圆周运动应用
生活中的圆周运动

N
员受到的地球引力近似等于他在地面测得的 体重mg) F
F万
四、离心运动
当F合=mw2r时,物体做匀速圆周运动 当F合< mw2r时,物体逐渐远离圆心运动 当F合=0时,物体沿切线方向飞出 当F合> mw2r时,物体做逐渐靠近圆心的运动
生活中的圆周运动
一、火车转弯问题(水平面的圆周运动)
1、内外轨道一样高
N
F
2、实际应用中的处理
N
G
向心力由外侧轨道对车 轮轮缘的挤压力F提供
G
向心力由重力G和支持 力N的合力提供
当轨道平面与水平面之间的夹角为θ,转弯 半径为R时,质量为m的火车行驶速度v0多 大轨道才不受挤压?
FN
θБайду номын сангаас
F合
G
θ
L
h
二、拱形桥
1.质量为m的汽车在拱形桥上以速度v行驶,若桥面的圆弧半径
为R,试画出汽车受力分析图,并求出汽车通过桥的最高点时对
桥的压力.汽车的重力与汽车对桥的压力谁大?V越大,压力如 何变化?
FN
mg
二、拱形桥
2.当汽车通过凹形桥最低点时,汽车对桥的压力比汽车 的重力大还是小呢? FN
mg
三、航天器中的失重现象
做圆周运动的物体,在所受合外力突然消失 或不足以提供圆周运动所需向心力时,就做逐渐 远离圆心的运动,这种运动就叫离心运动。
四、离心现象的应用与危害
应用
危害
圆周运动规律及应用+答案

圆周运动的规律及其应用一、 匀速圆周运动的基本规律1.匀速圆周运动的定义:作 的物体,如果在相等时间内通过的 相等,则物体所作的运动就叫做匀速圆周运动。
2.匀速圆周运动是:速度 不变, 时刻改变的变速运动;是加速度 不变, 时刻改变的变加速运动。
3.描述匀速圆周运动的物理量 线速度:r Tr t s v ωπ===2,方向沿圆弧切线方向,描述物体运动快慢。
角速度:Tt πθω2== 描述物体转动的快慢。
转速n :每秒转动的圈数,与角速度关系n πω2= 向心加速度: v r rv a ωω===22描述速度方向变化快慢,其方向始终指向圆心。
向心力:向心力是按 命名的力,任何一个力或几个力的合力只要它的 是使物体产生 ,它就是物体所受的向心力.向心力的方向总与物体的运动方向 ,只改变线速度 ,不改变线速度 .==ma F v m r m rv m ωω==22。
二、 匀速圆周运动基本规律的应用【基础题】例1:上海锦江乐园新建的“摩天转轮”,它的直径达98m ,世界排名第五,游人乘坐时,转轮始终不停地匀速转动,每转一周用时25min.下列说法中正确的是 ( )A . 每时每刻,每个人受到的合力都不等于零 B. 每个乘客都在做加速度为零的匀速运动C. 乘客在乘坐过程中对座位的压力始终不变D. 在乘坐过程中每个乘客的线速度保持不变【同步练习】1.一物体作匀速圆周运动,在其运动过程中,不发生变化的物理量是( )A .线速度B . 角速度C .向心加速度D .合外力2.质量一定的物体做匀速圆周运动时,如所需向心力增为原来的8倍,以下各种情况中可能的是( )A. 线速度和圆半径增大为原来的2倍B. 角速度和圆半径都增大为原来的2倍C. 周期和圆半径都增大为原来的2倍D. 频率和圆半径都增大为原来的2倍3.用细线将一个小球悬挂在车厢里,小球随车一起作匀速直线运动。
当突然刹车时,绳上的张力将( )A. 突然增大B. 突然减小C. 不变D. 究竟是增大还是减小,要由车厢刹车前的速度大小与刹车时的加速度大小来决定4.汽车驶过半径为R 的凸形桥面,要使它不至于从桥的顶端飞出,车速必须小于或等于( )A. 2RgB. RgC. Rg 2D. Rg 35.做匀速圆周运动的物体,圆半径为R ,向心加速度为a ,则以下关系式中不正确的是( )A. 线速度aR v =B. 角速度R a =ωC. 频率R a f π2=D. 周期aR T π2= 6.一位滑雪者连同他的滑雪板共70kg ,他沿着凹形的坡底运动时的速度是20m/s ,坡底的圆弧半径是50m ,试求他在坡底时对雪地的压力。
