初中数学七年级上册知识点汇总

合集下载

七年级上册数学知识点归纳总结

七年级上册数学知识点归纳总结

七年级上册数学知识点归纳总结一、知识点:1. 代数式:用运算符号把数与字母连起来的式子叫做代数式。

单独的一个数或一个字母也叫做代数式。

2. 单项式:只含有数与字母的积的代数式叫做单项式。

3. 系数:单项式中的数字因数叫做这个单项式的系数。

4. 次数:一个单项式中,所有字母的指数之和叫做这个单项式的次数。

5. 整式:只含有字母的积的式子叫做整式。

6. 多项式:几个单项式的和叫做多项式。

7. 项:在多项式中,每个单项式叫做多项式的项。

8. 常数项:不含字母的项叫做常数项。

9. 升幂排列与降幂排列:从左向右,指数由小到大是升幂排列;从左向右,指数由大到小是降幂排列。

10. 平行线:在同一平面内,不相交的两条直线叫做平行线。

11. 同位角、内错角、同旁内角:两条直线被第三条直线所截,如果两个角都在两直线的同侧,并且在第三条直线的两侧,那么这样的一对角叫做同旁内角;如果两个角都在两直线的同侧,并在第三条直线的同旁,那么这样的一对角叫做同位角;如果两个角都在两直线的异侧,并且都在第三条直线的同旁,那么这样的一对角叫做内错角。

12. 对顶角:两个角的两边分别对应垂直,则这两个角叫做对顶角。

13. 垂直:两条直线相交成直角时,这两条直线互相垂直。

14. 垂线与垂足:从直线外一点向直线引垂线,这点和垂足之间的线段叫做垂线段。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

15. 两点之间的所有连线中,线段最短。

简单说成:两点之间线段最短。

16. 三角形:由不在同一条直线上的三条线段首尾顺次连接得到的图形叫做三角形。

17. 三角形的边、顶点、内角:三角形是由三条边、三个顶点、三条高组成的。

三条边分别叫做三角形的三边;三个顶点分别叫做三角形的三个顶点;三个内角分别叫做三角形的三个内角;其中最大的内角叫做最大角,它也是三角形的外角。

18. 三角形的基本性质:三角形任意两边的和大于第三边;三角形三个内角和等于180°;三角形具有稳定性。

初中七年级数学(上)知识点汇总

初中七年级数学(上)知识点汇总

初中七年级数学(上)知识点汇总第一章有理数二.学问概念1、有理数:〔1〕凡能写成形式的数,都是有理数。

正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

留意:0即不是正数,也不是负数;—a不肯定是负数,+a也不肯定是正数;p不是有理数;〔2〕有理数的分类:2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。

3.相反数:〔1〕只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;〔2〕相反数的和为0,a+b=0,a、b互为相反数4、肯定值:〔1〕正数的肯定值是其本身,0的肯定值是0,负数的肯定值是它的相反数;留意:肯定值的意义是数轴上表示某数的点离开原点的距离;肯定值可表示为:或;肯定值的问题常常分类商量;5、有理数比大小:〔1〕正数的肯定值越大,这个数越大;〔2〕正数永久比0大,负数永久比0小;〔3〕正数大于一切负数;〔4〕两个负数比大小,肯定值大的反而小;〔5〕数轴上的两个数,右边的数总比左边的数大;〔6〕大数—小数>0,小数—大数<0。

6、互为倒数:乘积为1的两个数互为倒数;留意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。

7、有理数加法法则:〔1〕同号两数相加,取相同的符号,并把肯定值相加;〔2〕异号两数相加,取肯定值较大的符号,并用较大的肯定值减去较小的肯定值;〔3〕一个数与0相加,仍得这个数。

8、有理数加法的运算律:〔1〕加法的交换律:a+b=b+a〔2〕加法的结合律:〔a+b〕+c=a+〔b+c〕。

9、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+〔—b〕。

10、有理数乘法法则:〔1〕两数相乘,同号为正,异号为负,并把肯定值相乘;〔2〕任何数同零相乘都得零;〔3〕几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数确定。

