2012届高三数学一轮复习课件4:导数

合集下载

导数与函数的单调性课件高三数学一轮复习

导数与函数的单调性课件高三数学一轮复习
目录
|解题技法| 讨论函数f(x)单调性的步骤
(1)确定函数f(x)的定义域; (2)求导数f'(x),并求方程f'(x)=0的根; (3)利用f'(x)=0的根将函数的定义域分成若干个子区间,在这些子区间上 讨论f'(x)的正负,由符号确定f(x)在该区间上的单调性. 提醒 研究含参函数的单调性时,需注意依据参数取值对不等式解集的影响进 行分类讨论.
目录
考向2 解不等式
A.(-∞,-2)∪(1,+∞) B.(2,+∞) C.(-∞,-1)∪(2,+∞) D.(-1,2)
目录
答案 C
目录
(1)若函数f(x)存在单调递减区间,求a的取值范围;
目录
所以a>-1. 即a的取值范围是(-1,+∞).
目录
(2)若函数f(x)在[1,4]上单调递减,求a的取值范围.

1.(多选)(2023·贵阳一模)下列选项中,在R上是增函数的有
()
A.f(x)=x4 C.f(x)=xex
B.f(x)=x-sin x D.f(x)=ex-e-x-2x
目录
目录
2.已知f(x)=x3-ax在[1,+∞)上是增函数,则a的最大值是
.

解析:f'(x)=3x2-a,由结论1知f'(x)≥0,即a≤3x2,又∵x∈[1,+∞),
∴a≤3,即a的最大值是3.
答案:3
目录
02
目录

证明(判断)函数的单调性 【例1】 (1)(2022·北京高考·节选) 已知函数f(x)=exln(1+x),设g (x)=f'(x),讨论函数g(x)在[0,+∞)上的单调性;
目录
目录

高三一轮复习导数的概念、几何意义及导数的计算 (1)

高三一轮复习导数的概念、几何意义及导数的计算 (1)

