中考数学压轴题破解策略专题23《平行四边形的存在性》
(完整版)压轴题解题策略:平行四边形的存在性问题

中考数学压轴题解题策略平行四边形的存在性问题解题策略2015年9月13日星期日专题攻略解平行四边形的存在性问题一般分三步:第一步寻找分类标准,第二步画图,第三步计算.难点在于寻找分类标准,分类标准寻找的恰当,可以使解的个数不重复不遗漏,也可以使计算又好又快.如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点:以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点.如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况.根据平行四边形的对边平行且相等,灵活运用坐标平移,可以使得计算过程简便.根据平行四边形的中心对称的性质,灵活运用坐标对称,可以使得解题简便.例题解析例❶如图1-1,在平面直角坐标系中,已知抛物线y=-x2-2x+3与x轴交于A、B两点(A在B的左侧),与y轴交于点C,顶点为P,如果以点P、A、C、D为顶点的四边形是平行四边形,求点D的坐标.图1-1【解析】P、A、C三点是确定的,过△P AC的三个顶点分别画对边的平行线,三条直线两两相交,产生3个符合条件的点D(如图1-2).由y=-x2-2x+3=-(x+1)2+4,得A(-3,0),C(0, 3),P(-1, 4).由于A(-3,0)33右,上D1(2, 7).右,上C(0, 3),所以P(-1, 4)33由于C(0, 3)33下,左D2(-4, 1).下,左A(-3,0),所以P(-1, 4)33由于P(-1, 4)11右,下C(0, 3),所以A(-3,0)11右,下D3(-2, -1).我们看到,用坐标平移的方法,远比用解析式构造方程组求交点方便多了.图1-2例❷如图2-1,在平面直角坐标系中,已知抛物线y=-x2+2x+3与x轴交于A、B两点,点M在这条抛物线上,点P在y轴上,如果以点P、M、A、B为顶点的四边形是平行四边形,求点M的坐标.图2-1【解析】在P、M、A、B四个点中,A、B是确定的,以AB为分类标准.由y=-x2+2x+3=-(x+1)(x-3),得A(-1,0),B(3,0).①如图2-2,当AB是平行四边形的对角线时,PM与AB互相平分,因此点M与点P 关于AB的中点(1,0)对称,所以点M的横坐标为2.此时M(2,3).②如图2-3,图2-4,当AB是平行四边形的边时,PM//AB,PM=AB=4.所以点M的横坐标为4或-4.所以M (4,-5)或(-4,-21).我们看到,因为点P的横坐标是确定的,在解图2-2时,根据对称性先确定了点M的横坐标;在解图2-3和图2-4时,根据平移先确定了点M的横坐标.图2-2 图2-3 图2-4 例❸如图3-1,在平面直角坐标系中,直线y=-x+4与x轴交于点A,与y轴交于点B,点C在直线AB上,在平面直角坐标系中求一点D,使得以O、A、C、D为顶点的四边形是菱形.图3-1【解析】由y =-x +4,得A (4, 0),直线AB 与坐标轴的夹角为45°.在O 、A 、C 、D 四个点中,O 、A 是确定的,以线段OA 为分类标准.如图3-2,如果OA 是菱形的对角线,那么点C 在OA 的垂直平分线上,点C (2,2)关于OA 的对称点D 的坐标为(2,-2).如果OA 是菱形的边,那么又存在两种情况:如图3-3,以O 为圆心,OA 为半径的圆与直线AB 的交点恰好为点B (0, 4),那么正方形AOCD 的顶点D 的坐标为(4, 4).如图3-4,以A 为圆心,AO 为半径的圆与直线AB 有两个交点C (422,22)-和C ′(422,22)+-,点C 和C ′向左平移4个单位得到点D (22,22)-和D ′(22,22)-.