新人教版初中数学七年级上册《第一章有理数:1.2.1有理数》赛课教学设计_0

合集下载

新人教版初中数学七年级上册《第一章有理数:1.2.1有理数》公开课教案_1

新人教版初中数学七年级上册《第一章有理数:1.2.1有理数》公开课教案_1

有理数教学目标知识技能:理解有理数的含义,能够把给出的有理数分类、了解0在有理数分类中的作用.过程与方法:1. 经过本节课的学习,使学生树立分类讨论的观点和能够正确地进行分类的能力.2.培养学生独立发现问题、分析问题、解决问题的能力.情感态度价值观:通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.教学重难点重点:会把已给的有理数进行分类。

难点:掌握两种有理数的分类方法。

教学过程一、复习导入复习所学知识,同时引出新的问题――有理数的分类.问题1:到现在为止,我们已经学过的数有哪些?举出实际例子加以说明。

学生活动设计:学生回忆所学过的数,同时举出相应的例子,一可以让学生复习旧的知识,二可以在所提问题中发现新的知识学生举例:1,2,-1,-3,,0,π等问题2:对上述列举的数,我们怎样进行分类?学生活动设计:学生根据数的特征进行分类,显然可以把小学学过的数(正数)分成一类――正数,把正数前面加负号(负数)的数分成一类――负数,0既不是正数也不是负数;也可以分成整数和分数,于是有下列分类:正整数,如:1、2、3... 零:0 负整数:-1,-2,-3...教师活动设计:引导学生理解有理数以及有理数的分类:正整数,零和负整数统称整数,正分数和负分数统称分数.整数和分数统称有理数,这里的分数特指是分母不为1的分数,整数有时可以认为是分母是1的分数.二、新课讲解引导学生进行对有理数进行分类,从而体会分类讨论的数学思想.问题3:怎样对有理数进行分类?学生活动设计:分组,讨论,得出结论.把一些有共同特征的数放在一起,就组成一个数的集合,简称数集.所有的有理数组成的数集叫做有理数集,所有整数组成的数集叫做整数集.问题4:你能解决下列问题吗?(1)0是整数吗?是正数吗?是有理数吗?(2)-5是整数吗?是负数吗?是有理数吗?(3)自然数是整数吗?是正数吗?是有理数吗?(4)下列有理数中,哪些是整数?哪些是分数?哪些是正数?哪些是负数?-7、10.1、89、0、-0.67、、〔解答〕(1)0是整数、不是正数但是有理数(2)-5是整数、负数、有理数(3)自然数是整数,不是所有的自然数是正数(比如0),所有的自然数都是有理数学生活动设计:学生独立思考上述问题,举手发言,错误是其他学生订正。

人教版初中数学七年级上册1.2.1有理数(教案)

人教版初中数学七年级上册1.2.1有理数(教案)
2.提高学生运用有理数进行问题分析、解决的能力,培养逻辑思维和推理能力;
3.培养学生合作交流、共同探讨的学习习惯,增强数学交流与反思的能力;
4.激发学生运用数轴等工具进行直观想象,培养几何直观和空间观念;
5.引导学生通过解决实际问题,体会数学与生活的紧密联系,提高数学应用意识。
核心素养目标主要包括:
最后,我认识到教学过程中要时刻关注同学们的学习反馈,及时调整教学方法。在今后的教学中,我会更加注重个体差异,针对性地进行辅导,帮助每一位同学克服学习难点,真正掌握有理数的知识。
举例:理解+3和-3互为相反数,3和-3的绝对值都是3;掌握加减法的运算法则,如同号相加、异号相加等。
(3)有理数在数轴上的表示:掌握数轴上的点与有理数的对应关系。
举例:数轴上,点A表示的数是-2,点B表示的数是3,那么点A和点B之间的距离是5。
(4)有理数的大小比较:掌握有理数的大小比较法则,并能应用于实际问题。
难点解析:学生可能难以理解负分数在数轴上的位置,例如,如何表示-1/2。
(3)有理数的大小比较:在涉及负数和分数的大小比较时,学生可能会混淆。
难点解析:比较两个分数大小时,学生可能不清楚如何处理分子和分母的符号及大小关系。
(4)实际问题的应用:将有理数应用于解决实际问题时,学生可能难以找到问题中的数量关系。
数轴的教学也是一个挑战。虽然通过实验操作和多媒体演示,大多数同学能够理解数轴上的点与有理数的对应关系,但仍有一些同学对负分数在数轴上的位置感到困惑。我想,在接下来的课程中,可以设计一些更具针对性的练习题,让学生在解题过程中更好地把握数轴的应用。
此外,小组讨论环节让我看到了同学们的积极性和创造力。他们能够将所学的有理数知识应用到实际问题中,并提出自己的见解。但在引导讨论时,我也发现部分同学在提出问题和解决问题的过程中,逻辑思维还不够严密。为了提高同学们的思维能力,我计划在后续的教学中,多设计一些开放性问题,鼓励同学们多角度、多维度地思考问题。