第十四课时 导数的概念、几何意义及导数的计算考纲要求:1.导数的概念(A) 2.导数的几何意义(B) 3.导数的运算(B)知识梳理:1.导数的概念(1)函数y =f (x )在x =x 0处的导数称函数y =f (x )在x =x 0处的瞬时变化率为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x=x 0,即f ′(x 0)=(2)导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)·(x -x 0).(3)函数f (x )的导函数称函数f ′(x )=li m Δx →0 f (x +Δx )-f (x )Δx为f (x )的导函数. 2.导数公式及运算法则(1)(2)①[f (x )±g (x )]′=f ′(x )±g ′(x );②[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );③⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 基础训练:1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)f ′(x 0)与[f (x 0)]′表示的意义相同.( )(2)f ′(x 0)是导函数f ′(x )在x =x 0处的函数值.( )(3)曲线的切线不一定与曲线只有一个公共点.( )(4)⎝⎛⎭⎫sin π3′=cos π3.( ) (5)(3x )′=3x ln 3.( )(6)⎝⎛⎭⎫e x +cos π4′=e x .( ) 答案:(1)× (2)√ (3)√ (4)× (5)√ (6)√2.曲线y =sin x +e x 在点(0,1)处的切线方程是________.解析:∵y =sin x +e x ,∴y ′=cos x +e x ,∴y ′x =0=cos 0+e 0=2,∴曲线y =sin x +e x 在点(0,1)处的切线方程为y -1=2(x -0),即2x -y +1=0.答案:2x -y +1=03.求下列函数的导数:(1)y =x n e x ;(2)y =x 3-1sin x. 答案:(1)y ′=e x (nx n -1+x n ).(2)y ′=3x 2sin x -(x 3-1)cos x sin 2x.[典题1] 求下列函数的导数:(1)y =(1-x )⎝⎛⎭⎫1+1x ; (2)y =ln x x; (3)y =tan x ;(4)y =3x e x -2x +e ;解析: (1)∵y =(1-x )⎝⎛⎭⎫1+1x =1x -x =x -12-x 12, ∴y ′=(x -12)′-(x 12)′=-12x -32-12x -12. (2)y ′=⎝⎛⎭⎫ln x x ′=(ln x )′x -x ′ln x x 2=1x ·x -ln x x 2=1-ln x x 2. (3)y ′=⎝⎛⎭⎫sin x cos x ′=(sin x )′cos x -sin x (cos x )′cos 2x=cos x cos x -sin x (-sin x )cos 2x =1cos 2x. (4)y ′=(3x e x )′-(2x )′+e ′=(3x )′e x +3x (e x )′-(2x )′=3x (ln 3)·e x +3x e x -2x ln 2= (ln 3+1)·(3e)x -2x ln 2.小结:导数的运算方法(1)连乘积形式:先展开化为多项式的形式,再求导.(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导.(3)对数形式:先化为和、差的形式,再求导.(4)根式形式:先化为分数指数幂的形式,再求导.(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导.[典题2](1)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.(2)已知f (x )=12x 2+2xf ′(2 016)+2 016ln x ,则f ′(2 016)=________. 解析:(1)f ′(x )=a ⎝⎛⎭⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.(2)由题意得f ′(x )=x +2f ′(2 016)+2 016x, 所以f ′(2 016)=2 016+2f ′(2 016)+2 0162 016, 即f ′(2 016)=-(2 016+1)=-2 017.答案:(1)3 (2)-2 017注意:在求导过程中,要仔细分析函数解析式的特点,紧扣法则,记准公式,预防运算错误.练习:1.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=________.解析:∵f (x )=ax 4+bx 2+c ,∴f ′(x )=4ax 3+2bx .又f ′(1)=2,∴4a +2b =2,∴f ′(-1)=-4a -2b =-2.答案:-22.在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)的值为________.解析:因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x =(x -a 1)·(x -a 2)·…·(x -a 8)+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列,所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8,所以f ′(0)=84=212.答案:212导数的几何意义是每年高考的必考内容,考查题型既有填空题,也常出现在解答题的第(1)问中,难度偏小,属中低档题,且主要有以下几个命题角度:角度一:求切线方程[典题3](1)曲线y =e x -ln x 在点(1,e)处的切线方程为________.(2)设曲线y =e x +12ax 在点(0,1)处的切线与直线x +2y -1=0垂直,则实数a =________. (3)已知函数f (x )=x 3-4x 2+5x -4.①求曲线f (x )在点(2,f (2))处的切线方程;②求经过点A (2,-2)的曲线f (x )的切线方程.解析:(1)由于y ′=e -1x,所以y ′x =1=e -1,故曲线y =e x -ln x 在点(1,e)处的切线方程为y -e =(e -1)(x -1),即(e -1)x -y +1=0.(2)∵与直线x +2y -1=0垂直的直线斜率为2,∴f ′(0)=e 0+12a =2,解得a =2. (3)①∵f ′(x )=3x 2-8x +5,∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2,即x -y -4=0.②设切点坐标为(x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2),又切线过点(x 0,x 30-4x 20+5x 0-4),∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0,解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0.答案:(1)(e -1)x -y +1=0 (2)2注意:注意区分曲线在某点处的切线和曲线过某点的切线.曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.角度二:求切点坐标[典题4] 设曲线y =e x 在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.解析: y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x(x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0),因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).答案:(1,1)小结:已知斜率k ,求切点A (x 0,f (x 0)),即解方程f ′(x 0)=k .角度三:求参数的值[典题5](1)若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =________.(2)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.(3)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:(1)∵两曲线的交点为(0,m ),∴⎩⎪⎨⎪⎧ m =a ,m =1,即a =1, ∴f (x )=cos x ,∴f ′(x )=-sin x ,则f ′(0)=0,f (0)=1.又g ′(x )=2x +b ,∴g ′(0)=b ,∴b =0,∴a +b =1.(2)∵f ′(x )=3ax 2+1,∴f ′(1)=3a +1.又f (1)=a +2,∴切线方程为y -(a +2)=(3a +1)(x -1).∵切线过点(2,7),∴7-(a +2)=3a +1,解得a =1.(3)法一:∵y =x +ln x ,∴y ′=1+1x,y ′x =1=2. ∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0. 