【数学】2015-2016年山东省济宁市微山县七年级下学期期中数学试卷和答案解析PDF
2015-2016第二学期期中七年级数学参考答案

2015—2016学年度第二学期期中质量评估试题七年级数学参考答案及评分标准11. 9; 12. 80°; 13.(5,0); 14. 4; 15. 100°;16. 一 三、解答题(一)17. 解:34)2(3-----=3+2-2-3 ……………4分 =0 ……………6分 18. 解:∵a ∥b∴∠2=∠3 ……………2分 ∵∠1+∠3=180°∴∠1+∠2=180° ……………4分 ∴∠2=180°-∠1 ∵∠1=118°∴∠2=180°-118°=62° ……………6分 19.(1)图(略) 图……………4分(2)A 1(0,6);B 1(-1,2) ……………6分 四、解答题(二) 20. 解: )223(328)2(32---+-+-=2232322+--+- ……………4分 =2 ……………7分 21. 解:∵∠1=∠2∴AB ∥CD ……………2分 ∴∠3+∠4=180° ……………4分 ∴∠4=180°-∠3 ……………6分 ∵∠3=108°∴∠4=180°-108°=72° ……………7分 22.(每空1分)∵AB ∥DC (已知)∴∠1=∠CFE (两直线平行,同位角相等)……………2分 ∵AE 平分∠BAD (已知)∴∠1=∠2(角平分线的定义) ……………4分 ∴∠2=∠CFE ……………5分 ∵∠CFE=∠E (已知)∴∠2=∠E …………6分 ∴AD ∥BC (内错角相等,两直线平行). …………7分五、解答题(三) 23. 解:100)1(2=-x101±=-x …………4分 110+±=x11=x …………7分或9-=x …………9分24. 证明:∵DE ‖BC (已知)∴∠ADE =∠ABC (两直线平行,同位角相等) …………2分 ∵DF 、BE 分别平分∠ADE 、∠ABC ∴∠ADF =12∠ADE∠ABE =12∠ABC (角平分线的定义) …………4分∴∠ADF =∠ABE …………5分∴ DF ‖BE (同位角相等,两直线平行) …………7分 ∴∠FDE =∠DEB. (两直线平行,内错角相等) …………9分 25. 解:(1)C (0,2),D (4,2),…………2分(2)依题意,得S 四边形ABDC =AB ×OC=4×2=8; …………3分 (3)存在. …………4分。
2016-2017年山东省济宁市七年级(下)期中数学试卷(解析版)

2016-2017学年山东省济宁市七年级(下)期中数学试卷一、精心选一选,相信自己的判断力(本题共12小题,每小题3分,注意可以用各种不同的方法来解决你面前的选择题哦!)1.(3分)如图,小手盖住的点的坐标可能是()A.(6,﹣4)B.(5,2)C.(﹣3,﹣6)D.(﹣3,4)2.(3分)(﹣2)2的平方根是()A.2B.﹣2C.±2D.3.(3分)在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是()A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格4.(3分)在下列实数:、、、、﹣1.010010001…中,无理数有()A.1个B.2个C.3个D.4个5.(3分)如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°6.(3分)如果点B与点C的横坐标相同,纵坐标不同,则直线BC与x轴的关系为()A.平行B.垂直C.相交D.以上均不对7.(3分)介于+1和之间的整数是()A.2B.3C.4D.58.(3分)在下列图形中,∠1与∠2不是同旁内角的是()A.B.C.D.9.(3分)关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出p,则p的值是()A.﹣B.C.﹣D.10.(3分)如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°11.(3分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2016次运动后,动点P的坐标是()A.(2016,1)B.(2016,0)C.(2016,2)D.(2017,0)12.(3分)若方程组的解是,则方程组的解是()A.B.C.D.二、认真填一填,试试自己的身手!本大题共6小题,每小题3分,共18分,只要求填写最后结果,请把答案填写在答案卷题中横线上13.(3分)二元一次方程2x+3y=10的正整数解是.14.(3分)如果的平方根是±3,则=.15.(3分)已知线段AB=2,AB∥x轴,若点A坐标为(﹣1,﹣2),则B点坐标为.16.(3分)﹣2的绝对值是.17.(3分)已知x,y满足,则x﹣y的值是.18.(3分)如图,有一条直的宽纸带,按图折叠,则∠α的度数等于.三、专心解一解(本大题共8小题,满分66分)请认真读题,冷静思考,解答题应写出文字说明、证明过程或演算步骤19.(10分)解方程组(1)(2).20.(5分)计算:|﹣3|﹣+×+(﹣2)3.21.(6分)已知一个正数x的平方根是3a+2与2﹣5a.(1)求a的值;(2)求这个数x的立方根.22.(8分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.23.(5分)画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸中将△ABC经过一次平移后得到△A′B′C′,图中标出了点C的对应点C′.(1)请画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段之间的关系是;(3)利用网格画出△ABC 中AC边上的中线BD;(4)利用网格画出△ABC 中AB边上的高CE;(5)△A′B′C′的面积为.24.(12分)阅读材料,解答问题:(1)计算下列各式:①=,=;②=,=.通过计算,我们可以发现=(2)运用(1)中的结果可以得到:(3)通过(1)(2),完成下列问题:①化简:;②计算:;③化简的结果是.25.(10分)如图所示,在平面内有四个点,它们的坐标分别是A(﹣1,0),B (2+,0),C(2,1),D(0,1).(1)依次连结A、B、C、D,围成的四边形是一个形;(2)求这个四边形的面积;(3)将这个四边形向左平移个单位长度,四个顶点的坐标分别为多少?26.(10分)(1)阅读以下内容:已知实数x,y满足x+y=2,且求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于x,y的方程组,再求k的值.乙同学:先将方程组中的两个方程相加,再求k的值.丙同学:先解方程组,再求k的值.(2)你最欣赏(1)中的哪种思路?先根据你所选的思路解答此题,再对你选择的思路进行简要评价.(评价参考建议:基于观察到题目的什么特征设计的相应思路,如何操作才能实现这些思路、运算的简洁性,以及你依此可以总结什么解题策略等等)2016-2017学年山东省济宁市七年级(下)期中数学试卷参考答案与试题解析一、精心选一选,相信自己的判断力(本题共12小题,每小题3分,注意可以用各种不同的方法来解决你面前的选择题哦!)1.(3分)如图,小手盖住的点的坐标可能是()A.(6,﹣4)B.(5,2)C.(﹣3,﹣6)D.(﹣3,4)【分析】先判断手所在的象限,再判断象限横纵坐标的正负即可.【解答】解:因为小手盖住的点在第四象限,第四象限内点的坐标横坐标为正,纵坐标为负,且横坐标的绝对值大于纵坐标的绝对值.故只有选项A符合题意,故选:A.2.(3分)(﹣2)2的平方根是()A.2B.﹣2C.±2D.【分析】直接利用有理数的乘方化简,进而利用平方根的定义得出答案.【解答】解:∵(﹣2)2=4,∴4的平方根是:±2.故选:C.3.(3分)在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是()A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格【分析】根据题意,结合图形,由平移的概念求解.【解答】解:根据平移的概念,图形先向下移动2格,再向左移动1格或先向左移动1格,再向下移动2格.结合选项,只有C符合.故选:C.4.(3分)在下列实数:、、、、﹣1.010010001…中,无理数有()A.1个B.2个C.3个D.4个【分析】根据无理数的定义,可得答案.【解答】解:、、﹣1.010010001…是无理数,故选:C.5.(3分)如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°【分析】根据平行线的判定分别进行分析可得答案.【解答】解:A、∠3=∠A,无法得到,AB∥CD,故此选项错误;B、∠1=∠2,根据内错角相等,两直线平行可得:AB∥CD,故此选项正确;C、∠D=∠DCE,根据内错角相等,两直线平行可得:BD∥AC,故此选项错误;D、∠D+∠ACD=180°,根据同旁内角互补,两直线平行可得:BD∥AC,故此选项错误;故选:B.6.(3分)如果点B与点C的横坐标相同,纵坐标不同,则直线BC与x轴的关系为()A.平行B.垂直C.相交D.以上均不对【分析】根据点的坐标规律解答,此题根据图形即可求得.【解答】解:点B与点C的横坐标相同,则直线BC∥y轴,与x轴垂直.故选B.7.(3分)介于+1和之间的整数是()A.2B.3C.4D.5【分析】由于1<<2,得到2<+1<3,根据3<<4,于是得到2<+1<<4,于是得到结论.【解答】解:∵1<<2,∴2<+1<3,∵3<<4,∴2<+1<<4,∴介于+1和之间的整数是3,故选:B.8.(3分)在下列图形中,∠1与∠2不是同旁内角的是()A.B.C.D.【分析】前三个图形的∠1与∠2都是两直线被第三条直线所截,且在第三条直线的同旁,所以是同旁内角,第四个图形的∠1与∠2的两边组成了四条直线,所以不是同旁内角.【解答】解:根据同旁内角的定义可知:第四个图形中的∠1与∠2不是同旁内角,故选:D.9.(3分)关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出p,则p的值是()A.﹣B.C.﹣D.【分析】将x=1代入方程x+y=3求得y的值,将x、y的值代入x+py=0,可得关于p的方程,可求得p.【解答】解:根据题意,将x=1代入x+y=3,可得y=2,将x=1,y=2代入x+py=0,得:1+2p=0,解得:p=﹣,故选:A.10.(3分)如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°【分析】根据平行线性质求出∠A,根据三角形外角性质得出∠2=∠1﹣∠A,代入求出即可.【解答】解:∵AB∥CD,∴∠A=∠3=40°,∵∠1=120°,∴∠2=∠1﹣∠A=80°,故选:A.11.(3分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2016次运动后,动点P的坐标是()A .(2016,1)B .(2016,0)C .(2016,2)D .(2017,0)【分析】设第n 此运动后点P 运动到P n 点(n 为自然数).根据题意列出部分P n点的坐标,根据坐标的变化找出变化规律“P 4n (4n ,0),P 4n +1(4n +1,1),P 4n +2(4n +2,0),P 4n +3(4n +3,2)”,依此规律即可得出结论. 【解答】解:设第n 此运动后点P 运动到P n 点(n 为自然数).观察,发现规律:P 0(0,0),P 1(1,1),P 2(2,0),P 3(3,2),P 4(4,0),P 5(5,1),…,∴P 4n (4n ,0),P 4n +1(4n +1,1),P 4n +2(4n +2,0),P 4n +3(4n +3,2). ∵2016=4×504, ∴P 2016(2016,0). 故选:B .12.(3分)若方程组的解是,则方程组的解是( ) A . B . C .D .【分析】根据加减法,可得(x +2)、(y ﹣1)的解,再根据解方程,可得答案. 【解答】解:∵方程组的解是,∴方程组中∴故选:C .二、认真填一填,试试自己的身手!本大题共6小题,每小题3分,共18分,只要求填写最后结果,请把答案填写在答案卷题中横线上13.(3分)二元一次方程2x +3y=10的正整数解是.【分析】把方程化为用一个未知数表示成另一个未知数的形式,再根据x 、y 均为正整数求解即可.【解答】解:方程2x+3y=10可化为y=,∵x、y均为正整数,∴10﹣2x>0且10﹣2x为3的倍数,当x=2时,y=2,∴方程2x+3y=10的正整数解为,故答案为:.14.(3分)如果的平方根是±3,则=4.【分析】求出a的值,代入求出即可.【解答】解:∵的平方根是±3,∴=9,∴a=81,∴==4,故答案为:4.15.(3分)已知线段AB=2,AB∥x轴,若点A坐标为(﹣1,﹣2),则B点坐标为(﹣3,﹣2)或(1,﹣2).【分析】由AB∥x轴,可得A、B两点纵坐标相等,再由AB=2,分B点在A点左边和右边,分别求B点坐标即可.【解答】解:∵AB∥x轴,点A的坐标为(﹣1,﹣2),∴A、B两点纵坐标都是﹣2,又∵AB=2,∴当B点在A点左边时,B的坐标为(﹣3,﹣2),当B点在A点右边时,B的坐标为(1,﹣2).