复兴中学2013--2014七年级数学期末试题答案赵静
2013-2014学年度第一学期七年级期末数学试卷

2013-2014学年度第一学期七年级期末数学试卷(本试卷满分90分,考试时间120分钟)一、选择题(每小题3分,共36分) 1、下列说,其中正确的个数为( )①正数和负数统称为有理数;②一个有理数不是整数就是分数;③有最小的负数,没有最大的正数;④符号相反的两个数互为相反数;⑤a -一定在原点的左边。
A .1个B .2个C .3个D .4个 2、下列计算中正确的是( )A .532a a a =+B .22a a -=-C .33)(a a =-D .22)(a a --3、b a 、两数在数轴上位置如图3所示,将b a b a --、、、用“<”连接,其中正确的是( )A .a <a -<b <b -B .b -<a <a -<bC .a -<b <b -<aD .b -<a <b <a -4、据《2011年国民经济与社会发展统计公报》报道,2011年我国国民生产总值为471564亿元,471564亿元用科学记数法表示为(保留三个有效数字)( )A .13107.4⨯元B .12107.4⨯元C .131071.4⨯元D .131072.4⨯元学校 姓名 班级 学号…………密………封………线………内…………不…………准…………答…………题…………ab 图35、下列结论中,正确的是( )A .单项式732xy 的系数是3,次数是2 B .单项式m 的次数是1,没有系数C .单项式z xy 2-的系数是1-,次数是 4 D .多项式322++xy x 是三次三项式6、在解方程133221=+--x x 时,去分母正确的是( ) A .134)1(3=+--x x B .63413=+--x x C .13413=+--x x D .6)32(2)1(3=+--x x7、某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为( )A .1800元B .1700元C .1710元D .1750元8、中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”。
2013—2014学年第二学期七年级数学期末试题(含答案)

2013—2014学年度第二学期期末考试七年级数学试题(90分钟完成)一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入答题纸的相应表格中.)1.下列说法中正确的是A.若两个角不是对顶角,则这两个角不相等.B.两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.C.过一点有且只有一条直线与已知直线垂直.D.直线外一点到这条直线的垂线段叫做点到直线的距离.2.下列命题中,假命题是A.同旁内角互补.B.若a a=-,则a≤0.C.如果一个数的平方根是它本身,那么这个数只能是0.D.如果一个数的立方根是它本身,那么这个数是0或1或-1.3.在2014991,3.14159265-6,03π中无理数的个数是A.1 B.2 C.3 D.44.若点A(2,n)在x轴上,则点B(n+2,n-5)在A.第一象限 B.第二象限 C.第三象限 D.第四象限5.由方程组x2m7y1m-=⎧⎨+=⎩,可得出x与y的关系式是A.x-2y=5 B.x-y=6 C.x-2y=﹣5 D.x-2y=9 6.已知实数a,b,若a>b,则下列结论错误的是A.a-5>b-5B. 3+a>b+3C.a b55> D. -3a>-3b7.以下调查中适宜抽样调查的是A.了解某班学生的身高情况 B.选出某校短跑最快的学生参加全县比赛C.调查某批次汽车的抗撞击能力 D.某企业对招聘人员进行面试8. 某校学生来自甲、乙、丙三个地区,其人数比为2:7:3,如图所示的扇形图表示上述分布情况.如果来自甲地区的有180人,则下列说法错误的是A.该校学生的总数是1080人B. 扇形甲的圆心角是36°C.该校来自乙地区的有630人D. 扇形丙的圆心角是90°9.如果方程组x y2x+y16+=⎧⎨=⎩★,的解为x6y=⎧⎨=⎩,■,那么被“★”“■”遮住的两个数分别为A.10,4 B.4,10 C.3,10 D.10,3第8题图10.若把不等式组2x x --3⎧⎨-1-2⎩≥,≥的解集在数轴上表示出来,则其对应的图形为 A .长方形 B .线段 C .射线 D .直线二、填空题:11.已知一个角的邻补角为140°,那么这个角的对顶角的度数为 .12. 直线m 外有一定点A ,A 到直线m 的距离是7cm ,B 是直线m 上的任意一点,则线段AB 的长度AB___ 7cm.(填写<或>或=或≤或≥)13的算术平方根为 __ ___.14.已知31.5 3.375== .15.直角坐标系中,第二象限内一点P 到x 轴的距离为4,到y 轴的距离为6,那么点P 的坐标是 _________16.七年级一班的小明根据本学期“从数据谈节水”的课题学习,知道了统计调查活动要经历的5个重要步骤:①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.但他对这5个步骤的排序不对,请你帮他正确排序为 ______ .(填序号)17.一艘轮船上午6:00从长江上游的A 地出发,匀速驶往下游的B 地,于11:00到达B 地.计划下午13:00从B 地匀速返回,如果这段江水流速为3km/h ,且轮船在静水里的往返速度不变,那么该船以至少 km/h 的速度返回,才能不晚于19:00到达A 地.18.某超市账目记录显示,第一天卖出39支牙刷和21盒牙膏,收入396元;第二天以同样的价格卖出同样的52支牙刷和28盒牙膏,收入应该是 ____ 元.三、解答题: 19.3 20.解方程组 5x 2y 253x 4y 15.+=⎧⎨+=⎩,21.已知:如图所示的网格中,三角形ABC 的顶点A (0,5)、B (-2,2).(1)根据A 、B 坐标在网格中建立平面直角坐标系,并写出点C 坐标( , ).(2)平移三角形ABC ,使点C 移动到点F (7,-4),画出平移后的三角形DEF ,其中点D 与点A 对应,点E 与点B 对应.22.解不等式组5x 23x 1813x 17x.22+-+⎧⎪⎨--⎪⎩()>(),≤, 并把解集在数轴上表示出来.第21题图23.在一次“献爱心手拉手”捐款活动中,某数学兴趣小组对学校所在社区部分捐款户数进行调查和分组统计,将数据整理成以下统计表和统计图(信息不完整),已知A 、B 两组捐款户数的比为1:5请结合以上信息解答下列问题:(1)a= _______ .本次调查样本的容量是 _________.(2)补全捐款户数统计表和统计图.(3)若该社区有600户居民,根据以上信息估计全社区捐款不少于300元的户数是多少?24. 如图,点D ,E ,F 分别是三角形ABC 的边BC ,CA ,AB 上的点. 请你从以下四个关系 ∠FDE=∠A 、∠BFD=∠DEC 、DE ∥BA 、DF ∥CA 中选择三个适当地填写在下面的横线上,使其形成一个真命题,并有步骤的证明这个命题(证明过程中 注明推理根据).如果 , ,求证: . 证明:25. 列方程组解应用题:机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排多少名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套?26. 甲乙两个商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元后,超出200的部分按85%收费;在乙商场累计购物超过100元后,超出100元的部分按90%收费,顾客到哪家商场购物花费少?B 第24题图2013—2014学年第二学期七年级数学试题参考答案及评分标准一、选择题:二、填空题:11.40°;12.≥;1314.-150;15.(-6,4);16.②①④⑤③;17.30;18.528.三、解答题:(共46分)19.3=20.6235--+-()…………………4分…………………5分20.5x2y253x4y15+=⎧⎨+=⎩①②解:①×2-②得 7x=35x=5 …………………2分把x=5代入②得y=0 …………………4分所以这个方程组的解是x5y0.=⎧⎨=⎩,…………………5分21.(1)图略,坐标系建立正确、规范. …………………2分(2,3)…………………3分(2)图略. …………………5分22. 解:解不等式①得5x2->…………………2分解不等式②得x≤4…………………3分这个不等式组的解集是5x2-<≤4…………………4分解集在数轴上表示如下:…………………6分23. (1)2;…………………1分(2)统计表中依次为20,14,4; …………………2分 统计图1中C 组长方形高20(图略) …………………3分 统计图2中分别填4;20. …………………4分(3)600×(28%+8%)=600×36%=216 …………………6分24.答案不唯一。
上海复兴实验中学七年级上册数学期末试题及答案解答

上海复兴实验中学七年级上册数学期末试题及答案解答一、选择题1.下列数或式:3(2)-,61()3-,25- ,0,21m +在数轴上所对应的点一定在原点右边的个数是( ) A .1B .2C .3D .42.下列判断正确的是( ) A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数. 3.方程3x +2=8的解是( ) A .3B .103C .2D .124.下列四个数中最小的数是( ) A .﹣1 B .0 C .2 D .﹣(﹣1) 5.计算:2.5°=( )A .15′B .25′C .150′D .250′ 6.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( ) A .m=2,n=1 B .m=2,n=0 C .m=4,n=1 D .m=4,n=0 7.下列各数中,有理数是( )A .2B .πC .3.14D .378.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x )9.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是( )A .设B .和C .中D .山10.下列调查中,调查方式选择正确的是( ) A .为了了解1 000个灯泡的使用寿命,选择全面调查 B .为了了解某公园全年的游客流量, 选择抽样调查 C .为了了解生产的一批炮弹的杀伤半径,选择全面调查D .为了了解一批袋装食品是否含有防腐剂,选择全面调查11.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm12.