1糖生物学
7.糖类

邻苯甲酰磺酰亚胺
天冬氨酰苯丙氨酸甲酯
(五)单糖的主要化学反应
单糖为多羟基醛/酮,因此它的化学反应体现在-OH 和醛基或酮基上。 醛基或酮基:氧化,还原 羟基:成酯,成苷
糖是世界上存在最多 的一类有机化合物, 也是人类所需要的最 基础的物质
肌糖原-能源 结缔组织-结构糖
动物干重2%
韧带-结构糖
糖蛋白、糖脂、信息分子糖
细胞表面识 别标记-糖
2.糖的化学本质
① 多羟基醛/酮 ② 多羟基醛/酮的衍生物 ③ 可以水解为多羟基醛/酮或 它们衍生物的物质 甘油醛 二羟丙酮 定义: 糖是多羟基的醛类或酮类化合物,以及它们的衍生物或聚 合物的总称 含有不同碳原子数的单糖都有其醛糖和酮糖形式
植物:含糖量占其干重的 85-90%
淀粉颗粒 糖原颗粒
动物:含糖量不超过干重的 2% 糖类占人体全部供能量的 70%
与膜蛋白和膜脂相连的糖——通信天线
4.糖生物学(Glycobiology)
——生命科学中的新前沿 过去一直认为糖类化合物结构简单,功能单调,只 是作为支持组织或能源贮存作用,加之深入研究糖类 结构时也遇到困难,所以很长时间不被重视。 近三十年发现,细胞的通讯、识别、细胞调节等都 直接依赖糖复合物,所有有人认为糖类物质同样是生 物信息的携带者。 多糖同蛋白质、核酸一样是生命现象中的并列的三 种重要的生物大分子,目前对多糖的研究现在已成为 一门热门科学。
• 氨基糖,也称糖胺(单糖上的羟基被氨基取代,有时 氨基被乙酰化 )
生物化学第7章 糖类和糖生物学

• 糖类物质根据它们的聚合度分类如下: • • • • • • 单糖 (monosaccharide) 寡糖 (oligosaccharide) 多糖 (polysaccharide) 同多糖(homopolysaccharide) 杂多糖(heteropolysaccharide) 结合糖(复合糖,糖缀合物,glycoconjugate)
• α-淀粉酶是一种内切葡糖苷酶,随机作用于 淀粉内部的 α-1,4-糖苷键,产物主要是葡萄 糖。 • β -淀粉酶是一种外切葡糖苷酶,专门从淀粉 的非还原端开始断裂 α-1,4-糖苷键,逐个除 去二糖单位,产物是β –麦芽糖。 β -淀粉酶 α-淀粉酶
• B、糖原 是在动物与细菌中发现的贮存多 糖。与支链淀粉类似,也是带有分支的葡萄糖 残基聚合物,只是分支程度更高,分支更短, 每隔8-12个葡萄糖残基便有一个分支。
二糖结构与性质对比
蔗糖 组成 糖苷键 乳糖 麦芽糖 纤维二糖 2Glc β-(1-4)
1Glc1Fru 1Gla1Glc 2Glc α,β(1-2) β-(1-4) α-(1-4)
变旋
还原性
-
+
+
+
+
+
+
区分寡糖的结构特点
• • • • 参与组成的单序
乌本苷
• E、氨基糖 是分子中一个羟基被氨基取代 的单糖,自然界中最常见的是C2上的羟基被取 代的2-脱氧氨基糖。氨基糖及其衍生物是许多 天然寡糖和多糖的重要组成成分。
D-葡糖氨
D-半乳糖氨
四、寡糖
• 二糖是最简单的寡糖,是由2分子单糖通过糖 苷键缩合而成。一个糖苷键是由一个糖分子的 异头碳与一个醇、一个胺或一个巯基缩合形成 的缩醛键。含有糖苷键的化合物称为糖苷。常 见的二糖有蔗糖、乳糖、麦芽糖、纤维二糖等。
生物化学教程糖类和糖生物学

生物化学教程糖类和糖生物学
1.单糖(monosaccharide)
单糖是不能被水解成更小分子的糖类,也称简单 糖,如葡萄糖、果糖和核糖等。
生物化学教程糖类和糖生物学
直链醛糖和酮糖结构
生物化学教程糖类和糖生物学