故答案为:(﹣3,﹣2)或(1,﹣2).16.(3分)﹣2的绝对值是2﹣.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2﹣.即|﹣2|=2﹣.故答案为:2﹣.17.(3分)已知x,y满足,则x﹣y的值是﹣5.【分析】方程组两方程相减求出x﹣y的值即可.【解答】解:,②﹣①得:x﹣y=﹣5,故答案为:﹣518.(3分)如图,有一条直的宽纸带,按图折叠,则∠α的度数等于75°.【分析】由图形可得AD∥BC,可得∠CBF=30°,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案.【解答】解:∵AD∥BC,∴∠CBF=∠DEF=30°,∵AB为折痕,∴2∠α+∠CBF=180°,即2∠α+30°=180°,解得∠α=75°.故答案为:75°.三、专心解一解(本大题共8小题,满分66分)请认真读题,冷静思考,解答题应写出文字说明、证明过程或演算步骤19.(10分)解方程组(1)(2).【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把①代入②得:2y=6,解得:y=3,把y=3代入①得:x=3,则方程组的解为;(2),①+②得:6x=18,解得:x=3,把x=3代入①得:y=2,则方程组的解为.20.(5分)计算:|﹣3|﹣+×+(﹣2)3.【分析】直接利用绝对值的性质以及立方根的性质化简各数进而得出答案.【解答】解:|﹣3|﹣+×+(﹣2)3=3﹣4+×(﹣2)﹣8=3﹣4﹣1﹣8=﹣10.21.(6分)已知一个正数x的平方根是3a+2与2﹣5a.(1)求a的值;(2)求这个数x的立方根.【分析】(1)根据正数有两个平方根且互为相反数,即可解答;(2)先求出这个数,再根据立方根即可解答.【解答】解:(1)∵一个正数x的平方根是3a+2与2﹣5a.∴(3a+2)+(2﹣5a)=0,∴a=2.(2)当a=2时,3a+2=3×2+2=8,∴x=82=64.∴这个数的立方根是4.22.(8分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.【分析】先利用等量代换得到∠1=∠GHD,则可判断AB∥CD,然后根据平行线的性质求∠B的度数.【解答】解:∵∠1=∠2,∠2=∠EHD,∴∠1=∠EHD,∴AB∥CD;∴∠B+∠D=180°,∵∠D=50°,∴∠B=180°﹣50°=130°.23.(5分)画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸中将△ABC经过一次平移后得到△A′B′C′,图中标出了点C的对应点C′.(1)请画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段之间的关系是平行且相等;(3)利用网格画出△ABC 中AC边上的中线BD;(4)利用网格画出△ABC 中AB边上的高CE;(5)△A′B′C′的面积为10.【分析】(1)利用平移变换的性质得出对应点位置进而得出答案;(2)利用平移变换的性质得出答案;(3)利用网格结合三角形中线的性质得出答案;(4)利用网格结合三角形高线的性质得出答案;(5)利用平移的性质结合三角形面积求法得出答案.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)连接AA′,CC′,则这两条线段之间的关系是平行且相等.故答案为:平行且相等;(3)如图所示:BD即为所求;(4)如图所示:CE即为所求;(5)△A′B′C′的面积为△ABC的面积:×5×4=10.故答案为:10.24.(12分)阅读材料,解答问题:(1)计算下列各式:①=6,=6;②=20,=20.通过计算,我们可以发现=•(a≥0,b≥0)(2)运用(1)中的结果可以得到:(3)通过(1)(2),完成下列问题:①化简:;②计算:;③化简的结果是a.【分析】(1)①利用二次根式的乘法法则计算即可得到结果;②利用二次根式的乘法法则计算即可得到结果;根据上述算式得出一般性规律即可;(2)应用(1)得到结果;(3)利用得出的规律化简各式即可.【解答】解:(1)①==6,×=2×3=6;②==20,×=4×5=20;得出=•(a≥0,b≥0);故答案为:①6;6;②20;20;•(a≥0,b≥0);(3)①==3;②+=2+3=5;③=•=a.故答案为:a.25.(10分)如图所示,在平面内有四个点,它们的坐标分别是A(﹣1,0),B (2+,0),C(2,1),D(0,1).(1)依次连结A、B、C、D,围成的四边形是一个梯形;(2)求这个四边形的面积;(3)将这个四边形向左平移个单位长度,四个顶点的坐标分别为多少?【分析】(1)顺次连接AB、BC、CD、DA,结合图形可得四边形BCD是梯形;(2)求出AB和CD的长,根据梯形的面积计算公式求解即可;(3)将四边形各顶点的横坐标减去,纵坐标不变即可求解.【解答】解:(1)如图所示;依次连结A、B、C、D,围成的四边形是一个梯形.故答案为梯;(2)∵A(﹣1,0),B(2+,0),C(2,1),D(0,1),∴AB=3+,CD=2,∴四边形ABCD的面积=(AB+CD)•OD=(3+)×1=;(3)A′(﹣1﹣,0),B′(2,0),C′(2﹣,1),D′(﹣,1).26.(10分)(1)阅读以下内容:已知实数x,y满足x+y=2,且求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于x,y的方程组,再求k的值.乙同学:先将方程组中的两个方程相加,再求k的值.丙同学:先解方程组,再求k的值.(2)你最欣赏(1)中的哪种思路?先根据你所选的思路解答此题,再对你选择的思路进行简要评价.(评价参考建议:基于观察到题目的什么特征设计的相应思路,如何操作才能实现这些思路、运算的简洁性,以及你依此可以总结什么解题策略等等)【分析】选择乙同学的解题思路,①+②得出5x+5y=7k+4,求出x+y==2,即可求出答案.【解答】解:我最欣赏(1)中的乙同学的解题思路,,①+②得:5x+5y=7k+4,x+y=,∵x+y=2,∴=2,解得:k=,评价:甲同学是直接根据方程组的解的概念先解方程组,得到用含k的式子表示x,y的表达式,再代入x+y=2得到关于k的方程,没有经过更多的观察和思考,解法比较繁琐,计算量大;乙同学观察到了方程组中未知数x,y的系数,以及与x+y=2中的系数的特殊关系,利用整体代入简化计算,而且不用求出x,y的值就能解决问题,思路比较灵活,计算量小;丙同学将三个方程做为一个整体,看成关于x,y,k的三元一次方程组,并且选择先解其中只含有两个未知数x,y的二元一次方程组,相对计算量较小,但不如乙同学的简洁、灵活.。
2015-2016年山东省济宁市任城区七年级(下)期中数学试卷(解析版)

2015-2016学年山东省济宁市任城区七年级(下)期中数学试卷一、选择题(每题3分,共30分)1.(3分)下列等式中,正确的是()A.3a﹣2a=1B.a2•a3=a5C.(﹣2a3)2=﹣4a6D.(a﹣b)2=a2﹣b22.(3分)下列多项式乘法,能用平方差公式计算的是()A.(﹣3x﹣2)(3x+2)B.(﹣a﹣b)(﹣b+a)C.(﹣3x+2)(2﹣3x)D.(3x+2)(2x﹣3)3.(3分)已知x a=3,x b=5,则x2a﹣b()A.B.C.D.4.(3分)如图,从小明家到超市有3条路,其中第2条路最近,因为()A.两点之间的所有连线中,线段最短B.经过两点有且只有一条直线C.经过直线外一点,有且只有一条直线与这条直线平行D.在同一平面内,过一点有且只有一条直线与已知直线垂直5.(3分)以下给出的四个语句中,结论正确的有()①如果线段AB=BC,则B是线段AC的中点;②线段和射线都可看作直线上的一部分;③大于直角的角是钝角;④如图,∠ABD也可用∠B表示.A.1个B.2个C.3个D.4个6.(3分)如图,∠1=15°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A.75°B.15°C.105°D.165°7.(3分)若x2+ax+9=(x﹣3)2,则a的值为()A.3B.±3C.﹣6D.±68.(3分)如果x﹣2y=5,xy=﹣2,那么(x+2y)2=()A.17B.21C.23D.99.(3分)如图,C,D是线段AB上的两点,E是AC的中点,F是BD的中点,若EF=m,CD=n,则AB=()A.m﹣n B.m+n C.2m﹣n D.2m+n 10.(3分)已知a=411,b=322,c=233,则a、b、c的大小关系为()A.a>b>c B.a>c>b C.b>c>a D.b>a>c二、填空题(每空3分,共24分)11.(3分)计算(﹣)﹣2﹣(3.14﹣π)0=.12.(3分)0.00000062用科学记数法表示为.13.(3分)若(x+m)与(x+3)的乘积中不含x的一次项,则m=.14.(3分)若a2﹣3b=5,则6b﹣2a2+2015=.15.(3分)在直线a上取A、B、C三点,使得AB=9cm,BC=4cm,则线段AC的长是.16.(3分)一个圆被分成四个扇形,若各个扇形的面积之比为4:2:1:3,则最小的扇形的圆心角的度数为.17.(6分)观察下列各式及其展开式(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)6的展开式第三项的系数是,(a﹣b)4的系数和是.三、解答题:(共46分)18.(4分)按要求作图:如图,在同一平面内有四个点A、B、C、D.①画射线CD;②画直线AD;③连结AB;④直线BD与直线AC相交于点O.19.(16分)计算:(1)x6•x3+x7•x2(2)(6x2y﹣xy2﹣x3y3)÷(﹣3xy)(3)(a+3b)2﹣(a﹣3b)2(4)1232﹣122×124.20.(6分)先化简,再求值[(2x+y)2﹣y(y+4x)﹣8xy]÷2x,其中x=2,y=﹣2.21.(5分)已知C为线段AB的中点,D在线段CB上,且DA=6,DB=4,求CD 的长度.22.(7分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.23.(8分)(1)如图,已知∠AOB=90°,∠BOC=40°,OM平分∠AOC,ON平分∠BOC.求∠MON的度数.(2)如果(1)中的∠AOB=α,其他条件不变,求∠MON的度数.(3)如果(1)中∠BOC=β(β为锐角),其它条件不变,求∠MON的度数.(4)从(1)(2)(3)的结果中能得出什么结论?2015-2016学年山东省济宁市任城区七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)下列等式中,正确的是()A.3a﹣2a=1B.a2•a3=a5C.(﹣2a3)2=﹣4a6D.(a﹣b)2=a2﹣b2【分析】结合选项分别进行幂的乘方和积的乘方、合并同类项、同底数幂的乘法、完全平方公式等运算,然后选择正确选项.【解答】解:A、3a﹣2a=a,原式计算错误,故本选项错误;B、a2•a3=a5,原式计算正确,故本选项正确;C、(﹣2a3)2=4a6,原式计算错误,故本选项错误;D、(a﹣b)2=a2﹣2ab+b2,原式计算错误,故本选项错误.故选:B.2.(3分)下列多项式乘法,能用平方差公式计算的是()A.(﹣3x﹣2)(3x+2)B.(﹣a﹣b)(﹣b+a)C.(﹣3x+2)(2﹣3x)D.(3x+2)(2x﹣3)【分析】根据平方差公式对各选项进行逐一分析即可.【解答】解:A、原式可化为﹣(3x+2)(3x+2),不能用平方差公式计算,故本选项错误;B、原式可化为﹣(a+b)(a﹣b),能用平方差公式计算,故本选项正确;C、原式可化为(2﹣3x)(2﹣3x),不能用平方差公式计算,故本选项错误;D、不符合两个数的和与这两个数的差相乘,不能用平方差公式计算,故本选项错误.故选:B.3.(3分)已知x a=3,x b=5,则x2a﹣b()A.B.C.D.【分析】直接利用同底数幂的除法运算以及结合幂的乘方运算法则将原式变形求出答案.【解答】解:∵x a=3,x b=5,∴x2a﹣b=(x a)2÷x b=32÷5=.故选:C.4.(3分)如图,从小明家到超市有3条路,其中第2条路最近,因为()A.两点之间的所有连线中,线段最短B.经过两点有且只有一条直线C.经过直线外一点,有且只有一条直线与这条直线平行D.在同一平面内,过一点有且只有一条直线与已知直线垂直【分析】根据两点之间线段最短的性质解答.【解答】解:从小明家到超市有3条路,其中最近的是2,这是因为两点之间线段最短.故选:A.5.(3分)以下给出的四个语句中,结论正确的有()①如果线段AB=BC,则B是线段AC的中点;②线段和射线都可看作直线上的一部分;③大于直角的角是钝角;④如图,∠ABD也可用∠B表示.A.1个B.2个C.3个D.4个【分析】根据角的概念进行判断.【解答】解:①点A、B、C要在同一条直线上;②线段和射线都是直线上的一部分;③大于直角小于180°的角是钝角;④当这个顶点只有一个角时,才可以用∠B表示.只有②正确;故选A.6.(3分)如图,∠1=15°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A.75°B.15°C.105°D.165°【分析】由图示可得,∠1与∠BOC互余,结合已知可求∠BOC,又因为∠2与∠COB互补,即可求出∠2.