下列各数中,比73-小的数是( ) A .3-B .2-C .0D .1-二、填空题13.若|x |=3,|y |=2,则|x +y |=_____.14.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.15.把53°30′用度表示为_____.16.多项式2x 3﹣x 2y 2﹣1是_____次_____项式.17.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.18.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).19.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.20.钟表显示10点30分时,时针与分针的夹角为________. 21.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.22.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______23.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .24.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.三、压轴题25.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________. (2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.26.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.27.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.28.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.29.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______; ()3求当t 为何值时,1PQ AB 2=?()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.30.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.31.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.32.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】点在原点的右边,则这个数一定是正数,根据演要求判断几个数即可得到答案.【详解】()32-=-8,613⎛⎫- ⎪⎝⎭=1719,25-=-25 ,0,21m +≥1 在原点右边的数有613⎛⎫- ⎪⎝⎭和 21m +≥1 故选B 【点睛】此题重点考察学生对数轴上的点的认识,抓住点在数轴的右边是解题的关键.2.C解析:C 【解析】试题解析:A ∵0的绝对值是0,故本选项错误. B ∵互为相反数的两个数的绝对值相等,故本选项正确. C 如果一个数是正数,那么这个数的绝对值是它本身. D ∵0的绝对值是0,故本选项错误. 故选C .3.C解析:C 【解析】 【分析】移项、合并后,化系数为1,即可解方程. 【详解】解:移项、合并得,36x =, 化系数为1得:2x =, 故选:C . 【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解法是解题的关键.4.A解析:A 【解析】 【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可. 【详解】解:﹣(﹣1)=1, ∴﹣1<0<﹣(﹣1)<2, 故选:A . 【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.5.C解析:C【解析】【分析】根据“1度=60分,即1°=60′”解答.【详解】解:2.5°=2.5×60′=150′.故选:C.【点睛】考查了度分秒的换算,度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.6.A解析:A【解析】根据同类项的相同字母的指数相同可直接得出答案.解:由题意得:m=2,n=1.故选A.7.C解析:C【解析】【分析】根据有理数及无理数的概念逐一进行分析即可得.【详解】B. 是无理数,故不符合题意;C. 3.14是有理数,故符合题意;D.故选C.【点睛】本题考查了有理数与无理数,熟练掌握有理数与无理数的概念是解题的关键.8.D解析:D【解析】【分析】设应从乙处调x人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x的一元一次方程,此题得解.设应从乙处调x人到甲处,依题意,得:30+x=2(24﹣x).故选:D.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.9.A解析:A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“设”是相对面,“和”与“中”是相对面,“建”与“山”是相对面.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.10.B解析:B【解析】选项A、C、D,了解1000个灯泡的使用寿命,了解生产的一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,不适于全面调查,适用于抽样调查.选项B,了解某公园全年的游客流量,工作量大,时间长,需要用抽样调查.故选B.11.B解析:B【解析】【分析】由CB=4cm,DB=7cm求得CD=3cm,再根据D是AC的中点即可求得AC的长【详解】∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3(cm),∵D是AC的中点,∴AC=2CD=2×3=6(cm).故选:B.此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.12.A解析:A【解析】【分析】先根据正数都大于0,负数都小于0,可排除C,再根据两个负数,绝对值大的反而小进行判断即可.【详解】解:根据两个负数,绝对值大的反而小可知-3<73 -.故选:A.【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.二、填空题13.1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3解析:1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3,y=2时,|x+y|=|3+2|=5(2)x=3,y=﹣2时,|x+y|=|3+(﹣2)|=1(3)x=﹣3,y=2时,|x+y|=|﹣3+2|=1(4)x=﹣3,y=﹣2时,|x+y|=|(﹣3)+(﹣2)|=5故答案为:1或5.【点睛】此题主要考查了有理数的加法的运算方法,以及绝对值的含义和求法,要熟练掌握.14.80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=解析:80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=160°∴∠BOG=12×160°=80°.故答案为80°.【点睛】本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 15.5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:5330’用度表示为53.5,故答案为:53.5.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以解析:5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53︒30’用度表示为53.5︒,故答案为:53.5︒.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.16.四三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2解析:四三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2x3﹣x2y2﹣1是四次三项式.故答案为:四,三.【点睛】此题主要考查了多项式的定义.解题的关键是理解多项式的定义,用到的知识点为:多项式的次数由组成多项式的单项式的最高次数决定;组成多项式的单项式叫做多项式的项,有几项就是几项式.17.10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′P解析:10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′PC′=180°计算即可.【详解】解:由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,∴2∠B′PE+2∠C′PF﹣∠B′PC′=180°,即2(∠B′PE+∠C′PF)﹣∠B′PC′=180°,又∵∠EPF=∠B′PE+∠C′PF﹣∠B′PC′=85°,∴∠B′PE+∠C′PF=∠B′PC′+85°,∴2(∠B′PC′+85°)﹣∠B′PC′=180°,解得∠B′PC′=10°.故答案为:10°.【点睛】此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.18.36684或36468或68364或68436或43668或46836等(写出一个即可) 【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】=x(解析:36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】32=x(x+2y)(x-2y).4x xy当x=36,y=16时,x+2y=36+32=68x-2y=36-32=4.