人教版(2024版)初中数学七年级上册 第一章有理数 1.2.1 有理数的概念 教学设计

人教版(2024版)初中数学七年级上册 第一章有理数 1.2.1 有理数的概念 教学设计

课堂教学设计1、复习、导入大于0 的数叫正数,小于0的数叫负数0既不是正数,也不是负数正数的符号用+ 表示,书写时可以省略负数的符号用-表示,书写时不能省略(1)汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正。

汽车向北行驶75km,记做______km(或____km),汽车向南行驶100km,记做________km;(2)如果向银行存入50元记为50元,那么-30.50元表示______________________;复习巩固话题迅速将学生的注意力吸引到课堂上来。

使学生生认知冲突,渴艺望了解其中的奥秘从而调动了学生学习的积极性。

2、精讲新课在小学阶段和上一节中,我们认识了很多数。

回想一下,到目前为止,我们认识了哪些数? 你能举几个例子吗?写在黑板上。

观察黑板上的这些数,能否将所写的数按如下类型进行归类呢?有限小数:0.5 0.25 0.125 1.3 -0.5进一步地,正整数可以写成正分数的形式,可以写成分数形式的数称为有理数(rational number)有理数分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数辨析学生自己尝试分类时,可能会很大略,教师赐予引导和鼓励,划分数的种类要从文字所表示的意义上去引导,这样学生易于理角军有限小数或无限循环小数都可以化成分数,为下-问题做好铺垫,通过将三者进行比较,归纳得出有理数是一个整数和-个非零整数的比的本质特征,让学生深入理解有理数的概念在多媒体上展示有理数的分类表,分分类的标准要引导学生去体会2、精讲新课小故事:有理数其实并不比别的数更“有道理”,事实上是一个翻译失误。