【解答】解:∵∠1=15°,∠AOC=90°,∴∠BOC=75°,∵∠2+∠BOC=180°,∴∠2=105°.故选:C.7.(3分)若x2+ax+9=(x﹣3)2,则a的值为()A.3B.±3C.﹣6D.±6【分析】根据题意可知:将(x﹣3)2展开,再根据对应项系数相等求解.【解答】解:∵x2+ax+9=(x﹣3)2,而(x﹣3)2=x2﹣6x+9;即x2+ax+9=x2﹣6x+9,∴a=﹣6.故选:C.8.(3分)如果x﹣2y=5,xy=﹣2,那么(x+2y)2=()A.17B.21C.23D.9【分析】利用完全平方公式的结构特征确定出所求即可.【解答】解:∵x﹣2y=5,xy=﹣2,∴(x+2y)2=(x﹣2y)2+8xy=25﹣16=9,故选:D.9.(3分)如图,C,D是线段AB上的两点,E是AC的中点,F是BD的中点,若EF=m,CD=n,则AB=()A.m﹣n B.m+n C.2m﹣n D.2m+n【分析】由已知条件可知,EC+FD=m﹣n,又因为E是AC的中点,F是BD的中点,则AE+FB=EC+FD,故AB=AE+FB+EF可求.【解答】解:由题意得,EC+FD=m﹣n∵E是AC的中点,F是BD的中点,∴AE+FB=EC+FD=EF﹣CD=m﹣n又∵AB=AE+FB+EF∴AB=m﹣n+m=2m﹣n故选:C.10.(3分)已知a=411,b=322,c=233,则a、b、c的大小关系为()A.a>b>c B.a>c>b C.b>c>a D.b>a>c【分析】根据幂的乘方,可化成指数相同的幂,根据指数相同的幂的底数越大幂越大,可得答案.【解答】解:a=411,b=322=911,c=233=811,∵9>8>4,∴b>c>a,故选:C.二、填空题(每空3分,共24分)11.(3分)计算(﹣)﹣2﹣(3.14﹣π)0=3.【分析】根据负整数指数幂和非零数的零指数幂计算可得.【解答】解:原式=﹣1=﹣1=4﹣1=3,故答案为:3.12.(3分)0.00000062用科学记数法表示为 6.2×10﹣7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000062=6.2×10﹣7,故答案为:6.2×10﹣7.13.(3分)若(x+m)与(x+3)的乘积中不含x的一次项,则m=﹣3.【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把m看作常数合并关于x的同类项,令x的系数为0,得出关于m的方程,求出m的值.【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故答案为:﹣3.14.(3分)若a2﹣3b=5,则6b﹣2a2+2015=2005.【分析】首先根据a2﹣3b=5,求出6b﹣2a2的值是多少,然后用所得的结果加上2015,求出算式6b﹣2a2+2015的值是多少即可.【解答】解:6b﹣2a2+2015=﹣2(a2﹣3b)+2015=﹣2×5+2015=﹣10+2015=2005.故答案为:2005.15.(3分)在直线a上取A、B、C三点,使得AB=9cm,BC=4cm,则线段AC的长是13cm或5cm.【分析】根据题意,分情况讨论:①当点C在线段AB的延长线上时,AC=13cm,②当点C在线段AB上时,AC=9﹣4=5cm.【解答】解:①如图1,当点C在线段AB的延长线上时,AC=AB+BC=13cm,②如图2,当点C在线段AB上时,AC=AB﹣BC=9﹣4=5cm,故线段AC的长度为13cm或5cm.故答案为:13cm或5cm.16.(3分)一个圆被分成四个扇形,若各个扇形的面积之比为4:2:1:3,则最小的扇形的圆心角的度数为36°.【分析】因为扇形A,B,C,D的面积之比为4:2:1:3,所以其所占扇形比分别为:,则最小扇形的圆心角度数可求.【解答】解:∵扇形A,B,C,D的面积之比为4:2:1:3,∴其所占扇形比分别为:,∴最小的扇形的圆心角是360°×=36°.故答案为:36°.17.(6分)观察下列各式及其展开式(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)6的展开式第三项的系数是15,(a﹣b)4的系数和是0.【分析】根据题意得出n次幂展开项的系数规律,分别表示出(a+b)6与(a﹣b)4的展开式,得到所求即可.【解答】解:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5得到(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6,(a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4,则(a+b)6的展开式第三项的系数是15,(a﹣b)4的系数和是0,故答案为:15;0三、解答题:(共46分)18.(4分)按要求作图:如图,在同一平面内有四个点A、B、C、D.①画射线CD;②画直线AD;③连结AB;④直线BD与直线AC相交于点O.【分析】根据直线:向两方无限延长;射线向一方无限延长;线段:本身不能向两方无限延长,画出图形即可.【解答】解:作图如图所示..19.(16分)计算:(1)x6•x3+x7•x2(2)(6x2y﹣xy2﹣x3y3)÷(﹣3xy)(3)(a+3b)2﹣(a﹣3b)2(4)1232﹣122×124.【分析】(1)根据整式的乘法即可求出答案.(2)根据整式的除法即可求出答案.(3)根据平方差公式即可求出答案.(4)根据乘法公式即可化简运算.【解答】解:(1)原式=x9+x9=2x9,(2)原式=﹣2x+y+x2y2,(3)原式=(a+3b+a﹣3b)(a+3b﹣a+3b)=2a×6b=12ab,(4)原式=1232﹣(123﹣1)(123+1)=1232﹣1232+1=120.(6分)先化简,再求值[(2x+y)2﹣y(y+4x)﹣8xy]÷2x,其中x=2,y=﹣2.【分析】先利用整式的乘法公式展开得到原式=(4x2+4xy+y2﹣y2﹣4xy﹣8xy)÷2x,再把括号内合并得到原式=(4x2﹣8xy)÷2x,然后进行整式的除法运算,再把x与y的值代入计算即可.【解答】解:原式=(4x2+4xy+y2﹣y2﹣4xy﹣8xy)÷2x=(4x2﹣8xy)÷2x=2x﹣4y,当x=2,y=﹣2,原式=2×2﹣4×(﹣2)=12.21.(5分)已知C为线段AB的中点,D在线段CB上,且DA=6,DB=4,求CD 的长度.【分析】由已知可求得AB的长,从而可求得AC的长,已知AD的长就不难求得CD的长了.【解答】解:∵DA=6,DB=4∴AB=10,∵C为线段AB的中点,∴AC=5,∵DA=6,∴CD=1.22.(7分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.【分析】长方形的面积等于:(3a+b)•(2a+b),中间部分面积等于:(a+b)•(a+b),阴影部分面积等于长方形面积﹣中间部分面积,化简出结果后,把a、b的值代入计算.=(3a+b)(2a+b)﹣(a+b)2,【解答】解:S阴影=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2,=5a2+3ab(平方米)当a=3,b=2时,5a2+3ab=5×9+3×3×2=45+18=63(平方米).23.(8分)(1)如图,已知∠AOB=90°,∠BOC=40°,OM平分∠AOC,ON平分∠BOC.求∠MON的度数.(2)如果(1)中的∠AOB=α,其他条件不变,求∠MON的度数.(3)如果(1)中∠BOC=β(β为锐角),其它条件不变,求∠MON的度数.(4)从(1)(2)(3)的结果中能得出什么结论?【分析】(1)根据角平分线的定义得到∠MOC=∠AOC,∠NOC=∠BOC,则∠MON=∠MOC﹣∠NOC=(∠AOC﹣∠BOC)=∠AOB,然后把∠AOB的度数代入计算即可;(2)根据角平分线的定义得到∠MOC=∠AOC,∠NOC=∠BOC,则∠MON=∠MOC﹣∠NOC=(∠AOC﹣∠BOC)=∠AOB,然后把∠AOB的度数代入计算即可;(3)先得到∠AOC=90°+β,再根据角平分线的定义得到∠COM=∠AOC=(90°+β),∠CON=∠BOC=β,然后利用∠MON=∠COM﹣∠CON进行计算;(4)利用前面计算的结论得到∠MON=∠AOB.【解答】解:(1)∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC,∠NOC=∠BOC,∵∠AOC=∠AOB+∠BOC,∴∠MON=∠MOC﹣∠NOC=(∠AOB+∠BOC﹣∠BOC)=∠AOB,∵∠AOB=90°,∴∠MON=×90°=45°;(2))∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC,∠NOC=∠BOC,∵∠AOC=∠AOB+∠BOC,∴∠MON=∠MOC﹣∠NOC=(∠AOB+∠BOC﹣∠BOC)=∠AOB,∵∠AOB=α,∴∠MON=×α=;(3)∵∠AOB=90°,∠BOC=β,∴∠AOC=90°+β,∵OM平分∠AOC,ON平分∠BOC,∴∠COM=∠AOC=(90°+β),∠CON=∠BOC=β,∴∠MON=∠COM﹣∠CON=(90°+β)﹣β=45°;(4)从(1)(2)(3)的结果中可以看出∠MON=∠AOB,而与∠BOC的大小无关.。
山东省济宁学院附中2015-2016学年度第二学期初一数学期中试题(无答案)

山东省2016-2017学年度第二学期期中考试初一数学试题(满分100分时间 100分钟)一、选择题(每小题3分,共36分)a a 的运算结果是().1.34aA. 4aB.6aC. 7aD. 122.如图,已知直线a、b被直线c所截,那么∠1的同位角是().A. ∠2B. ∠3C.∠4D. ∠53.已知∠A=85°,则∠A的补角等于().A.125°B.105°C.115°D.95°4.如图所示,在灌溉农田时,要把河(直线l表示一条河)中的水引到农田P处,设计了四条路线PA,PB,PC,PD,你选择哪条路线挖渠才能使渠道最短().A.PA B.PBC.PC D.PD5.下列多项式乘法,不能用平方差公式计算的是( ) .A.(-a-b)(-a+b)B. (xy+z)(xy-z)C.(-2a-b)(2a+b)D.(0.5x-y)( -0.5x-y)6.近年来,PM2.5已成为大气污染的重要元凶,其主要来源是日常发电、工业生产、汽车尾气排放等过程中经过燃烧而排放的残留物,大多含有重金属等有毒物质。
这种颗粒的直径小于或等于0.0000025米,被吸入人体后会直接进入支气管,干扰肺部的气体交换,引发包括哮喘、支气管炎和心血管病等方面的疾病,严重影响人们的身体健康。
数据0.0000025米用科学计数法可表示为( ) .A. 2.5×10-6米B. 25×10-7米C. 0.25×10-5米D. 2.5×10-5米7.下列计算正确的是().A.(x+y)2=x2+y2B.(m-n)2=m2-2mn-n2C.(a+2)2=a2+2a+4 D.(m-3)2=m2-6m+98.如图,射线OQ的端点O在直线MN上,OA平分∠MOQ,OB平分∠NOQ,那么与∠NOB互余的角是().A.∠MOQ B.∠BOQ C.∠AOQ D.∠MOA或∠AOQ9.已知x2+kx+64是一个完全平方式,则k的值是()A.8 B.±8 C.16 D.±1610.按照如图所示的操作步骤,若输入的值为4,则输出的值为( ) .A.-20 B.26 C.28 D 80.11.如果(x﹣5)(2x+m)的积中不含x的一次项,则m的值是().A.5 B.10 C.﹣5 D.﹣1012.把三张大小相同的正方形卡片A、B、C叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示,若按图1摆放时,阴影部分的面积为S1;若按图2摆放时,阴影部分的面积为S2,则S1与S2的大小关系是().A.S1>S2B.S1<S2C.S1=S2D.无法确定二、填空题(每小题3分,共 24分)13.如图,直线AB ,CD ,EF 相交于点O ,若∠DOF=27°,∠AOE=23°,则∠BOD= .14.计算:①=---302)4(π= ; ②201520143)31(⨯-= ;15.如果AP ⊥MN 于P ,过AP 上任一点向MN 作垂线,那么所画的垂线必与AP 重合,这是因为 .16.如图,已知直线a ∥b ,若∠1=42°30′,则∠2= .17.如果2=m a ,3=n a ,那么=-n m a 23= .18.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;则一定能判定AB ∥CD 的条件有 (填写所有正确的序号).19.如果(x ﹣8)(x+3)=x2+px+q ,那么p= ;q= .20.如图,大容器中盛满了水,要将大容器中的水全部倒入右边的若干个小杯子中,且将每个小杯子装满,需要这样的小杯子 个.三、解答题21.计算:(第1---4小题每小题3分,第5题5分,共17分) (1)9x 2•(-3xy ) (2)(12x 3y 4+24x 2y 2﹣18x 2y 3)÷(6xy 2).(3)(3x -5)(x +2)-3x (x -7) (4)运用乘法公式计算:299×301+1(5)先化简,再求值:[])2()23)(23()3(2y y x y x y x ÷+--- 其中53,21=-=y x22.(4分)如图表示的是一条光线AO 射向一个平面镜,它会在入射点O 处反射出一条光线.已知:光线在射向平面镜后反射出的光线与平面镜夹角的大小跟入射光线与平面镜夹角的大小相同.请你利用直尺和圆规在图中画出这条光线的反射光线OB .(保留作图痕迹,不必写出作法.)23(4分).如图,已知AD⊥BC,EF⊥BC,∠3=∠C,∠1与∠2相等吗?为什么?.24.(5分)如图:阅读下面一段对话:陈明:“赵亮,从你家到学校是不是要先走一段小路,再经过一段大道,然后再走一段小路啊?”赵亮:“是啊,而且那两段小路的方向是一致的。
