2017上海历年中考数学压轴题专项训练

合集下载

2017届中考数学专题选择填空压轴题总复习最新版

2017届中考数学专题选择填空压轴题总复习最新版

A.1.5cm C.1.8cm
B.1.2cm D.2cm
首页
末页
6.如图,点G、E、A、B在一条直线上,Rt△EFG 从如图所示的位置出发,沿直线AB向右匀速运动 ,当点G与B重合时停止运动.设△EFG与矩形 ABCD重合部分的面积为S,运动时间为t,则S与t 的图象大致是( D )
首页
末页
二、填空题
专题一 选择填空压轴题
一、选择题
1.二次函数y=ax2+bx+c(a≠0)的部分图象如图,
图象过点(﹣1,0),对称轴为直线x=2,下列结
论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④
当x>﹣1时,y的值随x值的增大而增大.其中正 确的结论有( B )
A.1个
B.2个
C.3个
D.4个
7.如图-1,三个正方形的边长分别为2,6,8; 则图中阴影部分的面积为 21 .
8.如图-2,D是△ABC的边BC上任意一点,E、F分 别是线段AD、CE的中点,且△ABC的面积为20cm2 ,则△BEF的面积是 5 cm2.
首页
末页
9.如图-3,在矩形ABCD中,AD=9cm,AB=3cm,
将其折叠,使点D与点B重合,则重叠部分 (△BEF)的面积为 7.5cm2 .
A.
B.
C.
D.
首页
末页
4.如图,一根长5米的竹杆AB斜立于墙AC的右侧 ,底端B与墙角C的距离为3米,当竹杆顶端A下滑x 米时,底端B便随着向右滑行y米,反映y与x变化 关系的大致图象是( A )
首页
末页
5.如图1,在Rt△ABC中,∠ACB=90°,点P以每 秒1cm的速度从点A出发,沿折线AC﹣CB运动,到 点B停止,过点P作PD⊥AB,垂足为D,PD的长y (cm)与点P的运动时间x(秒)的函数图象如图 2所示,当点P运动5秒时,PD的长是( B )

2017中考数学《压轴题》专题训练含答案解析

2017中考数学《压轴题》专题训练含答案解析

压轴题1、已知,在平行四边形OABC 中,OA=5,AB=4,∠OCA=90°,动点P 从O 点出发沿射线OA 方向以每秒2个单位的速度移动,同时动点Q 从A 点出发沿射线AB 方向以每秒1个单位的速度移动.设移动的时间为t 秒. (1)求直线AC 的解析式;(2)试求出当t 为何值时,△OAC 与△PAQ 相似; (3)若⊙P 的半径为58,⊙Q 的半径为23;当⊙P 与对角线AC 相切时,判断⊙Q 与直线AC 、BC 的位置关系,并求出Q 点坐标。

解:(1)42033y x =-+ (2)①当0≤t≤2.5时,P 在OA 上,若∠OAQ=90°时, 故此时△OAC 与△PAQ 不可能相似.当t>2.5时,①若∠APQ=90°,则△APQ ∽△OCA ,∵t>2.5,∴符合条件.②若∠AQP=90°,则△APQ ∽△∠OAC ,∵t>2.5,∴符合条件.综上可知,当时,△OAC 与△APQ 相似.(3)⊙Q 与直线AC 、BC 均相切,Q 点坐标为(109,531)。

2、如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x 轴,OC 所在的直线为y 轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BDA 沿BD 翻折,使点A 落在BC 边上的点F 处. (1)直接写出点E 、F 的坐标;(2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x 轴、y 轴上是否分别存在点M 、N ,使得四边形MNFE 的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.解:(1)(31)E ,;(12)F ,.(2)在Rt EBF △中,90B ∠=o, 2222125EF EB BF ∴=+=+=.设点P 的坐标为(0)n ,,其中0n >,Q 顶点(12)F ,, ∴设抛物线解析式为2(1)2(0)y a x a =-+≠.①如图①,当EF PF =时,22EF PF =,221(2)5n ∴+-=.解得10n =(舍去);24n =.(04)P ∴,.24(01)2a ∴=-+.解得2a =. ∴抛物线的解析式为22(1)2y x =-+(第2题)②如图②,当EP FP =时,22EP FP =,22(2)1(1)9n n ∴-+=-+. 解得52n =-(舍去).③当EF EP =时,53EP =<,这种情况不存在. 综上所述,符合条件的抛物线解析式是22(1)2y x =-+. (3)存在点M N ,,使得四边形MNFE 的周长最小. 如图③,作点E 关于x 轴的对称点E ',作点F 关于y 轴的对称点F ',连接E F '',分别与x 轴、y 轴交于点M N ,,则点M N ,就是所求点.(31)E '∴-,,(12)F NF NF ME ME '''-==,,,.43BF BE ''∴==,.FN NM ME F N NM ME F E ''''∴++=++=22345+=.又5EF =Q ,∴55FN NM ME EF +++=+,此时四边形MNFE 的周长最小值是553、如图,在边长为2的等边△ABC 中,A D ⊥BC,点P 为边AB 上一个动点,过P 点作PF//AC 交线段BD 于点F,作PG ⊥AB 交AD 于点E,交线段CD 于点G,设BP=x . (1)①试判断BG 与2BP 的大小关系,并说明理由;②用x 的代数式表示线段DG 的长,并写出自变量x 的取值范围;(2)记△DEF 的面积为S,求S 与x 之间的函数关系式,并求出S 的最大值;(3)以P 、E 、F 为顶点的三角形与△EDG 是否可能相似?如果能相似,请求出BP 的长,如果不能,请说明理由。

专题12 压轴题-2017版[中考15年]上海市2002-2016年中考数学试题分项解析(解析版)

专题12 压轴题-2017版[中考15年]上海市2002-2016年中考数学试题分项解析(解析版)

B. AC
C. DB
D. CA
【考点】向量的几何意义。 【分析】根据向量的意义, a b= AC 。故选 B。 9.(上海市 2009 年 4 分)如图,已知 AB ∥CD ∥ EF ,那么下列结论正确的是【 】
AD BC DF CE CD BC C. EF BE
A. 【答案】A。
BC DF CE AD CD AD D. EF AF
(B) 点 B 在圆 P 外、点 C 在圆 P 内; (D) 点 B、C 均在圆 P 内.
【考点】点与圆的位置关系,矩形的性质,勾股定理。 【分析】根据 BP=3AP 和 AB 的长度求得 AP=2,然后利用勾股定理求得圆 P 的半径 PD= AP 2 +AD2 22 3 5


2
7 。点 B、C 到 P 点的距离分别为:PB=6,

B、两个等腰三角形一定相似 D、两个等边三角形一定相似
【分析】根据相似三角形的判定定理对各个选项进行分析:A 不正确,不符合相似三角形的判定方法;B
关注微信公众号“上海初升高”,获取更多中考分析、试题资料
不正确,没有指明相等的角或边比例,故不正确;C 不正确,没有指明另一个锐角相等或边成比例,故不正 确;D 正确,三个角均相等,能通过有两个角相等的三角形相似来判定。故选 D。 5.(上海市 2006 年 4 分)在下列命题中,真命题是【 A.两条对角线相等的四边形是矩形; B.两条对角线互相垂直的四边形是菱形; C.两条对角线互相平分的四边形是平行四边形; D.两条对角线互相垂直且相等的四边形是正方形。 】
关注微信公众号“上海初升高”,获取更多中考分析、试题资料
添加 A 选项中条件可用 ASA 判定△ACB≌△ACB’,从而推出 AB=AB’; 添加 B 选项中条件无法判定△ACB≌△ACB’,推不出 AB=AB’; 添加 C 选项中条件可用 ASA 判定△ACB≌△ACB’,从而推出 AB=AB’; 添加 D 选项以后是 AAS 判定△ACB≌△ACB’,从而推出 AB=AB’。 故选 A,C,D。 3.(上海市 2004 年 3 分)在函数 y (k 0 、 A2 ( x 2 ,y 2 ) 、A3 ( x 3 ,y 3 ) , ) 的图象上有三点 Ax (1 , y ) 1 1 已知 x ,则下列各式中,正确的是【 x x 1 2 0 3 】

