空压机变频改造技术资料.

合集下载

空压机改造变频方案

空压机改造变频方案

空压机改造变频方案空压机作为工业生产中不可或缺的设备之一,其高能耗一直是企业面临的难题。

为了提高空压机的能效,降低能耗,改造空压机并采用变频技术成为了一种常见的解决方案。

本文将介绍空压机改造变频方案的相关内容。

一、背景简介空压机广泛应用于各个行业的生产流程中,如汽车制造、化工、纺织、食品加工等。

传统的空压机在运行过程中通常保持恒定的转速,无法根据实际需求灵活调节输出功率。

这种固定速度运行的方式导致了能耗的浪费,对企业的运营成本和环境造成了负担。

二、变频技术介绍1. 变频技术原理变频技术是通过改变电机的输入频率,从而调节电机的输出功率。

传统空压机采用的是电机直接驱动方式,转速固定,因此能耗较高。

而变频技术可以实现根据压缩空气需求的变化,智能调节空压机的转速,以达到节能的目的。

2. 变频技术的优势(1)节能效果显著:根据实际的使用需求调整电机的转速,避免了传统空压机长时间高速运转的能耗浪费。

(2)降低噪音:变频空压机运行时转速可以根据负载的需求动态调整,减少了不必要的振动和噪音。

(3)延长设备寿命:传统的空压机长时间高负荷运行容易导致设备过热和损坏,而变频技术可以使空压机在运行过程中根据实际负载进行调节,降低了设备的损耗。

三、空压机改造变频方案1. 需求分析和方案设计在进行空压机改造变频方案前,需要对现有的设备进行需求分析,确定改造的目标和指标。

根据不同的行业和生产需求,制定合理的方案设计,包括选择合适的变频器、电机等设备,并考虑到系统的稳定性和可靠性。

2. 设备改造和调试改造过程中,首先需要对空压机进行电气接线改造,安装变频器和相应的传感器等设备。

接着进行系统的调试和优化工作,确保空压机在变频运行模式下能够稳定运行,达到预期的能效提升效果。

3. 运行监测和维护完成空压机改造后,需要进行运行监测和维护工作。

通过实时监测系统的运行状态和能耗情况,及时发现和解决潜在问题,最大程度地保障系统的稳定运行和节能效果。

空压机的变频改造

空压机的变频改造

革新改造(备用)
空压机的变频改造
我公司因用气量较大,一台空压机的供气量不足,而两台供气量富裕较大,因此将有两台空压机并联使用,将两台空压机的最高和最低工作压力设置稍差一点,从而使其中一台空压机始终处于正常运行中,而另一台根据供气压力的变化时开时停。

这样一来管道的气压是不断变化的,其中一台空压机的电机开、停次数多,耗能大,同时又加大了空压机械部分磨损。

为此对空压机的控制系统进行了变频器改造。

将一台空压机用变频器来控制其电动机的运行转速,让它自动随供气压力的变化而变化。

改造方案是用一台变频器取代现有的交流接触器控制,将现有的压力显示仪改为压力显示调节仪。

拆除空压机控制柜的自藕变压器、交流接触器及其控制线路,将运行信号改为变频器控制,“主速频率指令”信号在压力调节显示仪上取用后输送一个模拟信号给变频器进行闭环控制,当空压系统的压力高于0.65MPa时,变频器输出频率下降,而当压力低于0.65MPa时,变频器输出频率上升。

采用变频器控制后,这台空压机可以自动根据空压系统的压力情况调节电机的运行速度,空压系统压力高,电机运行速度就自动降低,反之就自动加速运行,从而有效保证了空压系统的压力稳定性,同时电机运行平稳,消除了频繁起动、停止造成的机械冲击,减轻了磨损,延长设备的使用寿命,而且通过自动降低电机转速,较大幅度地减小了电动机的运行频率,达到节能的效果,据测算,大约1年就可收回改造投资费用。