由Δ=a 2-8a =0,解得a =8.法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).∵y ′=2ax +(a +2),∴y ′x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧ 2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧ x 0=-12,a =8.答案:(1)1 (2)1 (3)8小结:(1)根据导数的几何意义求参数的值时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.(2)当切线方程中x (或y )的系数含有字母参数时,则切线恒过定点.总结:1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常数,其导数一定为0,即(f (x 0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.注意:1.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.2.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.3.直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.4.曲线未必在其切线的同侧,如曲线y =x 3在其过(0,0)点的切线y =0的两侧.课后作业:1.曲线y =e x 在点A (0,1)处的切线斜率为________.解析:由题意知y ′=e x ,故所求切线斜率k =e x x =0=e 0=1.答案:12.已知函数f (x )=1xcos x ,则f (π)+f ′⎝⎛⎭⎫π2=________. 解析:∵f ′(x )=-1x 2cos x +1x (-sin x ),∴f (π)+f ′⎝⎛⎭⎫π2=-1π+2π·(-1)=-3π. 答案:-3π3.设曲线y =1+cos x sin x在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于________.解析:∵y ′=-1-cos x sin 2x ,∴y ′x =π2=-1,由条件知1a=-1,∴a =-1. 答案:-14.设直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b 的值为________. 解析:设切点坐标为(x 0,ln x 0),则1x 0=12,即x 0=2,∴切点坐标为(2,ln 2),又切点在直线y =12x +b 上,∴ln 2=1+b ,即b =ln 2-1. 答案:ln 2-15.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小值为________.解析:因为定义域为(0,+∞),所以y ′=2x -1x=1,解得x =1,则在P (1,1)处的切线方程为x -y =0,所以两平行线间的距离为d =22= 2. 答案:26.已知函数f (x )=x ln x ,若f ′(x 0)=2,则x 0=________.解析:f ′(x )=ln x +1,由f ′(x 0)=2,即ln x 0+1=2,解得x 0=e.答案:e7.若直线l 与幂函数y =x n 的图象相切于点A (2,8),则直线l 的方程为________. 解析:由题意知,A (2,8)在y =x n 上,∴2n =8,∴n =3,∴y ′=3x 2,直线l 的斜率k =3×22=12,又直线l 过点(2,8).∴y -8=12(x -2),即直线l 的方程为12x -y -16=0.答案:12x -y -16=08.在平面直角坐标系xOy 中,点M 在曲线C :y =x 3-x 上,且在第二象限内,已知曲线C 在点M 处的切线的斜率为2,则点M 的坐标为________.解析:∵y ′=3x 2-1,曲线C 在点M 处的切线的斜率为2,∴3x 2-1=2,x =±1,又∵点M 在第二象限,∴x =-1,∴y =(-1)3-(-1)=0,∴M 点的坐标为(-1,0).答案:(-1,0)9.若曲线f (x )=ax 3+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析:由题意,可知f ′(x )=3ax 2+1x ,又存在垂直于y 轴的切线,所以3ax 2+1x=0,即a =-13x3(x >0),故a ∈(-∞,0). 答案:(-∞,0)10.已知曲线C :f (x )=x 3-ax +a ,若过曲线C 外一点A (1,0)引曲线C 的两条切线,它们的倾斜角互补,则a 的值为________.解析:设切点坐标为(t ,t 3-at +a ).由题意知,f ′(x )=3x 2-a ,切线的斜率k =3t 2-a ①,所以切线方程为y -(t 3-at +a )=(3t 2-a )(x -t ) ②.将点A (1,0)代入②式得-(t 3-at +a )=(3t 2-a )(1-t ),解得t =0或t =32.分别将t =0和t =32代入①式,得k =-a 和k =274-a ,由题意得它们互为相反数,故a =278. 答案:27811.函数f (x )=e x +x 2+x +1与g (x )的图象关于直线2x -y -3=0对称,P ,Q 分别是函数f (x ),g (x )图象上的动点,则|PQ |的最小值为________.解析:因为f (x )与g (x )的图象关于直线2x -y -3=0对称,所以当f (x )与g (x )在P ,Q 处的切线与2x -y -3=0平行时,|PQ |的长度最小.f ′(x )=e x +2x +1,令e x +2x +1=2,得x =0,此时P (0,2),且P 到2x -y -3=0的距离为5,所以|PQ |min =2 5.答案:2512.已知函数f (x )=x ,g (x )=a ln x ,a ∈R .若曲线y =f (x )与曲线y =g (x )相交,且在交点处有相同的切线,则a =________,切线方程为________.解析:f ′(x )=12x,g ′(x )=a x (x >0), 由已知得⎩⎪⎨⎪⎧x =a ln x ,12x=a x ,解得a =e 2,x =e 2, ∴两条曲线交点的坐标为(e 2,e),切线的斜率为k =f ′(e 2)=12e, ∴切线的方程为y -e =12e (x -e 2),即x -2e y +e 2=0.答案:e 2x -2e y +e 2=013.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标. 解:(1)可判定点(2,-6)在曲线y =f (x )上.∵f ′(x )=(x 3+x -16)′=3x 2+1,∴f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13.∴切线的方程为y +6=13(x -2),即y =13x -32.(2)设切点坐标为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,y 0=x 30+x 0-16,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16.又∵直线l 过原点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8, ∴x 0=-2,∴y 0=(-2)3+(-2)-16=-26,得切点坐标(-2,-26),k =3×(-2)2+1=13. ∴直线l 的方程为y =13x ,切点坐标为(-2,-26).14.设函数y =x 2-2x +2的图象为C 1,函数y =-x 2+ax +b 的图象为C 2,已知过C 1与C 2的一个交点的两切线互相垂直,求a +b 的值.解:对于C 1:y =x 2-2x +2,有y ′=2x -2,对于C 2:y =-x 2+ax +b ,有y ′=-2x +a ,设C 1与C 2的一个交点为(x 0,y 0),由题意知过交点(x 0,y 0)的两条切线互相垂直.∴(2x 0-2)·(-2x 0+a )=-1,即4x 20-2(a +2)x 0+2a -1=0,①又点(x 0,y 0)在C 1与C 2上,故有⎩⎪⎨⎪⎧y 0=x 20-2x 0+2,y 0=-x 20+ax 0+b ,⇒2x 20-(a +2)x 0+2-b =0.②由①②消去x 0,可得a +b =52. 15.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C . (1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.解:(1)由题意得f ′(x )=x 2-4x +3,则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞).(2)设曲线C 的其中一条切线的斜率为k , 则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧ k ≥-1,-1k≥-1, 解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1,得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).。