11、有理数乘法的运算律:〔1〕乘法的交换律:ab=ba;〔2〕乘法的结合律:〔ab〕c=a 〔bc〕;〔3〕乘法的安排律:a〔b+c〕=ab+ac。

初中数学七年级上册知识点总结

初中数学七年级上册知识点总结

初中数学七年级上册知识点总结一、开方及其运算1. 正数的开平方对于一个非负数 a,它的非负平方根是一个非负数,记作√a,称为 a 的开方根。

例如,√25=5,√36=6。

2. 负数的平方根对于一个负数a,它的非负平方根不存在实数,但是可以引入虚数单位i,记作√(-a)=i√a。

例如,√(-16)=4i。

3. 开方的基本性质(1)√a * √b = √(ab)(2)√a / √b = √(a / b)(3)√(a^m) = a^(m/2)二、有理数1. 有理数概念有理数包括正整数、负整数、分数以及零,可以表示为 m/n(其中 m 和 n 是整数,且n≠0)。

2. 有理数的比较对于两个有理数 a 和 b,有以下比较方法:(1)若 a > b,则 a - b > 0(2)若 a < b,则 a - b < 0(3)若 a = b,则 a - b = 03. 有理数的运算(1)有理数加减法同号相加取同号,异号相加取绝对值大的数的符号。

(2)有理数乘法同号相乘为正,异号相乘为负。

4. 有理数的乘方对于一个有理数 a 和正整数 n:(1)a^n = a * a * ... * a(共 n 个 a 相乘)(2)a^(-n) = 1 / a^n(其中a ≠ 0)5. 有理数的除法有理数的除法可以转化为乘法问题,例如 a / b = a * (1/b)。

其中,1/b 称为 b 的倒数。

三、代数1. 代数与代数式代数是研究数与数之间的关系的一门数学学科,其中大量使用了字母表示数。

代数式由数字、字母及运算符号组成的表达式。

2. 代数运算(1)代数式加减法将同类项相加或相减,保持字母部分一致,系数相加或相减。

(2)代数式乘法将代数式乘法化简为一个代数式,注意字母的次方相加原则。

(3)代数式乘方利用分配律和乘方公式对代数式进行乘方运算。

3. 一次方程一次方程是指一个未知数的最高次数为一的方程,可以表示为 ax + b = 0(其中a ≠ 0),解是一个数。

初中数学七年级上册知识点总结

初中数学七年级上册知识点总结

初中数学七年级上册知识点总结一、数与代数1. 自然数和整数- 自然数的定义与性质- 整数的定义与性质- 正数与负数的概念- 绝对值的概念及计算2. 有理数- 有理数的定义- 有理数的加法与减法- 有理数的乘法与除法- 有理数的乘方与开方- 有理数的大小比较3. 代数表达式- 字母表示数- 单项式与多项式- 代数式的加减运算- 代数式的化简4. 一元一次方程- 方程的概念- 一元一次方程的建立- 方程的解法(移项、合并同类项、系数化为1)- 方程解的应用5. 线性不等式与不等式组- 不等式的概念- 线性不等式的解法- 不等式组的解集- 不等式的应用二、几何1. 几何基本概念- 点、线、面、体的概念- 直线、射线、线段- 角的概念及分类(锐角、钝角、直角、平角、周角)2. 平面图形- 正方形的性质- 长方形的性质- 三角形的分类与性质- 四边形的内角和定理- 圆的基本性质(圆心、半径、直径、弦、弧、切线)3. 面积与体积- 长方形与正方形的面积计算- 三角形的面积计算- 圆的面积计算- 长方体与立方体的体积计算4. 坐标系- 平面直角坐标系的建立- 点的位置表示- 坐标系中的距离与斜率概念三、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制(条形图、折线图、饼图)2. 概率- 随机事件的概念- 概率的初步认识- 简单事件的概率计算四、解题技巧与方法1. 逻辑思维与推理- 数学问题的分析与解决步骤- 归纳与演绎推理2. 问题解决策略- 分类讨论法- 画图辅助法- 转化与化归法3. 练习与应用- 习题的选择与练习- 数学知识在实际生活中的应用以上是初中数学七年级上册的主要知识点总结。