2015-2016年山东省济宁市微山县七年级(下)期中数学试卷(解析版)

2015-2016学年山东省济宁市微山县七年级(下)期中数学试卷一.选择题(共10小题,每题3分,共30分)1.(3分)4的算术平方根是()A.2B.﹣2C.±2D.2.(3分)如图,三条直线l1,l2,l3相交于点E,则∠1+∠2+∠3=()A.90°B.120°C.180°D.360°3.(3分)在实数O、n、、、﹣中,无理数的个数有()A.1个B.2个C.3个D.4个4.(3分)如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)5.(3分)如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∠D+∠DAB=180°B.∠B=∠DCEC.∠1=∠2.D.∠3=∠46.(3分)有下列三个命题:(1)两点之间线段最短(2)平面内,过一点能且只能作一条直线与已知直线垂直(3)过直线外一点有且只有一条直线与这条直线平行其中真命题的个数是()A.0个B.1个C.2个D.3个7.(3分)若点A(2,﹣2),B(﹣1,﹣2),则直线AB与x轴和y轴的位置关系分别是()A.相交,相交B.平行,平行C.平行,垂直相交D.垂直相交,平行8.(3分)已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.无法确定9.(3分)同一平面内,三条不同直线的交点个数可能是()个.A.1或3B.0、1或3C.0、1或2D.0、1、2或3 10.(3分)如图,直径为1个单位长度的圆从A点沿数轴向右滚动(无滑动)两周到达点B,则点B表示的数是()A.πB.2πC.2π﹣1D.2π+1.二、填空(每题3分,共15分)11.(3分)﹣1的相反数是.12.(3分)直线m外有一定点A,A到直线m的距离是7cm,B是直线m上的任意一点,则线段AB的长度:AB7cm.(填>或者<或者=或者≤或者≥).13.(3分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是.14.(3分)线段AB两端点的坐标分别为A(2,4),B(5,2),若将线段AB平移,使得点B的对应点为点C(3,﹣1).则平移后点A的对应点的坐标为.15.(3分)点P到x轴的距离是2,到y轴的距离是3,且点P在y轴的右侧,则P点的坐标是.三、解答(共7题,满分55分)16.(6分)计算:(1)﹣﹣4(2)已知:x,y为实数,且满足|x+3|+=0,求:代数式|+x|+的值.17.(6分)如图,已知∠1=∠2,∠B=∠C,试证明AB∥CD.18.(7分)如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′(3)写出三个顶点坐标A′(、)、B′(、)、C′、)(4)求△ABC的面积.19.(8分)如图,在A、B两处之间要修一条笔直的公路,从A地测得公路走向是北偏东46°,A、B两地同时开工,若干天后公路准确接通.(1)B地修公路的走向是南偏西多少度?(2)若公路AB长12千米,另一条公路BC长6千米,且BC的走向是北偏西44°,试求A到公路BC的距离?20.(8分)在平面直角坐标系中,点A的坐标是(3a﹣5,a+1)(1)若点A在y轴上,求a的值及点A的坐标.(2)若点A到x轴的距离与到y轴的距离相等;求a的值及点A的坐标.21.(8分)阅读理解∵<<,即2<<3.∴的整数部分为2,小数部分为﹣2∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2解决问题:已知:a是﹣3的整数部分,b是﹣3的小数部分,求:(1)a,b的值;(2)(﹣a)3+(b+4)2的平方根.22.(12分)如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.解:猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°(两直线平行,同旁内角互补)∵AB∥CD,EF∥AB,∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)∴∠EPD+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.2015-2016学年山东省济宁市微山县七年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,每题3分,共30分)1.(3分)4的算术平方根是()A.2B.﹣2C.±2D.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:A.2.(3分)如图,三条直线l1,l2,l3相交于点E,则∠1+∠2+∠3=()A.90°B.120°C.180°D.360°【分析】由已知条件和观察图形可知∠1、∠2与∠3的对顶角恰好构成平角.【解答】解:由图形可知,2(∠1+∠2+∠3)=360°,∴∠1+∠2+∠3=180°.故选:C.3.(3分)在实数O、n、、、﹣中,无理数的个数有()A.1个B.2个C.3个D.4个【分析】根据无理数是无限不循环小数,可得答案.【解答】解:O、n、、﹣是有理数;是无理数;故选:A.4.(3分)如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【解答】解:如图,棋子“炮”的坐标为(3,﹣2).故选:C.5.(3分)如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∠D+∠DAB=180°B.∠B=∠DCEC.∠1=∠2.D.∠3=∠4【分析】A、利用同旁内角互补两直线平行,得到AB与CD平行,本选项不合题意;B、利用同位角相等两直线平行,得到AB与CD平行,本选项不合题意;C、利用内错角相等两直线平行,得到AB与CD平行,本选项不合题意;D、利用内错角相等两直线平行,得到AD与BC平行,本选项符合题意.【解答】解:A、∵∠D+∠DAB=180°,∴AB∥CD,本选项不合题意;B、∵∠B=∠DCE,∴AB∥CD,本选项不合题意;C、∵∠1=∠2,∴AB∥CD,本选项不合题意;D、∵∠3=∠4,∴AD∥BC,本选项符合题意.故选:D.6.(3分)有下列三个命题:(1)两点之间线段最短(2)平面内,过一点能且只能作一条直线与已知直线垂直(3)过直线外一点有且只有一条直线与这条直线平行其中真命题的个数是()A.0个B.1个C.2个D.3个【分析】利用线段公理、垂线的性质等知识分别判断后即可确定正确的选项.【解答】解:(1)两点之间线段最短,正确,是真命题;(2)平面内,过一点能且只能作一条直线与已知直线垂直,正确,是真命题;(3)过直线外一点有且只有一条直线与这条直线平行,正确,是真命题,故选:D.7.(3分)若点A(2,﹣2),B(﹣1,﹣2),则直线AB与x轴和y轴的位置关系分别是()A.相交,相交B.平行,平行C.平行,垂直相交D.垂直相交,平行【分析】根据纵坐标相同的点在平行于x轴、垂直于y轴的直线上解答.【解答】解:∵点A(2,﹣2),B(﹣1,﹣2),∴点A、B的纵坐标相同,∴直线AB与x轴平行,与y轴的垂直.故选:C.8.(3分)已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.无法确定【分析】根据B点的坐标可知AP边上的高为2,而△PAB的面积为5,点P在x 轴上,说明AP=5,已知点A的坐标,可求P点坐标.【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选:C.9.(3分)同一平面内,三条不同直线的交点个数可能是()个.A.1或3B.0、1或3C.0、1或2D.0、1、2或3【分析】根据两直线平行和相交的定义作出图形即可得解.【解答】解:如图,三条直线的交点个数可能是0或1或2或3.故选:D.10.(3分)如图,直径为1个单位长度的圆从A点沿数轴向右滚动(无滑动)两周到达点B,则点B表示的数是()A.πB.2πC.2π﹣1D.2π+1.【分析】根据是数的运算,A点表示的数加两个圆周,可得B点,根据数轴上的点与实数一一对应,可得B点表示的数.【解答】解:A点表示的数加两个圆周,可得B点,﹣1+2π,故选:C.二、填空(每题3分,共15分)11.(3分)﹣1的相反数是1﹣.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣1的相反数是1﹣,故答案为:1﹣.12.(3分)直线m外有一定点A,A到直线m的距离是7cm,B是直线m上的任意一点,则线段AB的长度:AB≥7cm.(填>或者<或者=或者≤或者≥).【分析】利用“从直线外一点到这条直线上各点所连的线段中,垂线段最短”可以作出判断.【解答】解:A到直线m的距离是7cm,根据点到直线距离的定义,7cm表示垂线段的长度,根据垂线段最短,其它线段的长度大于或等于7cm,故答案填:≥.13.(3分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是9.【分析】首先根据整数有两个平方根,它们互为相反数可得2a﹣1﹣a+2=0,解方程可得a,然后再求出这个正数即可.【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,2a﹣1=﹣3,﹣a+2=3,则这个正数为9,故答案为:9.14.(3分)线段AB两端点的坐标分别为A(2,4),B(5,2),若将线段AB平移,使得点B的对应点为点C(3,﹣1).则平移后点A的对应点的坐标为(0,1).【分析】先得到点B的对应规律,依此得到A的坐标即可.【解答】解:∵B(5,2),点B的对应点为点C(3,﹣1).∴变化规律是横坐标减2,纵坐标减3,∵A(2,4),∴平移后点A的对应点的坐标为(0,1),故答案为(0,1).15.(3分)点P到x轴的距离是2,到y轴的距离是3,且点P在y轴的右侧,则P点的坐标是(3,2)和(3,﹣2)..【分析】设点P坐标为(x,y),列出绝对值方程以及x满足的条件,解方程即可.【解答】解:设点P坐标为(x,y),由题意|y|=2,|x|=3,x>0,∴x=3,y=±2,∴点P坐标(3,2)或(3,﹣2).故答案为(3,2)或(3,﹣2).三、解答(共7题,满分55分)16.(6分)计算:(1)﹣﹣4(2)已知:x,y为实数,且满足|x+3|+=0,求:代数式|+x|+的值.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)利用非负数的性质求出x与y的值,代入原式计算即可得到结果.【解答】解:(1)原式=3﹣0﹣4×=2;(2)∵|x+3|+=0,∴x=﹣3,y=3,则原式=3﹣+3=3+2.17.(6分)如图,已知∠1=∠2,∠B=∠C,试证明AB∥CD.【分析】首先证明CE∥BF,得到∠C=∠3,从而证得∠3=∠B,根据内错角相等,两直线平行即可证得.【解答】解:∵∠1=∠2(已知),且∠1=∠4(对顶角相等),∴∠2=∠4 (等量代换),∴CE∥BF (同位角相等,两直线平行),∴∠C=∠3(两直线平行,同位角相等);又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD (内错角相等,两直线平行).18.(7分)如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′(3)写出三个顶点坐标A′(1、1)、B′(3、5)、C′0、4)(4)求△ABC的面积.【分析】(1)根据图可直接写出答案;(2)根据平移的方向作图即可;(3)根据所画的图形写出坐标即可;(4)利用长方形的面积减去四周三角形的面积可得答案.【解答】解:(1)A(2,﹣1),B(4,3);(2)如图所示:(3)A′(1,1),B′(3,5),C′(0,4);(4)△ABC的面积:3×4﹣×1×3﹣×2×4﹣×1×3=5.19.(8分)如图,在A、B两处之间要修一条笔直的公路,从A地测得公路走向是北偏东46°,A、B两地同时开工,若干天后公路准确接通.(1)B地修公路的走向是南偏西多少度?(2)若公路AB长12千米,另一条公路BC长6千米,且BC的走向是北偏西44°,试求A到公路BC的距离?【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【解答】解:(1)由两地南北方向平行,根据内错角相等,可知B地所修公路的走向是南偏西46°;(2)∵∠ABC=180°﹣∠ABG﹣∠EBC=180°﹣46°﹣44°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=12千米.20.