高考数学一轮复习-用导数研究函数的单调性ppt课件

高考数学一轮复习-用导数研究函数的单调性ppt课件

恒成立,即 ≥
恒成立,又 =
在 , +∞ 上单调递减,故
< ,所以
+
+
+
≥ ,当 = 时,导数不恒为0.故选D.
02
研考点 题型突破
题型一 不含参数的函数的单调性
典例1 函数y = xln x(
D )
A.是严格增函数
B.在
1
0,
e
上是严格增函数,在
1
, +∞
e
上是严格减函数
为 , .故选A.
(2)函数f x
[解析] 函数
或 =
2
x2
0,
= x 的增区间为________.
ln 2
2

⋅ − ⋅ ⋅
= ,则′ =



,当



.
.令′ = ,解得 =
∈ −∞, 时,′ < ,函数 单调递减,当 ∈ ,
(2)已知函数f x = ex − e−x − 2x + 1,则不等式f 2x − 3 >
3
, +∞
1的解集为_________.
2
[解析] = − − − + ,其定义域为,
∴ ′ = + − − ≥ ⋅ − − = ,当且仅当 = 时取“=”,∴ 在
在 a, b 上单调递减,则当x ∈ a, b 时,f′ x ≤ 0恒成立.
2.若函数f x 在 a, b 上存在增区间,则当x ∈ a, b 时,f′ x > 0有解;若函数f x
在 a, b 上存在减区间,则当x ∈ a, b 时,f′ x < 0有解.

