还是可以求解的.(3)待定系数法待定系数法是确定代数式中某项系数的数学方法.它是方程思想的具体运用.例3为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身长调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:第一档第二档第三档第四档凳高x(cm) 37.0 40.0 42.0 45.0桌高y(cm) 70.0 74.8 78.0 82.8(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式(不要求写出x的取值范围);图2(2)小明回家后,测量了家里的写字台和凳子,写字台的高度为77cm ,凳子的高度为43.5cm ,请你判断它们是否配套,说明理由.解(1)设y =kx +b (k ≠0),依题意得3770,4074.8.k b k b +=⎧⎨+=⎩解得 1.6,10.8.k b =⎧⎨=⎩ 所以这个一次函数的关系式y =1.6x +10.8;(2)当小明家写字台的高度y =77cm 时,由(1)中的一次函数的关系式y =1.6x +10.8得77=1.6x +10.8,解得x =41.375<凳子的高度43.5cm ,所以小明家的写字台和凳子的高度是不配套的.说明 对于(2)中的问题也可以利用凳子的高度x ,求出写字台的高度y ,再与77cm 比较.由此,用待定系数法求一次函数的解析式的方法可归纳为:“一设二列三解四还原”.就是说,一设:设出一次函数解析式的一般形式y =kx +b (k ≠0);二列:根据已知两点或已知图象上的两个点坐标列出关于k 、b 的二元一次方程组;三解:解这个方程组,求出k 、b 的值;四还原:将已求得(4)方程思想方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决.方程思想是最重要的一种数学思想,在数学解题中所占比重较大,综合知识强、题型广、应用技巧灵活.从例1、例2和例3中,我们都可以看出用到了方程思想求解.三、考点解密(所选例题均出自2006年全国部分省市中考试卷)考点1 确定自变量的取值范围确定函数解析式中的自变量的取值范围,只需保证其函数有意义即可.例1(盐城市)函数y =11x -中,自变量x 的取值范围是 . 分析 由于函数的表达式是分式型的,因此必需保证分母不等于0即可.解 要使函数y =11x -有意义,只需分母x -1≠0,即x ≠1. 说明 确定一个函数的自变量的取值范围,对于函数是整式型的可以取任何数,若是分数型,只需使分母不为0,对于从实际问题中求出的解析式必须保证使实际问题有意义.考点2 函数图象把一个函数的自变量x 与对应因变量y 的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做函数函数图象.例2(泉州市)小明所在学校离家距离为2千米,某天他放学后骑自行车回家,行驶了5分钟后,因故停留10分钟,继续骑了5分钟到家.如图1中,哪一个图象能大致描述他回家过程中离家的距离.....s (千米)与所用时间t (分)之间的关系( )分析 依据题意,并观察分析每一个图象的特点,即可作出判断.解 依题意小明所在学校离家距离为2千米,先行驶了5分钟后,因故停留10分钟,继续骑了5分钟到家,即能大致描述他回家过程中离家的距离s (千米)与所用时间t(分)之图1间的关系只有D 图符合,故应选D .说明 求解时要充分发挥数形结合的作用,及时从图象中捕捉求解有用的信息,并依据函数图象的概念对图象作出正确判断.考点3 判断图象经过的象限对于一次函数y =kx +b :①当k >0,b >0时,图象在第一、二、三象限内;②当k >0,b <0时,图象在第一、三、四象限内;③当k <0,b >0时,图象在第一、二、四象限内;④当k <0,b <0时,图象在第二、三、四象限内.特别地,b =0即正比例函数y =kx 有:①当k >0时,图象在第一、三象限内;②当k <0时,图象在第二、四象限内.例3(十堰市)已知直线l 经过第一、二、四象限,则其解析式可以为___(写出一个即可).分析 由题意直线l 经过第一、二、四象限,此时满足条件的解析式有无数个.解 经过第一、二、四象限的直线有无数条,所以本题是一道开放型问题,答案不唯一.如:y =-x +2,y =-3x +1.等等.