有理数(rational number)一词从西方传来,rational通常的意义是“理性的”,所以被误译为有理数。

但这个词实际上来源于古希腊,在古希腊语中是比率的意思。

所以意义也很明显,就是整数的“比”。

毕达哥拉斯学派认为,世界上一切对象都是由整数或整数之间的商组成,这就是“万物皆数”理论,也是人类对有理数最早的认识和总结。

人教版数学七年级上册第一章有理数《1.2.1有理数》教案设计

人教版数学七年级上册第一章有理数《1.2.1有理数》教案设计

相亲成功的5个预示信号. -回复相亲是一个帮助单身人士找到合适伴侣的途径,但是在相亲中,一方是否对另一方有兴趣并不总是那么容易辨认。

然而,有一些明显的信号表明相亲可能成功。

在本文中,我们将讨论5个相亲成功的预示信号,帮助你在相亲过程中更好地判断对方是否对你有兴趣。

首先,相亲成功的预示信号之一是积极主动的参与。

当一个人在相亲中对你表现出积极主动,例如主动提问、主动分享个人信息等,往往意味着对你有一定程度的兴趣。

这表明对方想要更多了解你,并且有意愿和你建立更深层次的联系。

相比之下,如果对方在相亲中表现得很被动,缺乏主动性,可能意味着对你的兴趣不高。

其次,对方在相亲中的表情和身体语言也可以作为相亲成功的预示信号。

人们常常无意识地通过面部表情和身体语言来表达他们的感受。

如果对方在相亲中展示出笑容、接近的姿势,例如身体稍微逼近你的方向、注视你的眼睛等,这通常是积极的信号,表明对方对你有吸引力。

然而,如果对方的面部表情呆滞、冷漠,或者身体语言松散、远离你,这可能意味着对方对你不感兴趣。

第三个相亲成功的预示信号是有共同兴趣和话题。

共同的兴趣和话题是建立深层次联系的重要基础。

如果你在相亲中发现和对方有许多共同兴趣和话题,例如相同的爱好、相似的价值观等,这表明你们有更多的共性,更容易建立起有意义的关系。

另一方面,如果你和对方在相亲中发现没有太多的共同兴趣和话题,只能勉强保持对话,这可能意味着你们之间的互动是困难和无趣的。

第四个相亲成功的预示信号是对方对你的关注和关心。

在相亲中,如果对方主动询问你的生活、工作、家庭等方面的事情,并表现出真正的关心和兴趣,这通常是一个很好的迹象。

这意味着对方愿意了解更多的你,包括你的背景和个人经历,而不仅仅是表面上的了解。

相比之下,如果对方只关注自己并且不对你展示关心,这可能表明对方对你没有太多兴趣。

最后,双方在相亲中的互动和对话是判断相亲是否成功的重要因素。

如果在相亲中,你和对方能够保持流畅、愉快的对话,并且没有沉默尴尬的时刻,这通常是一个好的迹象。

人教版七年级数学上册1.2.1《有理数》教学设计

人教版七年级数学上册1.2.1《有理数》教学设计

人教版七年级数学上册1.2.1《有理数》教学设计一. 教材分析《有理数》是人教版七年级数学上册第一章第二节的第一课时,主要介绍了有理数的定义、分类和运算法则。

本节课的内容是学生学习数学的基础,对于培养学生的逻辑思维和抽象思维能力具有重要意义。

教材通过生动的实例和丰富的练习,帮助学生理解和掌握有理数的概念和运算法则,为后续的学习打下基础。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于实数的概念有一定的了解。

但是,对于有理数的定义和分类,以及有理数的运算法则,可能还存在一定的困惑。

因此,在教学过程中,需要注重引导学生从实际问题中抽象出有理数的概念,并通过大量的练习,让学生熟练掌握有理数的运算法则。

三. 教学目标1.了解有理数的定义、分类和运算法则。

2.能够运用有理数的运算法则进行简单的计算。

3.培养学生的逻辑思维和抽象思维能力。

四. 教学重难点1.有理数的定义和分类。

2.有理数的运算法则。

五. 教学方法1.情境教学法:通过实际问题引入有理数的概念,让学生从实际问题中抽象出有理数的概念。

2.讲解法:对于有理数的定义、分类和运算法则,采用讲解法进行详细讲解。

3.练习法:通过大量的练习,让学生熟练掌握有理数的运算法则。

六. 教学准备1.PPT课件:制作与本节课内容相关的PPT课件,用于辅助教学。

2.练习题:准备与本节课内容相关的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT课件展示一些实际问题,如温度、海拔等,引导学生从实际问题中抽象出有理数的概念。

2.呈现(10分钟)通过PPT课件,详细讲解有理数的定义、分类和运算法则。

讲解过程中,注意结合实例进行说明,让学生更好地理解和掌握。

3.操练(10分钟)让学生进行一些有关有理数的运算练习,巩固所学知识。

教师可适时给予提示和指导,确保学生能够熟练掌握有理数的运算法则。

4.巩固(5分钟)通过PPT课件,总结本节课所学的主要内容和知识点,帮助学生巩固记忆。

新人教版初中数学七年级上册《第一章有理数:1.2.1有理数》优质课教学设计_0

新人教版初中数学七年级上册《第一章有理数:1.2.1有理数》优质课教学设计_0

1.2.1有理数一、教学目标知识与技能1、掌握有理数的概念。

2、会对有理数按一定标准进行分类。

通过引导学生自主探究有理数的分类,培养学生分类讨论的观点和正确进行分类的能力。

情感态度与价值观1、体会分类是数学上常用的处理问题的方法。

2、通过师生合作,使整数、分数在引入负数后能够达到完善,从而体验获得成功的快乐。

二、学情分析刚进入七年级,学生抱有新的希望,渴求在新的环境中得到新的知识,对各门功课都有一种新奇感,带着这种期望心理,带着这种求知欲望,刚开始就遇到了大量的枯燥的概念:如有理数,相反数,正数,负数,绝对值等。