则密码是36684或36468或68364或68436或43668或46836故答案为36684或36468或68364或68436或43668或46836【点睛】此题考查因式分解的应用,解题关键在于把字母的值代入19.4或36【解析】【分析】分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB的长.【详解】设,,若点C 在线段AB 上,则,点O 为AB 的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键.20.【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°. 解:10点30分时,钟面上时针指向数字解析:【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+12×30°. 解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+12×30°=135°. 故答案为:135°. 21.2【解析】根据定义可得:因为,所以,故答案为:2.【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.22.①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概解析:①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这10000名考生的数学中考成绩的全体是总体,正确;②每个考生的数学中考成绩是个体,故原说法错误;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①③④.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.23.4000【解析】【分析】设铁块沉入水底后水面高hcm ,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm ,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=50×40×h,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.24.﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.故答案为:﹣3解析:﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.故答案为:﹣3cm.【点睛】此题主要考查有理数的应用,解题的关键是熟知有理数的意义.三、压轴题25.(1)10;(2)212±;(3)288.5±±,【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b =-4,则a 的值为 10(2)解:当A 在原点O 的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m 2=, 所以,OA=212,点A 在原点O 的右侧,a 的值为212. 当A 在原点的左侧时(如图),a=-212综上,a 的值为±212. (3)解:当点A 在原点的右侧,点B 在点C 的左侧时(如图), c=-285.当点A 在原点的右侧,点B 在点C 的右侧时(如图), c=-8.当点A 在原点的左侧,点B 在点C 的右侧时,图略,c=285. 当点A 在原点的左侧,点B 在点C 的左侧时,图略,c=8. 综上,点c 的值为:±8,±285. 【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.26.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°, ∵∠MOI=3∠POI , ∴3t=3(30-3t )或3t=3(3t-30),解得t=152或15; 当OI 在直线AO 的下方时,∠MON═12(360°-∠AOB)═12×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°-61202t-)或180°-3t=3(61202t--60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.27.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C 在点A 的左侧或在点A 的右侧, 设点D 表示的数为x ,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D 表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E 在BA 延长线上时,∵不能满足BE=12AE , ∴该情况不符合题意,舍去; ②当点E 在线段AB 上时,可以满足BE=12AE ,如下图,n=AE+BE=AB=4;③当点E 在AB 延长线上时,∵BE=12AE , ∴BE=AB=4,∴点E 表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n 节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.28.(1)41°;(2)见解析.【解析】【分析】(1)根据角平分线的定义可得12AOC AOB ∠∠=,12AOE AOD ∠∠=,进而可得∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.【详解】(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴12AOC AOB ∠∠=,12AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=-=1122AOB AOD ∠∠- =()12AOB AOD ∠∠- =12BOD ∠ =01822⨯ =41°(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠,∴11O ,22AOC A B AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠+ =()12AOB AOD ∠∠+ =12α如图,当OA 在BOD ∠外部,∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴11,22AOC AOB AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=+=()12AOB AOD ∠∠+ =()013602BOD ∠- =()013602α- =011802α-∴α与β之间的数量关系发生变化.【点睛】本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.29.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2= ()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2= ()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.30.(1)3456;45678S S =+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析【解析】【分析】先找出前几项的钢管数,在推出第n 项的钢管数.【详解】(1)3456;45678S S =+++=++++(2)方法不唯一,例如:12S =+ 1233S =+++ 123444S =+++++ 12345555S =+++++++ (3)方法不唯一,例如:()()12.....2S n n n n =++++++()()()()=.....12.. (1112)n n n n n n n n +++++++=+++ ()312n n =+ 【点睛】此题主要考察代数式的规律探索及求和,需要仔细分析找到规律.31.(1)13-;(2)P 出发23秒或43秒;(3)见解析. 【解析】【分析】(1)由题意可知运动t 秒时P 点表示的数为-3+2t ,Q 点表示的数为1-t ,若P 、Q 相遇,则P 、Q 两点表示的数相等,由此可得关于t 的方程,解方程即可求得答案;(2)由点P 比点Q 迟1秒钟出发,则点Q 运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C 表示的数为a ,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t 秒时P 点表示的数为-5+t ,Q 点表示的数为10-2t ;若P ,Q 两点相遇,则有-3+2t=1-t ,解得:t=43, ∴413233-+⨯=-, ∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-, 解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t+1×(t+1) =4+1, 解得:4t 3=, 综合上述,当P 出发23秒或43秒时,P 和点Q 相距1个单位长度; (3)①若点P 和点Q 在相遇前相距1个单位长度,此时点P表示的数为-3+2×23=-53,Q点表示的数为1-(1+23)=-23,设此时数轴上存在-个点C,点C表示的数为a,由题意得AC+PC+QC=|a+3|+|a+53|+|a+23|,要使|a+3|+|a+53|+|a+23|最小,当点C与P重合时,即a=-53时,点C到点A、点P和点Q这三点的距离和最小;②若点P和点Q在相遇后相距1个单位长度,此时点P表示的数为-3+2×43=-13,Q点表示的数为1-(1+43)=-43,此时满足条件的点C即为Q点,所表示的数为43 ,综上所述,点C所表示的数分别为-53和-43.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,数轴上两点间的距离,正确理解数轴上两点间的距离,从中找到等量关系列出方程是解题的关键.本题也考查了分类讨论思想. 32.(1)90°;(2)30°;(3)12秒或48秒.【解析】【分析】(1)依据图形可知旋转角=∠NOB,从而可得到问题的答案;(2)先求得∠AOC的度数,然后依据角的和差关系可得到∠NOC=60°-∠AON,∠AOM=90°-∠AON,然后求得∠AOM与∠NOC的差即可;(3)可分为当OM为∠BOC的平分线和当OM的反向延长为∠BOC的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.【详解】(1)由旋转的定义可知:旋转角=∠NOB=90°.故答案为:90°(2)∠AOM﹣∠NOC=30°.理由:∵∠AOC:∠BOC=1:2,∠AOC+∠BOC=180°,∴∠AOC=60°.∴∠NOC=60°﹣∠AON.∵∠NOM=90°,∴∠AOM=90°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.(3)如图1所示:当OM为∠BOC的平分线时,。