2.寡糖(oIigosaccharide) 寡糖包括的类别很多,双糖或称二糖 (disaccharide),水解时生成 2分子单糖,如 麦芽糖、蔗糖等;三糖(trisaccharide),水解 时产生3分子单糖,如棉于糖;以及四糖 (tetrasaccharide),五糖(pentasaccharide) 和六糖(hexasaccharide)等。
吡喃和呋喃结构 C1上的羟基在下侧 为α型,羟基在上侧 为β型
D-葡萄糖异头物 C1上的羟基在右侧 为α型,羟基在左侧为 β型
生物化学教程糖类和糖生物学
椅式构象
(较稳定)
船式构象
(不稳定)
生物化学教程糖类和糖生物学
四、单糖的性质
• (一)单糖的物理性质 • (二)单糖的化学性质
生物化学教程糖类和糖生物学
• 植物的 85%一 90%, • 占细菌的 10%一 30%, • 动物的小于 2%。动物体内糖的含量虽然不多,但其生命
活动所需能量主要来源于糖类。 • 糖类物质是地球上数量最多,占生物量(biomass)干
重的 50%以上是由葡萄糖的聚合物构成的。绿色细胞进 行的光合作用的结果。
生物化学教程糖类和糖生物学
生物化学教程糖类和糖生物学
生物化学教程糖类和糖生物学
(二)糖类的生物学作用
糖类是细胞中非常重要的一类有机化合物。糖类的生物 学作用概括起来主要有以下几个方面: 1.作为生物体的结构成分 植物的根、茎、叶中的纤维素、半纤维素等,细菌细 胞壁的肽聚糖,昆虫和甲壳类的外骨骼等。 2.作为生物体内的主要能源物质 糖原、淀粉等通过贮存或生物氧化释放出能量,为生 物体供生命活动的需要。
糖生物学基础

糖生物学基础举出5个糖复合物例子,说明其合成途径及重要生物功能。
现以N-连接糖蛋白中免疫球蛋白G、卵清蛋白;0-连接糖蛋白中黏蛋白、运铁蛋白;蛋白聚糖中肝素共5种糖复合物为例。
一.N-连接糖蛋白定义:糖蛋白的糖链与蛋白部分的Asn-X-Ser序列的Asn氮以共价键连接称N-连接糖蛋白。
连接点的结构:GlcNAcβ-N-Asn糖基化位点:N-连接聚糖中Asn-X-Ser/Thr三个氨基酸残基序列子(其中X 是除脯氨酸外的任一氨基酸)称为糖基化位点。
结构:(三型)结构特点:A.每种类型都具有一个五糖核心B.它们具有不同的分支,这些寡糖链分支常常被称为天线C.血液循环中和膜上的糖蛋白常常是N-糖苷连接N-连接寡糖的合成:N-连接寡糖是在内质网上以长萜醇(dolichol)作为糖链载体,先合成含14糖基的寡糖链,然后转移至肽链的糖基化位点上,进一步在内质网和高尔基体进行加工而成。
每一步加工都由特异的糖基转移酶或糖苷酶催化完成,糖基必须活化为UDP或UDP的衍生物。
免疫球蛋白G属N-连接糖蛋白。
生物功能如下:I g分子具有结合抗原和刺激抗体生成的双重功能。
首先,它能与抗原结合,产生多种生物效应,包括:①与病原微生物或它分泌的毒素结合,产生抗感染免疫;②活化体液的一类正常组分,即补体分子,起到杀伤病原体或靶细胞的作用;③加强吞噬细胞等免疫细胞的吞噬或杀伤效应;④与组织中的肥大细胞或嗜碱性粒细胞结合,产生过敏反应;⑤封闭移植的脏器,增强对它的保护,减缓排斥;⑥封闭肿瘤细胞,降低免疫保护。
免疫球蛋白还能穿过胎盘输送给胎儿。
此外,由于Ig分子由糖蛋白组成,所以除了上述抗体活性,还有抗原性,可活化自身免疫细胞,使之产生针对抗体的抗体──抗独特型抗体(Id抗体),从而形成自身调节的功能。
各类免疫球蛋白的特性五类Ig在理化及生物学特性上各有不同。
IgG。
IgG是生物体液内主要的Ig,约占血液中Ig总量的70~75%。
由于IgG能通过胎盘,所以新生儿从母体获得的IgG 在抵抗感染方面起重要作用。
生物化学第一章糖类

D-阿卓糖
D-葡萄糖
D-甘露糖
D-半乳糖
D-古洛糖
D-艾杜糖
The
4 aldohexose has four chiral centers, thus has
2 =16 isomers.