图3-2 图3-3 图3-4例❹ 如图4-1,已知抛物线241633y x x =+与x 轴的负半轴交于点C ,点E 的坐标为(0,-3),点N 在抛物线的对称轴上,点M 在抛物线上,是否存在这样的点M 、N ,使得以M 、N 、C 、E为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.图4-1【解析】C (-4,0)、E (0,-3)两点是确定的,点N 的横坐标-2也是确定的.以CE 为分类标准,分两种情况讨论平行四边形:①如图4-2,当CE 为平行四边形的边时,由于C 、E 两点间的水平距离为4,所以M 、N 两点间的水平距离也为4,因此点M 的横坐标为-6或2.将x =-6和x =2分别代入抛物线的解析式,得M (-6,16)或(2, 16).②如图4-3,当CE 为平行四边形的对角线时,M 为抛物线的顶点,所以M 16(2,)3--.图4-2 图4-3例❺如图1,在平面直角坐标系中,抛物线y=ax2-2ax-3a(a<0)与x轴交于A、B 两点(点A在点B的左侧),点D是第四象限内抛物线上的一点,直线AD与y轴负半轴交于点C,且CD=4AC.设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.图5-1【解析】由y=ax2-2ax-3a=a(x+1)(x-3),得A(-1, 0).由CD=4AC,得x D=4.所以D(4, 5a).已知A(-1, 0)、D(4, 5a),x P=1,以AD为分类标准,分两种情况讨论:①如图5-2,如果AD为矩形的边,我们根据AD//QP,AD=QP来两次平移坐标.由于A、D两点间的水平距离为5,所以点Q的横坐标为-4.所以Q(-4,21a).由于A、D两点间的竖直距离为-5a,所以点P的纵坐标为26a.所以P(1, 26a).根据矩形的对角线相等,得AP2=QD2.所以22+(26a)2=82+(16a)2.整理,得7a2=1.所以77a=-.此时P267(1)7-,.②如图5-3,如果AD为矩形的对角线,我们根据AP//QD,AP=QD来两次平移坐标.由于A、P两点间的水平距离为2,所以点Q的横坐标为2.所以Q(2,-3a).由于Q、D两点间的竖直距离为-8a,所以点P的纵坐标为8a.所以P(1, 8a).再根据AD2=PQ2,得52+(5a)2=12+(11a)2.整理,得4a2=1.所以12a=-.此时P(14)-,.我们从图形中可以看到,像“勾股图”那样构造矩形的外接矩形,使得外接矩形的边与坐标轴平行,那么线段的等量关系就可以转化为坐标间的关系.上面我们根据“对角线相等的平行四边形是矩形”列方程,还可以根据定义“有一个角是直角的平行四边形叫矩形”来列方程.如图5-2,如果∠ADP =90°,那么MA ND MD NP =;如图5-3,如果∠QAP =90°,那么GQ KA GA KP=.图5-2 图5-3例❻ 如图6-1,将抛物线c 1:233y x =-+沿x 轴翻折,得到抛物线c 2.现将抛物线c 1向左平移m 个单位长度,平移后得到新抛物线的顶点为M ,与x 轴的交点从左到右依次为A 、B ;将抛物线c 2向右也平移m 个单位长度,平移后得到新抛物线的顶点为N ,与x 轴的交点从左到右依次为D 、E .在平移过程中,是否存在以点A 、N 、E 、M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.图6-1【解析】没有人能精确画好抛物线,又怎么平移抛物线呢?我们去伪存真,将A 、B 、D 、E 、M 、N 六个点及它们的坐标在图中都标注出来(如图6-2),如果您看到了△MAB 和△NED 是边长为2的等边三角形,那么平移就简单了.如图6-3,在两个等边三角形平移的过程中,AM 与EN 保持平行且相等,所以四边形ANEM 保持平行四边形的形状,点O 为对称中心.【解法一】如果∠ANE =90°,根据30°角所对的直角边等于斜边的一半,可得AE =2EN =4.而AE =AO +OE =2AO ,所以AO =2.