(中国纱线网网友鸿儒)。

空压机变频改造方案

空压机变频改造方案

空压机变频改造方案空压机变频改造方案1. 简介空压机是工业生产过程中常用的设备之一,用于为生产提供稳定的空气压力。

传统的空压机通常采用定速电机驱动,这会导致能源的浪费和设备的寿命缩短。

为了节约能源并延长设备的使用寿命,空压机变频改造方案变得越来越受到关注。

2. 变频改造方案的原理空压机变频改造方案基于变频器的技术,通过改变电机的转速来调节空压机的产气量,从而达到节约能源和提高设备效率的目的。

变频器可以根据实际需求调整电机的频率和转速,使空压机在不同负载下工作在最佳状态。

3. 变频改造方案的具体步骤3.1 评估空压机的需求在进行变频改造之前,首先需要评估空压机的实际需求。

这包括生产过程中对空气压力的要求、空气消耗量以及负载变化情况等。

根据评估的结果,确定变频器的规格和性能。

3.2 安装和调试变频器根据空压机的电气系统和变频器的技术参数,进行变频器的安装和调试工作。

这包括连接电源线、电机线和控制线,设置变频器的参数和工作模式等。

在调试过程中,需要对变频器的启动和停止、转速调节、故障保护等功能进行测试,确保其正常运行。

3.3 监控和优化系统性能安装完成后,通过监控系统对空压机的运行状态进行实时监测。

可以监测参数包括电机的转速、电流、功率因数等,以及空气压力、温度和湿度等。

根据监测结果,对系统进行优化和调整,以提高空压机的工作效率和能源利用率。

4. 变频改造方案的优势4.1 节约能源传统的空压机通常采用定速电机驱动,无法根据实际需求进行调节。

而变频改造方案通过调整电机的转速,使得空压机在不同负载下始终工作在最佳点,达到节约能源的效果。

根据实际应用案例,变频改造后的空压机平均节约能源30%以上。

4.2 增强设备寿命空压机变频改造可以使设备在正常负载范围内工作,减少了过高或过低负载对设备的损害,延长了设备的使用寿命。

此外,变频改造还可以减少空压机的启停次数,降低了设备的运行压力和温度,提高了设备的可靠性和稳定性。

某空压机组变频改造技术方案

某空压机组变频改造技术方案

某空压机组变频改造技术方案空压机组的变频改造技术方案是为了提高空压机组的能效和运营效率,降低能耗和运维成本。

下面是一个包含1200字以上的空压机组变频改造技术方案。

一、背景介绍空压机组是工业生产中常用的动力设备之一,其主要用于提供压缩空气供给生产过程中的各种设备使用。

传统的空压机组通常采用固定转速的电机驱动,且通常以满负荷运行,这种运行方式会导致能源的浪费和设备的过度磨损,同时增加了运维成本。

因此,采用变频技术对空压机组进行改造,可以显著提高能效和运营效率,降低能耗和运维成本。

二、技术方案1.变频驱动器的选型变频驱动器是实现空压机组变频改造的核心设备。

在选型时需要考虑以下因素:-驱动器的牌号和型号,以及其支持的空压机组的功率范围。

-驱动器的控制方式和参数调整方式,以确保其能够准确地控制空压机组的转速和输出压力等参数。

-驱动器的稳定性和可靠性,以及其对环境的适应性。

2.变频电机的选型变频电机是变频改造过程中的另一个重要设备。

在选型时需要考虑以下因素:-电机的型号和功率,以确保其能够满足空压机组的负荷需求。

-电机的效果和效率,在变频运行时能够保持较高的效率,减少能耗。

-电机的可靠性和寿命,以降低运维成本。

3.控制系统的设计变频改造后的空压机组需要一个稳定可靠的控制系统来实现对空压机组运行参数的准确控制。

控制系统的设计需要考虑以下因素:-控制系统的逻辑和功能,确保其能够实现对转速、输出压力等关键参数的准确控制和调整。

-控制系统的人机交互界面,以方便操作和监控空压机组的运行状态。

-控制系统的稳定性和可靠性,在各种工作条件下能够保证空压机组的稳定运行。

-控制系统的扩展性和可调性,以满足未来可能出现的新需求和变化的工作条件。

4.安全设备的设计在进行空压机组变频改造时,需要考虑安全设备的设计,确保变频运行过程中的安全性和可靠性。

安全设备的设计需要考虑以下因素:-紧急停机设备,以确保在发生故障或其他紧急情况时能够及时停止空压机组的运行。

空压机中变频技术的实际运用

空压机中变频技术的实际运用

空压机中变频技术的实际运用1. 引言空压机作为工业生产中重要的动力设备,其能耗占到了整个工业领域总能耗的很大一部分。

为了提高空压机的运行效率,降低能耗,变频技术被广泛应用于空压机领域。

本文将详细介绍空压机中变频技术的实际运用。

2. 变频技术概述变频技术是通过改变交流电频率的方式来调节电动机的转速,从而实现对空压机运行速度的控制。

变频器是实现变频技术的关键设备,主要由整流器、滤波器、逆变器和控制模块组成。

通过控制模块的作用,变频器可以根据空压机的工作需求,调整输出频率,实现对空压机转速的实时控制。

3. 变频技术在空压机中的应用优势3.1 节能效果显著通过变频技术,可以实现对空压机运行速度的实时调节,使其始终在最佳工况下运行。

统计数据表明,采用变频技术可以降低空压机30%以上的能耗。

3.2 提高运行效率变频技术可以有效降低空压机启动时的电流冲击,减少机械磨损,延长设备使用寿命。

同时,通过实时调节空压机的运行速度,可以使其在不同的工况下保持高效运行。

3.3 提高系统稳定性采用变频技术,可以实现空压机输出压力的精确控制,避免因压力波动导致的系统故障。

此外,变频技术还可以实现空压机的软启动,降低对电网的冲击,提高系统稳定性。

4. 变频技术在空压机中的实际运用4.1 控制系统设计为了实现空压机中变频技术的应用,首先需要设计一套控制系统。

该系统主要包括传感器、控制器和变频器三个部分。

传感器用于实时监测空压机的运行参数,如压力、流量和温度等;控制器根据传感器采集的数据,判断空压机的运行状态,并生成相应的控制信号;变频器接收控制器的信号,调整输出频率,实现对空压机转速的控制。