在教学过程中,教师应根据学生的实际情况,适当调整教学进度和难度,确保学生能够扎实掌握每个知识点。

同时,鼓励学生通过大量的练习来巩固所学知识,并培养其解决实际问题的能力。

完整版)七年级上册数学知识点大全

完整版)七年级上册数学知识点大全

完整版)七年级上册数学知识点大全2)异号两数相加,取绝对值大的符号,并把绝对值相减;3)加数与被加数的顺序可以交换,即满足交换律;4)加法结合律成立,即(a+b)+c=a+(b+c);5)0是加法的零元素,即a+0=a;6)有理数加法满足可逆律,即对于任意有理数a,都有相反数-b,使得a+b=0.8.有理数减法法则:1)a-b=a+(-b);2)减数与被减数的顺序不能交换,即不满足交换律;3)减法不满足结合律,即(a-b)-c≠a-(b-c);4)减法没有零元素;5)有理数减法也满足可逆律,即对于任意有理数a,都有相反数-b,使得a-b=a+(-b)=0.9.有理数乘法法则:1)同号两数相乘,积为正数;2)异号两数相乘,积为负数;3)0乘以任何数都等于0;4)1是乘法的单位元素,即a×1=a;5)乘法满足交换律,即a×b=b×a;6)乘法满足结合律,即(a×b)×c=a×(b×c);7)有理数乘法满足可逆律,即对于任意非零有理数a,都有倒数1/a,使得a×1/a=1.10.有理数除法法则:1)a÷b=a×1/b;2)被除数为0时,无法进行除法运算;3)除数为0时,无意义;4)除法不满足交换律,即a÷b≠b÷a;5)除法不满足结合律,即(a÷b)÷c≠a÷(b÷c);6)有理数除法满足可逆律,即对于任意非零有理数a,都有倒数1/a,使得a×1/a=1.11.分数:1)分数由分子和分母组成,分母不能为0;2)分数可以化为最简分数,即分子和分母没有公因数;3)分数可以比大小,比较分数大小时,可以通分,然后比较分子大小;4)分数可以加减乘除,加减法通分后再进行运算,乘法直接将分子和分母相乘,除法将除数取倒数后再乘以被除数.12.小数:1)小数是有理数的一种表示形式;2)小数可以化为分数,分母为10的正整数的分数;3)小数的加减乘除法与分数的运算法则相同;4)小数可以用数轴表示,小数点左边的数表示整数部分,右边的数表示小数部分;5)小数可以化为百分数,即乘以100,化为千分数即乘以1000等.1.有理数的基本概念:有理数包括正有理数、负有理数和零,可以表示成分数形式,分母不为零。

初中数学七年级上册知识点总结(最新最全)

初中数学七年级上册知识点总结(最新最全)

提分数学七年级上知识清单第一章 有理数一.正数和负数⒈正数和负数的概念负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数注意:①字母a 可以表示任意数,当a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当a 表示0时,-a 仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数: 比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。

3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

2. (1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

初中数学七年级上数学知识点汇总

初中数学七年级上数学知识点汇总

第 1 页 共 38 页第一章:有理数及其运算知识要求:1、在具体情境中,理解有理数及其运算的意义;2、能用数轴上的点表示有理数,会比较有理数的大小。

3、借助数轴理解相反数与绝对值的意义,会求有理数的相反数与绝对值。

4、经历探索有理数运算法则和运算律的过程;掌握有理数的加、减、乘、除、乘方及简单 的混合运算;理解有理数的运算律,并能利用运算律简化运算,及能运用有理数及其运算 律解决简单的实际问题。

知识重点:绝对值的概念和有理数的运算(包括法则、运算律、运算顺序、混合运算)是本章的 重点。

知识难点:绝对值的概念及有关计算,有理数的大小比较,及有理数的运算是本章的难点。

考点:绝对值的有关概念和计算,有理数的有关概念及混合运算是考试的重点对象。

知识点: 一、有理数的基础知识 1、三个重要的定义(1)正数:像 1、2.5、这样大于 0 的数叫做正数;(2)负数:在正数前面加上“-” 号,表示比 0 小的数叫做负数;(3)0 即不是正数也不是负数,0 是一个具有特殊意义的 数字,0 是正数和负数的分界,不是表示不存在或无实际意义。

概念剖析:①判断一个数是否是正数或负数,不能用数的前面加不加“+”“-”去判断,要严格按照“大于 0 的数叫做正数;0 小的数叫做负数”去识别。

②正数和负数的应用:正数和负数通常表示具有相反意义的量。

③所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整 数统称为整数,正整数、0、负整数组成整数集合;④常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等 等;例 1 下列说法正确的是() A 、一个数前面有“-”号,这个数就是负数;B 、非负数就是正数;C 、一个数前面没有“-”号,这个数就是正数;D 、0 既不是正数也不是负数;3例 2 把下列各数填在相应的大括号中 8, ,0.125,0, - 4 1,- 6 , - 0.25 , 3正整数集合{ } 负整数集合{}整数集合{} 正分数集合{}例 3 如果向南走 50 米记为是 - 50 米,那么向北走 782 米记为是 , 0 米的意义是。