已知AB =2,此时B 、O 重合(如图6-4),所以m =BO =1.【解法二】如果对角线MN =AE ,那么OM =OA ,此时△MAO 是等边三角形.所以等边三角形MAB 与△MAO 重合.因此B 、O 重合,m =BO =1.【解法三】在平移的过程中,(1,0)A m --、(1,0)B m -,M (3)m -,根据OA 2=OM 2列方程(1+m )2=m 2+3.解得m =1.图6-2 图6-3 图6-4 例❼如图7-1,菱形ABCD的边长为4,∠B=60°,E、H分别是AB、CD的中点,E、G分别在AD、BC上,且AE=CG.(1)求证四边形EFGH是平行四边形;(2)当四边形EFGH是矩形时,求AE的长;(3)当四边形EFGH是菱形时,求AE的长.图7-1 【解析】(1)证明三角形全等得EF=GH和FG=HE大家最熟练了.(2)平行四边形EFGH的对角线FH=4是确定的,当EG=FH=4时,四边形EFGH 是矩形.以FH为直径画圆,你看看,这个圆与AD有几个交点,在哪里?如图7-2.如图7-3,当E为AD的中点时,四边形ABGE和四边形DCGE都是平行四边形.如图7-4,当E与A重合时,△ABG与△DCE都是等边三角形.(3)如果平行四边形EFGH的对角线EG与FH互相垂直,那么四边形EFGH是菱形.过FH的中点O画FH的垂线,EG就产生了.在Rt△AOE中,∠OAE=60°,AO=2,此时AE=1.又一次说明了如果会画图,答案就在图形中.图7-2 图7-3 图7-4 图7-5例❽如图8-1,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A(4, 0)、B(0, 3),点C的坐标为(0, m),过点C作CE⊥AB于点E,点D为x轴正半轴的一动点,且满足OD =2OC,连结DE,以DE、DA为边作平行四边形DEF A.(1)如果平行四边形DEF A为矩形,求m的值;(2)如果平行四边形DEF A为菱形,请直接写出m的值.图8-1【解析】这道题目我们着重讲解怎样画示意图.我们注意到,点A和直线AB(直线l)是确定的.如图8-2,先画x轴,点A和直线l.在直线l上取点E,以AE为对角线画矩形DEF A.如图8-3,过点E画直线l的垂线.画∠MDN,使得DN=2MN,MN⊥DN,产生点C.如图8-4,过点C画y轴,产生点O和点B.图8-2 图8-3 图8-4 您是否考虑到,画∠MDN时,还存在DM在x轴下方的情况?如图8-5.同样的,我们可以画如图8-6,如图8-7的两个菱形.图8-5 图8-6 图8-7。
挑战中考数学压轴题——平行四边形存在性问题

(3)过点F作FT⊥BR于点T,如图2所示,
∵点B(m,n)在抛物线上,∴m2=4n,在Rt△BTF中,
BF= = = = ,
∵n>0,∴BF=n+1,又∵BR=n+1,∴BF=BR.∴∠BRF=∠BFR,又∵BR⊥l,EF⊥l,
∴BR∥EF,∴∠BRF=∠RFE,∴∠RFE=∠BFR,同理可得∠EFS=∠CFS,∴∠RFS= ∠BFC=90°,
(2)点G是线段AC上的动点(点G与线段AC的端点不重合),若△ABG与△ABC相似,求点G的坐标;
(3)设图象M的对称轴为l,点D(m,n)(﹣1<m<2)是图象M上一动点,当△ACD的面积为 时,点D关于l的对称点为E,能否在图象M和l上分别找到点P、Q,使得以点D、E、P、Q为顶点的四边形为平行四边形?若能,求出点P的坐标;若不能,请说明理由.
∴2(1+m)=3,m= .
(3)若A、N、E、M为顶点的四边形是矩形,
∵A(﹣1﹣m,0),E(1+m,0),N(m,﹣ )、M(﹣m, ),
∴点A,E关于原点对称,点N,M关于原点对称,
∴A、N、E、M为顶点的四边形是平行四边形,
则AN⊥EN,KAN×KEN=﹣1,
∵A(﹣1﹣m,0),E(1+m,0),N(m,﹣ ),
三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点.