上海市2017年中考数学压轴题专项训练(含答案).docx

上海市2017年中考数学压轴题专项训练(含答案).docx

上海市 2017 年中考数学压轴题专项训练( 含答案 )上海市 2017 年中考数学压轴题专项训练1. (本分 12分,第( 1)小分 3 分,第( 2)小分 4 分,第( 3)小分 5分)如,已知抛物y x2bx cA 0, 1 、 B4, 3两点 .(1)求抛物的解析式;(2 求tan ABO 的;y(3)点 B 作 BC x ,垂足点C,点 M 是抛物上一点,直 MN 平行于y交直 AB 于点 N,如果 M、 N、 B、 C点的四形是平行四形,求点N 的坐 .oxAB(第 24 题图)1.解:( 1)将 A( 0, -1)、 B( 4, -3)分代入y x2bx cc1,,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)得4b c316解,得b 91⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分 ) , c29 x所以抛物的解析式y x21⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)2( 2)点 B 作 BC x ,垂足C,点A作AH OB,垂足点 H ⋯⋯⋯( 1 分)在 Rt AOH 中,OA=1,sin AOH sin OBC4,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)5∴ AH OA sin AOH 4,∴ OH3, BH OB OH22,⋯⋯⋯⋯⋯⋯(1 分)555在 Rt ABH 中,tan ABO AH4222⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)BH5511(3)直 AB 的解析式y 1 x1,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)2点 M 的坐(m, m29 m1) ,点N坐 (m, 1 m1)22那么 MN= (m29 m1)( 1 m1)m24m ;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)22∵ M、 N、 B、 C 点的四形是平行四形,∴MN =BC=3解方程m24m =3得m27 ;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)解方程 m 24m3 得 m 1或 m3 ;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)所以符合 意的点N 有 4 个 (27,7 7 3 5 22),(27,2),(1, ),(3,)222⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)2. (本 分 14 分,第( 1)小 分 4 分,第( 2)小 分 5分,第( 3)小 分 5分)在 Rt △ABC 中,∠ ACB = 90 °, 点 B 的直 l ( l 不与直 AB 重合)与直BC 的角等于∠ ABC ,分 点 C 、点 A 作直 l 的垂 ,垂足分 点D 、点E .(1)如 1,当点 E 与点 B 重合 ,若 AE=4,判断以 C 点 心 CD 半径的C 与直 AB 的位置关系并 明理由;(2)如 2,当点 E 在 DB 延 上 ,求 :AE=2CD ;ACF 5(3) 直 CE 与直 AB 相交于点 F ,若EF, CD = 4,求 BD 的 .6ACCDB(E)lD Bl(第 25 题图 1)E(第 25 题图 2 )2.解:( 1) 点 C 作 CF ⊥ AB ,垂足 点 F. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∵∠ AED =90°,∠ ABC=∠ CBD ,∴∠ ABC=∠ CBD =45°,∵∠ ACB=90 °,∠ ABC=45°, AE=4,∴ CF=2 ,BC= 2 2 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分) 又∵∠ CBD=∠ ABC=45°, CD ⊥ l ,∴ CD =2, ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分) ∴CD =CF=2,∴ C 与直 AB 相切 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分) (2) 明:延 AC 交直 l 于点 G . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∵∠ ACB = 90 °,∠ ABC =∠GBC ,∴∠ BAC =∠BGC .∴AB = GB .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ( 1 分) ∴AC = GC .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∵AE ⊥l ,CD ⊥ l ,∴ AE ∥ CD .∴CD GC 1. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯AE GA 2∴AE = 2CD . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3)( I )如 1,当点 E 在 DB 延 上 :点 C 作 CG ∥ l 交 AB 于点 H ,交 AE 于点 G , ∠ CBD =∠ HCB .∵∠ ABC =∠CBD ,∴∠ ABC =∠ HCB .∴ CH = BH .⋯⋯⋯( 1 分)∵∠ ACB = 90 °,∴∠ ABC +∠BAC =∠ HCB +∠ HCA = 90 °. CH∴∠ BAC =∠HCA .∴ CH = AH = BH .F∵CG ∥ l ,∴CHCF 5FBEEF.D B6(第 25 题图CH = 5x , BE = 6x , AB = 10 x .( 1 分)( 1 分)AGlE1)在 Rt △ ABE 中, AEAB 2BE 28x .由( 2)知 AE = 2CD = 8,∴ 8x 8 ,得 x 1 .∴CH = 5 , BE = 6 ,AB = 10.∵CG ∥ l ,∴HGAH 1 ,∴ HG=3.⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)ABEAB 2∴CG = CH + HG = 8 .易 四 形 CDEG 是矩形,∴ DE = CG = 8.CGH∴ BD DE BE2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)(II )如 2,当点 E 在 DB 上 :DEl同理可得 CH = 5 , BE = 6 , HG = 3 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)B(第 25题图 2)∴ DE CG CH HG 2 .∴BD =DE + BE = 8 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)上所述, BD 的 2 或 8.3.已知点 A ( 2, 2)和点 B ( 4, n )在抛物 y=ax 2( a ≠0)上.(1)求 a 的 及点 B 的坐 ;(2)点 P 在 y 上,且 △ ABP 是以 AB 直角 的三角形,求点P 的坐 ;(3)将抛物 y=ax 2(a ≠0)向右并向下平移, 平移后点 A 的 点A ′,点B 的点 B ′,若四 形 ABB ′A ′ 正方形,求此 抛物 的表达式.【考点】二次函数图象上点的坐标特征;坐标与图形变化 -平移.【分析】( 1)把点 A (2,﹣ 2)代入 y=ax 2,得到 a ,再把点 B 代入抛物线解析式即可解决问题.(2)求出直线 AB 解析式,再分别求出过点 A 垂直于 AB 的直线的解析式,过点直线 AB 的解析式即可解决问题.B 垂直于( 3)先求出点 A ′坐标,确定是如何平移的,再确定抛物线顶点的坐标即可解决问题.【解答】解:( 1)把点 A ( 2,﹣ 2)代入 y=ax 2,得到 a=﹣, ∴抛物线为 y= ﹣ x 2, ∴x= ﹣ 4 时, y= ﹣ 8, ∴点 B 坐标(﹣ 4,﹣ 8),∴a=﹣,点 B 坐标(﹣ 4,﹣ 8).(2)设直线AB为 y=kx+b ,则有,解得,∴直线 AB 为 y=x ﹣ 4,∴过点 B 垂直 AB 的直线为 y= ﹣ x ﹣ 12,与 y 轴交于点P ( 0,﹣ 12),过点 A 垂直 AB 的直线为 y= ﹣ x ,与 y 轴交于点 P ′( 0, 0),∴点 P 在 y 轴上,且 △ ABP 是以 AB 为直角边的三角形时.点 P 坐标为( 0,0),或( 0,﹣12).(3)如图四边形 ABB ′A ′是正方形,过点 A 作 y 轴的垂线,过点B 、点 A ′作 x 轴的垂线得到点 E 、 F .∵直线 AB 解析式为 y=﹣ x ﹣ 12, ∴△ ABF , △ AA ′E 都是等腰直角三角形, ∵AB=AA ′= =6 ,∴AE=A ′E=6 ,∴点 A ′坐标为( 8,﹣ 8),∴点 A 到点 A ′是向右平移 6 个单位,向下平移 6 个单位得到,∴抛物线 y=﹣ x 2的顶点( 0,0),向右平移 6 个单位,向下平移6 个单位得到( 6,﹣ 6),∴此时抛物线为 y=﹣( x ﹣ 6) 2﹣ 6.4.已知, AB=5 , tan∠ABM= ,点 C、 D、 E 为动点,其中点 C、D 在射线 BM 上(点 C 在点 D 的左侧),点 E 和点 D 分别在射线 BA 的两侧,且 AC=AD ,AB=AE ,∠ CAD= ∠BAE .(1)当点 C 与点 B 重合时(如图 1),联结 ED ,求 ED 的长;(2)当 EA ∥BM 时(如图 2),求四边形 AEBD 的面积;(3)联结 CE,当△ ACE 是等腰三角形时,求点B、 C 间的距离.【考点】三角形综合题.【分析】( 1)如图 1 中,延长 BA 交 DE 于 F,作 AH ⊥ BD 于 H ,先证明 BF⊥ DE ,EF=DF ,再利用△ ABH ∽△ DBF ,得= ,求出 DF 即可解决问题.(2)先证明四边形 ADBE 是平行四边形,根据 S 平行四边形ADBE =BD?AH ,计算即可.(3)由题意 AC≠AE ,EC≠AC,只有 EA=EC ,利用四点共圆先证明四边形ADBE 是平行四边形,求出 DH 、 CH 即可解决问题.【解答】解:( 1)如图 1 中,延长 BA 交 DE 于 F,作 AH ⊥ BD 于 H .在RT△ABH 中,∵∠AHB=90°,∴sin ∠ABH= =,∴AH=3 , BH==4,∵A B=AD ,AH ⊥BD ,∴BH=DH=4 ,在△ ABE 和△ ABD 中,,∴△ ABD ≌△ ABE ,∴B E=BD ,∠ ABE= ∠ ABD ,∴B F ⊥ DE, EF=DF ,∵∠ ABH= ∠ DBF ,∠ AHB= ∠ BFD ,∴△ ABH ∽△ DBF ,∴= ,∴D F= ,∴D E=2DF=.(2)如图 2 中,作 AH ⊥ BD 于 H.∵AC=AD , AB=AE ,∠ CAD= ∠ BAE ,∴∠ AEB= ∠ABE= ∠ACD= ∠ADC , ∵AE ∥ BD ,∴∠ AEB+ ∠EBD=180° , ∴∠ EBD+ ∠ADC=180° , ∴EB ∥AD , ∵AE ∥ BD ,∴四边形 ADBE 是平行四边形, ∴ B D=AE=AB=5 ,AH=3 , ∴S 平行四边形 ADBE =BD?AH=15 .( 3)由题意 AC ≠AE ,EC ≠AC ,只有 EA=EC .如图 3 中,∵∠ ACD= ∠ AEB (已证), ∴A 、 C 、 B 、 E 四点共圆,∵ A E=EC=AB , ∴ = , ∴ = ,∴∠ AEC= ∠ABC , ∴AE ∥ BD ,由( 2)可知四边形 ADBE 是平行四边形, ∴AE=BD=AB=5 ,∵ A H=3 , BH=4 , ∴DH=BD ﹣ BH=1 , ∵AC=AD , AH ⊥ CD , ∴ C H=HD=1 , ∴BC=BD ﹣ CD=3 .5.如图,已知二次函数y=x 2+bx +c 图象顶点为 C ,与直线 y=x +m 图象交于 AB 两点,其中A 点的坐标为( 3, 4),B 点在 y 轴上.(1)求这个二次函数的解析式;(2)联结 AC ,求∠ BAC 的正切值;(3)点 P 为直线 AB 上一点,若△ ACP 为直角三角形,求点 P 的坐标.【分析】 ( 1)先把 A 点坐标代入 y=x +m 求出 m 得到直线 AB 的解析式为 y=x +1,这可求出直线与 y 轴的交点 B 的坐标, 然后把 A 点和 B 点坐标代入 y=x 2+bx+c 中得到关于 b 、c 的方程组,再解方程组求出b 、c 即可得到抛物线解析式;(2)如图,先抛物线解析式配成顶点式得到C ( 1, 0),再利用两点间的距离公式计算出BC 2=2, AB 2=18, AC 2=20,然后利用勾股定理的逆定理可证明△ABC 为直角三角形,∠ACB=90°,于是利用正切的定义计算tan ∠ BAC 的值;(3)分类讨论:当∠ APC=90° 时,有( 2 )得点 P 在 B 点处,此时 P 点坐标为( 0, 1);当∠ ACP=90°时,利用( 2tan ∠ PAC= = ,则 PC= AC P t t 1 )中结论得,设 ( , + ), 然后利用两点间的距离公式得到方程 t 2t 1 1 220,再解方程求出t 即可得到时 P 点 +( + ﹣ ) = 坐标.【解答】解:( 1 )把 A( 3 4 )代入 y=x m 得 3 +m=4 ,解得 m=1, +∴直线 AB 的解析式为 y=x 1+ ,∵当 x=0 时, y=x +1=1,∴B ( 0,1),把 B ( 0,1), A ( 3,4)代入 y=x 2+bx+c 得,解得 ,∴抛物线解析式为y=x 2﹣ 2x+1;(2)如图,∵ y =x 2﹣ 2x+1=( x ﹣ 1)2,∴C ( 1,0),22 2 2 2 +( 4 2 2 2 2∴BC =1 +1 =2,AB =3 ﹣ 1) =18 ,AC =( 3 ﹣ 1) +4 =20,而 2+18=20,∴BC 2+AB 2=AC 2,∴△ ABC 为直角三角形,∠ ACB=90° ,∴tan∠BAC===;(3)当∠ APC=90°时,点 P 在 B 点处,此时P 点坐标为( 0, 1);当∠ ACP=90°时,∵ tan∠ PAC==,∴P C= AC ,设P( t, t+1),∴t2t 1 1220,解得 t 1=﹣, t2=(舍去),此时P 点坐标为(﹣,+( + ﹣) =﹣+ 1),综上所述,满足条件的P 点坐标为( 0, 1)或(﹣,﹣+ 1).【点评】本题考查了二次函数的综合题:熟练掌握二次函数的性质和一次函数图象上点的坐标特征;能运用待定系数法求二次函数解析式;理解坐标与图形性质,记住两点间的距离公式;能利用勾股定理的逆定理证明直角三角形.6.如图, ? ABCD 中, AB=8 ,AD=10 , sinA=,E、F分别是边AB 、BC 上动点(点 E 不与A 、B 重合),且∠ EDF= ∠ DAB , DF 延长线交射线 AB 于G.(1)若 DE⊥AB 时,求 DE 的长度;(2)设 AE=x , BG=y ,求 y 关于 x 的函数解析式,并写出函数的定义域;(3)当△ BGF 为等腰三角形时,求AE 的长度.【分析】( 1) DE⊥ AB 时,根据sinA=即可解决问题.(2)如图 2 中,作 DM ⊥AB 于 M ,根据 DG 2=DM2+MG2=AGEG ,列出等式即可解决问题.(3)分三种情形① BF=BG ,②FB=FG ,③ GB=GF ,根据 BF ∥AD ,得出比例式,列方程即可解决.【解答】解:( 1)如图 1 中,∵DE ⊥ AB ,∴sinA==,∵A D=10 ,∴DE=8 .(2)如图 2 中,作DM ⊥AB 于 M ,由( 1)可知 DM=8 , AM=6 , MG=AB ﹣ AM=8 ﹣ 6=2 ,∴DG 2=DM2+MG2,∵∠ DGE= ∠ DGA ,∠ GDE= ∠ A,∴△ DGE∽△ AGD ,∴= ,∴DG 2=AGEG ,∴DM 2+MG2=AGEG ,∴82+( 2+y)2=( 8+y)( 8+y﹣ x),∴y=(0<x<8)(3)①当 BF=FG 时,∵ BF∥ AD ,∴= ,∴AD=AG=10 ,∴y=2 ,即=2,解得 x=2 ,∴A E=2 .②当 FB=FG 时,∵ BF ∥AD ,∴=,∴A D=DG=10 ,∵DM ⊥AG ,∴A M=MB=6 ,∴A G=12 ,∴y=4 ,即=4,解得 x=.③当 GB=GF 时,∵ BF ∥ AD ,∠ GBF= ∠ BFG,∴∠ A= ∠ GBF ,∠ ADG= ∠ BFG ,∴∠ A= ∠ ADG ,∵∠ A= ∠ EDG ,∴∠ EDG= ∠ ADG ,∴此时点 E 与点 A 重合,不合题意.综上所述 AE=2 或时,△ BFG是等腰三角形.【点评】本题考查四边形综合题、锐角三角函数、相似三角形的判定和性质、平行线分线段成比例定理、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,学会用方程的思想解决问题,属于中考常考题型.。