导数的概念及其意义 、导数的运算(高三一轮复习)

导数的概念及其意义 、导数的运算(高三一轮复习)


gfxx′=f′xgx[g-xf]2xg′x(g(x)≠0);
[cf(x)]′= 16 cf′(x)

— 8—
数学 N 必备知识 自主学习 关键能力 互动探究
— 9—
5.复合函数的定义及其导数
(1)一般地,对于两个函数y=f(u)和u=g(x),如果通过中间变量u,y可以表示成x 的函数,那么称这个函数为函数y=f(u)与u=g(x)的复合函数,记作y= 17 f(g(x)) .
— 20 —
数学 N 必备知识 自主学习 关键能力 互动探究
— 21 —
命题点2 导数的几何意义
考向1 求切线方程
例2
(1)(2022·湖南衡阳二模)函数f(x)=xln(-2x),则曲线y=f(x)在x=-
e 2
处的
切线方程为 4x-2y+e=0
.
(2)(2y0=22-·新1e高x 考Ⅱ卷.)曲线y=ln|x|过坐标原点的两条切线的方程为
(2)f1x′=-f[′fxx]2(f(x)≠0). (3)曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次函数的图 象相切只有一个公共点. (4)函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变 化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越 “陡”.
f(x)=xα(α∈Q且α≠0) f′(x)= 7αxα-1
f(x)=sin x
f′(x)= 8 cos x
f(x)=cos x
f′(x)= 9 -sin x
— 6—
数学 N 必备知识 自主学习 关键能力 互动探究
f(x)=ax(a>0且a≠1) f′(x)= 10 axln a

高考数学一轮复习第三章导数及其应用4导数的综合应用课件新人教A版2

高考数学一轮复习第三章导数及其应用4导数的综合应用课件新人教A版2

-15考点1
考点2
考点3
当x变化时,g(x),g'(x)的变化情况如下表:
2
-∞,
3
x
g'(x)
+
0
单调递增↗
g(x)
2
,4
3
2
3
68
27
则函数 g(x)的极大值为 g
-
4
(4,+∞)
0
+
-m 单调递减↘ -16-m 单调递增↗
2
3
=
68
27
-m,极小值为 g(4)=-16-m.
∴要使 g(x)的图象与 x 轴有三个不同的交点,
则欲证
12 - 22
>2a,
只需证 2a(12 − 22 )>3x2-x1.
只需证 2a(12 − 22 )>2(x2-x1)+(x1+x2).
只需证 a(x1-x2)+
1 - 2
1 + 2
1
> .
2
因为 f'(x1)=0,f'(x2)=0,ax1=-ln x1,ax2=-ln x2,
(3)证明:由题设c>1,
设g(x)=1+(c-1)x-cx,
则g'(x)=c-1-cxln c,
ln
令 g'(x)=0,解得 x0=
-1
ln
ln
.
当 x<x0 时,g'(x)>0,g(x)单调递增;
当 x>x0 时,g'(x)<0,g(x)单调递减.
由(2)知 1<
-1
ln