七年级数学2013-2014年下学期期末统一考试_(Word·版.含答题卡和参考答案)

自贡市2013-2014下学期七数期末检测 第 1页(共 4页) 第 2页 (共 4页)秘密★启用前〖考试时间:2014年7月2日上午9:00-11:00 共120分钟〗自贡市2013-2014学年七年级下学期期末考试数 学 试 卷重新制版:赵化中学 郑宗平 注意事项:1、答题前,考生务必将自己的姓名、班级、考号(用0.5毫米的黑色签字笔)填写在答题卡上,并检查条形码粘贴是否正确.2、选择题使用2B 铅笔填涂在答题卡对应题目标号的位置上,非选择题用0.5毫米的黑色签字笔书写在答题卡的对应框内,超出答题区域的书写的答案无效,在草稿纸、试题卷上答题无效.3、考试结束后,将答题卡收回.一、选择题(本题有8个小题,每小题3分,满分24分,每小题只有一个选项符合题意)1、下列各数中没有平方根的是 ( )A.()-23 B.0 C.18D.36-2、如果,a b c 0><,那么下列不等式成立的是 ( )A.a c b c +>+B.c a c b ->-C.ac bc >D.a bc c>32237π、、中,无理数有 ( )个A.1B.2C.3D.44、已知点()A 12AC x ⊥,,轴于点C ,则点C 的坐标为 ( )A.(),10B.(),20C.(),02D.(),01 5、空气是由多种气体混合而成的,为了简明扼要地介绍空气的组成情况,较好地描述数据,最适合使用的统计图是 ( ) A.条形统计图 B.折线统计图 C.6、如图,已知12355∠=∠=∠=,则4∠的度数为 ( )A.55°B.75°C.105°D.125°7、方程组2x y x y 3+=⎧⎨+=⎩ 的解为x 2y =⎧⎨=⎩ ,则被遮盖的前后两个数分别为 ( )A.1、2B.1、5C. 5、1D.2、48、某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打 ( ) A.6折 B.7折 C.8折 D.9折二、填空题(本题有6个小题,每小题3分,共计18分)9、在方程x 2y 5+=中,用含x 的代数式表示y 为 .10、不等式62x 4-≥的解集是 .11. 如图,已知直线AB CD 、 相交于点O ,OB 平分DOE ∠,DOE 80∠=,则AOC ∠ = .12、若点(),P m 3m 1-+在第二象限,则m 的取值范围是 .13、甲、乙两种水果单价分别为20元/千克,15元/千克,若购买甲、乙两种水果共30千克,恰好用去500元,则购买甲水果 千克,乙水果 千克.14、规定符号[]a 表示实数a 的整数部分,[],.=1041543⎡⎤=⎢⎥⎣⎦.按此规定2⎤⎦的值为 .三、解答题(本题有5个小题,每小题5分,共计25分)1516、解方程组:()()()x 33y 1022x 32y 110-⎧--=⎪⎨⎪---=⎩17.解不等式组5x 0x 12x 12->⎧⎪⎨-≥+⎪⎩,并将其解集在数轴上表示出来.18、推理填空:如图,已知,12B C ∠=∠∠=∠,可推得AB CD ,∵12∠=∠(已知),且14∠=∠(∴24∠=∠( )∴CE BF ( ) ∴C 3∠=∠( ) 又∵B C ∠=∠(已知) ∴3B ∠=∠(等量代换)C自贡市2013-2014下学期七数期末检测 第 3页(共 4页) 第 4页 (共 4页)∴AB CD ( )19、在同一平面内,垂直于同一条直线的两条直线平行吗?为什么?四、解答题(本题有3道小题,每小题6分,共计18分)20、某中学为促进课堂教学,提高教学质量,对七年级学生进行了一次“你最喜欢的课堂教学方式”的问卷调查.根据收回的答卷,学校绘制了“频率分布表”和“频数分布条形图”.请你根据图表中提供的信息,解答下列问题. ⑴.补全“频率分布表”;⑵.在“频数分布条形图”中,将代号为“4”的部分补充完整;⑶.你最喜欢以上哪种教学方式或另外的教学方式,请提出你的建议,并简要说明理由(字数在20字以内)21、已知:()()()A 01B 20C 43,,,,,. ⑴.求ABC 的面积;⑵.设点P 在坐标轴上,且ABP 与ABC 的面积相等,求点P 的坐标.22、为建设节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实行“阶梯电价”,电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦,1千瓦时俗称1度)时,实行“基本电价”;当具名家庭月用电量超过80千瓦时时,超过的部分实行“提高电价”.⑴.小张2011年4月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元,求“基本电价”和“提高电价”分别为多少元/千瓦时?⑵.若6月份小张家预计用电130千瓦时,请预算小张家6月份应上缴的电费.五、解答下列各题(第23题7分,第24题8分,共计15分)23、解不等式-x 21≤时,我们可以采用下面的解法:①.当x 20-≥时,x 2x 2-=- ∴原不等式可以化为x 21-≤可得不等式组x 20x 21-≥⎧⎨-≤⎩解得 2x 3≤≤ ②. 当x 20-<时,x 22x -=- ∴原不等式可以化为2x 1-≤可得不等式组x 20x 21-<⎧⎨-≤⎩解得 1x 2≤≤综上可得原不等式的解集为 1x 3≤≤.请你仿照上面的解法,尝试解不等式 -x 12≤24、在平面直角坐标系中,()()(),,,,A a 0B b 0C 12-,(见图1),且2a b 10++ ⑴.求a b 、的值;⑵.①.在x 轴的正半轴上存在一点M ,使COM 的面积=12ABC 的面积,求出点M 的坐标;②.在坐标轴的其它位置是否存在点M ,使COM 的面积=12ABC 的面积仍然成立,若存在,请直接写出符合条件的点M 的坐标;⑶.如图2,过点C 作CD y ⊥轴交y 轴于点D ,点P 为线段CD 延长线上的一动点,连接OP ,OE 平分AOP OF OE ∠⊥,.当点运动时,OPDDOE ∠∠的值是否会改变?若不变,求其值;若改变,说明理由.图 22013-2014下期七数期末检测 答题卡 第1页 共6页 第 2页 共6页 第3页 共6页2013~2014学年七年级下学期期末考数 学 答 题 卡 请在各题目的答题区域内作答,超出答题区域的答案无效准考证号姓 名 设计:郑宗平 C F下期七数期末检测 答题卡 第4页 共6页 第 5页 共6页 第6页 共6页请在各题目的答题区域内作答,超出答题区域的答案无效请在各题目的答题区域内作答,超出答题区域的答案无效 ).2).3自贡市2013-2014下学期七数期末检测 参考答案 第 1页(共 4页) 第 2页 (共 4页)自贡市2013-2014学年七年级下学期期末考试 数学参考答案及评分标准一、选择题(每小题3分,共24分)二、填空题(每小题3分,共18分) 9.25xy -=;10.1≤x ; 11.40°; 12.31<<-m ; 13. 10,20; 14. 5.三、解答题(每小题5分,共计25分)15、解:原式=33)2(23+---……(4分) =27 ……(5分)16、解:原方程组化为:⎪⎩⎪⎨⎧=---=---②y x ①y x 5)1()3(0)1(6)3( ……(1分)①-②: 5)1(5-=--y 2=y ……(3分) 将2=y 代入 得: 9=x ……(4分)∴ 原方程组的解为⎩⎨⎧==29y x ……(5分)17、解: ⎩⎨⎧-≤<15x x ……(2分) ∴ 原不等式组的解集为 1-≤x ……(3分)……(5分)18、解:依次填写 (对顶角相等)(等量代换) (同位角相等,两直线平行) (两直线平行,同位角相等)(内错角相等,两直线平行) ……(错一个扣1分) 19、解:平行. ……(1分)已知:如图,直线CD ⊥直线AB 于点M ,直线EF ⊥直线AB 于点N 求证:CD ∥EF , ……(2分)证明:∵ CD ⊥AB∴ ∠CMB =90° ……(3分)又∵ EF ⊥AB ∴ ∠ENB =90° ……(4分)∴ ∠CMB=∠ENB ∴ CD ∥EF ……(5分)四、解答题(每小题6分,共18分)20、解:⑴.(2分); ⑵.(2分); ⑶.略.(2分).21、解:(1).ABC S SS S ∆∆∆=--梯形422132********⨯⨯-⨯⨯-⨯⨯-⨯ =43112---= 4 ……(2分) (2). ∵ ABC ABP S S ∆∆= ∴ 4=∆ABP S500. 50AB自贡市2013-2014下学期七数期末检测 参考答案 第 3页(共 4页) 第 4页 (共 4页)∴421421=⋅=⋅BO PA AO PB 或 ……(3分) ∴ 8=PB 或 4=PA ……(4分)∴ )0,6(1-P )0,10(2P )5,0(3P )3,0(4-P ……(6分) 22、解:⑴.设基本电价为x 元/千瓦时,提高电价为y 元/千瓦时.⎩⎨⎧=+=+884080682080y x y x 解这个方程组,得 ⎩⎨⎧==16.0y x 答:基本电价为0.6元/千瓦时,提高电价为1元/千瓦时. ……(4分) ⑵.1)80130(6.080⨯-+⨯=48+50×1=98(元)答: 小张家6月份应上缴98元电费. ……(6分)五、解答下列各题(23小题7分,24小题8分,共计15分)23、解:⑴. 当01<-x ,即1<x 时 x x -=-1|1|∴ 原不等式化为: 21≤-x 可得不等式组 ⎩⎨⎧≤-<-2101x x 解得11<≤-x ……(3分)⑵. 当01≥-x ,即1≥x 时 1|1|-=-x x∴ 原不等式化为:21≤-x 可得不等式组 ⎩⎨⎧≥-≤-0121x x 解得31≤≤x ……(6分)综上可得原不等式的解集为 31≤≤-x . ……(7分)24、解:⑴.依题意得 ⎩⎨⎧=-+=++042012b a b a ⎩⎨⎧=-=32b a ……(2分)⑵.①∵ABC COM S S ∆∆=21且M 在x 轴正半轴上 ∴||2121||210c y AB y OM ⨯⨯=⋅∴25|)2(3|2121=--⨯==AB OM又∵ M 在正半轴上 ∴ )0,25(M ……(4分)②存在)0,25(1-M ,)5,0(2M )5,0(3-M ……(5分)⑶.DOEOPD∠∠的值不会改变理由如下:设α=∠OPD β=∠DOE (见下面示意图)∵CP ∥AB ∴ POB ∠=∠α ∵︒=∠+∠901EOP ∴︒=∠+∠902AOE又∵AOE EOP ∠+∠ ∴ 21∠=∠ ∴ 12∠=α ……(6分)又∵ ︒=∠+∠+9013β ︒=∠+903α∴1∠+=βα ∴ 1∠-=αβ1112∠=∠-∠= ……(7分)∴2112=∠∠==∠∠βαDOE OPD∴DOEOPD∠∠的值不会改变,且比值为2. ……(8分)。