(8分)在平面直角坐标系中,点A的坐标是(3a﹣5,a+1)(1)若点A在y轴上,求a的值及点A的坐标.(2)若点A到x轴的距离与到y轴的距离相等;求a的值及点A的坐标.【分析】(1)根据点在y轴上,横坐标为0,求出a的值,即可解答;(2)根据点A到x轴的距离与到y轴的距离相等,得到|3a﹣5|=|a+1|,即可解答.【解答】解:(1)∵点A在y轴上,∴3a﹣5=0,解得:a=,a+1=,点A的坐标为:(0,);(2)∵点A到x轴的距离与到y轴的距离相等,∴|3a﹣5|=|a+1|,①3a﹣5=a+1,解得:a=3,则点A(4,4);②3a﹣5+(a+1)=0,解得:a=1,则点A(﹣2,2);所以a=3,则点A(4,4)或a=1,则点A(﹣2,2).21.(8分)阅读理解∵<<,即2<<3.∴的整数部分为2,小数部分为﹣2∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2解决问题:已知:a是﹣3的整数部分,b是﹣3的小数部分,求:(1)a,b的值;(2)(﹣a)3+(b+4)2的平方根.【分析】(1)首先得出接近的整数,进而得出a,b的值;(2)根据平方根即可解答.【解答】解:(1)∵<<,∴4<<5,∴1<﹣3<2,∴a=1,b=﹣4,(2)(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17=16,故(﹣a)3+(b+4)2的平方根是:±4.22.(12分)如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.解:猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°(两直线平行,同旁内角互补)∵AB∥CD,EF∥AB,∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)∴∠EPD+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.【分析】(1)首先过点P作PE∥AB,由AB∥CD,可得PE∥AB∥CD,根据两直线平行,内错角相等,即可得∠1=∠B,∠2=∠D,则可求得∠BPD=∠B+∠D.(2)由AB∥CD,根据两直线平行,内错角相等与三角形外角的性质,即可求得∠BPD与∠B、∠D的关系.【解答】解:(1)∠BPD=∠B+∠D.理由:如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠1+∠2=∠B+∠D;(2)如图(3):∠BPD=∠D﹣∠B.理由:∵AB∥CD,∴∠1=∠D,∵∠1=∠B+∠P,∴∠D=∠B+∠P,即∠BPD=∠D﹣∠B;如图(4):∠BPD=∠B﹣∠D.理由:∵AB∥CD,∴∠1=∠B,∵∠1=∠D+∠P,∴∠B=∠D+∠P,即∠BPD=∠B﹣∠D.。
【精品】2015-2016学年山东省济宁市微山县七年级(下)期中数学试卷和解析

第1页(共17页)页)2015-2016学年山东省济宁市微山县七年级(下)期中数学试卷一.选择题(共10小题,每题3分,共30分)1.(3分)4的算术平方根是(的算术平方根是( )A.2 B.﹣2 C.±2 D.2.(3分)如图,三条直线l1,l2,l3相交于点E,则∠1+∠2+∠3=()A.90° B.120° C.180° D.360°3.(3分)在实数O、n 、、、﹣中,无理数的个数有(中,无理数的个数有( ) A.1个 B.2个 C.3个 D.4个4.(3分)如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为(的坐标为()A.(3,2) B.(﹣3,2) C.(3,﹣2) D.(﹣3,﹣2) 5.(3分)如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∠D+∠DAB=180° B.∠B=∠DCEC.∠1=∠2. D.∠3=∠46.(3分)有下列三个命题: (1)两点之间线段最短(2)平面内,过一点能且只能作一条直线与已知直线垂直 (3)过直线外一点有且只有一条直线与这条直线平行 其中真命题的个数是(其中真命题的个数是( ) A .0个B .1个C .2个D .3个7.(3分)若点A (2,﹣2),B (﹣1,﹣2),则直线AB 与x 轴和y 轴的位置关系分别是(系分别是( ) A .相交,相交 B .平行,平行 C .平行,垂直相交D .垂直相交,平行8.(3分)已知点A (1,0),B (0,2),点P 在x 轴上,且△PAB 的面积为5,则点P 的坐标为(的坐标为( ) A .(﹣4,0)B .(6,0)C .(﹣4,0)或(6,0)D .无法确定9.(3分)同一平面内,三条不同直线的交点个数可能是(分)同一平面内,三条不同直线的交点个数可能是( )个. A .1或3B .0、1或3C .0、1或2D .0、1、2或310.(3分)如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B表示的数是( )A .πB .2πC .2π﹣1D .2π+1.二、填空(每题3分,共15分) 11.(3分)﹣1的相反数是的相反数是. 12.(3分)直线m 外有一定点A ,A 到直线m 的距离是7cm ,B 是直线m 上的任意一点,则线段AB 的长度:AB 7cm .(填>或者<或者=或者≤或者≥).13.(3分)若一个正数的平方根是2a ﹣1和﹣a +2,则这个正数是,则这个正数是.14.(3分)线段AB两端点的坐标分别为A(2,4),B(5,2),若将线段AB平移,使得点B的对应点为点C(3,﹣1).则平移后点A的对应点的坐标为 .15.(3分)点P到x轴的距离是2,到y轴的距离是3,且点P在y轴的右侧,.点的坐标是则P点的坐标是三、解答(共7题,满分55分)16.(6分)计算:(1)﹣﹣4代数式||+x|+的值.且满足||x+3|+=0,求:代数式(2)已知:x,y为实数,且满足17.(6分)如图,已知∠1=∠2,∠B=∠C,试证明AB∥CD.18.(7分)如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)写出点A、B的坐标:A( , )、B( , ) (2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△AʹBʹCʹ,画出△AʹBʹCʹ(3)写出三个顶点坐标Aʹ( 、 )、Bʹ( 、 )、Cʹ 、 )(4)求△ABC的面积.19.(8分)如图,在A、B两处之间要修一条笔直的公路,从A地测得公路走向是北偏东46°,A、B两地同时开工,若干天后公路准确接通.(1)B地修公路的走向是南偏西多少度?(2)若公路AB长12千米,另一条公路BC长6千米,且BC的走向是北偏西44°,试求A到公路BC的距离?20.(8分)在平面直角坐标系中,点A的坐标是(3a﹣5,a+1)(1)若点A在y轴上,求a的值及点A的坐标.(2)若点A到x轴的距离与到y轴的距离相等;求a的值及点A的坐标. 21.(8分)阅读理解∵<<,即2<<3.∴的整数部分为2,小数部分为﹣2∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2解决问题:已知:a是﹣3的整数部分,b是﹣3的小数部分,求:(1)a,b的值;(2)(﹣a)3+(b+4)2的平方根.22.(12分)如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由. 解:猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°(两直线平行,同旁内角互补)∵AB∥CD,EF∥AB,∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)∴∠EPD+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.2015-2016学年山东省济宁市微山县七年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,每题3分,共30分) 1.(3分)4的算术平方根是(的算术平方根是( ) A .2B .﹣2C .±2D .【分析】算术平方根的定义:算术平方根的定义:一个非负数的正的平方根,一个非负数的正的平方根,一个非负数的正的平方根,即为这个数的算术平方即为这个数的算术平方根,由此即可求出结果. 【解答】解:∵2的平方为4, ∴4的算术平方根为2. 故选:A .2.(3分)如图,三条直线l 1,l 2,l 3相交于点E ,则∠1+∠2+∠3=( )A .90°B .120°C .180°D .360°【分析】由已知条件和观察图形可知∠1、∠2与∠3的对顶角恰好构成平角. 【解答】解:由图形可知, 2(∠1+∠2+∠3)=360°, ∴∠1+∠2+∠3=180°. 故选:C .3.(3分)在实数O 、n 、、、﹣中,无理数的个数有(中,无理数的个数有( ) A .1个B .2个C .3个D .4个【分析】根据无理数是无限不循环小数,可得答案. 【解答】解:O 、n 、、﹣是有理数;是无理数;故选:A.4.(3分)如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,的坐标为()﹣1),则棋子“炮”的坐标为(A.(3,2) B.(﹣3,2) C.(3,﹣2) D.(﹣3,﹣2) 【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标. 【解答】解:如图,棋子“炮”的坐标为(3,﹣2).故选:C.5.(3分)如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是( )A.∠D+∠DAB=180° B.∠B=∠DCEC.∠1=∠2. D.∠3=∠4【分析】A、利用同旁内角互补两直线平行,得到AB与CD平行,本选项不合题意;B、利用同位角相等两直线平行,得到AB与CD平行,本选项不合题意;C、利用内错角相等两直线平行,得到AB与CD平行,本选项不合题意;D、利用内错角相等两直线平行,得到AD与BC平行,本选项符合题意.【解答】解:A 、∵∠D +∠DAB=180°, ∴AB ∥CD ,本选项不合题意; B 、∵∠B=∠DCE ,∴AB ∥CD ,本选项不合题意; C 、∵∠1=∠2,∴AB ∥CD ,本选项不合题意; D 、∵∠3=∠4,∴AD ∥BC ,本选项符合题意. 故选:D .6.(3分)有下列三个命题: (1)两点之间线段最短(2)平面内,过一点能且只能作一条直线与已知直线垂直 (3)过直线外一点有且只有一条直线与这条直线平行 其中真命题的个数是(其中真命题的个数是( ) A .0个B .1个C .2个D .3个【分析】利用线段公理、垂线的性质等知识分别判断后即可确定正确的选项. 【解答】解:(1)两点之间线段最短,正确,是真命题;(2)平面内,过一点能且只能作一条直线与已知直线垂直,正确,是真命题; (3)过直线外一点有且只有一条直线与这条直线平行,正确,是真命题, 故选:D .7.(3分)若点A (2,﹣2),B (﹣1,﹣2),则直线AB 与x 轴和y 轴的位置关系分别是(系分别是( ) A .相交,相交 B .平行,平行 C .平行,垂直相交D .垂直相交,平行【分析】根据纵坐标相同的点在平行于x 轴、垂直于y 轴的直线上解答. 【解答】解:∵点A (2,﹣2),B (﹣1,﹣2), ∴点A 、B 的纵坐标相同,∴直线AB 与x 轴平行,与y 轴的垂直. 故选:C .8.(3分)已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,的坐标为()则点P的坐标为(A.(﹣4,0) B.(6,0)C.(﹣4,0)或(6,0) D.无法确定【分析】根据B点的坐标可知AP边上的高为2,而△PAB的面积为5,点P在x 轴上,说明AP=5,已知点A的坐标,可求P点坐标.【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选:C.9.(3分)同一平面内,三条不同直线的交点个数可能是(分)同一平面内,三条不同直线的交点个数可能是( )个. A.1或3 B.0、1或3 C.0、1或2 D.0、1、2或3 【分析】根据两直线平行和相交的定义作出图形即可得解.【解答】解:如图,三条直线的交点个数可能是0或1或2或3.故选:D.10.(3分)如图,直径为1个单位长度的圆从A点沿数轴向右滚动(无滑动)两周到达点B,则点B表示的数是( )A.π B.2π C.2π﹣1 D.2π+1.【分析】根据是数的运算,A点表示的数加两个圆周,可得B点,根据数轴上的点与实数一一对应,可得B点表示的数.【解答】解:A点表示的数加两个圆周,可得B点,﹣1+2π,故选:C.二、填空(每题3分,共15分)11.(3分)﹣1的相反数是的相反数是 1﹣ .【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.1﹣,的相反数是【解答】解:﹣1的相反数是故答案为:1﹣.12.(3分)直线m外有一定点A,A到直线m的距离是7cm,B是直线m上的任意一点,则线段AB的长度:AB ≥ 7cm.(填>或者<或者=或者≤或者≥).