2017年上海市中考数学试卷真题(附答案)

2017年上海市中考数学试卷真题(附答案)

2017年上海市中考数学试卷一、选择题(本大题共6小题,每小题4分,共24分)1.(4分)下列实数中,无理数是()A.0B.C.﹣2D.2.(4分)下列方程中,没有实数根的是()A.x2﹣2x=0B.x2﹣2x﹣1=0C.x2﹣2x+1=0D.x2﹣2x+2=0 3.(4分)如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0B.k<0,且b>0C.k>0,且b<0D.k<0,且b<0 4.(4分)数据2、5、6、0、6、1、8的中位数和众数分别是()A.0和6B.0和8C.5和6D.5和85.(4分)下列图形中,既是轴对称又是中心对称图形的是()A.菱形B.等边三角形C.平行四边形D.等腰梯形6.(4分)已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 二、填空题(本大题共12小题,每小题4分,共48分)7.(4分)计算:2a•a2=.8.(4分)不等式组的解集是.9.(4分)方程=1的解是.10.(4分)如果反比例函数y=(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而.(填“增大”或“减小”)11.(4分)某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是微克/立方米.12.(4分)不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.13.(4分)已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是.(只需写一个)14.(4分)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是万元.15.(4分)如图,已知AB∥CD,CD=2AB,AD、BC相交于点E,设=,=,那么向量用向量、表示为.16.(4分)一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是.17.(4分)如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是.18.(4分)我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6=.三、解答题(本大题共7小题,共78分)19.(10分)计算:+(﹣1)2﹣+()﹣1.20.(10分)解方程:﹣=1.21.(10分)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sin B的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.22.(10分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.23.(12分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.24.(12分)已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P 平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.25.(14分)如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△OAD∽△ABD;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.2017年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题4分,共24分)1.(4分)下列实数中,无理数是()A.0B.C.﹣2D.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(4分)下列方程中,没有实数根的是()A.x2﹣2x=0B.x2﹣2x﹣1=0C.x2﹣2x+1=0D.x2﹣2x+2=0【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3.(4分)如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0B.k<0,且b>0C.k>0,且b<0D.k<0,且b<0【点评】本题考查了一次函数的性质和图象,能熟记一次函数的性质是解此题的关键.4.(4分)数据2、5、6、0、6、1、8的中位数和众数分别是()A.0和6B.0和8C.5和6D.5和8【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.5.(4分)下列图形中,既是轴对称又是中心对称图形的是()A.菱形B.等边三角形C.平行四边形D.等腰梯形【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(4分)已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB【点评】本题考查了矩形的判定、平行四边形的性质、菱形的判定;熟练掌握矩形的判定是解决问题的关键.二、填空题(本大题共12小题,每小题4分,共48分)7.(4分)计算:2a•a2=2a3.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.8.(4分)不等式组的解集是x>3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(4分)方程=1的解是x=2.【点评】本题考查了无理方程的解法,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法,解无理方程,往往会产生增根,应注意验根.10.(4分)如果反比例函数y=(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而减小.(填“增大”或“减小”)【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.11.(4分)某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是40.5微克/立方米.【点评】考查了有理数的混合运算,关键是熟练掌握增长率问题的关系式.12.(4分)不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.【点评】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.13.(4分)已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是y=2x2﹣1.(只需写一个)【点评】本题主要考查待定系数法求函数解析式,熟练掌握抛物线的顶点式是解题的关键.14.(4分)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是80万元.【点评】本题考查了扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.15.(4分)如图,已知AB∥CD,CD=2AB,AD、BC相交于点E,设=,=,那么向量用向量、表示为+2.【点评】本题考查平面向量、平行线的性质等知识,解题的关键是熟练掌握三角形法则求向量,属于基础题.16.(4分)一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是45.【点评】本题考查旋转变换、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.(4分)如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是8<r<10.【点评】本题考查了圆与圆的位置关系和点与圆的位置关系和勾股定理,明确两圆内切时,两圆的圆心连线过切点,注意当C在⊙A上时,半径为3,所以当⊙A半径大于3时,C在⊙A内;当B在⊙A上时,半径为5,所以当⊙A半径小于5时,B在⊙A外.18.(4分)我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6=.【点评】本题考查正多边形与圆、等边三角形的性质、锐角三角函数等知识,解题的关键是理解题意,学会添加常用辅助线,构造特殊三角形解决问题.三、解答题(本大题共7小题,共78分)19.(10分)计算:+(﹣1)2﹣+()﹣1.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(10分)解方程:﹣=1.【点评】本题考查解分式方程,解题的关键是熟练掌握解分式方程的步骤,注意解分式方程必须检验.21.(10分)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sin B的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.【点评】本题考查解直角三角形的应用,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【点评】本题主要考查一次函数的应用.此题属于图象信息识别和方案选择问题.正确识图是解好题目的关键.23.(12分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.【点评】本题主要考查了正方形与菱形的判定及性质定理,熟练掌握定理是解答此题的关键.24.(12分)已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P 平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、锐角三角函数的定义、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键.25.(14分)如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△OAD∽△ABD;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.【点评】本题考查圆的综合题、全等三角形的判定和性质、相似三角形的判定和性质、比例中项等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.。

(完整版),2017届上海初三数学各区一模压轴题汇总情况(15套全),推荐文档

(完整版),2017届上海初三数学各区一模压轴题汇总情况(15套全),推荐文档

2016~2017学年度上海市各区初三一模数学压轴题汇总(18+24+25)共15套整理廖老师宝山区一模压轴题18(宝山)如图,为直角的斜边上一点,交于,如果沿着翻折,D ABC D AB DE AB ^AC E AED D DE 恰好与重合,联结交于,如果,,那么A B CD BEF 8AC =1tan 2A =:___________.CF DF =图18图A24(宝山)如图,二次函数的图像与轴交于两点,与轴交于点已知点232(0)2y ax x a =-+¹x A B 、y ,C .(4,0)A -(1)求抛物线与直线的函数解析式;AC (2)若点是抛物线在第二象限的部分上的一动点,四边形的面积为,求关于的函数关(,)D m n OCDA S S m 系;(3)若点为抛物线上任意一点,点为轴上任意一点,当以为顶点的四边形是平行四边形时,E F x A C E F 、、、请直接写出满足条件的所有点的坐标.E 图24图25(宝山)如图(1)所示,为矩形的边上一点,动点同时从点出发,点以的E ABCD AD P Q 、B P 1/cm s 速度沿着折线运动到点时停止,点以的速度沿着运动到点时停止。

设BE ED DC --C Q 2/cm s BC C 同时出发秒时,的面积为,已知与的函数关系图像如图(2)(其中曲线为抛物线P Q 、t BPQ D 2ycm y t OG 的一部分,其余各部分均为线段).(1)试根据图(2)求时,的面积关于的函数解析式;05t <£BPQ D y t (2)求出线段的长度;BC BE ED 、、(3)当为多少秒时,以为顶点的三角形和相似;t B P Q 、、ABE D (4)如图(3)过点作于,绕点按顺时针方向旋转一定角度,如果中的E EF BC ^F BEF D B BEF D E F 、对应点恰好和射线的交点在一条直线,求此时两点之间的距离. H I 、BE CD 、G C I 、图3图图2图图1图图25图崇明县一模压轴题18(崇明)如图,已知 中,,于点,点在上,且,联结,ABC ∆45ABC ∠=o AH BC ⊥H D AH DH CH =BD 将绕点旋转,得到(点、分别与点、对应),联结,当点落在上时,(不BHD V H EHF ∆B D E F AE F AC F 与重合)如果,,那么的长为;C 4BC =tan 3C =AE24(崇明)在平面直角坐标系中,抛物线与轴交于点 ,与轴的正半轴交于点235y x bx c =-++y (0,3)A x (5,0)B ,点在线段上,且 ,联结、将线段绕着点顺时针旋转,得到线段,过点作直D OB 1OD =AD AD D 90︒DE E 线轴,垂足为,交抛物线于点. l x ⊥H F (1)求这条抛物线的解析式;(2)联结,求的值;DF cot EDF ∠(3)点在直线上,且,求点的坐标.G l 45EDG ︒∠=G25(崇明)在中,,,,以为斜边向右侧作等腰直角,是ABC ∆90ACB ︒∠=3cot 2A =BC EBC ∆P 延长线上一点,联结,以为直角边向下方作等腰直角,交线段于点,联结. BE PC PC PCD ∆CD BE F BD (1)求证:;PC CECD BC=(2)若,的面积为,求关于的函数解析式,并写出定义域;PE x =BDP ∆y y x (3)当为等腰三角形时,求的长.BDF ∆PE奉贤区一模压轴题18(奉贤)如图3,在矩形ABCD 中,AB =6,AD =3,点P 是边AD 上的一点,联结BP ,将△ABP 沿着BP 所在直线翻折得到△EBP ,点A 落在点E 处,边BE 与边CD 相交于点G ,如果CG=2DG ,那么DP 的长是______.24(奉贤)如图,在平面直角坐标系中xOy 中,抛物线与x 轴相交于点A (-1,0)和点B ,与y 轴相2y x bx c =-++交于点C (0,3),抛物线的顶点为点D ,联结AC 、BC 、DB 、DC .(1)求这条抛物线的表达式及顶点D 的坐标;(2)求证:△ACO ∽△DBC ;(3)如果点E 在x 轴上,且在点B 的右侧,∠BCE=∠ACO ,求点E 的坐标。

上海中考数学压轴题

上海中考数学压轴题

中考数学试卷一、单项选择题(共12分)1.如图,以A、B、C为顶点的三角形与以D、E、F为顶点的三角形相似,则这两个三角形的相似比为()A.2:1B.3:1C.4:3D.3:22.已知m3=n4,那么下列式子中一定成立的是()A.4m=3n B.3m=4n C.m=4n D.mn=123.在正方形网格中,△ABC的位置如图所示,则tanB的值为()A.1B.√22C.√3D.√334.如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了()A.4圈B.3圈C.5圈D.3.5圈二、填空题(共24分)5.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B、F的坐标分别为(-4,4)、(2,1)则位似中心的坐标为()。