4.2 变频器选型与安装在空压机中应用变频技术时,需要根据空压机的功率、电压和运行需求选择合适的变频器。

在选型过程中,要充分考虑变频器的品质、性能和售后服务。

安装变频器时,要确保其安装位置通风良好,便于散热,同时注意绝缘和防尘措施。

4.3 参数设置与调试在空压机中应用变频技术后,需要对变频器进行参数设置和调试。

空压机变频改造方案

空压机变频改造方案

空压机变频改造方案一、背景介绍空压机是一种将气体压缩成高压气体的设备,广泛应用于工农业、建筑和能源等领域。

传统的空压机一般采用定速电机驱动,无法根据实时气压需求的变化调节电机的转速,造成能源的浪费和运行的不稳定。

而采用变频器对空压机进行改造,可以实现无级调速,根据气压需求实时调节电机的转速,减少能源消耗,提高运行效率和稳定性。

二、改造方案1.变频器选择变频器是变频空压机的核心设备,直接影响改造效果和性能。

在选择变频器时,需考虑以下几点:(1)功率匹配:根据现有空压机的功率确定变频器的额定功率。

(2)控制精度:要求变频器具有较高的控制精度,能够快速响应和调整转速。

(3)变频范围:变频器的变频范围越宽,适应性越强。

(4)通信接口:变频器需要支持与空压机控制系统的通信接口,实现实时监控和控制。

(5)供电要求:根据现场的供电条件选择相应的变频器。

2.安装和调试(1)拆卸原定速电机,并根据变频器的要求安装新的变频电机。

(2)安装变频器,接入电源和控制线路。

(3)对变频器进行参数设置和调试,设置转速范围、加速度和减速度等参数。

(4)连接压缩机系统的传感器和控制设备,建立与空压机控制系统的通信。

(5)进行试运行,检查各项指标是否满足要求,如电流、转速和气压等。

3.系统优化和监控(1)建立空压机控制系统,实现对空压机运行状态和参数的实时监控和控制。

(2)根据气压需求和使用情况,对变频器进行优化设置,使其在不同负载下运行更加高效。

(3)进行数据分析和统计,找出运行过程中的优化点和问题,及时调整和修复。

(4)做好周期性的维护和保养工作,保证系统的长期稳定运行。

三、改造效益1.节能降耗:采用变频器改造后,空压机可以根据气压需求实时调整转速,减少无功功率的消耗,节约能源,降低运行成本。

2.提高运行效率:变频器能够使空压机在工作范围内保持较高的运行效率,提高空压机的工作效率和生产能力。

3.减少故障率:变频器能够实时监测和控制电机的运行状态,对电机充分保护,减少故障率和损坏风险。

空压机变频改造方案

空压机变频改造方案

空压机变频改造方案空压机变频改造方案是为了提高其能源利用率和运行效率,从而降低能源消耗和运行成本。

通过将传统的空压机系统中的电动机更换为变频电动机,可以实现压缩机的电机转速和输出能力的无级调节,从而更好地适应不同工况的需求。

下面是一个关于空压机变频改造方案的详细说明。

1.改造目标:提高空压机系统的能源利用率和运行效率,以降低能源消耗和运行成本。

2.改造内容:将传统的空压机系统中的电动机更换为变频电动机,并配备相应的变频控制器和传感器。

3.改造步骤:(1)选购合适的变频电动机:选择适合空压机工作要求的变频电动机,并确保其额定功率和转速范围满足压缩机系统的需求。

(2)安装变频控制器:将变频控制器安装在空压机系统的控制柜中,并与原有的电路连接。

(3)安装传感器:安装压力传感器和流量传感器,用于实时监控空压机系统的压力和气流,并将监测数据传输给变频控制器。

(4)调试和测试:根据压缩机系统的实际情况和要求,对变频控制器进行调试和测试,确保其正常工作和稳定运行。