2013-2014新人教版七年级数学期末测试卷(一)附答案

图3相帅炮2013-2014学年度七年级数学下学期期末试卷(人教版 满分:120分 时间:120分)一、选择题(本大题共10小题,每小题3分,共计30分)1..在下列说法中:①10的平方根是±10;②-2是4的一个平方根;③ 94的平方根是32④0.01的算术平方根是0.1;⑤ 24a a ±=,其中正确的有( )A.1个B.2个C.3个D.4个2..要了解某市九年级学生的视力状况,从中抽查了500名学生的视力状况,那么样本是指( )A.某市所有的九年级学生B.被抽查的500名九年级学生C.某市所有的九年级学生的视力状况D.被抽查的500名学生的视力状况3.同一平面内的四条直线若满足a ⊥b ,b ⊥c ,c ⊥d ,则下列式子成立的是( )A 、a ∥dB 、b ⊥dC 、a ⊥dD 、b ∥c4.如图,能判断直线AB ∥CD 的条件是 ( )A 、∠1=∠2B 、∠3=∠4C 、∠1+∠3=180 oD 、∠3+∠4=180 o5. 如果点M (a-1,a+1)在x 轴上,则a 的值为( )A. a=1B. a=-1C. a>0D. a 的值不能确定6.如右图所示的象棋盘上,若○帅位于点(1,-2)上, ○相位于点(3,-2)上,则○炮位于点( )A 、(-1,1)B 、(-1,2)C 、(-2,1)D 、(-2,2)7.由132x y-=,可以得到用x 表示y 的式子是( )A .223x y -=B .2133x y =- C .223x y =- D .223x y =-8. 将不等式组13x x ⎧⎨⎩≥≤的解集在数轴上表示出来,应是( )9. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.1 10. 某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到 他们在某一天各自课外阅读所用时间的数据,结果见上图.根据此条 形图估计这一天该校学生平均课外阅读时为( )(A) 0.96时 (B) 1.07时 (C) 1.15时 (D) 1.50时二、填空题(本大题共10小题,每小题3分,共计30分)11.方程2x +3y =10中,当3x -6=0时,y =_________; 12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.13.已知:如图6,∠B+∠A=180°,则 ∥ ,理由是 。
2013-2014年七年级数学上册期末模拟试卷及答案(附答案及评分标准)

新世纪教育网精选资料版权全部@新世纪教育网2013-2014 学年上学期七年级数学测试卷满分:120 分时间:120 分钟第Ⅰ卷一、选择题(本大题共12 小题, 每题3 分, 共36 分, 在每题给出的四个选项中, 只有一项为哪一项切合题目要求的)1、-3 的绝对值等于()A.-3B. 3C. ±3D. 小于32、与2ab 是同类项的为()A. 2acB. 22ab C.ab D. 2abc3、下边运算正确的选项是()A.3ab+3ac=6abcB.4a 2b-4b 2 a=0C. 2 2 42x 7x 9xD. 2 2 23y 2y y4、以下四个式子中,是方程的是()A.1+2+3+4=10B.2x 3C.2x 1D. 2 3 15、以下结论中正确的选项是()A.在等式3a-2=3b+5 的两边都除以3,可得等式a-2=b+5B.假如2=- x,那么x =-2C.在等式5=0.1 x的两边都除以0.1 ,可得等式x =0.5D.在等式7x=5x+3 的两边都减去x-3 ,可得等式 6 x -3=4 x+66、已知方程2k 1 0x k 是对于x的一元一次方程,则方程的解等于()A.-1B.1C. 12D.-127、解为x=-3 的方程是()A.2 x +3y=5B.3)=5x 5x+ 32= 6 C.x- 1 3+ 2x= D.3(x -2) -2(x -4 38、下边是解方程的部分步骤:①由7x =4x-3,变形得7x-4x=3;②由2-x3=1+x-32,变形得2(2-x)=1+3(x -3);③由2(2x -1) -3(x -3)=1,变形得4x-2-3x-9=1;④由2(x+1)=7+x ,变形得x=5.此中变形正确的个数是( )A .0 个B .1 个C .2 个D .3 个9、如图, 用火柴棍拼成一排由三角形构成的图形,新世纪教育网-- 中国最大型、最专业的中小学教育资源门户网站。
2014七年级下学期期末试卷和答案 (1)

2013/2014学年度第二学期期末测试试卷七年级数学(满分:100分 考试时间:100分钟)注意:1.选择题答案请用2B 铅笔填涂在答题卡...相应位置....上. 2.非选择题答案必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题..卡.相应位置上.....) 1.计算(ab 2)3的结果是( ▲ )A .ab 5B .ab 6C .a 3b 5D .a 3b 62.若a >b ,则下列不等式中,一定正确的是( ▲ )A .-2a >-2bB .a 2>b 2C .a 2>b 2D .||a >||b3.下列整式乘法中,不能..运用平方差公式进行运算的是( ▲ ) A .(x +a )(x -a ) B .(b +m )(m -b ) C .(a -b )(b -a ) D .(-x -b )(x -b )4.关于代数式-x n 与 (-x )n 的关系,下列描述中一定正确的是( ▲ )A .相等B .当n 为奇数时它们互为相反数,当n 为偶数时它们相等C .互为相反数D .当n 为奇数时相等,当n 为偶数时它们互为相反数5.很多同学都玩过“俄罗斯方块”的游戏,如图所示,将图中的图形M 平移至下方的空白N 处,那么正确的平移方法是( ▲ ) A .先向右平移4格,再向下平移5格 B .先向右平移3格,再向下平移4格 C .先向右平移4格,再向下平移3格 D .先向右平移3格,再向下平移5格(第5题)6.如图,在将一个三角形折叠成长方形的过程中,能够验证以下结论的是( ▲ )A .三角形两边之和大于第三边B .三角形两边之差小于第三边C .三角形的内角和为180°D .三角形的外角等于与它不相邻的两个内角和7.如图,已知CB ∥DF ,则下列结论成立的是( ▲ )A .∠3=∠2B .∠3=∠1C .∠1=∠2D .∠1+∠2=90º8.球赛入场券有10元、15元、20元三种票价,老师用500元买了30张入场券,其中票价为20元的比票价为10元的多( ▲ ) A .5张 B .10张 C .15张 D .20张二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在答题..卷.相应位置....上) 9.不等式-x ≥2的解集是 ▲ .10.某种花粉的质量约为0.00000533kg ,数字0.00000533用科学记数法表示为 ▲ .11.命题“直角三角形的两个锐角互余”的逆命题是 ▲ .12.若a +b =3,a -b =7,则4ab 的值为 ▲ .13.如果不等式3x -m ≤0的正整数解为1,2,3,则 m 的取值范围是 ▲ .14.如图,已知AB ∥CD ,点E 、G 分别在直线AB 、CD 上,EF ⊥GF .若∠AEF =n °,则∠CGF = ▲ °.(用含n 的代数式表示)(第7题)(第6题)15.如图,△ABC 中,CD 、BE 分别是边AB 、AC 上的高,CD 、BE 交于点O .若∠A =70°,则∠BOC = ▲ °.16.下面3个天平,左盘中“△”和“⊙”分别表示两种不同质量的物体,第三个天平右盘中砝码的质量数是 ▲ g .三、解答题(本大题共10小题,共64分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(8分)计算(1)(-2)2 + (23 )0 + ( 15)- 2; (2)(2a -3)(3a +2).18.(4分)因式分解 x 3-9x .19.(5分)解不等式组⎩⎪⎨⎪⎧2-x >0,5x +12+1≥x ,并写出不等式组的整数解.(第16题)AFEDCBG BADCEO(第14题)(第15题)20.(5分)先化简,再求值:(a +2)2-(a +1)(a -1),其中a =12.21.(8分)解方程组(1) ⎩⎨⎧y =x +1,2x -y =3; (2) ⎩⎨⎧5x +6y = -7,7x -9y =25.22.(8分)证明:平行于同一条直线的两条直线平行.已知:如图, ▲ . 求证: ▲ . 证明:23.(7分)如图,已知点E 、C 在线段BF 上,AB ∥DE ,∠A =∠D .求证:∠F =∠ACB .24.(7分)养牛场原有30头大牛和15头小牛,1天约用饲料675kg ;一周后又购进12头大牛和5头小牛,这时1天约用饲料940kg .饲养员许大叔估计每头大牛1天约需饲料18~20kg ,每头小牛1天约需饲料7~8kg ,你能通过计算检验他的估计吗?cba (第24题)CEBFDA (第25题)O25.(7分)(1)当x 在实数范围内取何值时,代数式x 2-2x +2是否拥有最大值或者最小值呢?小明做了如下解答,请完成小明的解答过程.小明的解答:解:无论x 取何值,代数式x 2-2x +2有最小值1. 理由:因为x 2-2x +2=x 2-2x +1+1=(x -1)2+1,又因为 ▲ , 所以 ▲ .因为当x =1时,x 2-2x +2=1,所以x 2-2x +2=(x -1)2+1的最小值是1.答:当x =1时,代数式x 2-2x +2有最小值1.(2)若a +b =-2,且a ≥2b ,b ≠0,则代数式ab 是否拥有最大值或者最小值呢?小兵与小红分别做了如下解答,得到了截然相反的两个结论分析两人的解答过程,判断谁的结论是错误..的.,并指出其错误原因(可以举反例辅助说明).26.(9分) (1)教材原题如图①,在△ABC 中,∠ABC 、∠ACB 的平分线相交于点O ,∠A =40°,求∠BOC 的度数.(2)拓展研究如图②,在四边形ABCD 中,试探究:任意两个内角角平分线所夹的角与另两个内角之间的数量关系.AO 图① DCB图②第26题2013/2014学年度第二学期期末测试试卷七年级数学试题参考答案及评分标准一、选择题(本大题共8小题,每小题2分,共16分)1.D 2.B 3.C 4.D 5.A 6.C 7.A 8.B 二、填空题(本大题共8小题,每小题2分,共16分)9.x ≤-2 10.5.33⨯10-6 11.