(x<0)图象上的点,过点6.如图,在平面直角坐标系中,点A是函数y=kxA作y轴的垂线交y轴于点B,点C在x轴上,若△ABC的面积为1,则k的值为()。

三、解答题7.如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B的坐标为(﹣1,﹣1)。

(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1的图形并写出点B1的坐标;(2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C 的图形并写出点B2的坐标;(3)把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出△AB3C3的图形。

8.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E。

(1)求证:△ADE∽△MAB;(2)求DE的长。

9.如图,把正方形ABCD绕点A,按顺时针方向旋转得到正方形AEFG,边FG 与BC交于点H.求证:HG=HB.10.已知△ABC和△DEF中,有ABDE =BCEF=CAFD=23,且△DEF和△ABC的周长之差为15厘米,求△ABC和△DEF的周长。

2017年上海市各区数学二模压轴题图文解析

2017年上海市各区数学二模压轴题图文解析

本解析由华东师范大学出版社《挑战压轴题》作者马学斌老师独家提供。

可作学习材料,切勿做其他用途。

更多信息,欢迎关注“挑战压轴题”微信公众号(ti ao z han y azho u ti).《2017年上海市各区中考数学二模压轴题图文解析》目录2017 年上海市宝山区中考模拟第 24、25 题/ 22017 年上海市崇明区中考模拟第 24、25 题/ 62017 年上海市奉贤区中考模拟第 24、25 题/ 102017 年上海市虹口区中考模拟第 24、25 题/ 142017 年上海市黄浦区中考模拟第 24、25 题/ 182017 年上海市嘉定区中考模拟第 24、25 题/ 232017 年上海市静安区中考模拟第 24、25 题/ 272017 年上海市闵行区中考模拟第 24、25 题/ 312017 年上海市浦东新区中考模拟第 24、25 题/ 342017 年上海市普陀区中考模拟第 24、25 题/ 382017 年上海市松江区中考模拟第 24、25 题/ 422017 年上海市徐汇区中考模拟第 24、25 题/ 472017 年上海市杨浦区中考模拟第 24、25 题/ 522017 年上海市长宁区青浦区金山区中考模拟第 24、25 题/ 552017 年上海市宝山区中考模拟第 18 题/ 592017 年上海市崇明区中考模拟第 18 题/ 602017 年上海市奉贤区中考模拟第 18 题/ 612017 年上海市虹口区中考模拟第 18 题/ 622017 年上海市黄浦区中考模拟第 18 题/ 632017 年上海市嘉定区中考模拟第 18 题/ 642017 年上海市静安区中考模拟第 18 题/ 652017 年上海市闵行区中考模拟第 18 题/ 662017 年上海市浦东新区中考模拟第 18 题/ 672017 年上海市普陀区中考模拟第 18 题/ 682017 年上海市松江区中考模拟第 18 题/ 692017 年上海市徐汇区中考模拟第 18 题/ 702017 年上海市杨浦区中考模拟第 18 题/ 712017 年上海市长宁区青浦区金山区中考模拟第 18 题/ 722015 年上海市中考第 24、25 题/ 732016 年上海市中考第 24、25 题/ 77例2017年上海市宝山区中考模拟第24题如图 1,已知直线y x与x轴交于点B,与y轴交于点C,抛物线1 22 12y x b x2 2与x 轴交于A、B 两点(A 在B 的左侧),与y 轴交于点C.(1)求抛物线的解析式;(2)点M 是上述抛物线上一点,如果△ABM 和△ABC 相似,求点M 的坐标;(3)联结AC,求顶点D、E、F、G 在△ABC 各边上的矩形DEFG 面积最大时,写出该矩形在AB 边上的顶点的坐标.图 1动感体验请打开几何画板文件名“17 宝山 24”,拖动点D 在BC 上运动,可以体验到,当点D是BC 的中点时,矩形DEFG 的面积最大,最大值是△ABC 面积的一半.思路点拨1.第(2)题△ABM 和△ABC 相似,只存在这两个三角形全等的情形,此时M、C 关于抛物线的对称轴对称.2.第(3)题的矩形DEFG 存在两种情况.用二次函数表示矩形的面积,求二次函数的最大值,然后看看最大值时矩形顶点的位置具有什么特殊性.图文解析(1)由1y x 2 ,得B(4, 0),C(0,-2).2将点B(4, 0)代入y 1 x2 bx 2 ,得 8+4b-2=0.解得 3b .2 2所以抛物线的解析式为 1 2 3 2 1 ( 1)( 4)y x x x x .所以A(-1, 0).2 2 2(2)如图 2,由A(-1, 0)、B(4, 0)、C(0,-2),可得 tan∠CAO=tan∠BCO=2.又因为∠CAO 与∠ACO 互余,所以∠BCO 与∠ACO 互余.所以△ABC 是直角三角形.过点A、B 分别作x 轴的垂线,不可能存在点M.所以只存在∠AMB=90°的情况,此时点M 在x 轴的下方(如图 3 所示).图 2 图 32如图 3,如果△ABM 和△ABC 相似,那么△ABM ≌△BAC .所以点 M 与点 C 关于抛物线的对称轴对称,点 M 的坐标为(3,-2).(3)矩形 DEFG 有两种情况:1①如图 4,在 AB 边上的顶点有两个,坐标分别为(2, 0)和( ,0) .23②如图 5,在 AB 边上的顶点有一个,坐标为( ,0).2考点伸展第(3)题的解题思路是这样的:在 Rt △ABC 中,AB =5,高 CO =2.情形一,如图 4,F 、G 两点在 AB 上.设 DE =m ,DG =n .根据相似三角形对应高的比等于对应边的比,得 2 .所以 5(2 )n m nm . 2 52 所以 S =mn = 5 2 n n = 5 ( 1)2 5 (2 )n . 2 2所以当 n =1 时,矩形 DEFG 的面积最大.几何意义是 D 为 BC 的中点时,矩形的面积 最大,最大值是△ABC 面积的一半.情形二,如图 5,点 G 在 AB 上.同样的,设 DE =m ,DG =n .由 BD DG ,得 2 5.所以 2 5 n . m n m BE EA 22 55 所以 S =m n = (2 5 ) m m 2 = 1 ( 5)2 5 m .2 2所以当 m 5 时,矩形 DEFG 的面积最大.几何意义是 D 为 BC 的中点时,矩形的面 积最大,最大值也是△ABC 面积的一半.此时点 G 为 AB 的中点.图 4 图 53例2017年上海市宝山区中考模拟第25题如图 1,在△ABC 中,∠ACB 为直角,AB=10,∠A=30°,半径为 1 的动圆Q 的圆心从点C 出发,沿着CB 方向以 1 个单位长度/秒的速度匀速运动,同时动点P 从点B 出发,沿着BA 方向也以 1 个单位长度/秒的速度匀速运动,设运动时间为t 秒(0<t≤5),以P 为圆心、PB 为半径的⊙P 与AB、BC 的另一个交点分别为E、D,联结ED、EQ.(1)判断并证明ED 与BC 的位置关系,并求当点Q 与点D 重合时t 的值;(2)当⊙P 和AC 相交时,设CQ 为x,⊙P 被AC 解得的弦长为y,求y 关于x 的函数解析式,并求当⊙Q 过点B 时⊙P 被AC 截得的弦长;(3)若⊙P 与⊙Q 相交,写出t 的取值范围.图 1动感体验请打开几何画板文件名“17 宝山 25”,拖动Q 由C 向B 运动,可以体验到,⊙P 与⊙Q 的位置关系依次为外离、外切和相交.思路点拨1.第(1)题Q、D 重合时,根据CQ+BD=BC 列关于t 的方程.2.第(2)题⊙Q 过点B 时,CQ=5-1=4.3.第(3)题求⊙P 与⊙Q 相交,先求临界位置外切时t 的值.图文解析(1)如图 2,根据直径所对的圆周角是直角,可以知道ED⊥BC.在 Rt△ABC 中,AB=10,∠A=30°,所以BC=5.在 Rt△BDE 中,BE=2BP=2t,∠BED=30°,所以BD=t,DE= 3 t.如图 3,当点Q 与点D 重合时,BD+CQ=BC=5.所以 2t=5.解得t=2.5.图 2 图 3(2)如图 4,设⊙P 和AC 相交于M、N 两点.作PH⊥MN 于H,那么MH=NH.在 Rt△PAH 中,PA=10-t,∠A=30°,所以PH=12(10t)t.=5 12在 Rt△PMH 中,PM=PB=t,由勾股定理,得MH2=PM2-PH2= 2 (5 1 )2t t .2 于是得到y=MN=2MH=3t2 20t 100 .4如图 5,当⊙Q 过点B 时,CQ=x=4,此时MN=y=316 20 4 100 =2 7 .图 4 图 5<t≤5.(3)当⊙P与⊙Q相交时,t的取值范围是17974考点伸展第(3)题的解题过程分三步:第一步,罗列三要素.对于圆P,r P=t;对于圆Q,r Q=1;圆心距PQ 需要求一下.如图 6,作PF⊥BC 于F.在Rt△PFQ 中,由勾股定理,得PQ=( 3 )2 (5 3 )2t t .2 2第二步,列方程.如图 7,当⊙P 与⊙Q 外切时,r P+r Q=PQ.所以t 1( 3 t)2 (5 3t)2 .整理,得 2t2-17t+24=0.解得17 97t .2 2 4第三步,写结论.图 6 图 75例2017年上海市崇明区中考模拟第 24题 如图 1,已知抛物线 y =ax 2-2x +c 经过△ABC 的三个顶点,其中点 A (0, 1),点 B (9, 10),AC //x 轴. (1)求这条抛物线的解析式;(2)求 tan ∠ABC 的值;(3)若点 D 为抛物线的顶点,点 E 是直线 AC 上一点,当△CDE 与△ABC 相似时,求 点 E 的坐标.图 1动感体验请打开几何画板文件名“17 崇明 24”,拖动点 E 在点 C 左侧运动,可以体验到,△CDE 与△ABC 相似存在两种情况.思路点拨1.求 tan ∠ABC 的值,首先要将∠ABC 放在某个直角三角形中.作 AB 边上的高 CH 以 后,有两种解法:一种解法是∠BAC =45°为特殊值;另一种解法是一般性的,已知三角形 的三边,作高不设高,设 AH =m .2.探究△CDE 与△ABC 相似,首选的方法是寻找一组等角,然后按照对应边成比例分 两种情况列方程.图文解析 c1,(1)将 A (0, 1)、B (9, 10)两点分别代入 y =ax 2-2x +c ,得81a 18 c 10.1 3 解得 a = ,c =1.所以这条抛物线的解析式为 12 2 1y x x . 3(2)由于 AC //x 轴,抛物线的对称轴为 x =3,所以 C (6, 1).如图 2,作 BM ⊥AC ,垂足为 M .作 CH ⊥AB 于 H .由 A (0, 1)、B (9, 10),可知 AM =BM =9,所以∠BAC =45°,AB =9 2 .在 Rt △ACH 中,AC =6,所以 AH =CH =3 2 .在 Rt △BCH 中,BH =AB -AH =6 2 ,所以 tan ∠ABC = C H B H= 3 2 6 2 = 1 2 . 