4.改造效果:(1)能源利用率提升:通过变频技术,可以将压缩机的输出功率与实际需要相匹配,避免电动机长期处于高功率运行状态,从而提高能源利用率。

(2)运行效率改善:变频电动机能够根据压缩机系统的工况变化,实现无级调速,使空压机系统在不同工况下均能以最佳效率运行。

(3)减少能源消耗:通过控制变频电动机的转速,避免传统空压机系统中由于定速电动机的固定转速而造成的能源浪费,从而减少能源消耗。

(4)降低运行成本:空压机系统的能源消耗是其运行成本的主要组成部分,通过降低能源消耗,可以有效降低空压机系统的运行成本。

(5)提高系统稳定性:变频电动机和变频控制器能够根据压缩机系统的实际需求进行自动调节,提供更稳定和可靠的空气压缩服务。

总结:空压机变频改造方案能够实现空压机系统的高效运行和能源节约。

通过替换传统电动机为变频电动机,并安装相应的变频控制器和传感器,可以实现无级调速和智能控制,提高空压机系统的能源利用率和运行效率,降低能源消耗和运行成本,提高系统稳定性。

空压机的变频节能改造

空压机的变频节能改造

• 加、卸载过程是交替进行的,加载期间,储气罐压力在上升,卸 载期间,储气罐压力在下降,总体上储气罐的压力曲线是“锯齿” 状。为了保证生产正常进行,其最小压力必须满足一定要求,这 个值我们用Pmin来表示,叫最小压力。在加载过程结束转入卸载 状态这一时刻,储气罐压力最大,用Pmax来表示,叫最大压力。 一般情况下,Pmax、Pmin之间关系可以用下式来表示: • Pmax=(1+δ)Pmin • δ是一个百分数,其数值大致在15%~30%之间。也就是说,在 气压上存在15-30%的浪费。这个浪费消耗的无疑是电量。 • 缩短加、卸载时间,可以减小δ,但单位时间内的加、卸载次数 必然增加,频繁加、卸载的机械冲击将严重缩短设备寿命。另外, 频繁加、卸载过程也要加大电能的消耗。 • 以上所述的气压波动过程中存在的“富裕气压”,所浪费的电能 约占空压机总耗电量的10-15%。 • 卸载期间电力消耗实际上是百分之百的浪费。空压机卸载时的能 耗约占全部能耗的5%~15%。 • 以上分析的电能浪费,是空压机节能改造的客观基础条件。很明 显在加、卸载供气控制方式下,空压机存在着一定的节能空间。
空压机的分类
• 回转式:活塞作旋转运动,活塞又称为转干,转子数量不等,气 缸形状不一。回转式包括有转子式、螺杆式、滑片式等。 • 往复式:活塞做往复运动,气缸呈圆筒形。往复式包括有活塞 式和膜式两种,其中活塞式是目前应用最广泛的一种类型。氧舱 用空压机绝大多数采用活塞式。
空压机的分类
压缩机 制冷压缩机 空气压缩机及 化工流程压缩机 容积型 往复式 回转式 速度型 离心式 轴流式
螺杆式工作示意图
螺杆式空压机原理图
往复式压缩机
活塞式压缩机结构图
活塞式压缩机工作原理
活塞式压缩机属於最早的压缩机设计之一, 但它仍然是 最通用和 非常高效的一种压缩机。活塞式压缩机通过连 杆和曲轴使活塞在气缸内向前运动。 如果 只用活塞的一 侧进行压缩,则称为单动式。 如果活塞的上、下两侧都 用,则称为双动式。 活塞式压缩机的用途非常广泛,几乎没有任何限制。 它 可以压缩空气,也可以压缩气体,几乎不需要作任何改动。 活塞式压缩机是唯一一种能够将空气和气体压缩至高压, 以适合 诸如呼吸空气等用途的设计。 活塞式压缩机的配置可包括从 适用於低压/小容量用途 的单缸配置,到能压缩至非常高压力的多级配置。 在多 级压缩机中, 空气被分级压缩,逐级增大压力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空压机变频改造技术资料
空压机变频改造技术资料
类别:单片机/DSP
&nbsp空压机系统工况情况下存在的问