圆周运动的实例分析

圆周运动的实例分析圆周运动是指物体在固定圆周上做匀速旋转的运动。
它在生活中有着广泛的应用,例如车轮的旋转、地球绕太阳的公转等。
本文将通过分析两个具体实例来说明圆周运动的特点和应用。
实例一:车轮的旋转当车辆行驶时,车轮就会以一个轴为中心进行匀速旋转,这就是典型的圆周运动。
车轮的旋转不仅能够驱动车辆前进,还可以改变行驶方向。
根据牛顿第一定律,车轮受到的作用力与向心加速度成正比。
当车辆加速时,作用力增加,车轮的旋转速度也会增加,从而使车辆更快地行驶。
相反,当车辆减速或停止时,车轮的旋转速度也会相应减小或停止。
这种以车轮为例的圆周运动,为我们提供了便利的交通工具。
实例二:地球绕太阳的公转地球围绕太阳做匀速的圆周运动,这就是地球的公转。
这种公转使地球维持着相对稳定的轨道,保持了恒定的距离和倾斜角度,从而使我们能够有四季的交替和昼夜的变化。
地球公转的轨迹是一个近似于椭圆的轨道,太阳位于椭圆焦点之一。
地球公转的周期是365.24天,也就是一年的长度。
这个周期的长短决定了季节的变化和地球上生物的繁衍。
除了以上两个实例,圆周运动还广泛应用于其他领域。
例如,在工程中,我们常常需要使用电机来驱动各种设备的旋转,如风扇、洗衣机等。
这些旋转运动都是圆周运动的实例。
在体育竞技中,篮球、足球等球类运动都有着明显的圆周运动特点。
球员的投篮和射门都需要进行准确的角度和力度的控制,以确保球能够按照预定的轨道运动。
总之,圆周运动在我们的生活中随处可见,它是物体在固定圆周上做匀速旋转的运动。
不仅在自然界中存在着典型的实例,如车轮的旋转和地球的公转,而且在我们的日常生活和工程技术中也广泛应用。
圆周运动的特点和应用使得我们的生活更加便利、丰富多样,并为科学研究和技术发展提供了基础。
圆周运动教案 高中物理《圆周运动》教学设计(优秀5篇)

圆周运动教案高中物理《圆周运动》教学设计(优秀5篇)高中物理《圆周运动》教学设计【优秀5篇】由作者为您收集整理,希望可以在圆周运动教案方面对您有所帮助。
高一物理圆周运动教案篇一教学重点线速度、角速度的概念和它们之间的关系教学难点1、线速度、角速度的物理意义2、常见传动装置的应用。
高中物理圆周运动优秀教案及教学设计篇二做匀速圆周运动的物体依旧具有加速度,而且加速度不断改变,因其加速度方向在不断改变,其运动版轨迹是圆,所以匀速圆周运动是变加速曲线运动。
匀速圆周运动加速度方向始终指向圆心。
做变速圆周运动的物体总能分权解出一个指向圆心的加速度,我们将方向时刻指向圆心的加速度称为向心加速度。
速度(矢量,有大小有方向)改变的。
(或是大小,或是方向)(即a≠0)称为变速运动。
速度不变(即a=0)、方向不变的运动称为匀速运动。
而变速运动又分为匀变速运动(加速度不变)和变加速运动(加速度改变)。
所以变加速运动并不是针对变减速运动来说的,是相对匀变速运动讲的。
匀变速运动加速度不变(须的大小和方向都不变)的运动。
匀变速运动既可能是直线运动(匀变速直线运动),也可能是曲线运动(比如平抛运动)。
圆周运动是变速运动吗篇三高中物理《圆周运动》课件一、教材分析本节内容选自人教版物理必修2第五章第4节。
本节主要介绍了圆周运动的线速度和角速度的概念及两者的关系;学生前面已经学习了曲线运动,抛体运动以及平抛运动的规律,为本节课的学习做了很好的铺垫;而本节课作为对特殊曲线运动的进一步深入学习,也为以后继续学习向心力、向心加速度和生活中的圆周运动物理打下很好的基础,在教材中有着承上启下的作用;因此,学好本节课具有重要的意义。