四、如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况.
灵活运用向量和中心对称的性质,可以使得解题简便.
典型例题
例1.如图,抛物线:y= x2﹣x﹣ 与x轴交于A、B(A在B左侧),A(﹣1,0)、B(3,0),顶点为C(1,﹣2)
中考数学专题复习 二次函数背景下的平行四边形的存在性问题

专题二二次函数背景下的平行四边形的存在性问题知识梳理平行四边形的存在性问题是分类讨论中的一大难点。
此类题目多在直角坐标平面内,辅以二次函数为背景.一般会根据两个或者三个定点,在某个特定的位置上找另两个顶点或者第四个顶点,这样的顶点往往不止一个,需要仔细考虑解题策略,如:若已知两点构成的线段是平行四边形的一边或者对角线.如何利用平行四边形的性质确定出其他的顶点的位置,否则在分类时就容易漏解.【典型例题】【例1】如图.抛物线y= ax2 +bx+c与y轴正半轴交于点C,与x轴交于点A(1,0)、B (4,0),∠OCA=∠OBC.(1)求抛物线的解析式;(2)在直角坐标平面内确定点M,使得以点M、A、B、C为顶点的四边形是平行四边形,请直接写出点M的坐标.[思路分析]本题在平行四边形分类讨论中已经有三个点是定点,则第四个顶点可利用平行四边形两组对边分别平行的方法去找,AC,AB,BC中任意两边可作为平行四边形的邻边,分别作这两邻边的平行线,它们的交点就是所求的平行四边形的第四个顶点.解:当CA和CB为平行四边形的邻边时,M在第四象限,BH=AO=1,M,=−2所以M3(5, −2)综上所述:M点的坐标为M1(3,2)或M2(−3,2)或M3(5, −2).[点评]M1,M2的坐标相对易求得,而M3的坐标利用平行四边形的性质:对角顶点到对角线距离相等或者三角形全等求得M3的坐标.【例2】如图,抛物线y=ax2+ 2ax+3与y轴交于点C,与x轴交于A、B两点(点A和点B分别在x轴的正、负半轴上),cot∠OCA = 3.(1)求抛物线的解析式;(2)平行于x轴的直线l与抛物线交于点E, F(点F在点E的左边),如果四边形OBFE是平行四边形,求点E的坐标.[思路分析]由题意得BO不可能是平行四边形的对角线,所以只可能OB = EF =3,又因为EF被对称轴平分,根据对称轴的方程便能求得点E的坐标[点评]本题借助于抛物线的一条重要性质:抛物线关于对称轴对称.因为EF // AB,所以E,F关于对称轴对称,同时线段EF被对称轴垂直平分.【例3】如图,抛物线y= ax2+ bx +3与y轴交于点C,与x轴交于A, B两点,tan∠OCA =1 3S△ABC = 6.(1)求点B的坐标;解:(2)求抛物线的解析式及顶点坐标;(3)若E 点在x 轴上,F 点在抛物线上,如果A, C, E, F 构成平行四边形,写出点E 的坐标。
2024年九年级中考数学专题+课件-+:二次函数平行四边形存在性问题

五
三
一
学 四例 二平
目
以 致 用
方 法 归
题 解 析
纳
中 点 坐 标 公 式
行 四 边 形 性 质
录
+
判
定
一、平行四边形性质+判定
一、平行四边形性质
1、边:对边平行且相等 2、角:对角相等,邻角互补 3、对角线:对角线互相平分
二、平行四边形判定
1、两组对边分别平行的四边形是平行四边形 2、两组对边分别相等的四边形是平行四边形 3、一组对边平行且相等的四边形是平行四边形 4、对角线互相平分的四边形是平行四边形
边形是平行四边形?若存在,请求出所有
满足条件的点F的坐标;若不存在,请说明
理由.
谢
谢
与x轴相交于A、B两点,顶点为P.