高考总复习一轮数学精品课件 第4章 导数及其应用 第1节 导数的概念及其意义

高考总复习一轮数学精品课件 第4章 导数及其应用 第1节 导数的概念及其意义
v(t),则v'(t)就是加速度与时间的函数关系式.
即在点(x0,f(x0))处
2.导数的几何意义
函数y=f(x)在x=x0处的导数f'(x0),就是曲线y=f(x)在x=x0处的切线的斜率k0,
f'(x0)
即k0=__________.
微思考已知函数y=f(x),给定一个点P(x0,y0),那么f'(x0)就是经过点P的切线的
4
√2 √2
B,直线的斜率为 m=- 3 <- 4 ,故 B 错误;
√2
C,直线的斜率为 m=- 4 ,故 C 正确;
√2
x= 2 时,等号成立,
√2
≥2√2,因此- ≤m<0.
4
对于 D,直线的斜率为 m=√2>0,故 D 错误,故选 AC.
考点三
导数几何意义的应用(多考向探究预测)
考向1 求曲线的切线方程
所以切线方程为
1
y-2=2(x-1),整理可得
4x-2y-3=0.
1
k=2,切点为(1, ),
2
考向2 求参数的值或范围
例4(1)(2024·广东惠州模拟)已知直线y=x+1与曲线y=ln(x+a)相切,则实数
a=( C )
A.-1
B.1
C.2
D.3
1
1
解析 设切点的坐标为(x0,y0),由于 y'= ,所以切线的斜率为
1 3 2
h(t)= t +t ,当t=t0时,液体上升高度的瞬时变化率为3
3
cm/s,则当t=t0+1时,液
体上升高度的瞬时变化率为( C )
A.5 cm/s
B.6 cm/s

高考数学一轮复习第三章导数及其应用1导数的概念及运算课件新人教A版理

高考数学一轮复习第三章导数及其应用1导数的概念及运算课件新人教A版理
()
'()()-()'()
(3) () '=
[()]
2
(g(x)≠0).
6
;
-9知识梳理
双基自测
1
2
3
4
5
6
6.复合函数的导数
复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为
y'u·u'x
y'x=
,即y对x的导数等于 y对u
的导数与
u对x
2
……
依次下去,可得点 An 的坐标为(en-1,n-1).
-24考点1
考点2
考向三 已知切线方程(或斜率)求参数的值
例4已知曲线y=aex+xln x在点(1,ae)处的切线方程为y=2x+b,则
(
)
A.a=e,b=-1 B.a=e,b=1
C.a=e-1,b=1 D.a=e-1,b=-1
思考已知切线方程(或斜率)求参数的值的关键是什么?
1
3
∵s=3t3-2t2+2t,
∴v=s'=t2-3t+2.令 v=0,
关闭
则 t -3t+2=0,解得 t1=1,t2=2.故选 D.
D
2
解析
答案
-12知识梳理
双基自测
1
2
3
4
5
3.(2020四川泸州期末)已知函数f(x)的图象如图,设f'(x)是f(x)的导
函数,则f'(xA)与f'(xB)的大小关系正确的是( A )
知点在切线上求解.
2.已知切线方程(或斜率)求切点的一般思路是先求函数的导数,

(完整版)高考数学第一轮复习教案——导数

(完整版)高考数学第一轮复习教案——导数

高考复习—-导数复习目标1.了解导数的概念,能利用导数定义求导数.掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的基础上抽象出变化率的概念.2熟记基本导数公式,掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,掌握导数的基本应用.3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。

能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数.4.了解复合函数的概念。

会将一个函数的复合过程进行分解或将几个函数进行复合.掌握复合函数的求导法则,并会用法则解决一些简单问题。

三、基础知识梳理:导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面: 1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n 次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