因此要求我们教学中根据教材内容,由浅入深,自然过渡,学生学起来容易接受和理解。

另外,在引入新概念前,向学生简单讲解一点数学史,激发学生的求知欲。

三、重点难点重点:正确理解有理数的概念难点:有理数的分类及其分类标准四、教学过程1.创设情境,引入新知在男子110米栏决赛中,中国选手刘翔以12.91秒的成绩夺得金牌,这个成绩打破了12.96的奥运会纪录,平了世界纪录,实现了中国男子田径金牌0的突破。

在雅典奥运会女子柔道-52公斤级的冠军争夺战中,中国选手冼东妹仅用1.1分钟,就为中国柔道队夺得首枚金牌。

女力士唐功红在女子+75公斤级举重比赛中,不负众望,以抓举122.5公斤,挺举182.5公斤,总成绩305公斤夺得第18枚金牌,与获银牌的韩国选手相比,她的抓举重量-7.5公斤,挺举重量+10公斤。

师生活动:学生观看奥运会比赛视频,观察其中出现的数据。

教师指出出现了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,我们将数系扩充到有理数,适时板书课题。

【设计意图】通过白板播放视频,一起重温奥运会精彩瞬间,在调动学生的听觉、视觉的基础上,有效地激发学生的学习兴趣,为一堂课开个好头做好铺垫。

2.信息交流,明确概念活动一:110,12.91,12.96,0,-52,1.1,122.5,182.5,+75,305,18,-7.5,+10.1.在以上各数中,哪些是在小学里学过的数?2.在小学里学过的数中,有没有哪类数在上面没有出现?请举例说明。

新人教版初中数学七年级上册《第一章有理数:1.2.1有理数》公开课获奖教案_0

新人教版初中数学七年级上册《第一章有理数:1.2.1有理数》公开课获奖教案_0

《有理数的加法》教学设计(一)知识与技能目标1、经历探索有理数加法法则的过程,理解有理数的加法法则。

2、运用有理数加法法则熟练进行整数加法运算。

(二)过程与方法目标1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。

2、在探索过程中感受数形结合和分类讨论的数学思想。

3、渗透由特殊到一般的唯物辩证法思想。

(三)情感态度与价值观目标1、通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。

2、让学生体会到数学知识来源于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。

3、培养学生合作意识,体验成功,树立学习自信心。

二、教学重难点重点:理解和运用有理数的加法法则。

难点:理解有理数加法法则,尤其是理解异号两数相加的法则。

三、教学过程(一)引入新知-新3+3=63+0=3(-3)+(-9)=?如果负数也要加入加法大家庭,该怎么计算?(二)趣味探究一只公鸡的路线-行回顾数轴三要素,探究公鸡的行走路线:1.公鸡从起点开始向右走3米,再向右走2米,距离原点有多远?它在什么方向?(+3) + (+2) = +52.公鸡从起点开始向左走5米,再向左走2米,距离原点有多远?它在什么方向?(-5) + (-2 ) = -7小结:由1.2点,你能得到什么启发?生:由(1)(2)式得: 同号两数相加,取相同符号,并把绝对值相加。

教师举例:(-5)+(-100)=?(+8)+(+9)=?3.公鸡从起点开始向右走5米,再向左走2米,距离原点有多远?它在什么方向?(+5) + (-2 ) = +74.公鸡从起点开始向左走7米,再向右走5米,距离原点有多远?它在什么方向?(-7) + (+5 ) = -2小结:由3.4点,你能得到什么启发?生:由(3)(4)式得:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

七年级数学上册第一章有理数12有理数121有理数教案新版新人教版.docx

七年级数学上册第一章有理数12有理数121有理数教案新版新人教版.docx

1. 2. 1有理数课题:1.2. 1有理数课时一课时教学设计课标要求理解有理数的意义教材及学情分析本节内容位于本章第二节的第一小节,是继小学学的数的范围的第一次扩充,主要类容是有理数的概念,为后面学习数轴、相反数、绝对值、有理数的运算打*下基础。