6(3)由 1 2 2 1 1 ( 3)2 2y x x x ,得顶点D 的坐标为(3,-2).3 3由C(6, 1)、D(3,-2),可知∠ACD=45°,CD=3 2 .当点E 在点C 左侧时,∠DCE=∠BAC.分两种情况讨论△CDE 与△ABC 相似:①当C E A B时,CE 9 2 .解得CE=9.此时E(-3, 1)(如图 3 所示).C D A C32 6②CE AC 时,CE 6 .解得CE=2.此时E(4, 1)(如图 4 所示).C D A B329 2图 2 图 3 图 4考点伸展第(2)题还有一般的解法:如图 2,△ABC 的三边长是确定的,那么作AB 边上的高CH,设AH=m,就可以求得AH,进而求得CH、BH 的长.由A(0, 1)、B(9, 10)、C(6, 1),可得AB=9 2 ,BC=3 10 ,AC=6.由CH2=CA2-AH2,CH2=CB2-BH2,得CA2-AH2=CB2-BH2.解方程62 m2 (3 10)2 (9 2 m)2 ,得m 3 2 .于是得到BH=6 2 ,CH=3 2 .7例 2017年上海市崇明区中考模拟第 25题如图,梯形 ABCD 中,AB //CD ,∠ABC =90°,AB =6,BC =8,tan D =2,点 E 是射线 CD 上一动点(不与点 C 重合),将△BCE 沿着 BE 进行翻折,点 C 的对应点记为点 F .(1)如图 1,当点 F 落在梯形 ABCD 的中位线 MN 上时,求 CE 的长;S (2)如图 2,当点 E 在线段 CD 上时,设 CE =x , △BFCS△E F C=y ,求 y 与 x 之间的函数关系式,并写出定义域;(3)如图 3,联结 AC ,线段 BF 与射线 CA 交于点 G ,当△CBG 是等腰三角形时,求 CE 的长.图 1 图 2 图 3动感体验请打开几何画板文件名“17 崇明 25”,拖动点 E 运动,可以体验到,等腰三角形 BCG 存在三种情况,每种情况的点 G 的位置都具有特殊性.思路点拨1.第(1)题点 F 到 AB 的距离等于 BF 的一半,得到∠FBA =30°.2.第(2)题△BFC 与△EFC 的面积比等于 BH 与 EH 的比,通过 Rt △BCH ∽Rt △CEH 得到 BH 与 EH 的比.3.第(3)题先求 CG 的长,再求 CE 的长.延长 BF 交 CD 的延长线于 K ,得到△KEF ∽△KBC .图文解析(1)如图 4,在 Rt △FNB 中,BN = 所以∠B F N =30°. 1 2 B C = 1 2B F ,所以∠FBA =30°.所以∠FBC =60°. 所以∠FBE =∠CBE =30°.= 8 3 3所以 C E =B C t a n 30°=83 3. 图 4(2)如图 5,设 BE 垂直平分 FC 于点 H ,那么∠CBH =∠ECH . 所以△CBH ∽△ECH .S 所以CBH△S△ECHBH = ( )2EH= 64 x 2 S .所以 y = BFC △S△EFC= 2S △CBHC2S △ECH = 64 x2. 定义域是 0<x ≤10.8图 5图 6(3)①如图 6,当 CG =CB =8 时,AG =2.CK CG 延长 BF 交 CD 的延长线于 K .由 4 ,得 CK =4AB =24.AB AG1 3在 Rt △KBC 中,BC =8,CK =24,所以 tan ∠K =.所以 sin ∠K = 10 10. 在 Rt △KEF 中,FE =CE =x ,EK =CK -CE =24-x .由 sin ∠K =F E E K = 10 10,得10 x 24 x 10.解得 x =CE = 8 10 83.②如图 7,当 GC =GB 时,点 G 在 BC 的垂直平分线上,此时四边形 ABCK 为矩形. 在 Rt △EKF 中,sin ∠EKF =B C B K = 8 10 = 4 5,FE =CE =x ,KE =CK -CE =6-x .所以 4 x6 x 5.解得 x =CE = 8 3.③如图 8,当 BG =BC =8 时,由于 BC =BF ,所以 F 、G 重合.此时 BE ⊥AC .由 tan ∠CEB =tan ∠ACB = 3 4 ,得B C C E 3 .所以 CE = 432 3.图 7 图 8考点伸展第(3)题的①、②两种情况,解 Rt △KEF ,可以用勾股定理列方程.9例 2017年上海市奉贤区中考模拟第 24题如图 1,在平面直角坐标系中,抛物线 y =-x 2+bx +c 经过点 A (3, 0)和点 B (2, 3),过点1 3A 的直线与 y 轴的负半轴相交于点 C ,且 tan ∠CAO =(1)求这条抛物线的表达式及对称轴;. (2)联结 AB 、BC ,求∠ABC 的正切值;(3)若点 D 在 x 轴下方的对称轴上,当 S △ABC =S △ADC 时,求点 D 的坐标.图 1动感体验请打开几何画板文件名“17 奉贤 24”,可以体验到,△ABC 是等腰直角三角形,B 、D 两点到直线 AC 的距离相等.思路点拨1.直觉告诉我们,△ABC 是直角三角形.2.第(3)题的意思可以表达为:B 、D 在直线 AC 的两侧,到直线 AC 的距离相等.于 是我们容易想到,平行线间的距离处处相等.图文解析(1)将 A (3, 0)、B (2, 3)两点分别代入 y =-x 2+bx +c ,得93b c 0,4 2b c 3.解得 b =2,c =3.所以 y =-x 2+2x +3.对称轴是直线 x =1.O C OA (2)由 t a n ∠C A O == 1 3,OA =3,得 OC =1.所以 C (0,-1). 由两点间的距离公式,得 AB 2=12+32=10,AC 2=32+12=10,BC 2=22+42=20. 所以∠BAC =90°,且 AB =AC .所以△ABC 是等腰直角三角形,tan ∠ABC =1.(3)因为△ABC 与△ADC 有公共底边 AC ,当 S △ABC =S △ADC 时,B 、D 到直线 AC 的距离相等.如图 2,因为点 B (2, 3)关于点 A (3, 0)的对称点为 E (4,-3),那么过点 E 作 AC 的平行线 与抛物线的对称轴的交点即为所求的点 D .由 A (3, 0)、C (0,-1)可得直线 AC 的解析式为1y x 1.3设直线 DE 的解析式为y x b ,代入点 E (4,-3),得 13 1b .3 3 10所以直线DE 的解析式为11 3 y x .当x=1 时,y=-4.3 3所以点D 的坐标为(1,-4).考点伸展第(2)题也可以构造 Rt△ABM 和 Rt△CAN(如图 3),用“边角边”证明△ABM≌△CAN,从而得到等腰直角三角形ABC.图 2 图 3第(3)题也可以这样思考:如图 4,过点B 与直线AC 平行的直线为y 1 x 7 ,与y 轴交于点F(0, 7)33 3.F、C 两点间的距离为710(1) .3 3把直线AC:y 1 x 向下平移1013 3个单位,得到直线113y x .3 3感谢网友上海交大昂立教育张春莹老师第(3)题的解法:如图 5,如果把BL、KD 分别看作△ABC 和△ADC 的底边,那么它们的高都是A、C 两点间的水平距离,当△ABC 与△ADC 的面积相等时,BL=KD.1 ),K(1,2 ).所以3 ( 1) ( 2) 由直线AC 的解析式可以求得L (y .2,D3 3 3 3解得y D=-4.所以D(1,-4).图 4 图 511例2017年上海市奉贤区中考模拟第25题如图 1,线段AB=4,以AB 为直径作半圆O,点C 为弧AB 的中点,点P 为直径AB 上一点,联结PC,过点C 作CD//AB,且CD=PC,过点D 作DE//PC,交射线PB 于点E,PD 与CE 相交于点Q.(1)若点P 与点A 重合,求BE 的长;PD=y,当点P 在线段AO 上时,求y 关于x 的函数关系式及定义域;C E(2)设P C=x,(3)当点Q 在半圆O 上时,求PC 的长.图 1 备用图动感体验请打开几何画板文件名“17 奉贤 25”,拖动点P 在AO 上运动,可以体验到,PD 与CE的比就是菱形的对角线的比,可以转化为PQ 与EQ 的比,进而转化为∠PEQ 的正切值.拖动点P 在OB 上运动,可以体验到,当点Q 落在圆上时,点Q 到AB 的距离等于圆的半径的一半.思路点拨1.四边形PCDE 是菱形,对角线互相垂直平分.2.第(2)题根据∠PEQ 和∠CEO 是同一个角,用正切值得到关系式.3.第(3)题画图的步骤是:点Q 在OC 的中垂线与圆的交点处,延长CQ 交AB 的延长线于点E,过点Q 作CE 的垂线得到点P、D.图文解析(1)如图 2,由CD//AB,DE//PC,得四边形PCDE 是平行四边形.又因为CD=PC,所以四边形PCDE 是菱形.在等腰直角三角形AOC 中,AC= 2 OA=2 2 .当点P 与点A 重合,PE=AC=2 2 .所以BE=AB-PE=4-2 2 .图 2 图 3(2)如图 3,在 Rt△CPO 中,PC=x,CO=2,所以PO=x 2 4 .所以EO=PE-PO=PC-PO=x x 2 4 .12因为PD 与CE 互相垂直平分于Q,所以y=P DC E=PQE Q =tan∠PEQ=tan∠CEO=C OE O.所以y2x x 42x x2 442.定义域是2≤x≤22 .(3)如图 4,作QH⊥AB 于H.因为菱形PCDE 的对边CD 与PE 间的距离保持不变,等于圆的半径CO=2,当点Q在半圆O 上时,QH=12OQ=1.所以∠QOH=30°.此时∠COQ=60°,△COQ 是等边三角形.所以∠DCE=30°.所以∠PCE=30°.在 Rt△COP 中,∠OCP=30°,CO=2,所以PC=C O= 2c o s3032=4 33.图 4 图 5考点伸展在本题情境下,当点P 从A 运动到B 的过程中,求点Q 运动过的路径长.因为点Q 是CE 的中点,所以点Q 的运动轨迹与点E 的运动轨迹平行,点Q 的路径长等于点E 路径长的一半.如图 2,当点P 与点A 重合时,AE=AC=2 2 .如图 5,当点P 与点B 重合时,BE=BC=2 2 .所以点E 运动的路径长为 4,点Q 运动的路径长为 2.13例2017年上海市虹口区中考模拟第24题如图 1,在平面直角坐标系中,抛物线1y x bx c 经过点A(-2, 0)和原点,点B 在4抛物线上且 tan∠BAO=12,抛物线的对称轴与x 轴相交于点P.(1)求抛物线的解析式,并直接写出点P 的坐标;(2)点C 为抛物线上一点,若四边形AOBC为等腰梯形且AO//BC,求点C 的坐标;(3)点D 在AB 上,若△ADP 与△ABO 相似,求点D 的坐标.图 1动感体验请打开几何画板文件名“17 虹口 24”,拖动点D 在AB 上运动,可以体验到,△ADP与△ABO 相似存在两种情况.点击屏幕左下角的按钮“第(2)题”,可以体验到,以A、O、B、C 为顶点的等腰梯形存在三种情况,其中AO//BC 时,点C 与点B 关于抛物线的对称轴对称.思路点拨1.已知二次函数的二次项系数和抛物线与x 轴的两个交点,可以直接写出交点式.2.等腰梯形AOBC 当AO//BC 时,C、B 两点关于抛物线的对称轴对称.3.分两种情况讨论△ADP 与△ABO 相似.由于∠A 是公共角,根据夹∠A 的两边对应成比例,分两种情况列方程,先求AD 的长,再求点D 的坐标.