(1)求点A、B的坐标;
(2)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边
形为平行四边形?直接写出所有符合条件的点F的坐标。
2.已知抛物线L:y=-x2+bx+c经过点O(0,0)、A(4,0),L关于 x轴对称的抛物线为L′,点B的坐标为(0,8). (1)求抛物线L和L′的函数表达式。 (2)点M在抛物线L的对称轴上,点P在抛物线L′上,是否 存在这样的点M与点P,使以A、B、M、P为顶点的四边形是平 行四边形?若存在,请求出点P的坐标;若不存在,请说明 理由。
3.如图,抛物线
与x轴交于点A、
B 两点,抛物线的对称轴为直线x=1,
(1)求m的值及抛物线的解析式;
(2)过A的直线与抛物线的另一交点C的横 坐标为2. 直线AC的解析式;
3.如图,抛物线
2020年中考数学二次函数压轴题之平行四边形的存在性问题

2020年中考数学二次函数压轴题之平行四边形的存在性问题1.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与 x 轴交于 A(﹣1, 0),B(3,0)两点,与 y 轴交于点C,连接 BC.(1)求该抛物线的函数表达式;(2)若点N 为抛物线对称轴上一点,抛物线上是否存在点M,使得以 B,C,M,N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点 M 的坐标;若不存在,请说明理由;(3)点 P 是直线 BC 上方抛物线上的点,若∠PCB=∠BCO,求出 P 点的到 y 轴的距离.【解析】解:(1)将点 A(﹣1,0),B(3,0)代入 y=ax2+bx+2,可得 a = -2/3 , b = 4/3 ,∴ y=-2/3 x2+ 4/3 x + 2,(2)存在点 M 使得以 B,C,M,N 为顶点的四边形是平行四边形,由题得,B(3,0),C(0,2),设N(1,n),M(x,y),尚老师数学【分类讨论】分别以 BC 为边和对角线作平行四边形来讨论,能画出图形是解题的关键!【对点法求坐标】Xp = 1/2(Xm + Xb)= 1/2(Xc + Xn), (坐标中点公式)①四边形 CMNB 是平行四边形时,1/2 = (3 + x)/ 2,∴ x=﹣2,∴ M(-2,-3/10);②四边形 CNBM 是平行四边形时,3/2 = (1 + x)/ 2,,∴ x=2,∴ M(2,2);③四边形 CNMB 是平行四边形时,(1 + 3)/2 = x/ 2,∴ x=4,∴ M(4,-3/10);综上所述:M(2,2)或 M(4,-3/10)或 M(-2,-3/10);(3)解【转化数学思想】通过转化构造出直角三角形,问题迎刃而解,作出辅助线是解题的关键!如何作辅助线?一定要结合已知条件(∠PCB=∠BCO)!过点 B 作 BH 平行于 y 轴交 PC 的延长线与 H 点.∵ BH∥OC,∴ ∠OCB=∠HBC,又∠OCB=∠BCP,∴ ∠PCB=∠HBC,∴ HC=HB,又∵ OC⊥OB,∴ HB⊥OB,故可设 H(3,m),即 HB=HC=m,过点 H 作 HN 垂直 y 轴于 N,在Rt△HCN 中,则 m2=3^2 +(m﹣2)2,解得 m = 13/4 ,∴ H(3,13/4),由点 C、P 的坐标可得,设直线 CP 的解析式为:y = 5/12 x + 2 , 故有 -2/3 x2+ 4/3 x + 2 = 5/12 x + 2 ,解得 x1=0(舍去),x2 = 11/8 ,即点 P 到 y 轴的距离是 11/8 。
中考数学压轴题之抛物线中存在性问题(平行四边形)

中考数学压轴题之抛物线中存在性问题(平行四边形)
上一篇文章中已经说明了“两定两动”型平行四边形存在性问题如何解答,这一次我们来看看“三定一动”型平行四边形存在性问题如何突破,其实这类问题解题是有一定套路可寻的。
通常情况下,我们首先连接三个定点形成一个小三角形,接着分别过三个定点做对边的平行线,三条平行线相交形成一个大三角形,则大三角形的三个顶点可能就是我们要求的答案。