学生已经知道,0以外的自然数实际上是正数,对负整数、正分数、负分数的知识都有一定的了解,为学习本节•提供了知识基础。

但是学生对知识的归纳整理的能力相对较弱,可以让学生先自己回顾,再帮助整理。

课时教学目标1.掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力。

2.了解分类标准与分类结果的相关性,初步了•解“集合”的含义。

3.体会分类是数学上常用的处理问题的方法。

重点正确理解有理数的概念难点掌握有理数的分类方法教法学法指导引导、归纳与练习相结合教具准备.多媒体课件教学过程提要环节学生要解•决的问题或完成的任务师生活动设计意图引入新课.回顾学过的数,尝试将它们进行分类我们学过的数冇哪些?如1, 2, 3,…;0;女0 — 1, —2, —3,…;通过对整数、分数的回忆,引出有理数的概念。

知道有理数的定义一、有理数的定义:师:通过之前的学习我们知道:正整数、0和负整数合称整数;正分数、负分数合称分数;现在我通过对整数、分们将整数和分数统称为有理数。

数的复习,引出生:回顾Z前学习的数,尝试对数进行分类。

有理数的概念…再根据概念,为二、有理数的分类:有理数的分类做问题:你能对有理数进行分类吗?铺垫。

方法一: 按定义分类r正整数〔整数j 0有理数<[负整数< 「正分数.教根据不同的分类依1分数[负分数.据・,会对有理数进彳亍分类学过程明确有理数分类需要注意的问题根据不同的分类有理数分类盂要注意的问题:方法.对有理数1、能约分成整数的数不能算做分数;进行分类…体会2、两个整数的比、有限小数、无限循环小数都是分类方法,尝试分数;但无限不循环小数不是分数;进行分类3、无限不循坏小数不是有理数;(无理数)4、整数中除了正整数和负整数,还有0知道n (无理数)这一特殊的数,属.于正数,却不是正有理数教.学过程完成练习,巩固知识厂正有理数屮,I正分数.有理数 < 零〜负整数.I负有理数J ,[负分数.思考:正数和正有理数有什么区别呢?二、练习:例仁把下列备数填在相应的集合中:177—3,— ,0, J,兀,+2. /2 ,—0.65 ,+300 %, —0. —2 7 正数朶合:{ } 负数集合:{ } 分数集合:{ } 整数集合:{ } 非负数集合:{ } 有理数集合:{ }注意:1、可以先化简成整数的数是整数不是分数;2、非负整数集合包括正整数和0,也称为自然数集合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题 1.2有理数课时 1
教学目标
知识与技能:1.理解有理数的意义。

2.会根据要求把给出的有理数分类。

3.了解“0”在有理数分类中的作用。

过程与方法:通过分类、小组讨论理解和掌握新知
情感态度价值观:.培养学生分类讨论的数学思想及对立统一的辩证唯物主义的观点。

教学重点和难点
重点:了解有理数包括哪些数。

难点:要明确有理数分类的标准,分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。

教学手段工具:应用投影仪,投影片黑板、粉笔。

教学方法
方法:分层次教学,讲授、练习相结合。

教学过程一、复习引入:
1.填空:
①正常水位为0m,水位高于正常水位0.2m 记作,低于正常水位0.3m记作。

②乒乓球比标准重量重0.039g记作,比标准重量轻0.019g记作,标准重量记作。

2.一个物体沿东西两个相反的方向运动时可以用正负数表示它们的运动,如果向东运动4m记作4m,向西运动8m记作;如果―7m表示物体向西运动7m,那么6m 表明物体怎样运动?
答案:1.+0.2;–0.3;+0.039;–0.019;2.–8m;向东运动6m。

二、讲授新课:
1.数的扩充:
数1,2,3,4,…叫做正整数;―1,―2,―3,―4,…叫做负整数;正整数、负整数和零统称为整数;数
3
2,
4
1,8
5
4,+5.6,…叫做正分数;―
9
7,―
7
6,―3.5,…叫做负分数;正分数和负分数统称为分数;整数和分数统称为有理数。