图文解析(1)因为抛物线1y x bx c 与x 轴交于点A(-2, 0)和原点,所以411 1y x(x2)x x.244 2抛物线的对称轴是直线x=-1,点P 的坐标为(-1, 0).1(2)作BH⊥x 轴于H.设点B 的坐标为(x, x(x 2)) .4由 tan∠BAO=B HA H=121,得AH=2BH.所以(x 2) 2x(x 2) .4解得x=2,或x=-2(B、A 重合,舍去).所以B(2, 2).若四边形AOBC 为等腰梯形且AO//BC,那么B、C 关于抛物线的对称轴x=-1 对称.所以点C 的坐标为(-4, 2).图 2 图 314(3)作DE⊥x 轴于E.在 Rt△ADE 中,已知 tan∠A=12,所以DE=55A D,AE=2 55 A D.由于△ADP 与△ABO 有公共角∠A,分两种情况讨论相似:①当AD AB 时,AD 2 5 .所以AD=5 .A P A O1 2此时DE=1,AE=2.所以点D 的坐标为(0, 1).②当A D A O时,A D 2.所以A D= 5 A P A B125 5.此时DE=15,AE=25.所以OE=OA-AE=858 1(,).5 5.所以点D的坐标为图 4 图 5考点伸展如果第(2)题改为以A、O、B、C 为顶点的四边形是等腰梯形,那么就要分三种情况:△AOB 的三边的垂直平分线都可以是等腰梯形的对称轴.第二种情况:如果OC//AB,那么点C 与点O 关于直线AB 的垂直平分线对称.点C 在直线1y x 上,设C(2m, m).2由CB=OA=2,得CB2=4.所以(2m-2)2+(m-2)2=4.解得m=254 2 ,或m=2(此时四边形AOCB 是平行四边形).所以C( , ).5 5第三种情况:如果AC//OB,那么点C 与点A 关于直线OB 的垂直平分线对称.点C 在直线y=x+2 上,设C(n, n+2).由CB=AO=2,得CB2=4.所以(n-2)2+n2=4.解得n=2,或n=0(舍去).所以C(2, 4).图 6 图 715例2017年上海市虹口区中考模拟第25题如图 1,在△ABC 中,AB=AC=5,cos B=45,点P 为边BC 上一动点,过点P 作射线PE 交射线BA 于点D,∠BPD=∠BAC.以点P 为圆心,PC 长为半径作⊙P 交射线PD 于点E,联结CE,设BD=x,CE=y.(1)当⊙P 与AB 相切时,求⊙P 的半径;(2)当点D 在BA 的延长线上时,求y 关于x 的函数解析式,并写出定义域;(3)如果⊙O 与⊙P 相交于点C、E,且⊙O 经过点B,当O P=54时,求AD 的长.图 1动感体验请打开几何画板文件名“17 虹口 25”,拖动点P 运动,可以体验到,△BPD 与△BAC 保持相似,PN 与BD 保持平行.观察度量值,可以体验到,OP=1.25 存在两种情况.思路点拨1.作圆P 的弦CE 对应的弦心距PN,把图形中与∠B 相等的角都标记出来.2.第(3)题的圆O 经过B、C、E 三点,事实上OP 与BD 是平行的.图文解析(1)如图 2,作AM⊥BC 于M,那么BM=CM.在 Rt△ABM 中,AB=5,cos B=B MA B=45,所以BM=4,sin B=35.如图 3,设⊙P 与AB 切于点H,那么 sin B=PHBP=35.所以r8 r 35=.解得r=3.图 2 图 3 图 4 (2)如图 4,由于∠B=∠B,∠BPD=∠BAC,所以△BPD∽△BAC.因为AB=AC,所以PB=PD.如图 5,设圆P 与BC 的另一个交点为F,因此所以F E//B D.所以∠E F C=∠B.P F P E.P B P D在△PBD 中,B P B A 5,所以5 5BP BD x .B D B C888在△EFC 中,由PC=PE=PF,可知∠FEC=90°,所以 sin∠EFC=C EC F3.516所以CF5 CE 5 y .所以 PC = 13 3 2 CF = 5 6y .由 BC =BP +PC =8,得5 x 5 y .整理,得 48 3 y x .定义域是 5<x < 64886545.(3)因为⊙O 经过 B 、C 、E 三点,所以圆心 O 是 BC 和 CE 的垂直平分线的交点. 如图 6,设 CE 的中点为 N ,那么 OP ⊥CE 于 N . 所以 OP //FE //BA .所以 cos ∠OPM =cos B = 4 5 .当 OP = 5 4时,MP =1.①如图 6,当 P 在 M 右侧时,BP =4+1=5.此时 BD = 所以 A D =B D -B A =8-5=3.8 5BP =8.②如图 7,当 P 在 M 左侧时,BP =4-1=3.此时 BD = 8 5 B P = 24 5.2 4 所以 AD =BA -BD = 5 = 51 5.图 5 图 6 图 7考点伸展第(2)题不证明 FE //BA 的话,可以证明∠CPN =∠B .如图 8,由于∠CPE =∠B +∠D =2∠B ,∠CPE =2∠CPN ,所以∠CPN =∠B .在 Rt △CPE 中, 1 2 3 5 C E =PC .所以 PC =5 6 C E = 5 6 5 y .所以 BP =8 y .6 在△BPD 中, 1 2 B D = 4 5 BP .所以 1 x 4 5 y .整理,得 48 3 (8 ) y x .2 5 6 5 4定义域中 x = 64 5的几何意义如图 9 所示.图 8 图 917例 2017年上海市黄浦区中考模拟第 24题如图 1,点 A 在函数 y4(x >0)的图像上,过点 A 作 x 轴和 y 轴的平行线分别交函 x数 y 1的图像于点 B 、C ,直线 BC 与坐标轴的交点为 D 、E . x(1)当点 C 的横坐标为 1 时,求点 B 的坐标;(2)试问:当点 A 在函数 y4(x >0)的图像上运动时,△ABC 的面积是否发生变 x 化?若不变,请求出△ABC 的面积;若变化,请说明理由;(3)试说明:当点 A 在函数 y4(x >0)的图像上运动时,线段 BD 与 CE 的长始终 x相等.图 1动感体验请打开几何画板文件名“17 黄浦 24”,拖动点 A 运动,可以体验到,△DBM 与△CEN 保持全等,MN 与 BC 保持平行.思路点拨1.设点 A 的横坐标为 m ,A 、C 两点的横坐标相等,A 、B 两点的纵坐标相等,用 m 表 示 A 、B 、C 三点的坐标和 AB 、AC 的长.2.证明 BD =CE ,因为四点共线,只要证明 B 、D 两点间的竖直距离等于 C 、E 两点间 的竖直距离就可以了.图文解析(1)当点 C 的横坐标为 1 时,C (1, 1),A (1, 4).由 1 x4 ,得x 1 .所以点 B 的坐标为(1 ,4) 4 4 . (2)△ABC 的面积为定值.计算如下:4 如图 2,设点 A 的坐标为(m , ) m 1 ,那么 C (m , ) mm 4 ,B ( , ). 4 m3m 所以 A B = 4 ,AC = 3 m .所以 S △ABC = 1 2 A B A C = 1 3 3 = m2 4 m9 8 . (3)如图 3,延长 AB 交 y 轴于 M ,延长 AC 交 x 轴于 N .在 Rt △DBM 中,tan ∠DBM =tan ∠ABC = A C A B = 3 3m = m 44 m 2 ,BM = m 4,所以DM=BM tan∠DBM=m44=m21m.所以DM=CN.18又因为 sin∠DBM=sin∠CEN,所以DB=CE.图 2 图 3考点伸展如图 4,第(2)题中,面积为定值的有:矩形AMON、△ABC、△BOM、△CON,所以△BOC 的面积也为定值.如图 5,联结MN,那么MN 与BC 保持平行,这是因为M B N C 1.M A N A 4还有一个有趣的结论,随着点A 的运动,直线MN 与双曲线y 1(x>0)保持相切.x直线MN 的解析式为44,与y1y x 联立方程组,消去y,得m m x214 4x.x m m2整理,得(2x-m)2=0.所以直线MN 与双曲线有一个交点,保持相切.感谢网友上海交大昂立教育张春莹老师提供的第(3)题的简练解法:如图 4,因为B D B M 1,C E C N 1,所以B D=C E.B C B A3C B C A 3图 4 图 519例2017年上海市黄浦区中考模拟第25题已知 Rt△ABC 斜边AB 上的D、E 两点满足∠DCE=45°.(1)如图 1,当AC=1,BC= 3 ,且点D 与点A 重合时,求线段BE 的长;(2)如图 2,当△ABC 是等腰直角三角形时,求证:AD2+BE2=DE2;(3)如图 3,当AC=3,BC=4 时,设AD=x,BE=y,求y 关于x 的函数关系式,并写出定义域.图 1 图 2 图 3动感体验请打开几何画板文件名“17 黄浦 25”,可以体验到,四边形CMEN 是正方形.点击屏幕左下方的按钮“第(2)题”,可以体验到,直角三角形DEF 的边FD=AD,FE=BE.点击按钮“第(3)题”,可以体验到,△CDP∽△ECQ.思路点拨1.第(1)题过点E 向两条直角边作垂线段,围成一个正方形,然后根据对应线段成比例求正方形的边长,再得到BE 的长等于正方形边长的 2 倍.2.第(2)题的目标是把AD、BE 和DE 围成一个直角三角形.经典的解法有翻折和旋转两种.图文解析(1)当AC=1,BC= 3 时,AB=2,∠B=30°.如图 4,作EM⊥BC 于M,作EN⊥AC 于N,那么四边形CMEN 是正方形.设正方形的边长为a.由EM BM,得a 3 a .AC BC 1 3解得 3 3a .2所以BE=2EM=3 3 .图 4【解法二】如图 4,因为1C B E MS C B△C B E21S C A E N C A△C B E2S B E,△C B ES E A△C B E,所以C B B E.C A E A.解得BE=3 3 .所以3B E12B E20(2)如图5,以CE 为对称轴,构造△CFE≌△CBE,那么FE=BE,∠CFE=∠B=45°.联结DF.由“边角边”证明△CFD≌△CAD,所以FD=AD,∠CFD=∠A=45°.所以△DEF 是直角三角形,FD2+FE2=DE2.所以AD2+BE2=DE2.【解法二】如图 6,绕点C 将△CBE 逆时针旋转 90°得到△CAG,那么AG=BE,CE =CG,∠CAG=∠B=45°.由“边角边”证明△CDG≌△CDE,所以DG=DE.在 Rt△GDA 中,AD2+AG2=DG2.所以AD2+BE2=DE2.图 5 图 6(3)如图 7,作CH⊥AB 于H.在 Rt△ABC 中,AC=3,BC=4,所以AB=5.于是可得CH 12 ,BH 16 ,9AH .5 5 5所以DH 9 x,16EH y .5 5如图 8,以H 为旋转中心,将点D 逆时针旋转 90°得到点P,将点E 顺时针旋转 90°得到点Q.于是可得△CDP∽△ECQ.由PD QC,得PD QE PC QC .PC QE所以2(9 x) 2(16 y ) 12 (9 x )12 (16 y )5 5 5 5 5 5.整理,得2860xy5x 21.157 定义域是0≤x≤15 7.当B、E 重合时x=.图 7 图 821考点伸展第(3)题解法多样,再介绍三种解法:如图 9,过点C 作AB 的平行线KL.构造等腰直角三角形KDD′和LEE′.由△CDE∽△KCD,△CDE∽△LEC,得△KCD∽△LEC.