第二十三页,共94页
D-塔洛糖
三、单糖的环状结构
许多单糖,新配制的溶液会发生旋光度的改变,
这种现象称变旋。从乙醇水溶液中结晶出的D(+)- glucose 称为α-型([α]20D= +112.2°),
2+
3+
Hg 和Bi 等)如Fehhing试剂(酒石酸钾钠、NaOH和CuSO4)、Benedict
2+
试剂(柠檬酸、NaCO3和CuSO4 )中的Cu 是一种弱氧化剂,能使醛糖的
醛基氧化成羧基,产物称醛糖酸,金属离子自身被还原。
能使氧化剂还原的糖称为还原性糖,所有的醛糖都是还原性糖。
Benedict试剂常被用作尿糖的定性与半定量测试。
2. 寡糖:是由2~20个单糖通过糖苷键连接而成的糖
类物质。包括二糖、三糖、四糖、五糖和六糖
等。
第七页,共94页
五、旋光异构
1. 同分异构或称异构(isomerism)是指存在两个或多个具有
相同数目和种类的原子并因而具有相同相对分子质量的化合
物的现象。同分异构有相同的组成,故具有相同的分子式。
同分异构主要有两种:结构异构和立体异构。
classic sugar test—Fehling’s test that was used to test of excess sugar in blood and
urine of diabetics.
糖复合物的结构与功能

糖链的N-乙酰葡糖胺与多肽链的天冬酰 胺的酰胺氮连接,形成N-糖苷键,此种糖 链为N-连接糖链,也称N-连接聚糖。
连接点的结构
GlcNAcβ-N-Asn
糖基化位点
N-连接聚糖中Asn-X-Ser/Thr三个氨基 酸残基序列子(其中X是除脯氨酸外的任一 氨基酸)称为糖基化位点。
结构
高甘露糖型 复杂型 杂合型 Man Man
第二节 糖蛋白的结构与功能
定义 糖蛋白由糖与蛋白质通过共价键连接形成。 特点 蛋白质含量较多,糖所占比例变动大,表 现为蛋白质的特性。
分布 细胞膜、细胞浆、溶酶体及细胞外液
一、糖蛋白的分类与结构
GlcNAc Asn
N-连接 :
GalNAc Ser
连接方式 O-连接:
GPl-连接:
(一)N-连接糖蛋白
都有一个五糖核心结构
Man
GlcNAc
GlcNAc
Asn
核心结构
高甘露糖型
复杂型
杂合型
N-连接糖链结构
(二)O-连接糖蛋白 定义 糖链的N-乙酰半乳糖胺与多肽链的丝氨酸 或苏氨酸的羟基连接,形成O-糖苷键,糖链 为O-连接糖链,也称O-连接聚糖。 连接点的结构 GalNAcα-O-Ser/Thr
第一节
聚糖的结构
一、聚糖的分子结构 (一) 单糖的种类及结构 单糖的种类 葡萄糖(Glc) 甘露糖(Man) 岩藻糖(Fuc) 木糖(Xyl)
半乳糖(Gal) N-乙酰葡糖胺(GlcNAc) N-乙酰半乳糖胺(GalNAc) 唾液酸(SA)
单糖结构
-D-葡萄糖 (Glc,▢)
-D-半乳糖 (Gal,●)
(* 由3个不同的氨基酸、核苷酸和已糖分别通过肽键、磷酸二酯键所组成的寡聚体数目)
第三章 糖复合物

GM2
◆→●→▲→1Cer ↑β1,4 □
α2,3 β1,4 β1-
GM3 GD2
◆→●→▲→1Cer
α2,8α2,3 β1,4 β1-
◆→◆→●→▲→1Cer ↑ □
α2,8α2,3 β1,4 β1-
GD3
◆→◆→●→▲→1Cer
神经节苷脂的结构简图
二、糖脂的功能
1.细胞膜的结构组份 2.参与细胞的识别、分化及信号转导等
霍乱弧菌毒素与糖脂受体GM1结合
第三章 糖复合物的结构与功能
一、 A型选择题(1-22)
1.合成糖蛋白糖链的酶主要存在于 A.细胞核 B.细胞质 C.细胞表面膜 D.微粒体 E.高尔基体
2.糖蛋白含量较少的组织或细胞器是 A.质膜 B.血浆 C.软骨 D.溶酶体 E.粘液