本节课是从运动学的角度来研究匀速圆周运动,围绕着如何描述匀速圆周运动的快慢展开,通过探究理清各个物理量的相互关系,并使学生能在具体的问题中加以应用。
(过渡句)知道了教材特点,我们再来了解一下学生特点。
也就是我说课的第二部分:学情分析。
生活中的圆周运动

生活中的圆周运动在我们日常生活中,圆周运动是一种十分常见的现象。
无论是自然界中的现象,还是人类生活中的各种事物,都可以看到圆周运动的影子。
让我们来深入探讨一下生活中的圆周运动。
自然界中的圆周运动星星的轨道夜空中闪烁的星星并不是静止不动的,它们在天空中运动着。
这种运动有一个共同的规律,即围绕某个中心点做圆周运动。
例如,地球围绕太阳做公转,同时也自转,形成了一个巨大的圆周运动系统。
而地球上的月球则围绕地球做圆周运动,形成了月相的变化。
海洋的涡流海洋中也存在着各种形式的圆周运动。
海洋中的涡流就是其中之一。
涡流是由水流速度和方向的不同造成的,它们像是在海洋中画着一个个巨大的圆周轨迹,影响着海洋中的水文环境。
人类生活中的圆周运动车轮的旋转我们乘坐的各种交通工具中,车轮的旋转就是一种典型的圆周运动。
汽车、自行车、火车等交通工具的前进,都是依靠车轮围绕中心点做圆周运动产生的。
这种圆周运动使得交通工具能够稳定地前进。
摆动物体人类生活中还有很多摆动的物体,比如钟表的指针、吊坠、摇摆玩具等。
这些物体的运动往往也是圆周的。
它们依靠重力或者弹簧力等力的作用,围绕固定的轴心做圆周运动。
其他领域中的圆周运动除了自然界和人类生活中,圆周运动在其他领域也有广泛的应用。
比如天文学中的行星运动、机械工程中的机械零件旋转等,都是圆周运动的典型例子。
总的来说,生活中的圆周运动无处不在,它是自然规律的一种体现,也是人类活动的重要组成部分。
通过深入理解圆周运动的原理和规律,我们可以更好地认识和利用这一现象,为生活带来更多的便利和美好。
愿我们在生活中,能够更多地感受到圆周运动带来的神奇和奇妙!。
圆周运动的规律及其应用

第3讲:圆周运动的规律及其应用一、 描述圆周运动的几个物理量 1、 线速度⑴定义:质点沿圆周运动通过的弧长l ∆与所用时间t ∆的比值叫线速度。
也即是单位时间通过的弧长 ⑵公式:tl v ∆∆=⑶单位:s m⑷物理意义:描述圆周运动的物体运动快慢的物理量。
注意:①线速度是矢量②线速度有平均线速度和瞬时线速度之分。
和速度一样,不作特殊说明,线速度指的都是瞬时线速度,也简称速度2、 角速度⑴定义:做圆周运动的物体与圆心的连线转过的角度θ∆与所用时间t ∆的比值叫角速度。
也即是单位时间转过的角度 ⑵公式:ωt∆∆=θ ⑶单位:s rad⑷物理意义:描述物体绕圆心转动的快慢。
注意:①角速度是矢量,角速度的方向高中阶段不研究。
②公式:ωt∆∆=θ中的θ∆必须用弧度制 ③一定要注意角速度的单位。
3、 周期⑴定义:做圆周运动的物体转动一周所用的时间叫周期。
⑵符号:T ⑶单位:s 4、 频率⑴定义:做圆周运动的物体1s 转动的圈数。
⑵符号:f⑶单位:Hz注意:周期和频率的关系fT 1=5、 转速⑴定义:做圆周运动的物体在单位时间转过的圈数 ⑵符号: n⑶单位:s r m in r 且1s r =60m in r注意:当转速以s r 为单位时,转速的大小和频率在数值上相等6、向心加速度⑴定义:做匀速圆周运动的物体的加速度始终指向圆心,这个加速度叫向心加速度。
⑵公式:rv a 2==ω2r⑶单位:2s m⑷方向:总是指向圆心且与线速度垂直⑸物理意义:描述做圆周的物体速度方向变化快慢的物理量。