所以KC DK,即KC CL=LE DK .LE CL所以12 (9 )12 (16 ) 12 2 12 2x y55555 5.整理即可.如图 10,分别以CD、CE 为对称轴,作CH 的对应线段CK、CL,再围成正方形CKRL.在 Rt△DER 中,由DR2+ER2=DE2,得2 2129121 6(x)(y)(5x y)25555.整理即可.如图 11,类似第(2)题的第一种解法,在 Rt△A′B′T 中,A′B′=CB-CA=1,所以A′T=35 ,B′T= 4 5.在 Rt△DET 中,DE=5-x-y,TE=y 4,T D= 3x ,由勾股定理,得5 52 4 23 2(5x y ) (y ) (x ) .整理即可.5 5图 9 图 10 图 1122例2017年上海市嘉定区中考模拟第24题如图 1,在平面直角坐标系中,已知点A 的坐标为(3, 1),点B 的坐标为(6, 5),点C 的坐标为(0, 5),某二次函数的图像经过A、B、C 三点.(1)求这个二次函数的解析式;(2)假如点Q 在该二次函数图像的对称轴上,且△ACQ 是等腰三角形,请直接写出点Q 的坐标;(3)如果点P 在(1)中求出的二次函数的图像上,且 tan∠PCA=12,求∠PCB 的正弦值.图 1动感体验请打开几何画板文件名“17 嘉定 24”,可以体验到,当AD⊥AC,且AC=2AD 时,点D 的位置是确定的,射线CD 与抛物线的交点就是点P.思路点拨1.由B、C 两点的坐标可知抛物线的对称轴是直线x=3,再由点A 的坐标可知点A 就是抛物线的顶点,因此设顶点式比较简便.2.分三种情况讨论等腰三角形ACQ:AQ=AC,CQ=CA,QA=QC.3.第(3)题的解题策略是:根据 tan∠PCA=12,过点A 作AC 的垂线,在垂线上截取AD=12AC,那么点P 就是射线CD 与抛物线的交点,∠DCB 就是∠PCB.不用求点P的坐标,求点D 的坐标就好了.图文解析(1)由B(6, 5)、C(0, 5),可知抛物线的对称轴是直线x=3.由A(3, 1),可知点A 是抛物线的顶点.设二次函数的解析式为y=a(x-3)2+1,代入点B(6, 5),得 9a+1=5.4 4 4 8解得a .所以y (x 3)2 1x 2 x 5.9 9 9 33 3(2)点Q 的坐标为(3, 6),(3,-4),(3, 9)或(3, )8.(3)如图 2,绕着点A 将线段AC 的中点旋转 90°得到点D,那么射线CD 与抛物线的交点就是要求的点P.当点D 在CA 左侧时,射线CD 与抛物线没有交点.如图 3,当点D 在CA 右侧时,作DE⊥x 轴于E,那么∠DCE 就是∠PCB.过点A 作x 轴的平行线交y 轴于M,过点D 作DN⊥AM 于N.CM MA AC由△CMA∽△AND,得 2 .AN ND DA所以A N 1C M ,1 32N D M A .22 223在 Rt△CDE 中,CE=MA+AN=3+2=5,ED=CM-ND=3 5 4,2 2所以 tan∠DCE=E DC E=12.所以 sin∠DCE=55,即 sin∠PCB=55.图 2 图 3考点伸展第(2)题分三种情况讨论等腰三角形ACQ:①如图 4,当AQ=AC=5 时,以A 为圆心、以AC 为半径的圆与对称轴有两个交点,所以点Q 的坐标为(3, 6) 或(3,-4).②如图 5,当CQ=CA 时,点C 在AQ 的垂直平分线上,此时点Q 的坐标为(3, 9).③如图 6,当QA=QC 时,点Q 在AC 的垂直平分线上,此时1 4A C A Q.2 5所以AQ=58AC =2583 3.此时点Q 的坐标为(3, )8.图 4 图 5 图 6 24例2017年上海市嘉定区中考模拟第25题已知AB=8,⊙O 经过点A、B,以AB 为一边画平行四边形ABCD,另一边CD 经过点O(如图 1).以点B 为圆心,BC 长为半径画弧,交线段OC 于点E(点E 不与点O、点C 重合).(1)求证:OD=OE;(2)如果⊙O 的半径长为 5(如图 2),设OD=x,BC=y,求y 与x 的函数解析式,并写出它的定义域;(3)如果⊙O 的半径长为 5,联结AC,当BE⊥AC 时,求OD 的长.图 1 图 2 备用图动感体验请打开几何画板文件名“17 嘉定 25”,拖动点D 运动,可以体验到,四边形ABED 保持等腰梯形的形状,△BCE 保持等腰三角形的形状,垂足H 的位置保持不变,MH 的位置保持不变.双击按钮“AC⊥BE”,可以体验到,点C 恰好落在圆上,MH 等于EC 与AB 和的一半.思路点拨1.根据等腰梯形是轴对称图形,很容易知道点O 是DE 的中点.2.第(2)题中,等腰三角形BCE 的高BH 为定值,先用x 表示EC,再用勾股定理就可以表示BC 了.3.第(3)题如何利用BE⊥AC,常规的方法是过点C 作BE 的平行线得到直角三角形.图文解析(1)如图 3,因为四边形ABCD 是平行四边形,所以AD=BC.又因为BE=BC,所以AD=BE.所以四边形ABED 是等腰梯形.因为圆心O 在弦AB 的垂直平分线上,所以点O 是上底DE 的中点,即OD=OE.图 3 图 425例2017年上海市静安区中考模拟第24题如图 1,已知二次函数 1 2y x bx c 的图像与x 轴的正半轴交于点A(2, 0)和点B,2与y 轴交于点C,它的顶点为M,对称轴与x 轴相交于点N.(1)用b 的代数式表示点M 的坐标;(2)当 tan∠MAN=2 时,求此二次函数的解析式及∠ACB 的正切值.图 1动感体验请打开几何画板文件名“17 静安 24”,拖动点N 运动,观察∠MAN 的正切值的度量值,可以体验到,当 tan∠MAN=2 时,△OBC 是等腰直角三角形.思路点拨1.第(1)题分三步:根据抛物线的解析式写出对称轴x=b;代入点A 的坐标,用b表示c;求x=b 时y 的值,得到顶点的纵坐标.2.第(2)题先根据 tan∠MAN=2 求b 的值,确定点B、C 的坐标,再作BC 边上的高AH,解直角三角形ABH 和直角三角形ACH.图文解析(1)由 1 2y x bx c ,得抛物线的对称轴为直线x=b.2将点A(2, 0)代入 1 2y x bx c ,得-2+2b+c=0.所以c=2-2b.2当x=b 时, 1 2 2 2 1 2 2 2 1 ( 2)2y x bx b b b b .2 2 2所以抛物线的顶点M 的坐标可以表示为( , 1 ( 2)2 )b b .2MN(2)当 tan∠MAN=2 时, 2 ,即MN=2AN.AN解方程1 ( 2)2 2( 2)b b ,得b=6,或b=2(与A 重合,舍去).2此时抛物线的解析式为 1 2 6 10y x x ,A(2, 0),B(6, 0),C(0,-10).2所以AB=8,OB=OC=10.所以BC=10 2 ,∠B=45°.27作AH⊥BC 于H,那么AH=BH=4 2 .在 Rt△ACH 中,CH=BC-BH=6 2 ,所以 tan∠ACB=A HC H=23 .图 2考点伸展第(2)题上面的解法是利用“边角边”,作高先求高.也可以利用“边边边”,作高不设高.由A(2, 0),B(6, 0),C(0,-10),得AB=8,BC=10 2 ,AC=104 .设CH=m,那么BH=10 2 m.由AH2=AC2-CH2,AH2=AB2-BH2,得AC2-CH2=AB2-BH2.解方程( 104)2 m2 82 (10 2 m)2 ,得m CH 6 2 .所以AH2=AC2-CH2=( 104)2 (6 2)2 =32.所以AH=4 2 .28例2017年上海市静安区中考模拟第25题如图 1,已知⊙O 的半径OA 的长为 2,点B 是⊙O 上的动点,以AB 为半径的⊙A 与线段OB 相交于点C,AC 的延长线与⊙O 相交于点D.设线段AB 的长为x,线段OC 的长为y.(1)求y 关于x 的函数解析式,并写出定义域;(2)当四边形ABDO 是梯形时,求线段OC 的长.图 1图文解析(1)如图 1,因为OA=OB,所以∠OAB=∠B.因为AC=AB,所以∠ACB=∠B.所以∠OAB=∠ACB.所以△OAB∽△ACB.所以B O B A,即2xB A B Cx 2 y.整理,得 2 1 2y x .定义域是 0≤x≤2.x=2 的几何意义如图 2 所示.2图 1 图 2(2)梯形ABDO 存在两种情况:①如图 3,当AB//OD 时,A B C B,即x2y.整理,得(x+2)y=4.D O C O2y代入y 2 1 x2 ,得( 2)(2 1 2 ) 4x x .整理,得x2+2x-4=0.2 2解得x= 5 1,或x= 5 1(舍去).所以CO=y=2 1 2 =2 1 ( 5 1)2x= 5 1.事实上,此时点C 是线段OB 的黄2 2金分割点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)如图,已知抛物线2y x bx c =++经过()01A -,、()43B -,两点. (1)求抛物线的解析式;(2 求tan ABO ∠的值;(3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标.24.解:(1)将A (0,-1)、B (4,-3)分别代入2y x bx c =++得1,1643c b c =-⎧⎨++=-⎩, ………………………………………………………………(1分)解,得9,12b c =-=-…………………………………………………………………(1分)所以抛物线的解析式为2912y x x =--……………………………………………(1分)(2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分)在Rt AOH ∆中,OA =1,4sin sin ,5AOH OBC ∠=∠=……………………………(1分)∴4sin 5AH OA AOH =∠=g ,∴322,55OH BH OB OH ==-=, ………………(1分) 在Rt ABH ∆中,4222tan 5511AH ABO BH ∠==÷=………………………………(1分)(3)直线AB 的解析式为112y x =--, ……………………………………………(1分)设点M 的坐标为29(,1)2m m m --,点N 坐标为1(,1)2m m --那么MN =2291(1)(1)422m m m m m -----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3解方程24m m -=3得2m =± ……………………………………………(1分)解方程243m m -+=得1m =或3m =; ………………………………………(1分)所以符合题意的点N 有4个35(22),(22),(1,),(3,)22--+--- ……………………………………………………………………………………(1分)25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)在Rt △ABC 中,∠ACB = 90°,经过点B 的直线l (l 不与直线AB 重合)与直线BC 的夹角等于∠ABC ,分别过点C 、点A 作直线l 的垂线,垂足分别为点D 、点E .