题目及图像
解答图像
点评:AB长度以及C点坐标对于求M有很大作用,解题时要注意对称性质的使用。
中考数学压轴题专项汇编:专题23平行四边形的存在性

专题23 平行四边形的存在性破解策略以二次函数为载体的平行四边形存在性问题是近年来中考的热点,其图形复杂,知识覆盖面广,综台性较强,对学生分析问题和解决问题的能力要求高,这类题,一般有两个类型:(1)“三个定点、一个动点”的平行四边形存在性问题:以A,B,C三点为顶点的平行四边形构造方法有:①_x0001_作平行线:如图,连结AB,BC,AC,分别过点A,B,C作其对边的平行线,三条直线的交点为D,E,F.则四边形ABCD,ACBE,ABFC均为平行四边形.②倍长中线:如图,延长边AC,AB,BC上的中线,使延长部分与中线相等,得点D,E,F,连结DE,EF,F D.则四边形ABCD,ACBE,ABFC均为平行四边形.(2)“两个定点、两个动点”的平行四边形存在性问题:先确定其中一个动点的位置,转化为“三个定点、一个动点”的平行四边形存在性问题,再构造平行四边形.解平行四边形存在性问题,无论是以上哪种类型,若没有指定四边形顶点顺序,都需要分类讨论.通常这类问题的解题策略有:(1)几何法:先分类,再画出平行四边形,然后根据平行四边形的性质来解答.如图,若AB∥CD且AB=CD,分别过点B,C作一组平行线BE,CF,分别过点A,D作一组平行线AE,DF,则△AEB ≌△DFC,从而得到线段间的关系式解决问题.(2)代数法:先罗列四个顶点的坐标,再分类讨论列方程,然后解方程并检验.如图.已知平行四边形ABC D.连结AC,BD交于点O.设顶点坐标为A(x A,y A).B(x B,y B),C(x C,y C),D(x D,y D).①_x0001_用平移的性质求未知点的坐标:②利用中点坐标公式求未知点的坐标:有时候几何法和代数法相结合,可以使得解题又快又好.例题讲解例1 如图,在平面直角坐标系xOy中,抛物线y=x2+mx+n经过点A(3,0),B(0,﹣3),P是直线AB上的一个动点,过点P作x轴的垂线交抛物线于点M.(1)分别求出直线AB和这条抛物线的表达式;(2)是否存在这样的点P,使得以点P,M,B,O为顶点的四边形为平行四边形?若存在,请求出点P的横坐标;若不存在,请说明理由.解:(1)将点A,B的坐标代入抛物线的表达式,得y=x2-2x+3.设直线AB的表达式为y=kx+b,将点A,B的坐标代入,得y=x-3.(2)存在.因为PM∥OB,所以当PM=OB时,四边形即为平行四边形.根据题意设点P的坐标为(p,p-3),则点M的坐标为(p,p2-2p-3).所以.解得,故满足条件的点P 的横坐标为.例2 边长为2的正方形OABC在平面直角坐标系中的位置如图所示,D是OA边的中点,连结CD,点E在第一象限,且DE⊥DC,DE=DC,以直线AB为对称轴的抛物线过C,E两点.(1)求抛物线的表达式;(2)M为直线上一动点,N为抛物线上一动点,问:是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平形四边形?若存在,请求出满足条件的点的坐标;若不存在,请说明理由.解(1)如图1,过点E作EG⊥x轴于点G.易证△ODC≌△GED(AAS),所以.所以点E的坐标为(3,1).而直线AB为抛物线的对称轴,直线AB的表达式为x=2,所以可设抛物线的表达式为y=a(x-2)2+k,将C,E 两点的坐标代入表达式,得解得所以抛物线的表达式为(2)存在.由题意可设点M的坐标为(2,m),N 的坐标为.以点M,N,D,E为顶点的四边形是平行四边形有以下可能:①当DE为平行四边形的边时,(i)如图2,若DE∥MN,MD∥NE,由平移的性质可得解得此时点M的坐标为(2,1),N的坐标为(4,2).(ii)如图3,若DE∥MN,ME∥N D.。
2024年九年级中考数学专题复习训练平行四边形的存在性问题

1.如图,已知抛物线y=x22x+3与x轴交于A、B两点(点A在点B的左侧),与 y轴交于点C,顶点为P.若以A、
C、P、M为顶点的四边形是平行四边形,求点M的坐标.