【分析】利用“从直线外一点到这条直线上各点所连的线段中,垂线段最短”可以作出判断.【解答】解:A到直线m的距离是7cm,根据点到直线距离的定义,7cm表示垂线段的长度,根据垂线段最短,其它线段的长度大于或等于7cm,故答案填:≥.13.(3分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是,则这个正数是 9 . 【分析】首先根据整数有两个平方根,它们互为相反数可得2a﹣1﹣a+2=0,解方程可得a,然后再求出这个正数即可.【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,2a﹣1=﹣3,﹣a+2=3,则这个正数为9,故答案为:9.14.(3分)线段AB两端点的坐标分别为A(2,4),B(5,2),若将线段AB平(0,移,使得点B的对应点为点C(3,﹣1).则平移后点A的对应点的坐标为的对应点的坐标为 1) .【分析】先得到点B的对应规律,依此得到A的坐标即可.【解答】解:∵B(5,2),点B的对应点为点C(3,﹣1).∴变化规律是横坐标减2,纵坐标减3,∵A(2,4),(0,1),的对应点的坐标为∴平移后点A的对应点的坐标为故答案为(0,1).15.(3分)点P到x轴的距离是2,到y轴的距离是3,且点P在y轴的右侧,(3,2)和(3,﹣2). .则P点的坐标是点的坐标是【分析】设点P坐标为(x,y),列出绝对值方程以及x满足的条件,解方程即可.【解答】解:设点P坐标为(x,y),由题意||y|=2,|x|=3,x>0,由题意∴x=3,y=±2,∴点P坐标(3,2)或(3,﹣2).故答案为(3,2)或(3,﹣2).三、解答(共7题,满分55分)16.(6分)计算:(1)﹣﹣4且满足||x+3|+=0,求:代数式代数式||+x|+的值. (2)已知:x,y为实数,且满足【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)利用非负数的性质求出x与y的值,代入原式计算即可得到结果.【解答】解:(1)原式=3﹣0﹣4×=2;)∵||x+3|+=0,(2)∵∴x=﹣3,y=3,则原式=3﹣+3=3+2.17.(6分)如图,已知∠1=∠2,∠B=∠C,试证明AB∥CD.【分析】首先证明CE∥BF,得到∠C=∠3,从而证得∠3=∠B,根据内错角相等,两直线平行即可证得.【解答】解:∵∠1=∠2(已知),且∠1=∠4(对顶角相等),∴∠2=∠4 (等量代换),∴CE∥BF (同位角相等,两直线平行),∴∠C=∠3(两直线平行,同位角相等);又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD (内错角相等,两直线平行).18.(7分)如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)写出点A、B的坐标:A( 2 , ﹣1 )、B( 4 , 3 )(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△AʹBʹCʹ,画出△AʹBʹCʹ(3)写出三个顶点坐标Aʹ( 1 、 1 )、Bʹ( 3 、 5 )、Cʹ 0 、 4 ) (4)求△ABC的面积.【分析】(1)根据图可直接写出答案;(2)根据平移的方向作图即可;(3)根据所画的图形写出坐标即可;(4)利用长方形的面积减去四周三角形的面积可得答案. 【解答】解:(1)A (2,﹣1),B (4,3);(2)如图所示:(3)Aʹ(1,1),Bʹ(3,5),Cʹ(0,4);(4)△ABC 的面积:3×4﹣×1×3﹣×2×4﹣×1×3=5.19.(8分)如图,在A 、B 两处之间要修一条笔直的公路,从A 地测得公路走向是北偏东46°,A 、B 两地同时开工,若干天后公路准确接通. (1)B 地修公路的走向是南偏西多少度?(2)若公路AB 长12千米,另一条公路BC 长6千米,且BC 的走向是北偏西44°,试求A 到公路BC 的距离?【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解. 【解答】解:(1)由两地南北方向平行,根据内错角相等,可知B 地所修公路的走向是南偏西46°;(2)∵∠ABC=180°﹣∠ABG ﹣∠EBC=180°﹣46°﹣44°44°=90°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=12千米.20.(8分)在平面直角坐标系中,点A的坐标是(3a﹣5,a+1)(1)若点A在y轴上,求a的值及点A的坐标.(2)若点A到x轴的距离与到y轴的距离相等;求a的值及点A的坐标. 【分析】(1)根据点在y轴上,横坐标为0,求出a的值,即可解答;轴的距离相等,得到||3a﹣5|=|a+1|,即可解(2)根据点A到x轴的距离与到y轴的距离相等,得到答.【解答】解:(1)∵点A在y轴上,∴3a﹣5=0,解得:a=,a+1=,点A的坐标为:(0,);(2)∵点A到x轴的距离与到y轴的距离相等,∴|3a﹣5|=|a+1|,①3a﹣5=a+1,解得:a=3,则点A(4,4);②3a﹣5+(a+1)=0,解得:a=1,则点A(﹣2,2);所以a=3,则点A(4,4)或a=1,则点A(﹣2,2).21.(8分)阅读理解∵<<,即2<<3.∴的整数部分为2,小数部分为﹣2∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2解决问题:已知:a是﹣3的整数部分,b是﹣3的小数部分,求:(1)a,b的值;(2)(﹣a)3+(b+4)2的平方根.【分析】(1)首先得出接近的整数,进而得出a,b的值;(2)根据平方根即可解答.【解答】解:(1)∵<<,∴4<<5,∴1<﹣3<2,∴a=1,b=﹣4,(2)(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17=16,故(﹣a)3+(b+4)2的平方根是:±4.22.(12分)如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由. 解:猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°(两直线平行,同旁内角互补)∵AB∥CD,EF∥AB,∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.) ∴∠EPD+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.【分析】(1)首先过点P作PE∥AB,由AB∥CD,可得PE∥AB∥CD,根据两直线平行,内错角相等,即可得∠1=∠B,∠2=∠D,则可求得∠BPD=∠B+∠D.(2)由AB∥CD,根据两直线平行,内错角相等与三角形外角的性质,即可求得∠BPD与∠B、∠D的关系.【解答】解:(1)∠BPD=∠B+∠D.理由:如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠1+∠2=∠B+∠D;(2)如图(3):∠BPD=∠D﹣∠B.理由:∵AB∥CD,∴∠1=∠D,∵∠1=∠B+∠P,∴∠D=∠B+∠P,即∠BPD=∠D﹣∠B;如图(4):∠BPD=∠B﹣∠D.理由:∵AB∥CD,∴∠1=∠B,∵∠1=∠D+∠P,∴∠B=∠D+∠P,即∠BPD=∠B﹣∠D.**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**内容.声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删除**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容.声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容.声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==** 免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容.声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==** 司将予以删。
2015-2016学年山东省济宁市微山县七年级(下)期中数学试卷

2015-2016学年山东省济宁市微山县七年级(下)期中数学试卷一.选择题(共10小题,每题3分,共30分)1.(3分)4的算术平方根是()A.2B.﹣2C.±2D.2.(3分)如图,三条直线l1,l2,l3相交于点E,则∠1+∠2+∠3=()A.90°B.120°C.180°D.360°3.(3分)在实数O、n、、、﹣中,无理数的个数有()A.1个B.2个C.3个D.4个4.(3分)如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)5.(3分)如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∠D+∠DAB=180°B.∠B=∠DCEC.∠1=∠2.D.∠3=∠46.(3分)有下列三个命题:(1)两点之间线段最短(2)平面内,过一点能且只能作一条直线与已知直线垂直(3)过直线外一点有且只有一条直线与这条直线平行其中真命题的个数是()A.0个B.1个C.2个D.3个7.(3分)若点A(2,﹣2),B(﹣1,﹣2),则直线AB与x轴和y轴的位置关系分别是()A.相交,相交B.平行,平行C.平行,垂直相交D.垂直相交,平行8.(3分)已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.无法确定9.(3分)同一平面内,三条不同直线的交点个数可能是()个.A.1或3B.0、1或3C.0、1或2D.0、1、2或3 10.(3分)如图,直径为1个单位长度的圆从A点沿数轴向右滚动(无滑动)两周到达点B,则点B表示的数是()A.πB.2πC.2π﹣1D.2π+1.二、填空(每题3分,共15分)11.(3分)﹣1的相反数是.12.(3分)直线m外有一定点A,A到直线m的距离是7cm,B是直线m上的任意一点,则线段AB的长度:AB7cm.(填>或者<或者=或者≤或者≥).13.(3分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是.14.(3分)线段AB两端点的坐标分别为A(2,4),B(5,2),若将线段AB平移,使得点B的对应点为点C(3,﹣1).则平移后点A的对应点的坐标为.15.(3分)点P到x轴的距离是2,到y轴的距离是3,且点P在y轴的右侧,则P点的坐标是.三、解答(共7题,满分55分)16.(6分)计算:(1)﹣﹣4(2)已知:x,y为实数,且满足|x+3|+=0,求:代数式|+x|+的值.17.(6分)如图,已知∠1=∠2,∠B=∠C,试证明AB∥CD.18.(7分)如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′(3)写出三个顶点坐标A′(、)、B′(、)、C′、)(4)求△ABC的面积.19.(8分)如图,在A、B两处之间要修一条笔直的公路,从A地测得公路走向是北偏东46°,A、B两地同时开工,若干天后公路准确接通.(1)B地修公路的走向是南偏西多少度?(2)若公路AB长12千米,另一条公路BC长6千米,且BC的走向是北偏西44°,试求A到公路BC的距离?20.(8分)在平面直角坐标系中,点A的坐标是(3a﹣5,a+1)(1)若点A在y轴上,求a的值及点A的坐标.(2)若点A到x轴的距离与到y轴的距离相等;求a的值及点A的坐标.21.(8分)阅读理解∵<<,即2<<3.∴的整数部分为2,小数部分为﹣2∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2解决问题:已知:a是﹣3的整数部分,b是﹣3的小数部分,求:(1)a,b的值;(2)(﹣a)3+(b+4)2的平方根.22.(12分)如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.解:猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°(两直线平行,同旁内角互补)∵AB∥CD,EF∥AB,∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)∴∠EPD+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.2015-2016学年山东省济宁市微山县七年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,每题3分,共30分)1.(3分)4的算术平方根是()A.2B.﹣2C.±2D.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:A.2.(3分)如图,三条直线l1,l2,l3相交于点E,则∠1+∠2+∠3=()A.90°B.120°C.180°D.360°【分析】由已知条件和观察图形可知∠1、∠2与∠3的对顶角恰好构成平角.【解答】解:由图形可知,2(∠1+∠2+∠3)=360°,∴∠1+∠2+∠3=180°.