(1)如图1,当点E 与点B 重合时,若AE =4,判断以C 点为圆心CD 长为半径的圆C 与直线AB 的位置关系并说明理由;(2)如图2,当点E 在DB 延长线上时,求证:AE =2CD ;(3)记直线CE 与直线AB 相交于点F ,若56CF EF =,CD = 4,求BD 的长.25.解:(1)过点C 作CF ⊥AB ,垂足为点F.……………………………………………(1分) ∵∠AED =90°,∠ABC =∠CBD ,∴∠ABC =∠CBD =45°,∵∠ACB =90°,∠ABC =45°,AE =4,∴CF =2,BC =1分) 又∵∠CBD =∠ABC =45°,CD ⊥l ,∴CD =2, …………………………………………(1分) ∴CD =CF =2,∴圆C 与直线AB 相切.……………………………………………………(1分) (2)证明:延长AC 交直线l 于点G . ………………………………………………(1分) ∵∠ACB = 90°,∠ABC =∠GBC ,∴∠BAC =∠BGC .∴AB = GB .…………………………………………………………………………………(1分) ∴AC = GC .…………………………………………………………………………………(1分) ∵AE ⊥l ,CD ⊥l ,∴AE ∥CD .ACD B (E ) l(第25题图1)(第25题图2)ACD ElB∴12CD GC AE GA ==.…………………………………………………………………………(1分) ∴AE = 2CD . ………………………………………………………………………………(1分)(3)(I )如图1,当点E 在DB 延长线上时:过点C 作CG ∥l 交AB 于点H ,交AE 于点G ,则∠CBD =∠HCB .∵∠ABC =∠CBD ,∴∠ABC =∠HCB .∴CH = BH .………(1分) ∵∠ACB = 90°,∴∠ABC +∠BAC =∠HCB +∠HCA = 90°. ∴∠BAC =∠HCA .∴CH = AH = BH .∵CG ∥l ,∴56CH CF BE EF ==.设CH = 5x ,则BE = 6x ,AB = 10x .在Rt △ABE 中,8AE x ==. 由(2)知AE = 2CD = 8,∴88x =,得1x =. ∴CH = 5,BE = 6,AB = 10.∵CG ∥l ,∴12HG AH BE AB ==,∴HG =3.……………………(1分) ∴CG = CH + HG = 8.易证四边形CDEG 是矩形,∴DE = CG = 8.∴2BD DE BE =-=.…………………………………………(1分) (II )如图2,当点E 在DB 上时:同理可得CH = 5,BE = 6,HG = 3.…………………………(1分) ∴2DE CG CH HG ==-=.∴BD =DE + BE = 8.…………………………………………………………………………(1分) 综上所述,BD 的长为2或8.24.已知点A (2,﹣2)和点B (﹣4,n )在抛物线y=ax 2(a ≠0)上. (1)求a 的值及点B 的坐标;(2)点P 在y 轴上,且△ABP 是以AB 为直角边的三角形,求点P 的坐标;(3)将抛物线y=ax 2(a ≠0)向右并向下平移,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形ABB ′A ′为正方形,求此时抛物线的表达式.(第25题图1)A CD ElGBHFB(第25题图2)A CD lGE HF【考点】二次函数图象上点的坐标特征;坐标与图形变化-平移.【分析】(1)把点A(2,﹣2)代入y=ax2,得到a,再把点B代入抛物线解析式即可解决问题.(2)求出直线AB解析式,再分别求出过点A垂直于AB的直线的解析式,过点B垂直于直线AB的解析式即可解决问题.(3)先求出点A′坐标,确定是如何平移的,再确定抛物线顶点的坐标即可解决问题.【解答】解:(1)把点A(2,﹣2)代入y=ax2,得到a=﹣,∴抛物线为y=﹣x2,∴x=﹣4时,y=﹣8,∴点B坐标(﹣4,﹣8),∴a=﹣,点B坐标(﹣4,﹣8).(2)设直线AB为y=kx+b,则有,解得,∴直线AB为y=x﹣4,∴过点B垂直AB的直线为y=﹣x﹣12,与y轴交于点P(0,﹣12),过点A垂直AB的直线为y=﹣x,与y轴交于点P′(0,0),∴点P在y轴上,且△ABP是以AB为直角边的三角形时.点P坐标为(0,0),或(0,﹣12).(3)如图四边形ABB′A′是正方形,过点A作y轴的垂线,过点B、点A′作x轴的垂线得到点E、F.∵直线AB解析式为y=﹣x﹣12,∴△ABF,△AA′E都是等腰直角三角形,∵AB=AA′==6,∴AE=A′E=6,∴点A′坐标为(8,﹣8),∴点A到点A′是向右平移6个单位,向下平移6个单位得到,∴抛物线y=﹣x2的顶点(0,0),向右平移6个单位,向下平移6个单位得到(6,﹣6),∴此时抛物线为y=﹣(x﹣6)2﹣6.25.已知,AB=5,tan∠ABM=,点C、D、E为动点,其中点C、D在射线BM上(点C 在点D的左侧),点E和点D分别在射线BA的两侧,且AC=AD,AB=AE,∠CAD=∠BAE.(1)当点C与点B重合时(如图1),联结ED,求ED的长;(2)当EA∥BM时(如图2),求四边形AEBD的面积;(3)联结CE,当△ACE是等腰三角形时,求点B、C间的距离.【考点】三角形综合题.【分析】(1)如图1中,延长BA交DE于F,作AH⊥BD于H,先证明BF⊥DE,EF=DF,再利用△ABH∽△DBF,得=,求出DF即可解决问题.=BD•AH,计算即可.(2)先证明四边形ADBE是平行四边形,根据S平行四边形ADBE(3)由题意AC≠AE,EC≠AC,只有EA=EC,利用四点共圆先证明四边形ADBE是平行四边形,求出DH、CH即可解决问题.【解答】解:(1)如图1中,延长BA交DE于F,作AH⊥BD于H.在RT△ABH中,∵∠AHB=90°,∴sin∠ABH==,∴AH=3,BH==4,∵AB=AD,AH⊥BD,∴BH=DH=4,在△ABE 和△ABD中,,∴△ABD≌△ABE,∴BE=BD,∠ABE=∠ABD,∴BF⊥DE,EF=DF,∵∠ABH=∠DBF,∠AHB=∠BFD,∴△ABH∽△DBF,∴=,∴DF=,∴DE=2DF=.(2)如图2中,作AH⊥BD于H.∵AC=AD,AB=AE,∠CAD=∠BAE,∴∠AEB=∠ABE=∠ACD=∠ADC,∵AE∥BD,∴∠AEB+∠EBD=180°,∴∠EBD+∠ADC=180°,∴EB∥AD,∵AE∥BD,∴四边形ADBE是平行四边形,∴BD=AE=AB=5,AH=3,∴S=BD•AH=15.平行四边形ADBE(3)由题意AC≠AE,EC≠AC,只有EA=EC.如图3中,∵∠ACD=∠AEB(已证),∴A、C、B、E四点共圆,∵AE=EC=AB,∴=,∴=,∴∠AEC=∠ABC,∴AE∥BD,由(2)可知四边形ADBE是平行四边形,∴AE=BD=AB=5,∵AH=3,BH=4,∴DH=BD﹣BH=1,∵AC=AD,AH⊥CD,∴CH=HD=1,∴BC=BD﹣CD=3.24.如图,已知二次函数y=x2+bx+c图象顶点为C,与直线y=x+m图象交于AB两点,其中A点的坐标为(3,4),B点在y轴上.(1)求这个二次函数的解析式;(2)联结AC,求∠BAC的正切值;(3)点P为直线AB上一点,若△ACP为直角三角形,求点P的坐标.【分析】(1)先把A点坐标代入y=x+m求出m得到直线AB的解析式为y=x+1,这可求出直线与y轴的交点B的坐标,然后把A点和B点坐标代入y=x2+bx+c中得到关于b、c的方程组,再解方程组求出b、c即可得到抛物线解析式;(2)如图,先抛物线解析式配成顶点式得到C(1,0),再利用两点间的距离公式计算出BC2=2,AB2=18,AC2=20,然后利用勾股定理的逆定理可证明△ABC为直角三角形,∠ACB=90°,于是利用正切的定义计算tan∠BAC的值;(3)分类讨论:当∠APC=90°时,有(2)得点P在B点处,此时P点坐标为(0,1);当∠ACP=90°时,利用(2)中结论得tan∠PAC==,则PC=AC,设P(t,t+1),然后利用两点间的距离公式得到方程t2+(t+1﹣1)2=20,再解方程求出t即可得到时P点坐标.【解答】解:(1)把A(3,4)代入y=x+m得3+m=4,解得m=1∴直线AB的解析式为y=x+1,∵当x=0时,y=x+1=1,∴B(0,1),把B(0,1),A(3,4)代入y=x2+bx+c得,解得,∴抛物线解析式为y=x2﹣2x+1;(2)如图,∵y=x2﹣2x+1=(x﹣1)2,∴C(1,0),∴BC2=12+12=2,AB2=32+(4﹣1)2=18,AC2=(3﹣1)2+42=20,而2+18=20,∴BC2+AB2=AC2,∴△ABC为直角三角形,∠ACB=90°,∴tan∠BAC===;(3)当∠APC=90°时,点P在B点处,此时P点坐标为(0,1);当∠ACP=90°时,∵tan∠PAC==,∴PC=AC,设P(t,t+1),∴t2+(t+1﹣1)2=20,解得t1=﹣,t2=(舍去),此时P点坐标为(﹣,﹣ +1),综上所述,满足条件的P点坐标为(0,1)或(﹣,﹣ +1).【点评】本题考查了二次函数的综合题:熟练掌握二次函数的性质和一次函数图象上点的坐标特征;能运用待定系数法求二次函数解析式;理解坐标与图形性质,记住两点间的距离公式;能利用勾股定理的逆定理证明直角三角形.25.如图,▱ABCD中,AB=8,AD=10,sinA=,E、F分别是边AB、BC上动点(点E 不与A、B重合),且∠EDF=∠DAB,DF延长线交射线AB于G.(1)若DE⊥AB时,求DE的长度;(2)设AE=x,BG=y,求y关于x的函数解析式,并写出函数的定义域;(3)当△BGF为等腰三角形时,求AE的长度.【分析】(1)DE⊥AB时,根据sinA=即可解决问题.(2)如图2中,作DM⊥AB于M,根据DG2=DM2+MG2=AGEG,列出等式即可解决问题.(3)分三种情形①BF=BG,②FB=FG,③GB=GF,根据BF∥AD,得出比例式,列方程即可解决.【解答】解:(1)如图1中,∵DE⊥AB,∴sinA==,∵AD=10,∴DE=8.(2)如图2中,作DM⊥AB于M,由(1)可知DM=8,AM=6,MG=AB﹣AM=8﹣6=2,∴DG2=DM2+MG2,∵∠DGE=∠DGA,∠GDE=∠A,∴△DGE∽△AGD,∴=,∴DG2=AGEG,∴DM2+MG2=AGEG,∴82+(2+y)2=(8+y)(8+y﹣x),∴y=(0<x<8)(3)①当BF=FG时,∵BF∥AD,∴=,∴AD=AG=10,∴y=2,即=2,解得x=2,∴AE=2.②当FB=FG时,∵BF∥AD,∴=,∴AD=DG=10,∵DM⊥AG,∴AM=MB=6,∴AG=12,∴y=4,即=4,解得x=.③当GB=GF时,∵BF∥AD,∠GBF=∠BFG,∴∠A=∠GBF,∠ADG=∠BFG,∴∠A=∠ADG,∵∠A=∠EDG,∴∠EDG=∠ADG,∴此时点E与点A重合,不合题意.综上所述AE=2或时,△BFG是等腰三角形.【点评】本题考查四边形综合题、锐角三角函数、相似三角形的判定和性质、平行线分线段成比例定理、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,学会用方程的思想解决问题,属于中考常考题型.11 / 11。

相关文档
最新文档