说明 处理这种开放型的问题,只要选择一个方便而又简单的答案即可.考点4 求一次函数的表达式,确定函数值要确定一次函数的解析式,只需找到满足k 、b 的两个条件即可.一般地,根据条件列出关于k 、b 的二元一次方程组,解出k 与b 的值,从而就确定了一次函数的解析式.另外,对于实际问题可妨照列方程解应用题那样,但应注意自变量的取值范围应受实际条件的制约.例4(衡阳市)为了鼓励市民节约用水,自来水公司特制定了新的用水收费标准,每月用水量,x (吨)与应付水费(元)的函数关系如图2.(1)求出当月用水量不超过5吨时,y 与x 之间的函数关系式;(2)某居民某月用水量为8吨,求应付的水费是多少?分析 观察函数图象我们可以发现是一条分段图象,因此只要分0≤x ≤5和x ≥5求解. 解(1)由图象可知:当0≤x ≤5时是一段正比例函数,设y =kx ,由x =5时,y =5,得5=5k ,即k =1.所以0≤x ≤5时,y =x .(2)当x ≥5时可以看成是一条直线,设y =k 1x + b 由图象可知1155,12.510.k b k b =+⎧⎨=+⎩解得1 1.5,2.5.k b =⎧⎨=-⎩所以当x ≥5时,y =1.5x -2.5;当x =8时,y =1.5×8-2.5=9.5(元). 说明 确定正比例函数的表达式需要一个独立的条件;确定一次函数的表达式需要两个独立的条件.对于在某个变化过程中,有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值.在处理本题的问题时,只需利用待定系数法,构造出相应的二元一次方程组求解.另外,在处理这类问题时,一定要从图形中获取信息,并把所得到的信息进行联系处理.考点5 比较大小利用一次函数的性质可以比较函数值的大小,具体地应由k 的符号决定.例5(青岛市)点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x +3 图象上的两个点,且 x 1<x 2,则y 1与y 2的大小关系是( )A .y 1>y 2B .y 1>y 2 >0C .y 1<y 2D .y 1=y 2分析 要比较y 1与y 2的大小,只要知道一次函数中k 的符号.图2解 因为在一次函数y =-4x +3中k =-4<0,所以当x 1<x 2时,y 1>y 2.故应选A . 说明 在一次函数y =kx +b 中,①当k >0,y 随x 的增大而增大;②当k <0,y 随x 的增大而减小.考点6 图象与坐标轴围成的面积问题对于一次函数y =kx +b 与坐标轴的两个交点坐标分别是(0,b )和(-kb ,0),由此与坐标轴围成的三角形的面积为12b b k -⋅=122b k. 例6(日照市)已知直线y =mx -1上有一点B (1,n )直线与两坐标轴围成的三角形的面积为( )A .12B .14或12C .14或18D .18或12分析 若能利用直线y =mx -1上有一点B (1,n )n ,则可以进一步求出了m ,从而可以求出直线与两坐标轴围成的三角形的面积.解 因为点B (1,n12+ n 2=10,即n =±3,则点B 的坐标为(1,3)或(1,-3).分别代入y =mx -1,得m =4,或m =-2.所以直线的表达式为y =4x -1或y =-2x -1,即易求得直线与坐标轴围成的三角形的面积为14或18.故应选C . 说明 要求直线与两坐标轴围成的三角形的面积,只要能求出直线与坐标轴的交点坐标即可,这里的分类讨论是正确求解的关键.考点7 利用一次函数解决实际问题利用一次函数解决实际问题可妨照列方程解应用题那样,但应注意自变量的取值范围应受实际条件的制约.例7(长沙市)我市某乡A 、B 两村盛产柑桔,A 村有柑桔200吨,B 村有柑桔300吨.现将这些柑桔运到C 、D 两个冷藏仓库,已知C 仓库可储存240吨,D 仓库可储存260吨;从A 村运往C 、D 两处的费用分别为每吨20元和25元,从B 村运往C 、D 两处的费用分别为每吨15元和18元.设从A 村运往C 仓库的柑桔重量为x 吨,A ,B 两村运往两仓库的柑桔运输费用分别为y A 元和y B 元.(1)请填写下表,并求出y A 、y B 与x 之间的函数关系式; C D 总计 A x 吨 200吨B 300吨总计 240吨 260吨 500吨(2)试讨论A ,B 两村中,哪个村的运费较少;(3)考虑到B 村的经济承受能力,B 村的柑桔运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.