故选:C.3.(3分)在实数O、n、、、﹣中,无理数的个数有()A.1个B.2个C.3个D.4个【分析】根据无理数是无限不循环小数,可得答案.【解答】解:O、n、、﹣是有理数;是无理数;故选:A.4.(3分)如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【解答】解:如图,棋子“炮”的坐标为(3,﹣2).故选:C.5.(3分)如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∠D+∠DAB=180°B.∠B=∠DCEC.∠1=∠2.D.∠3=∠4【分析】A、利用同旁内角互补两直线平行,得到AB与CD平行,本选项不合题意;B、利用同位角相等两直线平行,得到AB与CD平行,本选项不合题意;C、利用内错角相等两直线平行,得到AB与CD平行,本选项不合题意;D、利用内错角相等两直线平行,得到AD与BC平行,本选项符合题意.【解答】解:A、∵∠D+∠DAB=180°,∴AB∥CD,本选项不合题意;B、∵∠B=∠DCE,∴AB∥CD,本选项不合题意;C、∵∠1=∠2,∴AB∥CD,本选项不合题意;D、∵∠3=∠4,∴AD∥BC,本选项符合题意.故选:D.6.(3分)有下列三个命题:(1)两点之间线段最短(2)平面内,过一点能且只能作一条直线与已知直线垂直(3)过直线外一点有且只有一条直线与这条直线平行其中真命题的个数是()A.0个B.1个C.2个D.3个【分析】利用线段公理、垂线的性质等知识分别判断后即可确定正确的选项.【解答】解:(1)两点之间线段最短,正确,是真命题;(2)平面内,过一点能且只能作一条直线与已知直线垂直,正确,是真命题;(3)过直线外一点有且只有一条直线与这条直线平行,正确,是真命题,故选:D.7.(3分)若点A(2,﹣2),B(﹣1,﹣2),则直线AB与x轴和y轴的位置关系分别是()A.相交,相交B.平行,平行C.平行,垂直相交D.垂直相交,平行【分析】根据纵坐标相同的点在平行于x轴、垂直于y轴的直线上解答.【解答】解:∵点A(2,﹣2),B(﹣1,﹣2),∴点A、B的纵坐标相同,∴直线AB与x轴平行,与y轴的垂直.故选:C.8.(3分)已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.无法确定【分析】根据B点的坐标可知AP边上的高为2,而△PAB的面积为5,点P在x 轴上,说明AP=5,已知点A的坐标,可求P点坐标.【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选:C.9.(3分)同一平面内,三条不同直线的交点个数可能是()个.A.1或3B.0、1或3C.0、1或2D.0、1、2或3【分析】根据两直线平行和相交的定义作出图形即可得解.【解答】解:如图,三条直线的交点个数可能是0或1或2或3.故选:D.10.(3分)如图,直径为1个单位长度的圆从A点沿数轴向右滚动(无滑动)两周到达点B,则点B表示的数是()A.πB.2πC.2π﹣1D.2π+1.【分析】根据是数的运算,A点表示的数加两个圆周,可得B点,根据数轴上的点与实数一一对应,可得B点表示的数.【解答】解:A点表示的数加两个圆周,可得B点,﹣1+2π,故选:C.二、填空(每题3分,共15分)11.(3分)﹣1的相反数是1﹣.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣1的相反数是1﹣,故答案为:1﹣.12.(3分)直线m外有一定点A,A到直线m的距离是7cm,B是直线m上的任意一点,则线段AB的长度:AB≥7cm.(填>或者<或者=或者≤或者≥).【分析】利用“从直线外一点到这条直线上各点所连的线段中,垂线段最短”可以作出判断.【解答】解:A到直线m的距离是7cm,根据点到直线距离的定义,7cm表示垂线段的长度,根据垂线段最短,其它线段的长度大于或等于7cm,故答案填:≥.13.(3分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是9.【分析】首先根据整数有两个平方根,它们互为相反数可得2a﹣1﹣a+2=0,解方程可得a,然后再求出这个正数即可.【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,2a﹣1=﹣3,﹣a+2=3,则这个正数为9,故答案为:9.14.(3分)线段AB两端点的坐标分别为A(2,4),B(5,2),若将线段AB平移,使得点B的对应点为点C(3,﹣1).则平移后点A的对应点的坐标为(0,1).【分析】先得到点B的对应规律,依此得到A的坐标即可.【解答】解:∵B(5,2),点B的对应点为点C(3,﹣1).∴变化规律是横坐标减2,纵坐标减3,∵A(2,4),∴平移后点A的对应点的坐标为(0,1),故答案为(0,1).15.(3分)点P到x轴的距离是2,到y轴的距离是3,且点P在y轴的右侧,则P点的坐标是(3,2)和(3,﹣2)..【分析】设点P坐标为(x,y),列出绝对值方程以及x满足的条件,解方程即可.【解答】解:设点P坐标为(x,y),由题意|y|=2,|x|=3,x>0,∴x=3,y=±2,∴点P坐标(3,2)或(3,﹣2).故答案为(3,2)或(3,﹣2).三、解答(共7题,满分55分)16.(6分)计算:(1)﹣﹣4(2)已知:x,y为实数,且满足|x+3|+=0,求:代数式|+x|+的值.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)利用非负数的性质求出x与y的值,代入原式计算即可得到结果.【解答】解:(1)原式=3﹣0﹣4×=2;(2)∵|x+3|+=0,∴x=﹣3,y=3,则原式=3﹣+3=3+2.17.(6分)如图,已知∠1=∠2,∠B=∠C,试证明AB∥CD.【分析】首先证明CE∥BF,得到∠C=∠3,从而证得∠3=∠B,根据内错角相等,两直线平行即可证得.【解答】解:∵∠1=∠2(已知),且∠1=∠4(对顶角相等),∴∠2=∠4 (等量代换),∴CE∥BF (同位角相等,两直线平行),∴∠C=∠3(两直线平行,同位角相等);又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD (内错角相等,两直线平行).18.(7分)如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′(3)写出三个顶点坐标A′(1、1)、B′(3、5)、C′0、4)(4)求△ABC的面积.【分析】(1)根据图可直接写出答案;(2)根据平移的方向作图即可;(3)根据所画的图形写出坐标即可;(4)利用长方形的面积减去四周三角形的面积可得答案.【解答】解:(1)A(2,﹣1),B(4,3);(2)如图所示:(3)A′(1,1),B′(3,5),C′(0,4);(4)△ABC的面积:3×4﹣×1×3﹣×2×4﹣×1×3=5.19.(8分)如图,在A、B两处之间要修一条笔直的公路,从A地测得公路走向是北偏东46°,A、B两地同时开工,若干天后公路准确接通.(1)B地修公路的走向是南偏西多少度?(2)若公路AB长12千米,另一条公路BC长6千米,且BC的走向是北偏西44°,试求A到公路BC的距离?【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【解答】解:(1)由两地南北方向平行,根据内错角相等,可知B地所修公路的走向是南偏西46°;(2)∵∠ABC=180°﹣∠ABG﹣∠EBC=180°﹣46°﹣44°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=12千米.20.(8分)在平面直角坐标系中,点A的坐标是(3a﹣5,a+1)(1)若点A在y轴上,求a的值及点A的坐标.(2)若点A到x轴的距离与到y轴的距离相等;求a的值及点A的坐标.【分析】(1)根据点在y轴上,横坐标为0,求出a的值,即可解答;(2)根据点A到x轴的距离与到y轴的距离相等,得到|3a﹣5|=|a+1|,即可解答.【解答】解:(1)∵点A在y轴上,∴3a﹣5=0,解得:a=,a+1=,点A的坐标为:(0,);(2)∵点A到x轴的距离与到y轴的距离相等,∴|3a﹣5|=|a+1|,①3a﹣5=a+1,解得:a=3,则点A(4,4);②3a﹣5+(a+1)=0,解得:a=1,则点A(﹣2,2);所以a=3,则点A(4,4)或a=1,则点A(﹣2,2).21.(8分)阅读理解∵<<,即2<<3.∴的整数部分为2,小数部分为﹣2∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2解决问题:已知:a是﹣3的整数部分,b是﹣3的小数部分,求:(1)a,b的值;(2)(﹣a)3+(b+4)2的平方根.【分析】(1)首先得出接近的整数,进而得出a,b的值;(2)根据平方根即可解答.【解答】解:(1)∵<<,∴4<<5,∴1<﹣3<2,∴a=1,b=﹣4,(2)(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17=16,故(﹣a)3+(b+4)2的平方根是:±4.22.(12分)如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.解:猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°(两直线平行,同旁内角互补)∵AB∥CD,EF∥AB,∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)∴∠EPD+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.【分析】(1)首先过点P作PE∥AB,由AB∥CD,可得PE∥AB∥CD,根据两直线平行,内错角相等,即可得∠1=∠B,∠2=∠D,则可求得∠BPD=∠B+∠D.(2)由AB∥CD,根据两直线平行,内错角相等与三角形外角的性质,即可求得∠BPD与∠B、∠D的关系.【解答】解:(1)∠BPD=∠B+∠D.理由:如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠1+∠2=∠B+∠D;(2)如图(3):∠BPD=∠D﹣∠B.理由:∵AB∥CD,∴∠1=∠D,∵∠1=∠B+∠P,∴∠D=∠B+∠P,即∠BPD=∠D﹣∠B;如图(4):∠BPD=∠B﹣∠D.理由:∵AB∥CD,∴∠1=∠B,∵∠1=∠D+∠P,∴∠B=∠D+∠P,即∠BPD=∠B﹣∠D.。
2015-2016年山东省济宁市微山县七年级(下)期末数学试卷(解析版)

2015-2016学年山东省济宁市微山县七年级(下)期末数学试卷一、精心选一选:本大题共10小题,每题3分,共30分。
在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷II的答题栏内,相信你一定能选对!1.(3分)根据下列表述,能确定一点位置的是()A.东经118°,北纬40°B.微山县文化街C.北偏东60°D.望湖楼电影院3排2.(3分)为了了解某校七年级400名学生的体重情况,从中抽取50名学生的体重进行统计分析,在这个问题中,总体是指()A.400B.被抽取的50名学生C.400名学生的体重D.被抽取的50名学生的体重3.(3分)在平面直角坐标系中,点P(3,﹣x2﹣1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0B.a<0C.a>﹣1D.a<﹣15.(3分)若x、y满足方程组,则x﹣y的值等于()A.﹣1B.1C.2D.36.(3分)如图:AB∥CD,直线MN与AB交于E,过点E作直线HE⊥MN,∠1=130°,则∠2等于()A.50°B.40°C.30°D.60°7.(3分)下列表述正确的是()A.27的立方根是±3B.的平方根是±4C.9的算术平方根是3D.立方根等于平方根的数是18.(3分)甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%.若设甲、乙商品原来的单价分别为x元、y元,则下面根据题意,所列方程组正确的是()A.B.C.D.9.(3分)如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.A.①②③B.①②④C.①③④D.①③10.(3分)若关于x的一元一次不等式组有解,则m的取值范围为()A.B.m≤C.D.m≤二、细心填一填:本大题共有5小题,每题3分,共15分,请把结果直接填在题中的横线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年山东省济宁市微山县七年级(下)期中数学试卷一.选择题(共10小题,每题3分,共30分)1.(3分)4的算术平方根是()A.2 B.﹣2 C.±2 D.2.(3分)如图,三条直线l 1,l2,l3相交于点E,则∠1+∠2+∠3=()A.90°B.120°C.180° D.360°3.(3分)在实数O、n、、、﹣中,无理数的个数有()A.1个 B.2个 C.3个 D.4个4.