2.思考并回答下列问题:
①“0”是整数吗?是正数吗?是有理数吗?
②“―2”是整数吗?是正数吗?是有理数吗?
③自然数就是整数吗?是正数吗?是有理数吗?
要求学生区分“正”与“整”;小数可化为分数。

3.有理数的分类
不同的分类标准可以将有理数进行不同的分类:
①先将有理数按“整”和“分”的属性分,再按每类数的“正”、“负”分,即得如下分类表:
{
负分数
正分数
分数
负整数
正整数
整数
有理数






②先将有理数按“正”和“负”的属性分,再按每类数的“整”、“分”分,即得如下分类表:
{{负分数
负整数负有理数正分数正整数正有理数有理数0⎩⎨⎧
注:①“0”也是自然数。

②“0”的特殊性。

4.把一些数放在一起,就组成一个数的集合,简称数集(set of number )。

所有正数组成的集合,叫做正数集合;所有负数组成的集合叫做负数集合;所有整数组成的集合叫整数集合;所有分数组成的集合叫分数集合;所有有理数组成的集合叫有理数集合;所有正整数和零组成的集合叫做自然数集。

5.例题;
例1:把下列各数填入表示它所在的数集的圈里:
―18,722,3.1416,0,2001,53-,―0.142857,95℅.
正数集 负数集
整数集 有理数集
解:
722,3.1416,2001, 95℅. –18, 53-,―0.142857
正数集 负数集
―18,72
2,3.1416,0,
―18,0,2001 2001,53
-,―0.142857,95℅
整数集 有理数集
例2:把下列各数填入相应集合的括号内:
29,―5.5,2002,76,―1,90%,3.14,0,―23
1,―0.01,―2,1 (1)整数集合:{29,2002,―1,0,―2,1 …}
(2)分数集合:{ ―5.5,76,90%,3.14, ―23
1,―0.01,…} (3)正数集合:{29,2002,7
6,90%,3.14,1,…} (4)负数集合:{―5.5,―1,―23
1,―0.01,―2,…} (5)正整数集合:{29,2002,1,…}
(6)负整数集合:{―1,―2,…}
(7)正分数集合:{
7
6,90%,3.14,…}
(8)负分数集合:{―5.5,―2
3
1,―0.01,…}
(9)正有理数集合:{29,2002,
7
6,90%,3.14,1,…}
(10)负有理数集合:{―5.5,―1,―2
3
1,―0.01,―2,…}
注:要正确判断一个数属于哪一类,首先要弄清分类的标准。

要特别注意“0”不是正数,但是整数。

在数学里,“正”和“整”不能通用,是有区别的,“正”是相对于“负”来说的,“整”是相对于分数而言的。

6.课堂练习:
(1)下列说法正确的是()
①零是整数;②零是有理数;③零是自然数;④零是正数;⑤零是负数;⑥零是非负数。

A:①②③⑥B:①②⑥C:①②③D:②③⑥
(2)下列说法正确的是()
A:在有理数中,零的意义表示没有B:正有理数和负有理数组成全体有理数C:0.5既不是整数,也不是分数,因而它不是有理数
D:零是最小的非负整数,它既不是正数,又不是负数
(3)―100不是()
A:有理数B:自然数C:整数D:负有理数
(4)判断:
(1)0是正数()(2)0是负数()(3)0是自然数()(4)0是非负数()(5)0是非正数()(6)0是整数()(7)0是有理数()(8)在有理数中,0仅表示没有。

()(9)0除以任何数,其商为0 ()(10)正数和负数统称有理数。

()(11)―3.5是负分数()(12)负整数和负分数统称负数()(13)0.3既不是整数也不是分数,因此它不是有理数()
(14)正有理数和负有理数组成全体有理数。

()答案:1.A;2.D;3.B;4.×;×;√;√;√;√;√;×;×;×;√;×;×;×。

三、课堂小结:
教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?
由学生小结有理数的定义和两种分类方法。

板书设计
1.2有理数
1、有理数的两种分类方法
2、例题讲解
3、讨论练习
4、小结
5、作业
教学反思(课后填写)
通过这节课的学习发现学生对有理数的分类分的不是很清楚,而是很混乱就更不要说运用了,所以教师必需再安排课时进行精讲精练,还有少部分学生必需在办公室进行个别辅导。

.。

相关文档
最新文档