有两个角互余的三角形是直角三角形 12.-4013.9≤m <12 14.(90-n ) 15.110 16.23 三、解答题(本大题共9小题,共68分) 17.(8分)计算:(1)解:原式=4+1+25 ………2分 (2)解:原式=6a 2+4a -9a -6……2分 =30. ………4分 =6a 2-5a -6. ……4分 18.(4分)解:原式=x (x 2-9) ………………………………………………2分=4a 2+2. ……………………………………………………4分 19.(5分)解:由①得:x <2由②得:x ≥-1 …………………………………3分它们在数轴上表示为: …………………………………4分 ∴不等式组的解集是-1≤x <2.从而不等式组的整数解是-1,0,1.…………5分 20.(5分)解:原式 = a 2+4a +4 – a 2+1= 4a +5 ……………………………………3分 当a = 12 时,原式 =7 ……………………………… ………………………5分 21.(8分)解方程组(1)解原方程组的解为⎩⎨⎧x =6,y =5. ………………………………………………4分(2)原方程组的解为⎩⎨⎧x =1,y =-2.………………………………………………4分 22.(8分)已知:如图,直线a 、b 、c 中,b ∥a ,c ∥a .………2分 求证:b ∥c . …………4分 证明:作直线a 、b 、c 的截线d . ∵b ∥a ,c ∥a ,ba d 1 2∴∠2=∠1,,∠3=∠1. ∴∠2=∠3.∴b ∥c . …………8分 23(7分)证明:∵AB ∥DE ,∴∠A =∠EOC . …………2分 又∵∠A =∠D , ∴∠EOC =∠D .∴AC ∥DF . …………6分 ∴∠F =∠ACB . …………7分24.(7分)解:设每头大牛和每头小牛1天各约用饲料x kg 和y kg . …………1分根据题意,得⎩⎨⎧30x +15y =675,42x +20y =940. …………4分解得⎩⎨⎧x =20,y =5.…………6分答:李大叔对大牛食量估计准确,对小牛食量估计偏高. …………7分 25.(7分)解:(1)(x -1)2≥0; x 2-2x +2≥1 . ………………4分(2)小兵的推理是错误的.两个分数比较大小,分子越小,分母越大,分数的值越小.这个结论在自然数范围内成立,在实数范围内不成立,例如-3-5与3-10,虽然 -3<3,-5>-10,但是-3-5>3-10. …………7分26.(9分)(1)∠BOC =110° …………3分(2)(角的表示不唯一)当∠A 与∠B 相邻,且它们的角平分线的夹角为θ,则θ=12(∠C +∠D )或180-12(∠C +∠D ) …………6分当∠A 与∠C 相对,且它们的角平分线的夹角为β,则β=12||∠B -∠D 或β=180-12||∠B -∠D …………9分CEBFDA(第23题)O。
上海复兴实验中学七年级上册数学期末试题及答案解答

上海复兴实验中学七年级上册数学期末试题及答案解答一、选择题1.根据等式的性质,下列变形正确的是( ) A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣3a =2﹣3bD .若23a b=,则2a =3b 2.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A .171B .190C .210D .3803.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上4.96.已知a <0,-1<b <0,则a ,ab ,ab 2之间的大小关系是( ) A .a >ab >ab 2 B .ab >ab 2>a C .ab >a >ab 2 D .ab <a <ab 2 5.方程3x ﹣1=0的解是( ) A .x =﹣3B .x =3C .x =﹣13D .x =136.点()5,3M 在第( )象限. A .第一象限B .第二象限C .第三象限D .第四象限7.下列等式的变形中,正确的有( ) ①由5 x =3,得x =53;②由a =b ,得﹣a =﹣b ;③由﹣x ﹣3=0,得﹣x =3;④由m =n ,得mn=1. A .1个B .2个C .3个D .4个8.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >09.3的倒数是( ) A .3B .3-C .13D .13-10.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯ B .51510⨯ C .70.1510⨯ D .61.510⨯ 11.如果一个有理数的绝对值是6,那么这个数一定是( ) A .6 B .6-C .6-或6D .无法确定12.下列计算正确的是( )A .3a +2b =5abB .4m 2 n -2mn 2=2mnC .-12x +7x =-5xD .5y 2-3y 2=2二、填空题13.把53°30′用度表示为_____.14.若212-my x 与5x 3y 2n 是同类项,则m +n =_____. 15.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.16.已知23,9n mn aa -==,则m a =___________.17.因式分解:32x xy -= ▲ . 18.15030'的补角是______.19.若单项式 3a 3 b n 与 -5a m+1 b 4所得的和仍是单项式,则 m - n 的值为_____. 20.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.21.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____. 22.已知代数式235x -与233x -互为相反数,则x 的值是_______.23.如果A 、B 、C 在同一直线上,线段AB =6厘米,BC =2厘米,则A 、C 两点间的距离是______.24.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有2019个黑棋子,则n=______.三、解答题25.化简代数式,22221372422a ab b a ab b ⎛⎫⎛⎫----- ⎪ ⎪⎝⎭⎝⎭,并求当24,=3a b =-时该代数式的值.26.已知:如图,平面上有A 、B 、C 、D 、F 五个点,根据下列语句画出图形: (Ⅰ)直线BC 与射线AD 相交于点M ;(Ⅱ)连接AB ,并反向延长线段AB 至点E ,使AE =12BE ; (Ⅲ)①在直线BC 上求作一点P ,使点P 到A 、F 两点的距离之和最小; ②作图的依据是 .27.(1)先化简,再求值:当(x ﹣2)2+|y+1|=0时,求代数式4(12x 2﹣3xy ﹣y 2)﹣3(x 2﹣7xy ﹣2y 2)的值;(2)关于x 的代数式(x 2+2x )﹣[kx 2﹣(3x 2﹣2x+1)]的值与x 无关,求k 的值. 28.(阅读理解)若A ,B ,C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离的2倍,我们就称点C 是(A ,B )的优点.例如,如图①,点A 表示的数为﹣1,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是(A ,B )的优点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是(A ,B )的优点,但点D 是(B ,A )的优点. (知识运用)如图②,M 、N 为数轴上两点,点M 所表示的数为﹣2,点N 所表示的数为4.(1)数 所表示的点是(M ,N )的优点;(2)如图③,A 、B 为数轴上两点,点A 所表示的数为﹣20,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以4个单位每秒的速度向左运动,到达点A 停止.当t 为何值时,P 、A 和B 中恰有一个点为其余两点的优点?29.如图,点P 是线段AB 上的一点,请在图中完成下列操作. (1)过点P 画BC 的垂线,垂足为H ; (2)过点P 画AB 的垂线,交BC 于Q ; (3)线段 的长度是点P 到直线BC 的距离.30.计算题(1)()()()7410-+--- (2)11312344⎛⎫⎛⎫-÷-⨯⎪ ⎪⎝⎭⎝⎭ (3)()()()()75901531-⨯--÷-+⨯- (4)()22112442⎛⎫-⨯---⨯ ⎪⎝⎭四、压轴题31.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.32.在数轴上,图中点A 表示-36,点B 表示44,动点P 、Q 分别从A 、B 两点同时出发,相向而行,动点P 、Q 的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P 到达原点O ,动点Q 到达点C ,设运动的时间为t (t >0)秒. (1)求OC 的长;(2)经过t 秒钟,P 、Q 两点之间相距5个单位长度,求t 的值;(3)若动点P 到达B 点后,以原速度立即返回,当P 点运动至原点时,动点Q 是否到达A 点,若到达,求提前到达了多少时间,若未能到达,说明理由.33.如图,已知线段AB=12cm ,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点.(1)若AC=4cm ,求DE 的长;(2)试利用“字母代替数”的方法,说明不论AC 取何值(不超过12cm ),DE 的长不变; (3)知识迁移:如图②,已知∠AOB=α,过点O 画射线OC ,使∠AOB:∠BOC=3:1若OD 、OE 分别平分∠AOC 和∠BOC ,试探究∠DOE 与∠AOB 的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C 【解析】 【分析】利用等式的性质对每个式子进行变形即可找出答案. 【详解】解:A 、根据等式性质2,2a =3b 两边同时除以2得a =32b ,原变形错误,故此选项不符合题意;B 、根据等式性质1,等式两边都加上1,即可得到a+=b+1,原变形错误,故此选项不符合题意;C 、根据等式性质1和2,等式两边同时除以﹣3且加上2应得2﹣3a =2﹣3b,原变形正确,故此选项符合题意;D 、根据等式性质2,等式两边同时乘以6,3a =2b ,原变形错误,故此选项不符合题意. 故选:C . 