3.糖蛋白中,供体糖基第一位碳原子脱去 核苷酸与受体糖基分子中羟基结合,糖 链中下列哪项是错误的 A.α1-2 B.β1-2 C.α1-3 D.β1-4 E.α1-5
分类 鞘糖脂、甘油糖脂 胆固醇衍生的糖脂、GPI
一、鞘糖脂的分类与结构
组成 由糖和神经酰胺构成 分类 中性鞘糖脂:含葡萄糖和半乳糖, GalNAc, GlcNAc和 岩藻糖等中性糖 酸性鞘糖脂:含唾液酸或硫酸化的单糖
GM1
α2,3 β1,4 β1-
◆→●→▲→1Cer ↑β1,4 □ ↑ β1,3 ●
***整合蛋白
定义
是由α和β两个亚基构成的异二聚 体糖蛋白,α和β亚基的分子量为 90-180KD。 分布
各种细胞膜
功能 是细胞内外双向交流的桥梁,通过其 所介导的多种信号转导途径引起细胞 的多种生物学功能改变。
结构
分为胞外、跨膜和胞内三部分,β亚基胞外部分 含丰富的二硫键,形成较紧密的折叠结构,α亚基上 有二价阳离子(Ca2+, Mg2+)的结合部位,并有一个链内 二硫键。
第五章 糖组学及其研究方法

第五章糖组学及其研究方法
糖及糖生物学
糖组学
糖组学研究方法
糖组学面临的挑战
细胞中的糖
糖生物学的崛起
,
20世纪60年代发现在细胞表面上密布有糖缀合物,推测这些糖缀合物的糖链在生命过程中可能担负分子识别的功能。
70年代由于物理化学测定方法的建立以及特异的内切和外切糖苷酶在结构测定中的应用,使糖链的结构测定成为可能,揭示出糖链惊人的复杂性和多样性。
80年代末负责糖链合成的糖基转移酶被克隆出来,揭示糖链多样性是在基因水平和蛋白水平进行调控的。
这些进展为糖链的结构功能的研究和突破奠定了坚实的基础。
白细胞和内皮细胞的识别和粘附
Cancer Glycomics。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1糖生物学 科学家把研究生物体内多糖的科学叫做“糖生物学”,也有人沿袭“基因组学”和“蛋白质组学”的概念把这们学科叫做“糖原组学”。糖生物学这一个名词的提出是在1988年。牛津大学德威克教授在当年的《生化年评》中撰写了以“糖生物学”为题的综述,这标志了糖生物学这一新的分支学科的诞生。
研究对象 糖生物学(glycobiology)是研究聚糖及其衍生物的结构,化学,生物合成及生物功能的科学 蛋白质、核酸和多糖是构成生命的三类大分子,蛋白质和核酸的研究已经成为生命科学中的热点问题。糖类的研究一度被人遗忘,只有少数科学家在苦苦探索着糖类的奥秘,糖类研究成了生命科学中的灰姑娘。然而,随着蛋白质和核酸(主要是基因的研究)中更多的奥秘被人类知晓,糖类的重要性也浮出水面,成为了医学研究的“甜蜜之点”,糖类研究这个“灰姑娘”等来了属于她自己的马车。科学家认为,糖类的研究将像一个人见人爱的“甜苹果”一样,获得更多科学家的青睐,将成为生命科学研究中的新热点。
2糖生物学的崛起
科学家把研究生物体内多糖的科学叫做“糖生物学”,也有人沿袭“基因组学”和“蛋白质组学”的概念把这们学科叫做“糖原组学”。糖生物学这一个名词的提出是在1988年。牛津大学德威克教授在当年的《生化年评》中撰写了以“糖生物学”为题的综述,这标志了糖生物学这一新的分支学科的诞生。[1]同一年牛津大学研制成功了N-糖链的结构分析仪,而且将它商品化。 将糖生物学推向生命科学前沿的重大事件发生于1990年。有3家实验室几乎同时发现血管内皮细胞-白血球粘附分子1(ELAM-1),后来改名为E-选凝素(E-selectin)。这一位于内皮细胞表面的分子能识别白血球表面的四糖Sia-LeX。当组织受到损伤时,白血球和内皮细胞穿过血管壁,进入受损组织,以便杀灭入侵的异物。然而,过多白血球的进入则可能导致炎症的产生。这一发现首次阐明了炎症过程有糖类和相关的糖结合蛋白参与。更令人吃惊的是,进入血液循环系统的癌细胞可能借助了类似于上述的机制穿过血管,进而导致癌症的转移。紧接着又出现了以这一基础研究的成果为依据的开发和生产抗炎和抗肿瘤药物的热潮。[1]