2.在平面直角坐标系中,已知抛物线y=x2+2x+3与x轴交于A、B两点,点M在这条抛物线上,点P在y轴上,如果以点P、M、A、B为顶点的四边形是平行四边形,求点M的坐标.
4.如图,抛物线y= 54x 2+bx+c 与y 轴交于点A(0,1),过点A 的直线与抛物线交于另一点B (3,5
2),过点B 作BC ⊥x 轴,垂足为C.
(1)求抛物线的表达式.
(2)点P 是x 轴正半轴上的一动点,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛 物线于点N ,设OP 的长度为m.连接CM 、BN,当m 为何值时,四边形BCMN 为平行四边形?
9.如图所示,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,3),顶点D的坐标为(1,4).
(1)求抛物线的解析式.
(2)在y轴上找一点E,使得△EAC为等腰三角形,请直接写出点E的坐标
(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q 的坐标;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
请求出点 P 的横坐标;若不存在,请说明理由.
y
O P
Ax
B M
解:(1)将点 A,B 的坐标代入抛物线的表达式,得 y=x2-2x+3.设直线 AB 的表达 式为 y=kx+b,将点 A,B 的坐标代入,得 y=x-3. (2)存在. 因为 PM∥OB,所以当 PM=OB 时,四边形即为平行四边形. 根据题意设点 P 的坐标为(p,p-3),则点 M 的坐标为(p,p2-2p-3).
A
B E
D
C
F
(2)代数法:先罗列四个顶点的坐标,再分类讨论列方程,然后解方程并检验. 如图.已知平行四边形 ABCD.连结 AC,BD 交于点 O.设顶点坐标为 A(xA,yA).B(xB,
1
yB),C(xC,yC),D(xD,yD).
A
B
O D
C
①_x0001_ 用平移的性质求未知点的坐标:
ìïïíïïî
D
A
C
E
F
B
(2)“两个定点、两个动点”的平行四边形存在性问题: 先确定其中一个动点的位置,转化为“三个定点、一个动点”的平行四边形存在性问 题,再构造平行四边形. 解平行四边形存在性问题,无论是以上哪种类型,若没有指定四边形顶点顺序,都需 要分类讨论. 通常这类问题的解题策略有: (1)几何法:先分类,再画出平行四边形,然后根据平行四边形的性质来解答. 如图,若 AB∥CD 且 AB=CD,分别过点 B,C 作一组平行线 BE,CF,分别过点 A,D 作一组平 行线 AE,DF,则△AEB ≌△DFC,从而得到线段间的关系式解决问题.
解 (1)将点 C,D 的坐标代入抛物线的表达式,得 y x2 2x 3.
(2)存在.
将
C,E
两点的坐标代入表达式,得 ìïïíïïî
4a + k = 2, a + k = 1,
解得 ìïïïïïíïïïïïî
a k
= =
1, 3 2. 3
所以抛物线的表达式为 y 1 x 22 2 1 x2 4 x 2
3
33 3
(2)存在.
由题意可设点
M
的坐标为(2,m),N
的坐标为
xB yB
-
xA = xC yA = yC -
xD , yD
或
ìïïíïïî
xB yB
-
xC = xA yC = yA -
xD , yD .
②利用中点坐标公式求未知点的坐标:
ìïïïïïíïïïïïî
xA + 2
yA + 2
xC yC
= =
xBБайду номын сангаас+ xD , 2
yB + yD . 2
有时候几何法和代数法相结合,可以使得解题又快又好.
y
C
B
E
y
C
B
E
O
DA
x
O
DA
G
x
图1
解 (1)如图 1,过点 E 作 EG⊥x 轴于点 G.