分析 依题意可以知道从A 村运往C 仓库的柑桔重量、从A 村运往D 仓库的柑桔重量、从B 村运往C 仓库的柑桔重量和从B 村运往D 仓库的柑桔重量,这样就可以求得y A 、y B 与收 地 运 地x 之间的函数关系式,进而利用不等式和一次函数的性质求解.解(1)依题意,从A 村运往C 仓库的柑桔重量为x 吨,则从A 村运往D 仓库的柑桔重量应为(200-x )吨,同样从B 村运往C 仓库的柑桔重量为(240-x )吨,从B 村运往D 仓库的柑桔重量应为(300-240+x )吨,即(60+x )吨.所以表中C 栏中填上(240-x )吨,D 栏中人上到下依次填(200-x )吨、(60+x )吨.从而可以分别求得y A =-5x +5000(0≤x ≤200),y B =3x +4680(0≤x ≤200).(2)当y A =y B 时,-5x +5000=3x +4680,即x =40;当y A >y B 时,-5x +5000>3x +4680,即x <40;当y A <y B 时,-5x +5000<3x +4680,即x >40;所以当x =40时,y A =y B 即两村运费相等;当0≤x ≤40时,y A >y B 即B 村运费较少;当40<x ≤200时,y A <y B 即A 村费用较少.(3)由y B ≤4830,得3x +4680≤4830,所以x ≤50.设两村运费之和为y ,所以y =y A +y B ,即y =-2x +9680,又0≤x ≤时,y 随x 增大而减小,即当x =50时,y 有最小值为9580y (元).所以当A 村调往C 仓库的柑桔重量为50吨,调往D 仓库为150吨,B 村调往C 仓库为190吨,调往D 仓库110吨的时候,两村的运费之和最小,最小费用为9580元.说明 一次函数的重点内容之一就是利用一次函数图象的特征来解决解决实际应用问题,所以同学们一定要在应用上下功夫.另外,一次函数的应用问题是近年来中考的热点,其试题的形式活泼,题型新颖,情景生动,富有时代气息,体现新课程的理念,同学们应注意巩固和运用.练习题1,(衡阳市)函数y2,(攀枝花市)如图,直线y =-43x +4与y 轴交于点A ,与直线y =45x +45交于点B ,且直线y =45x +45与x 轴交于点C ,则△ABC 的面积为___.3,(海淀区)打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y (升)与时间x (分钟)之间满足某种函数关系,其函数图象大致为( )4,(江西省)如图,已知直线l 1经过点A (-1,0)与点B (2,3),另一条直线l 2经过点B,且与x轴交于点P(m,0).(1)求直线l1的解析式;(2)若△APB的面积为3,求m的值.5,(南安市)近两年某地外向型经济发展迅速,一些著名跨国公司纷纷落户该地新区,对各类人才需求不断增加,现一公司面向社会招聘人员,其信息如下:[信息一]招聘对象:机械制造类和规划设计类人员共150名.[信息二]工资待遇:机械类人员工资为600元/月,规划设计类人员为1000元/月.设该公司招聘机械制造类和规划设计类人员分别为x人、y人.(1)用含x的代数式表示y;(2)若公司每月付给所招聘人员的工资为p元,要使本次招聘规划设计人员不少于机械制造人员的2倍,求p的取值范围.参考答案:1,≥1;2,4;3,D;4,(1)设直线l1的解析式为y=kx + b,由题意,得0,2 3.k bk b-+=⎧⎨+=⎩解得1,1.kb=⎧⎨=⎩所以,直线l1的解析式为y=x +1.(2)当点P在点A的右侧时,AP=m-(-1)=m+1,有1(1)332APCS m=⨯+⨯=.解得m=1,此时,点P的坐标为(1,0);当点P在点A的左侧时,AP=-1-m,有1(1)332APCS m=⨯--⨯=.解得m=-3,此时,点P的坐标为(-3,0).综上所述,m的值为1或-3;5,(1)y=150-x.(2)根据题意,得:y≥2x,所以150-x≥2x,解得:x≤50,又x≥0,150-x≥0,即0≤x≤50,所以p=600x+1000(150-x)=-400x+150000;又因为p随x的增大而减小,并且0≤x≤50,所以-400×50+150000≤p≤-400×0+150000,即130000≤p≤150000.。

相关文档
最新文档