3攻克疾病的“甜苹果” 各国的医学研究人员正研究糖是如何影响帕金森氏病、早老性痴呆症和像艾滋病那样的传染病的发展。最近的研究结果表明,糖复合物表面糖链结构的改变和很多疾病的发生是相伴随的。 病毒、细菌、真菌、寄生虫等病原体,为了能进入细胞内,首先必须和细胞表面的糖类结合。最常见的流感病毒的感染就是它先和宿主细胞表面的带有唾液酸的糖链结合。一些病原体还能分泌一些外毒素作为攻击宿主的武器,如霍乱毒素、白喉毒素等。在植物中也有类似的毒素,如蓖麻毒素。这些毒素也能和糖脂或糖蛋白表面的糖链结合,然后转运进入细胞,并干扰细胞内的不同类型的生化反应。 1975年,美国科学家米勒斯汀等人创建了单克隆抗体技术,不仅对免疫学研究作出了众多贡献,而且也被越来越广泛地应用于糖链的检测和鉴定,以及相关疾病的诊断。1985年,美国科学家费兹应用单克隆抗体技术确认,糖蛋白和糖脂组成的糖链可以对抗癌症。目前,科学家用单克隆体技术确认糖链可抵抗的疾病还有:自身免疫性甲状腺炎、红斑狼疮等。[2]
4抗病糖药物来源
抵抗疾病的糖药物来源很广,其中大多数是天然存在的化合物,例如多糖类的糖苷类。这和当前回归自然的潮流相一致,而且可以和开发中草药相结合。由于多数以糖类为基础的药物的作用位点是在细胞表面,这类药物对整个细胞和机体的干扰,比进入细胞内的药物要小得多。科学家认为,糖类药物是副反应相对较小的药物之一。它们不仅可以作为治疗疾病的药物,也可作为保健食品。这些以糖类为基础的药物,不仅可用于人类,还可以用作农药,比起传统的化学农药来,以糖类为基础的生化农药对环境的污染更小。[2]
5研究的重要性
糖生物学之所以落后于基因和蛋白质的研究,在于以前研究人员缺乏研究糖类分子的有效工具,以及糖分子本身的复杂性。美国麻省理工学院糖原生物学家萨西赛克哈兰说:“目前我们尚未破译其密码,我们仅处于揭示糖奥秘的初始阶段”。21世纪生命科学的研究焦点是对多细胞生物的高层次生命现象的解释,因此,对生物体内细胞识别和调控过程的信息分子——糖类的研究是必不可缺的。[2]
6各国的研究进展
1989年,日本创刊了《糖科学与糖工程动态》杂志。同年,日本政府科学技术厅提出关于“糖工程基础与应用研究推进战略”的咨询,经过专家评议后成为详尽的战略方案,于1991年由科学技术厅、厚生省、农林水产省和通商产业省联合实施“糖工程前沿计划”,总投资百亿日元,为期15年。该计划包括:糖工程和糖生物学。后者又分为糖分子生物学、糖细胞生物学。同时,成立了“糖工程研究协议会”作为协调机构。这协议会编辑出版了专著《糖工程学》。 美国能源部于1986年资助佐治亚大学创建了复合糖类研究中心,建立复合糖类数据库,相关的计算机计划也称为“糖库计划”。1990年底已收集了6000个糖结构数据,1992年增加到9200个,1992年底有关的记录增加到22000份,1996年增加到42000份。 欧洲也不甘落后。欧盟1994—1998年的研究计划中有一项“欧洲糖类研究开发网络”计划。其目的是携带欧洲各国的糖类研究和开发,以强化欧洲在糖类基础研究以及将研究成果转化为商品方面与美国、日本的竞争能力。[3] 由于美、日、欧三方的重视。近年来在糖类研究方面已取得不少进展。研究结果已确证,糖类作为信息分子在受精、发生、发育、分化、神经系统和免疫系统衡态的维持等方面起着重要作用;炎症和自身免疫疾病、老化、癌细胞的异常增殖和转换、病原体感染等生理和病理过程都有糖类的参与。 糖生物学是上世纪80年代末及90年代初兴起的一门生命科学的前沿学科。糖生物工程是继基因工程、蛋白质工程之后,最引人注目的生物技术的新领域。