(3分)如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2) B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)5.(3分)如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∠D+∠DAB=180°B.∠B=∠DCE C.∠1=∠2.D.∠3=∠46.(3分)有下列三个命题:(1)两点之间线段最短(2)平面内,过一点能且只能作一条直线与已知直线垂直(3)过直线外一点有且只有一条直线与这条直线平行其中真命题的个数是()A.0个 B.1个 C.2个 D.3个7.(3分)若点A(2,﹣2),B(﹣1,﹣2),则直线AB与x轴和y轴的位置关系分别是()A.相交,相交B.平行,平行C.平行,垂直相交 D.垂直相交,平行8.(3分)已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0) C.(﹣4,0)或(6,0)D.无法确定9.(3分)同一平面内,三条不同直线的交点个数可能是()个.A.1或3 B.0、1或3 C.0、1或2 D.0、1、2或310.(3分)如图,直径为1个单位长度的圆从A点沿数轴向右滚动(无滑动)两周到达点B,则点B表示的数是()A.πB.2πC.2π﹣1 D.2π+1.二、填空(每题3分,共15分)11.(3分)﹣1的相反数是.12.(3分)直线m外有一定点A,A到直线m的距离是7cm,B是直线m上的任意一点,则线段AB的长度:AB7cm.(填>或者<或者=或者≤或者≥).13.(3分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是.14.(3分)线段AB两端点的坐标分别为A(2,4),B(5,2),若将线段AB平移,使得点B的对应点为点C(3,﹣1).则平移后点A的对应点的坐标为.15.(3分)点P到x轴的距离是2,到y轴的距离是3,且点P在y轴的右侧,则P点的坐标是.三、解答(共7题,满分55分)16.(6分)计算:(1)﹣﹣4(2)已知:x,y为实数,且满足|x+3|+=0,求:代数式|+x|+的值.17.(6分)如图,已知∠1=∠2,∠B=∠C,试证明AB∥CD.18.(7分)如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′(3)写出三个顶点坐标A′(、)、B′(、)、C′、)(4)求△ABC的面积.19.(8分)如图,在A、B两处之间要修一条笔直的公路,从A地测得公路走向是北偏东46°,A、B两地同时开工,若干天后公路准确接通.(1)B地修公路的走向是南偏西多少度?(2)若公路AB长12千米,另一条公路BC长6千米,且BC的走向是北偏西44°,试求A到公路BC的距离?20.(8分)在平面直角坐标系中,点A的坐标是(3a﹣5,a+1)(1)若点A在y轴上,求a的值及点A的坐标.(2)若点A到x轴的距离与到y轴的距离相等;求a的值及点A的坐标.21.(8分)阅读理解∵<<,即2<<3.∴的整数部分为2,小数部分为﹣2∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2解决问题:已知:a是﹣3的整数部分,b是﹣3的小数部分,求:(1)a,b的值;(2)(﹣a)3+(b+4)2的平方根.22.(12分)如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.解:猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°(两直线平行,同旁内角互补)∵AB∥CD,EF∥AB,∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)∴∠EPD+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.2015-2016学年山东省济宁市微山县七年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,每题3分,共30分)1.(3分)4的算术平方根是()A.2 B.﹣2 C.±2 D.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:A.2.(3分)如图,三条直线l1,l2,l3相交于点E,则∠1+∠2+∠3=()A.90°B.120°C.180° D.360°【解答】解:由图形可知,2(∠1+∠2+∠3)=360°,∴∠1+∠2+∠3=180°.故选:C.3.(3分)在实数O、n、、、﹣中,无理数的个数有()A.1个 B.2个 C.3个 D.4个【解答】解:O、n、、﹣是有理数;是无理数;故选:A.4.(3分)如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2) B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【解答】解:如图,棋子“炮”的坐标为(3,﹣2).故选:C.5.(3分)如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∠D+∠DAB=180°B.∠B=∠DCE C.∠1=∠2.D.∠3=∠4【解答】解:A、∵∠D+∠DAB=180°,∴AB∥CD,本选项不合题意;B、∵∠B=∠DCE,∴AB∥CD,本选项不合题意;C、∵∠1=∠2,∴AB∥CD,本选项不合题意;D、∵∠3=∠4,∴AD∥BC,本选项符合题意.故选:D.6.(3分)有下列三个命题:(1)两点之间线段最短(2)平面内,过一点能且只能作一条直线与已知直线垂直(3)过直线外一点有且只有一条直线与这条直线平行其中真命题的个数是()A.0个 B.1个 C.2个 D.3个【解答】解:(1)两点之间线段最短,正确,是真命题;(2)平面内,过一点能且只能作一条直线与已知直线垂直,正确,是真命题;(3)过直线外一点有且只有一条直线与这条直线平行,正确,是真命题,故选:D.7.(3分)若点A(2,﹣2),B(﹣1,﹣2),则直线AB与x轴和y轴的位置关系分别是()A.相交,相交B.平行,平行C.平行,垂直相交 D.垂直相交,平行【解答】解:∵点A(2,﹣2),B(﹣1,﹣2),∴点A、B的纵坐标相同,∴直线AB与x轴平行,与y轴的垂直.故选:C.8.(3分)已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0) C.(﹣4,0)或(6,0)D.无法确定【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选:C.9.(3分)同一平面内,三条不同直线的交点个数可能是()个.A.1或3 B.0、1或3 C.0、1或2 D.0、1、2或3【解答】解:如图,三条直线的交点个数可能是0或1或2或3.故选:D.10.(3分)如图,直径为1个单位长度的圆从A点沿数轴向右滚动(无滑动)两周到达点B,则点B表示的数是()A.πB.2πC.2π﹣1 D.2π+1.【解答】解:A点表示的数加两个圆周,可得B点,﹣1+2π,故选:C.二、填空(每题3分,共15分)11.(3分)﹣1的相反数是1﹣.【解答】解:﹣1的相反数是1﹣,故答案为:1﹣.12.(3分)直线m外有一定点A,A到直线m的距离是7cm,B是直线m上的任意一点,则线段AB的长度:AB≥7cm.(填>或者<或者=或者≤或者≥).【解答】解:A到直线m的距离是7cm,根据点到直线距离的定义,7cm表示垂线段的长度,根据垂线段最短,其它线段的长度大于或等于7cm,故答案填:≥.13.(3分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是9.【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,2a﹣1=﹣3,﹣a+2=3,则这个正数为9,故答案为:9.14.(3分)线段AB两端点的坐标分别为A(2,4),B(5,2),若将线段AB平移,使得点B的对应点为点C(3,﹣1).则平移后点A的对应点的坐标为(0,1).【解答】解:∵B(5,2),点B的对应点为点C(3,﹣1).∴变化规律是横坐标减2,纵坐标减3,∵A(2,4),∴平移后点A的对应点的坐标为(0,1),故答案为(0,1).15.(3分)点P到x轴的距离是2,到y轴的距离是3,且点P在y轴的右侧,则P点的坐标是(3,2)和(3,﹣2)..【解答】解:设点P坐标为(x,y),由题意|y|=2,|x|=3,x>0,∴x=3,y=±2,∴点P坐标(3,2)或(3,﹣2).故答案为(3,2)或(3,﹣2).三、解答(共7题,满分55分)16.(6分)计算:(1)﹣﹣4(2)已知:x,y为实数,且满足|x+3|+=0,求:代数式|+x|+的值.【解答】解:(1)原式=3﹣0﹣4×=2;(2)∵|x+3|+=0,∴x=﹣3,y=3,则原式=3﹣+3=3+2.17.(6分)如图,已知∠1=∠2,∠B=∠C,试证明AB∥CD.【解答】解:∵∠1=∠2(已知),且∠1=∠4(对顶角相等),∴∠2=∠4 (等量代换),∴CE∥BF (同位角相等,两直线平行),∴∠C=∠3(两直线平行,同位角相等);又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD (内错角相等,两直线平行).18.(7分)如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′(3)写出三个顶点坐标A′(1、1)、B′(3、5)、C′0、4)(4)求△ABC的面积.【解答】解:(1)A(2,﹣1),B(4,3);(2)如图所示:(3)A′(1,1),B′(3,5),C′(0,4);19.(8分)如图,在A、B两处之间要修一条笔直的公路,从A地测得公路走向是北偏东46°,A、B两地同时开工,若干天后公路准确接通.(1)B地修公路的走向是南偏西多少度?(2)若公路AB长12千米,另一条公路BC长6千米,且BC的走向是北偏西44°,试求A到公路BC的距离?【解答】解:(1)由两地南北方向平行,根据内错角相等,可知B地所修公路的走向是南偏西46°;(2)∵∠ABC=180°﹣∠ABG﹣∠EBC=180°﹣46°﹣44°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=12千米.20.(8分)在平面直角坐标系中,点A的坐标是(3a﹣5,a+1)(1)若点A在y轴上,求a的值及点A的坐标.(2)若点A到x轴的距离与到y轴的距离相等;求a的值及点A的坐标.【解答】解:(1)∵点A在y轴上,∴3a﹣5=0,解得:a=,点A的坐标为:(0,);(2)∵点A到x轴的距离与到y轴的距离相等,∴|3a﹣5|=|a+1|,①3a﹣5=a+1,解得:a=3,则点A(4,4);②3a﹣5=﹣(a+1),解得:a=1,则点A(﹣2,2);③﹣(3a﹣5)=a+1解得:a=1,则点A(﹣2,2);④﹣(3a﹣5)=﹣(a+1),解得:a=3,则点A(4,4)所以a=3,则点A(4,4)或a=1,则点A(﹣2,2).21.(8分)阅读理解∵<<,即2<<3.∴的整数部分为2,小数部分为﹣2∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2解决问题:已知:a是﹣3的整数部分,b是﹣3的小数部分,求:(1)a,b的值;(2)(﹣a)3+(b+4)2的平方根.【解答】解:(1)∵<<,∴4<<5,∴1<﹣3<2,∴a=1,b=﹣4,(2)(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17=16,故(﹣a)3+(b+4)2的平方根是:±4.22.(12分)如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.解:猜想∠BPD+∠B+∠D=360°∵AB∥CD,EF∥AB,∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)∴∠EPD+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.【解答】解:(1)∠BPD=∠B+∠D.理由:如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠1+∠2=∠B+∠D;(2)如图(3):∠BPD=∠D﹣∠B.理由:∵AB∥CD,∴∠1=∠D,∵∠1=∠B+∠P,∴∠D=∠B+∠P,即∠BPD=∠D﹣∠B;如图(4):∠BPD=∠B﹣∠D.理由:∵AB∥CD,∴∠B=∠D+∠P,即∠BPD=∠B﹣∠D.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321DA1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +bx -b-ab 45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +bx -b-ab E挖掘图形特征:a+bx-aa 45°DBa+b-a45°A运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.ABFEDCF。