【点睛】本题主要考查等式的性质.解题的关键是掌握等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式.2.B解析:B 【解析】分析:由于第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,由此得到3=1+2,6=1+2+3,那么第四个图5条直线相交,最多有1+2+3+4=10个,以此类推即可求解. 详解:∵第一个图2条直线相交,最多有1个交点, 第二个图3条直线相交最多有3个交点, 第三个图4条直线相交,最多有6个, 而3=1+2,6=1+2+3,∴第四个图5条直线相交,最多有1+2+3+4=10个,∴20条直线相交,最多交点的个数是1+2+3+…+19=(1+19)×19÷2=190. 故选B .点睛:此题主要考查了平面内直线相交时交点个数的规律,解题时首先找出已知条件中隐含的规律,然后根据规律计算即可解决问题.3.A解析:A 【解析】 【分析】根据图形可以发现点的变化规律,从而可以得到点2014P 落在哪条射线上. 【详解】 解:由图可得,1P 到5P 顺时针,5P 到9P 逆时针,()2014182515-÷=⋯,∴点2014P 落在OA 上,故选A . 【点睛】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.4.B解析:B【解析】先根据同号得正的原则判断出ab 的符号,再根据不等式的基本性质判断出ab 2及a 的符号及大小即可. 解:∵a <0,b <0, ∴ab >0,又∵-1<b <0,ab >0, ∴ab 2<0. ∵-1<b <0, ∴0<b 2<1, ∴ab 2>a , ∴a <ab 2<ab . 故选B本题涉及到有理数的乘法及不等式的基本性质,属中学阶段的基础题目.5.D解析:D 【解析】 【分析】方程移项,把x 系数化为1,即可求出解. 【详解】解:方程3x ﹣1=0, 移项得:3x =1,解得:x =13, 故选:D . 【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.6.A解析:A 【解析】 【分析】根据平面直角坐标系中点的坐标特征判断即可. 【详解】 ∵5>0,3>0,∴点()5,3M 在第一象限. 故选A. 【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.7.B解析:B 【解析】 ①若5x=3,则x=35, 故本选项错误; ②若a=b ,则-a=-b , 故本选项正确; ③-x-3=0,则-x=3, 故本选项正确; ④若m=n≠0时,则nm=1, 故本选项错误. 故选B.8.C解析:C 【解析】 【分析】利用数轴先判断出a 、b 的正负情况以及它们绝对值的大小,然后再进行比较即可. 【详解】解:由a 、b 在数轴上的位置可知:a <0,b >0,且|a |>|b |, ∴a +b <0,ab <0,a ﹣b <0,a ÷b <0. 故选:C .9.C【解析】根据倒数的定义可知. 解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数. 倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.10.D解析:D 【解析】 【分析】将150万改写为1500000,再根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1. 【详解】150万=1500000=61.510⨯, 故选:D. 【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.11.C解析:C 【解析】 【分析】由题意直接根据根据绝对值的性质,即可求出这个数. 【详解】解:如果一个有理数的绝对值是6,那么这个数一定是6-或6. 故选:C . 【点睛】本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.C解析:C 【解析】试题解析:A.不是同类项,不能合并.故错误. B. 不是同类项,不能合并.故错误. C.正确.D.222 532.y y y -=故错误.点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.二、填空题13.5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:5330’用度表示为53.5,故答案为:53.5.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以解析:5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53︒30’用度表示为53.5︒,故答案为:53.5︒.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.14.4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则解析:4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.解:根据题意得:2n =2,m =3,解得:n =1,m =3,则m +n =4.故答案是:4.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.15.【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:,桌面被这些方框盖住部分的面积则为:故填:.【点睛】本题结合求解析:60200a -【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:22(10)a a --,桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦ 故填:60200a -.【点睛】本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键. 16.27【解析】【分析】首先根据an =9,求出a2n =81,然后用它除以a2n −m ,即可求出am 的值.【详解】解:∵an =9,∴a2n =92=81,∴am =a2n÷a2n−m =81÷3=2解析:27【分析】首先根据a n=9,求出a2n=81,然后用它除以a2n−m,即可求出a m的值.【详解】解:∵a n=9,∴a2n=92=81,∴a m=a2n÷a2n−m=81÷3=27.故答案为:27.【点睛】此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.17.x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y),故答案为x(x﹣y)(x+y).18.【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:.故答案为.【点睛】此题考查补角的意义,以及度分秒解析:2930'【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】-=.解:18015030'2930'故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.19.-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-解析:-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-n=2-4=-2.故答案为-2.【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.20.2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知解析:2020【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知,a-b=-7,c+d=2013,∴原式=7+2013=2020,故答案为:2020.【点睛】本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.21.3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)解析:3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)=2x+9.故答案是:3(x﹣2)=2x+9.【点睛】本题考查一元一次方程,解题的关键是读懂题意,掌握列一元一次方程.22.【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵与互为相反数∴解得:本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键解析:27 8【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵235x-与233x-互为相反数∴23230 53-⎛⎫+-=⎪⎝⎭xx解得:278 x=【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键.23.8cm或4cm【解析】【分析】分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2c解析:8cm或4cm【解析】【分析】分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2cm=4cm②当C在AB延长线时,如图所示,AC=AB+BC=6cm+2cm=8cm综上所述,A 、C 两点间的距离是8cm 或4cm故答案为:8cm 或4cm .【点睛】本题考查线段的和差计算,分情况讨论是解题的关键.24.404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有解析:404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有5×3-1=14个黑棋子;图4有5×4-1=19个黑棋子;…图n 有5n-1个黑棋子,当5n-1=2019,解得:n=404,故答案:404.【点睛】本题考查探索与表达规律——图形类规律探究.能根据题中已给图形找出黑棋子的数量与序数之间的规律是解决此题的关键.