主电机虽然是“星——角”减压起动,但起动时的电流仍然很大,可高达电机额定电流的 6~7倍,严重影响电网的稳定及其它用电设备的运行安全。

空压机频繁的加卸载,加载时起动电流大,卸载时电机空载运行,属非经济运行,电能浪费严重。

电机工频运行致使空压机运行时嘈音很大。

电机工频起动对设备的冲击很大,电机轴承的磨损大,所以设备维护工作时机械量比较大。

&nbsp空压机变频改造的系统分析
因空压机的使用单位生产过程的特殊性,要求变频器必须选用质量比较好的且服务比较及时的,所以我们选用日本三菱和烟台惠丰电子有限公司合资生产的惠丰变频器。

因空压机的负载比较大,考虑到长期稳定使用,所以变频器要选用比电机功率大一级的。

空压机工作过程中最理想的工况是工作压力的稳定,因此我公司采用由变频器、压力变送器和空压机恒压专用调节仪(调节仪为我公司与瑞典阿特拉斯·科普柯压缩机公司在中国的技术服务公司合作研发 ,专用于空压机变频改造后的恒压控制.)组成压力闭环控制系统,使储气罐内空气压力稳定在设定范围内,进行恒压控制。

反馈压力与设定压力进行PID比较运算,实时控制变频器的输出,使储气罐内空气压力稳定在设定压力上。

使用过程中压力基本是恒定的,偶尔的波动也控制在±0.01Mpa之内。

&nbsp3、在用气量小的情况下,变频器处在低频运行时,应保证电机绕组的温度不超过允许的范围。

因此我公司采用将电机罩加长后外加轴流风机进行散热。

&nbsp变频改造后的情况&nbsp节约能源
变频器改造后,能源节约是最有实际意义的,根据生产需要的空气量来控制压缩机实际运行,达到经济的运行状况。

见表&nbsp设备名称
功率( KW)平均电流( A)消耗功率( KW)全年节能(万度)&nbsp 改造前改造后改造前改造后&nbsp空压机 55 47.3 33.2 23.7 16.6 6.22 &nbsp降低运行成本
压缩机的运行成本有三项组成:采购成本、维护成本、和电费成本。

其中电费成本大约占压缩机运行成本的 70%。

通过电费成本降低30%左右,加上变频起动后对设备的冲击减少,维护和维修量也跟随降低,运行成本将大大降低。

&nbsp提高压力控制精度
变频闭环控制系统实现了精确的压力控制。

使压缩机的空气压力输出与用户空气系统所需的气量相匹配。

变频控制压缩机的输出气量随着电机转速的改变而改变。

由于变频控制电机速度的精度提高,所以它可以使管网的系统
压力变化最高保持在± 0.01mp范围内浮动,(用气量正常时基本上不波动)有效地提高了工况的质量&nbsp延长压缩机的使用寿命
变频器从 OHZ起动压缩机,起动加速时间可以调整,减少了起动时对压缩机的电器部件和机械部件所造成的冲击,增强系统的可靠性,使压缩机的使用寿命延长。

此外,变频控制能够减少机组起动时电流波动,这一波动电流会影响电网和其他设备的用电,变频器能够有效的将起动电流的峰值减少到最底程度。

相关文档
最新文档