七年级上册数学知识点总结归纳

七年级上册数学知识点总结归纳

七年级上册数学知识点总结归纳一、表示数的各种方法1. 自然数:1, 2, 3……(不包括0)。

2. 整数:……-3,-2,-1,0,1,2,3……。

3. 分数:如1/2,3/4等。

4. 小数:如0.5,1.75等。

5. 百分数:如25%,60%等。

6. 带数:如2 1/3,3 3/4等。

二、正比例函数1. 定义:若两个量的比值为固定值,那么这两个量成正比例关系。

2. 公式:y=kx(k为比例系数)。

3. 图像特征:通过原点,且经过第一象限内的点,图像为一条直线。

三、初中几何基本概念1. 点:几何中最基本的概念。

它是没有大小、没有形状的。

2. 线段:由两个端点构成的线段,记为AB。

3. 直线:没有端点的笔直线段,上面有箭头表示。

4. 射线:有一端点,延伸方向上没有终点的线段,记为AB→。

5. 角:由两条射线共同确定的图形叫做角,角的度量用度来表示。

6. 多边形:由线段首尾相连构成的封闭图形,包括三角形、四边形等。

四、三角形和四边形的性质与计算1. 三角形的性质:(1)三角形内角和为180°。

(2)三角形外角等于不相邻两个内角之和。

(3)直角三角形斜边上的中线等于斜边一半。

(4)等腰三角形的底角(底边上的角)相等。

2. 四边形的性质:(1)对角线互相平分。

(2)相邻的角互补,即它们的和等于180°。

(3)平行四边形的对边相等。

(4)任意一个凸四边形的对角线互相交点的连线分成的两条线段之和相等。

五、比例1. 同比例关系:两个分量成正比例或反比例,叫做同比例关系。

2. 比例的性质:(1)比例中有0,另外一个分量也是0。

(2)比例中两个分量分别乘同一个数,比例不变。

(3)比例中两个分量互换,比例不变。

六、平面直角坐标系1. 定义:平面直角坐标系由数轴和坐标轴围成,分为第一象限、第二象限、第三象限和第四象限四个部分。

2. 坐标:平面直角坐标系中,点P到坐标轴的距离分别表示为横坐标和纵坐标,用(x,y)表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学七年级上册知识点汇总第一章、有理数(一)有理数1、正整数、0、负整数统称为整数;正分数、负分数统称为分数。

整数和分数统称为有理数。

特别指出:所有正整数组成正整数集合;所有负整数组成负整数集合;因为小数可以化为分数,所以我们也把小数看成分数。

(二)数轴概念:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。

特点:(1)在直线上任取一个点表示0,这个点叫做原点;(2)通常规定直线上从原点向右(或向上)为正方向,从原点向左(或向下)为负方向;(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,···,从原点向左,用类似的方法依次表示-1,-2,-3,···。

(三)相反数概念:只有符号不同的两个数叫做互为相反数。

特点:a和-a互为相反数,0的相反数是0。

(四)绝对值1、概念:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

记作|a|。

2、特点:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

即:(1)如果a>0,那么|a|=a;(2)如果a=0,那么|a|=0;(3)如果a<0,那么|a|=-a。

数学中规定,在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

3、比较大小(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小。

特别指出:异号两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑它们的绝对值。

二、有理数的加减法(一)有理数加法法则1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.3.一个数同0相加,仍得这个数。

运算定律:1.加法交换律:两个数相加,交换加数的位置,和不变。

表达式:a+b=b+a2.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

表达式:(a+b )+c=a+(b+c )(二)有理数的减法1.减去一个数,等于加上这个数的相反数。

表达式:a -b=a+(-b )2.加法定律对于减法也同样适用。

三、有理数的乘除法(一)有理数的乘法1.乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,都得0.2.特点:乘积是1的两个数互为倒数。