糖生物工程的研究成果,已广泛应用于医药、农业、食品、化工、能源、环保等领域。 糖与人类健康的关系是十分密切的。糖、蛋白质和核酸是生命攸关的三大生物大分子。糖是存在自然界中的最大的生物量,糖链是自然界中最大的生物信息库。寡糖(2-10个单糖聚合的糖链)是生物体中一类最复杂多样的生物信息分子。寡糖在生物体中是无处不在的,参与几乎所有真核生物的一切生命过程。 2007年1月,《国民经济与社会发展第十一个五年规划纲要》中“国家公众营养改善计划” 实施的第一个公众营养改善项目即国家发改委公众营养改善OLIGO项目正式启动。 “壳寡糖(OLIGOCHITOSAN奥利奇善)与人类未来健康工程”作为OLIGO项目的组成部分,对推动我国公众健康事业的发展起到积极作用,对人民健康具有深远的影响和意义
核酸、蛋白、糖是生物体内的“三驾马车”。继基因组学、蛋白质组学之后,糖生物组学又成为国际生物学领域激发新一轮“生命革命”的热点,吸引了世界各国科学家的目光。然而,无论是快速有效地进行糖的分离纯化和结构确定还是糖链的合成依然是摆在科学家面前的“世界级”难题。10月14日,中美英多糖研究领域的科学家齐集中科院上海药物研究所参加“2010年中-美-英糖生物学研讨会”。“多糖:从分子到功能到应用”是本次大会的主题,各国科学家围绕糖链对多种疾病的功能机制研究和方法学研究,带来了精彩纷呈的报告,共同搭建“中美英”三国多糖研究的交流桥梁,在交流中携手共进,共同推动多糖研究的发展。 越来越多的证据表明,无论是糖蛋白或蛋白聚糖,它们在一些重大疾病如肿瘤、神经退行性疾病、心血管病、代谢性疾病、免疫性疾病及感染性疾病的发生或发展中担任一些重要或关键角色。英美科学家在多糖功能研究方面走在世界前列,来自曼彻斯特大学、华盛顿大学、华盛顿天主教大学和俄克拉何马大学健康科学中心的多名科学家在糖链对胚胎干细胞、心血管疾病、糖尿病等多种疾病的功能关系以及多糖糖链的合成的快速合成的方法学研究方面带来了他们的最新研究成果。特别是在多糖的合成方面带来了令人振奋的消息,美国科学家在综合利用化学和酶法的基础上已能合成分子量多达25,000,000道尔顿的多糖。中国科学家亦有不俗的表现,中国科学院大连化物所张玉奎院士的实验室在多糖快速分离纯化工作已先行一步,此次专题报告该实验室快速分离纯化组织内多糖蛋白的方法学进展引起广泛关注。复旦大学、武汉大学、中科院微生物所、中科院上海药物所也通过对糖蛋白和蛋白聚糖的糖链及其合成修饰代谢酶在重大疾病中结构与功能研究,系统分析糖蛋白和蛋白聚糖在肿瘤干细胞、微生物、肿瘤和免疫疾病发生发展中的功能及其机制,希冀在此基础上发现新的药物靶标,并有针对性地进行创新药物的研发。 大会还特别邀请了JBC杂志的副主编Vincent Hascall教授和JBC及Glycobiology的编委Paul L. DeAngelis教授做专题报告,大会希望国际糖生物学的顶级期刊能够关注中国科学家的研究,为中国糖生物学研究走向世界搭建平台,希望更多的中外科学家能够看到多糖研究的前景,加入到多糖研究的队伍中来。 中科院上海药物所与南方李锦记无限极公司合作共建的多糖联合实验室率先在国际上进行了多糖的microRNA调控研究,来源中草药的多糖功能机制研究处于国内领先地位,该实验室8月在美国《生物化学杂志》(Journal of Biological Chemistry,JBC)和国际糖生物学领域主流学术期刊《糖生物学》(Glycobiology)连发两篇文章分别阐述天麻多糖和麦冬多糖抗肝癌和心肌缺血保护的新机制,在中药多糖的功能机制研究方向上取得了突破性进展。此次报告会上,他们重点介绍了实验室在多糖通过调控microRNA而达到抑制乳腺癌细胞生长的活性机制,与与会者共飨。