易证△ODC≌△GED(AAS),所以 GE = OD = 1 OA = 1 . 2
所以点 E 的坐标为(3,1).
而直线 AB 为抛物线的对称轴,直线 AB 的表达式为 x=2,
所以可设抛物线的表达式为 y=a(x-2)2+k,
n 2.
此时点
M
的坐标为
2,
1 3
,N
的坐标为
2,
2 3
.
例 3 如图,抛物线 y x2 bx c 的顶点为 D(-1,-4),与 y 轴交于点 C(0,- 3),与 x 轴交于 A,B 两点(点 A 在点 B 的左侧).
4
(1)求抛物线的表达式; (2)若点 E 在抛物线的对称轴上,抛物线上是否存在点 F,使以 A,C,E,F 为顶点的四 边形为平行四边形?若存在,求出所有满足条件的点 F 的坐标;若不存在,请说明理由.
n 1 2 3.
由平移的性质可得
1 3
n2
4 3
n
2
0
m
1.
m 3. 解得 n 0.
此时点 M 的坐标为(2,3),N 的坐标为(0,2). ②当 DE 为平行四边形的对角线时,如图 4.
1 3 2 n.
由平行四边形对角线互相平分性质可得
0
1
m
1 3
n2
4 3
n
2.
m 1 . 解得 3
例题讲解 例 1 如图,在平面直角坐标系 xOy 中,抛物线 y=x2+mx+n 经过点 A(3,0),B(0,
﹣3),P 是直线 AB 上的一个动点,过点 P 作 x 轴的垂线交抛物线于点 M.
(1)分别求出直线 AB 和这条抛物线的表达式;
(2)是否存在这样的点 P,使得以点 P,M,B,O 为顶点的四边形为平行四边形?若存在,
专题 23《平行四边形的存在性》
破解策略 以二次函数为载体的平行四边形存在性问题是近年来中考的热点,其图形复杂,知
识覆盖面广,综台性较强,对学生分析问题和解决问题的能力要求高, 这类题,一般有两个类型: (1)“三个定点、一个动点”的平行四边形存在性问题: 以 A,B,C 三点为顶点的平行四边形构造方法有:
①_x0001_ 作平行线:如图,连结 AB,BC,AC,分别过点 A,B,C 作其对边的平行线, 三条直线的交点为 D,E,F.则四边形 ABCD,ACBE,ABFC 均为平行四边形.
D
A
C
E
F
B
②倍长中线:如图,延长边 AC,AB,BC 上的中线,使延长部分与中线相等,得点 D, E,F,连结 DE,EF,FD.则四边形 ABCD,ACBE,ABFC 均为平行四边形.
n,
1 3
n2
4 3
n
2
.
以点 M,N,D,E 为顶点的四边形是平行四边形有以下可能:
3
①当 DE 为平行四边形的边时, (i)如图 2,若 DE∥MN,MD∥NE,
2 1 n 3
由平移的性质可得
m
0
1 3
n2
4 3
n
2
1
m 1. 解得 n 4.
此时点 M 的坐标为(2,1),N 的坐标为(4,2). (ii)如图 3,若 DE∥MN,ME∥ND.
所以 ( p - 3) - ( p2 - 2 p - 3) = 3 .
解得 p = 3 ± 21 ,故满足条件的点 P 的横坐标为 p = 3 ± 21 .
2
2
例 2 边长为 2 的正方形 OABC 在平面直角坐标系中的位置如图所示,D 是 OA 边的中点,
2
连结 CD,点 E 在第一象限,且 DE⊥DC,DE=DC,以直线 AB 为对称轴的抛物线过 C,E 两 点. (1)求抛物线的表达式; (2)M 为直线上一动点,N 为抛物线上一动点,问:是否存在点 M,N,使得以点 M,N,D, E 为顶点的四边形是平形四边形?若存在,请求出满足条件的点的坐标;若不存在,请说明 理由.