二、 匀速圆周运动1、 定义:线速度大小不变的圆周运动。
2、 性质:匀速圆周运动的性质可以有以下三种说法变速曲线运动匀速率曲线运动变加速曲线运动(加速度的大小不变,方向在时刻变化)注意:匀速圆周运动的性质不是匀速运动,也不是匀变速曲线运动三、 描述匀速圆周运动的几个物理量的关系V= ω r ωTπ2=f T 1=ω=2π nr v a 2==ω2r四、 几种常见的传动装置及其特点1、 同轴传动2、皮带传动 特点:物体上任意各点的特点:轮子边缘上各点线速度的大小相等,都和皮带 角速度都相同,即:C B A ωωω==的速度大小相等,即:D C B A v v v v ===3、 齿轮传动特点:两齿轮边缘上各点线速度 大小相等即:C B A v v v ==C例1、把地球看成一个球体,在地球表面上赤道某一点A ,北纬60°一点B ,在地球自转时,A 与B 两点角速度之比为多大?线速度之比为多大?例2、机械表中,时针、分针、秒针的运动可视为匀速转动,则分针与秒针从某次重合再次重合所经历的时间为() A 、59s B 、60s C 、min 5960 D 、min 6061变式:分针和时针从某次重合再次重合所经历的时间为多少?例3、如图所示,直径为d 的纸制圆筒以角速度ω 绕垂直纸面的轴O 匀速转动(图示为截面),从枪口发射的子弹沿直径穿过圆筒,若子弹在圆筒中旋转不到半周时,在圆筒上先后 留下A 、B 两个弹孔,已知AO 与BO 的夹角为θ,求子弹速度大小五、向心力1、物体做圆周运动时,所需向心力的大小: F 需=r mv 2=m ω2r=ma r T m =⎪⎭⎫⎝⎛22π2、方向:总是指向圆心且与线速度垂直。
匀速圆周运动应用课件

物理学中匀速圆周运动的应用
1
离心力测量
匀速圆周运动可以用于测量离心力的
血液分离
2
大小和方向,这在一些实验中非常有 用。
匀速圆周运动可用于离心机,将血液
中的不同成分分离出来,有助于医学
诊断和研究。
3
航天器轨道
航天器的轨道通常采用匀速圆周运动, 这种运动方式能够确保航天器稳定地 绕行地球或其他天体。
匀速圆周运动的实际例子
摩天轮
摩天轮是一个很好的例子,乘 客在摩天轮上经历的运动是匀 速圆周运动。
洗衣机
洗衣机中的滚筒在工作时采用 匀速圆周运动,以达到更好的 清洁效果。
卫星轨道
卫星绕行地球的轨道通常为匀 速圆周运动,这样能够确保其 保持稳定的位置。
匀速圆周运动的公式和计算
匀速圆周运动的公式包括周长、速度、角速度和离心加速度等。这些公式可以用于计算圆周运动中的各 种物理量。
匀速圆周运动与万有引力定律
匀速圆周运动与万有引力定律密切相关。天体围绕大质量物体运动时,其轨道通常是匀速圆周运动。
匀速圆周运动与调和振动的关系
匀速圆周运动与调和振动之间存在一些相似之处,它们都是一种周期性的运动。因此,我们可以将匀速 圆周运动与调和振动进行类比和比较。
匀速圆周运动应用ppt课件
在这个PPT课件中,我们将深入了解匀速圆周运动的定义和原理,并探讨它 在物理学中的应用和实际例子。
匀速圆周运动的定义和原理
匀速圆周运动是指在相同时间内,物体沿着圆形路径以相同的速度运动。它的原理在于物体在圆周运动 中受到向心力的作用,使其保
运动学中的圆周运动与简谐振动

运动学中的圆周运动与简谐振动运动学是物理学中研究物体运动状态、运动规律的分支学科。
在运动学中,圆周运动和简谐振动是两个常见的运动形式。
本文将探讨圆周运动和简谐振动在运动学中的特性和应用。
一、圆周运动在物理学中,圆周运动指物体在一个平面上沿着一条圆弧运动的情形。
而当物体在进行圆周运动时,它受到向心力的作用。