3.乘法定律:(1)乘法交换律:两个数相乘,交换因数的位置,积相等。

表达式:ab=ba(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

表达式:(ab )c=a (bc )(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

表达式:a (b+c )=ab+ac(二)有理数的除法1.除以一个不等于0的数,等于乘以这个数的倒数。

表达式:a ÷b=a·b1(b ≠0) 特点:两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0.2.有理数的加减乘除混合运算,如无括号指出先做什么运算,则与小学所学的混合运算一样,按照“先乘除,后加减”的顺序进行。

四、有理数的乘方1.求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在a n 中,a 叫做底数,n 叫做指数,当a n 看做a 的n 次方的结果时,也可读作“a 的n 次幂”。

推论:负数的奇次幂是负数,负数的偶次幂是正数。

显然,正数的任何次幂都是正数,0的任何正整数次幂都是0.2.有理数混合运算的顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

3.科学计数法概念:把一个大于10的数表示成a×10n的形式(其中a大于或等于1且小于10,n是正整数),这种表示方法叫做科学计数法。

第二章整式的加减一、整式1.数字与字母相乘的表示方法在含有字母的式子中如果出现乘号,通常将乘号写作“·”或省略不写,例如,100×t 可以写成100·t或100t。

2.单项式概念:在式子中含有数或字母的积,像这样的式子叫做单项式。

单独的一个数或一个字母也是单项式。

特点1:单项式中的数字因数叫做这个单项式的系数。

数字与字母相乘时,通常把数写在前面,如100t。

特点2:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如在单项式a2h中,字母a与h的指数的和是3,a2h的次数就是3.推论:对于单独一个非零的数,规定它的次数为零。

如100。

不含字母,所有指数为0.3.多项式概念:几个单项式的和叫做多项式。

其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

如多项式x2+2x+18的项是x2,2x与18,其中18叫做常数项。

特点:多项式里,次数最高项的次数,叫做这个多项式的次数。

如多项式x2+2x+18中次数最高项x2,这个多项式的次数是2.4.整式概念:单项式与多项式统称整式。

二、整式的加减1.同类项概念:我们把所含字母相同,并且相同字母的指数也相同的项叫做同类项。

如:100t与-252t,3x2与2x2,3ab2与-4ab2等。

表示方法:把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。

2.去括号时的符号变化如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如 +(x -3)去括号后为x -3即x 与3的符号不变。

如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

如-(x -3)去括号后为-x+3即x 与3的符号与原来相反。

3.整式的加减运算原则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

第三章 一元一次方程一、方程概念:列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程。

特点:方程中只含有一个未知数,未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。

二、等式的性质性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果a=b ,那么a±c=b±c性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

如果a=b ,那么ac=bc如果a=b (c ≠0),那么c a =cb 三、解一元一次方程解一元一次方程的一般步骤包括:去分母、去括号、移项、合并同类项、系数化为1等。

通过这些步骤可以使以x 为未知数的方程逐步向着x=a 的形式转化,这个过程主要依据等式的基本性质和运算律等。

四、用方程解决实际问题,是把实际问题转化为数学问题(方程)的过程,其中要特别关注从实际问题中分析出关键性的相等关系。

第四章 几何图形初步一、几何图形概念:长方体、圆柱、球、长(正)方形、圆、线段、点等,以及小学学过的三角形、四边形等,都是从形形色色的物体外形中得出的,它们都是几何图形。

1.立体图形概念:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一个平面内,它们是立体图形。

2.平面图形概念:有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们都是平面图形。

3.展开图概念:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

4、点、线、面、体(1).长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也称为体。

(2).包围着体的是面。

面有平的面和曲的面两种。

(3).面与面相交的地方形成线。

(4).线和线相交的地方是点。

二、直线、射线、线段1.经过两点有一条直线,并且只有一条直线。

简单说成:两点确定一条直线。

特点1:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

特点2:射线和线段是直线的一部分。

2.两点的所有连线中,线段最短,简单说成:两点之间,线段最短。

特点:连接两点间的线段的长度,叫做这两点的距离。

三、角1.度、分、秒概念:把一个周角360等分,每一份就是1度的角,记作1°;把1度的角60等分,每一份叫做1分得角,记作1';把1分得角60等分,每一份叫做1秒的角,记作1".2.一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的角的平分线。

3.一般地,如果两个角的和等于90°(直角),就说这两个角互为余角。

即其中每一个角是另一个角的余角。

4.如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。

补角的性质:同角(等角)的补角相等。

余角的性质:同角(等角)的余角相等。

相关文档
最新文档