三、解答题25.221122a ab b -+-,值为:799-【解析】 【分析】 根据题意先进行化简,然后把24,=3a b =-分别代入化简后的式子,得出最终结果即可. 【详解】 解:22221372422a ab b a ab b ⎛⎫⎛⎫----- ⎪ ⎪⎝⎭⎝⎭ =222273222a ab b a ab b ---++ =22122a ab b -+-, 然后把24,=3a b =-代入上式得: 221122a ab b -+- 1124=16+42239⎛⎫-⨯⨯⨯-- ⎪⎝⎭ =44839--- =799-. 故答案为:221122a ab b -+-,值为:799-. 【点睛】本题考查化简求值,解题关键在于对整式加减的理解.26.①见解析;②两点之间线段最短【解析】【分析】分别根据直线、射线、相交直线和线段的延长线进行作图即可.【详解】解:如图所示:作图的依据是:两点之间,线段最短.故答案为两点之间,线段最短.【点睛】本题主要考查直线、射线和线段的画法,掌握作图的基本方法是解题的关键.27.(1)﹣x2+9xy+2y2,﹣20;(2)k=4.【解析】【分析】(1)根据|x﹣2|+(y+1)2=0可以求得x、y的值,然后将题目中所求式子化简,再将x、y的值代入化简后的式子即可解答本题.(2)利用多项式的值与x无关,得出x的系数和为0,即可得出k的值,进而求出答案.【详解】解:(1)∵(x﹣2)2+|y+1|=0,∴x=2、y=﹣1,则原式=2x2﹣12xy﹣4y2﹣3x2+21xy+6y2=﹣x2+9xy+2y2=﹣22+9×2×(﹣1)+2×(﹣1)2=﹣4﹣18+2=﹣20;(2)原式=x2+2x﹣kx2+3x2﹣2x+1=(4﹣k)x2+1∵代数式的值与x无关,∴k=4.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.28.(1)2或10;(2)当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【解析】【分析】(1)设所求数为x,根据优点的定义分优点在M、N之间和优点在点N右边,列出方程解方程即可;(2)根据优点的定义可知分三种情况:①P为(A,B)的优点;②P为(B,A)的优点;③B为(A,P)的优点.设点P表示的数为x,根据优点的定义列出方程,进而得出t的值.【详解】解:(1)设所求数为x,当优点在M、N之间时,由题意得x﹣(﹣2)=2(4﹣x),解得x=2;当优点在点N右边时,由题意得x﹣(﹣2)=2(x﹣4),解得:x=10;故答案为:2或10;(2)设点P表示的数为x,则PA=x+20,PB=40﹣x,AB=40﹣(﹣20)=60,分三种情况:①P为(A,B)的优点.由题意,得PA=2PB,即x﹣(﹣20)=2(40﹣x),解得x=20,∴t=(40﹣20)÷4=5(秒);②P为(B,A)的优点.由题意,得PB=2PA,即40﹣x=2(x+20),解得x=0,∴t=(40﹣0)÷4=10(秒);③B为(A,P)的优点.由题意,得AB=2PA,即60=2(x+20)解得x=10,此时,点P为AB的中点,即A也为(B,P)的优点,∴t=30÷4=7.5(秒);综上可知,当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【点睛】本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解.29.(1)详见解析;(2)详见解析;(3)PH.【解析】【分析】利用尺规作出过一点作已知直线的垂线即可解决问题.【详解】解:(1)过点P画BC的垂线,垂足为H,如图所示;(2)过点P画AB的垂线,交BC于Q,如图所示;(3)线段PH的长度是点P到直线BC的距离.故答案为PH.【点睛】本题考查作图-基本作图,点到直线的距离等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.30.(1)-1;(2)49;(3)38;(4)7【解析】【分析】(1)利用去括号的原则先去括号,再进行加减运算即可;(2)将带分数化为假分数,变除为乘,利用乘法运算法则进行约分即可;(3)由题意利用加减乘除运算的法则对式子进行运算;(4)先计算乘方,再计算乘法最后加减运算即可.【详解】(1) 解:原式=7410--+=1-(2) 解:原式=443394⨯⨯ =49(3) 解:原式=3563+-=38(4) 解:原式=1141642-⨯+⨯ =18-+=7【点睛】本题考查有理数的混合运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号. 四、压轴题31.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2,解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t)解得:22t 13= 情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.32.(1)20;(2)t =15s 或17s (3)43s. 【解析】【分析】(1)设P 、Q 速度分别为3m 、2m ,根据12秒后,动点P 到达原点O 列方程,求出P 、Q 的速度,由此即可得到结论.(2)分两种情况讨论:①当A 、B 在相遇前且相距5个单位长度时;②当A 、B 在相遇后且相距5个单位长度时;列方程,求解即可.(3)算出P 运动到B 再到原点时,所用的时间,再算出Q 从B 到A 所需的时间,比较即可得出结论.【详解】(1)设P 、Q 速度分别为3m 、2m ,根据题意得:12×3m =36,解得:m =1,∴P 、Q 速度分别为3、2,∴BC =12×2=24,∴OC =OB -BC =44-24=20.(2)当A 、B 在相遇前且相距5个单位长度时:3t +2t +5=44+36,5t =75,∴ t =15(s );当A 、B 在相遇后且相距5个单位长度时:3t +2t -5=44+36,5t =85,∴ t =17(s ). 综上所述:t =15s 或17s .(3)P 运动到原点时,t =3644443++=1243s ,此时QB =2×1243=2483>44+38=80,∴Q 点已到达A 点,∴Q 点已到达A 点的时间为:3644804022+==(s ),故提前的时间为:1243-40=43(s ).【点睛】 本题考查了一元一次方程的应用-行程问题以及数轴上的动点问题.解题的关键是找出等量关系,列出方程求解. 33.(1)DE=6;(2) DE=2a ,理由见解析;(3)∠DOE=12∠AOB ,理由见解析 【解析】试题分析:(1)由AC=4cm ,AB=12cm ,即可推出BC=8cm ,然后根据点D 、E 分别是AC 和BC 的中点,即可推出AD=DC=2cm ,BE=EC=4cm ,即可推出DE 的长度,(2)设AC=acm ,然后通过点D 、E 分别是AC 和BC 的中点,即可推出DE=12(AC+BC )=12AB=2a cm ,即可推出结论, (3)分两种情况,OC 在∠AOB 内部和外部结果都是∠DOE=12∠AOB 试题解析:(1))∵AB=12cm ,∴AC=4cm ,∴BC=8cm ,∵点D 、E 分别是AC 和BC 的中点,∴CD=2cm ,CE=4cm ,∴DE=6cm;(2) 设AC=acm ,∵点D 、E 分别是AC 和BC 的中点,∴DE=CD+CE=12(AC+BC )=12AB=6cm , ∴不论AC 取何值(不超过12cm ),DE 的长不变;(3)①当OC 在∠AOB 内部时,如图所示:∵OM 平分∠AOC,ON 平分∠BOC,∴∠NOC=12 ∠BOC,∠COM=12∠COA. ∵∠CON+∠COM=∠MON, ∴∠MON=12(∠BOC+∠AOC)=12α; ②当OC 在∠AOB 外部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12(∠AOB+∠BOC),∠CON=12∠BOC.∵∠MON+∠CON=∠MOC,∴∠MON=∠MOC-∠CON=12(AOB+∠BOC)-12∠BO C=12∠AOB=12α.【点睛】本题主要考察角平分线和线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复兴中学2013---2014学年下学期期末七年级数学试卷答案
一选择题(每小题4分,共48分)
(1) B (2)D (3)B (4)C (5)D (6)C (7)D (8)C
(9)A (10)A (11)A (12)C
二、填空题(每小题4分,共24分)
(13)(0,-5)(14)9 (15)4或-8 (16) 2<m<3
(17) 4(18)互余
三、解答题
19、解:
,
解:①×3+②得,14x=﹣14,
解得 x=﹣1, __ __ ___ __ __2分
把x=﹣1代入①得,﹣3+2y=3,
解得 y=3.
故此方程组的解为:.__ __ __ __ __ _ __4分
20解:不等式可化为:,
即; __ __ __ __ __ _ __4分
在数轴上可表示为:
__ __ __ __ __ _ __5分
∴不等式组的解集为﹣2≤x<0. __ __ __ __ __ _ __6分
21、(6分)解:(1)(2分)△ABC的面积是:×3×5=7.5;(2)(2分)如图所示:△A1B1C1,即为所求;(3)(2分)点A1,B1,C1的坐标分别为:A1(4,3),B1(4,﹣2),C1(1,1).
故答案为:7.5.
22、解:∵OE⊥OC,
∴∠COE=90°,
∴∠1+∠2=180°﹣∠COE=90°,
∵∠1=50°,
∴∠2=40°,
∴∠3=180°﹣∠2=140°,
∴∠3+∠1=140°+50°=190°.
23、解:∵∠1=∠2(已知),且∠1=∠4(对顶角相等),
∴∠2=∠4 (等量代换),
∴CE∥BF (同位角相等,两直线平行),
∴∠C=∠3(两直线平行,同位角相等);
又∵∠B=∠C(已知),
∴∠3=∠B(等量代换),
∴AB∥CD (内错角相等,两直线平行).
24、略
25、解:设A型号设备每台x万元,B型号设备每台y万元,根据题意得:
,
解得:.
答:A,B两种型号设备的单价分别为12万元,10万元.
26、解:(1)设每个书包的价格为x元,则每本词典的价格为(x﹣8)元.
根据题意,得
3x+2(x﹣8)=124,
解得:x=28.
∴x﹣8=20.
答:每个书包的价格为28元,每本词典的价格为20元.
(2)设购买书包y个,则购买词典(40﹣y)本.
根据题意得:
,
解得:10≤y≤12.5.
因为y取整数,所以y的值为10或11或12
所以有三种购买方案,分别是:
①购买书包10个,词典30本;
②购买书包11个,词典29本;
③购买书包12个,词典28本.。