向心力的大小与物体的质量和速度的平方成正比,与运动的半径成反比。
圆周运动的速度可以用线速度或角速度来描述。
1.1 线速度和角速度线速度是指物体在圆周上运动的速度,可以表示为物体在圆周上运动的路程除以所花费的时间。
在圆周运动中,线速度的大小与物体沿圆周弧长所运动的距离和所花费的时间成正比。
如果用v表示线速度,l表示弧长,t表示所花费的时间,那么线速度v可以表示为v=l/t。
角速度是指物体在圆周运动中所占据的角度的变化速率。
通常用小写希腊字母ω来表示角速度,单位为弧度/秒。
角速度可以用角度或弧度来表示,其中1弧度=180°/π。
1.2 向心力和向心加速度在圆周运动中,物体受到向心力的作用。
向心力的大小与物体的质量和线速度的平方成正比,与圆周运动的半径成反比。
向心力的方向与物体运动方向垂直,指向圆心。
根据牛顿第二定律,向心力可以表示为F=mv²/r,其中F表示向心力,m表示物体的质量,v表示物体的线速度,r表示圆周运动的半径。
通过对向心力的分析,可以获得物体的向心加速度。
1.3 圆周运动的应用圆周运动在日常生活和工程领域中有广泛的应用。
例如,摩天轮、行星绕太阳的运动、地球的自转等都属于圆周运动。
工程上的一些设备,如离心机、离心泵等也利用了圆周运动的原理。
二、简谐振动简谐振动是指一个物体在受力驱动下沿着固定轨道来回振动的运动。
简谐振动具有周期性和重复性,其运动规律可以用正弦或余弦函数来描述。
简谐振动是一个重要的物理现象,广泛应用于科学领域和工程实践中。
2.1 简谐振动的特性简谐振动具有以下特性:- 振动物体在平衡位置附近往复振动;- 振幅是振动物体距离平衡位置最大偏离的距离;- 周期是振动物体完成一次往复振动所需要的时间;- 频率是振动物体完成一个周期所需要的次数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宜春中学物理学科导学案( 理 )科 : 高一(____)班 姓名:___________ 编写人:钟敏 审核:高一物理备课组 编写日期 :2014-3-4 实际教学日期 第几周
h
r
§
5.4《圆周运动 》(第 3课时)
【要达成的目标】
会综合运用圆周运动、直线运动和平抛运动知识解决问题
【“教”与“学”过程】
本堂课使用的电教手段
一、知识回顾
:
1. 圆周运动角速度、线速度和周期的关系:
2.平抛运动规律:
二、新课探究:
(一)、圆周运动与平抛运动结合的运用:
例1:如图所示,半径为R的圆盘绕垂直于盘面的中心轴匀速转动,其正上
方h处沿OB方向水平抛出一小球,要使球与盘只碰一次,且落点为B,求
小球的初速度和圆盘转动的角速度。
练1.如图所示,竖直圆筒内壁光滑,半径为R,上部侧面A处开有小口,
在小口A的正下方h处亦有与A大小相同的小口B,小球从小口A沿切线
方向水平射入筒内,使小球紧贴筒内壁运动,要使小球从B口处飞出,小
球进入A口的最小速率v0为( )
A.πRg/2h B.πR2g/h
C.πR2hg D.2πRg/h
(二)、圆周运动与直线运动结合的运用:
例2、如图所示,直径为d的纸筒,以角速度 绕o轴转动,一颗
子弹沿直径水平穿过圆纸筒,先后留下
a、 b两个弹孔,且oa、ob间的夹角为 ,
求子弹的速度为多少?
练习2、半径R大圆盘以角速度ω转动,有人站在盘边P点上随盘转动,他
想用枪击中盘中心的目标O,若子弹的速度为V0,问枪应向PO的哪个方向射
去?与PO的夹角为多少?
课堂练习:
雨伞边缘半径为r,且高出水平地面为h,如图所示,若雨伞以角速度ω
匀速旋转,使雨滴自雨伞边缘水平飞出后在地面上形成一个大圆圈,则此圆
圈的半径R为多大?