4.瞬时速度物理学习直线运动的速度时,涉及过瞬时速度的一些知识,物理教科书中首先指出:运动物体经过某一时刻(或某一位置)的速度叫做瞬时速度,然后从实际测量速度出发,结合汽车速度仪的使用,对瞬时速度作了说明.物理课上对瞬时速度只给出了直观的描述,有了极限工具后,本节教材中是用物体在一段时间运动的平均速度的极限来定义瞬时速度. 5.导数的定义导数定义与求导数的方法是本节的重点,推导导数运算法则与某些导数公式时,都是以此为依据. 对导数的定义,我们应注意以下三点:(1)△x 是自变量x 在 0x 处的增量(或改变量).(2)导数定义中还包含了可导或可微的概念,如果△x→0时,xy∆∆有极限,那么函数y=f (x )在点0x 处可导或可微,才能得到f (x)在点0x 处的导数.(3)如果函数y=f (x)在点0x 处可导,那么函数y=f (x)在点0x 处连续(由连续函数定义可知).反之不一定成立.例如函数y=|x |在点x=0处连续,但不可导.由导数定义求导数,是求导数的基本方法,必须严格按以下三个步骤进行:(1)求函数的增量)()(00x f x x f y -∆+=∆; (2)求平均变化率xx f x x f x y ∆-∆+=∆∆)()(00; (3)取极限,得导数x y x f x ∆∆=→∆00lim )('。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必要非充分条件. 可能的极值点是导数为0的点或不可导的点
想一想:导数为0的点是否都是极值点? 不一定
[温故]
(3)求函数极值的一般步骤:
(1)确定函数的定义域; (2)求导数f′(x); (3)求方程f′(x)=0的全部实根; (4)检查方程f′(x)=0的根左右两侧f′(x)的符号,如 果左正右负,那么f(x)在这个根处取得极大值;如果左负 右正,那么f(x)在这个根处取得极小值.为判断方程 f′(x)=0的根左右两侧f′(x)的符号,可用列表的方法: 用方程f′(x)=0的根及无意义的点,顺次将函数的定义域 分成若干个小开区间,并列成表格.根据极值定义找到相 应的极值.
# 如果在x0附近的左侧f ( x) 0,右侧f ( x) 0, 那么f ( x0 )是极小值
(2)判别 f ( x0 ) 是极大、极小值的方法:当f ( x0 ) 0时,
可导函数y f ( x)在x0处有极值,则f ( x0 ) 0.反之不成立. 极值点是否都是导数为0的点? 不一定 f ( x0 ) 0是可导函数y f ( x)在x0处有极值的
(2)解:由题意知f (1 0即3 3a 0, a 1 ' ) (x) x3 3x 1, f (x) 3x2 3 3( x2 1) f ' 由f (x) 0解得x 1或x 1 '
x f′(x) (-∞,-1) -1 (-1,1)
+

f(x)
[温故]
3、函数的最值与导数:
(1)一般的,如果在区间[a,b]上函数y=f(x)的图像是 一条连续不断的曲线,那么它必有最大值和最小值. (2)求函数y=f(x)在[a,b]上的最大值与最小值的步骤: ①求y=f(x)在(a,b)内的极值; ②将函数y=f(x)的各极值与端点处的函数值f(a)、f(b) 比较,其中最大的一个为最大值,最小的一个为最小值.
题型二
利用导数求函数的极值和最值
例2.已知函数f ( x) x3 3x 2 9 x a (2)若函数f ( x)在 2,的最小值是 7,求f ( x)在 2,的最大值 2 2
X
-2
(-2,-1) -1
— 0
极小值 (-1 f )
(-1,2)
2
f
'
( x)
+
(2) f
题型一
利用导数求函数的单调区间
1 例1.求函数f(x)= x ln x 1的单调递增区间. 2 解:函数f ( x)的定义域是(0, ) 确定定义域
1 1 x2 f ( x) . 2 x 2x x2 由f ( x) 0即 0得 : x 0或 x 2 2x
(x) ( 2) f f
求极值
由(1)知:当x 1时,f ( x)有极小值f (1) 5 a, 无极大值 且( 2)=2 a, (2)=22 a (2) ( 2) ( 1 f f f f f ) (x)的最小值为(1 5 a f f )= 求最值 5 a 7 a 2
(2)由f ' ( x) 3x2 a 0, x (1,1)恒成立知
1 x 13x 2 3
a 3
a 3x2 , x (1,1)恒成立
当a 3时,f ' ( x) 3x 2 a, x (1,1)恒有f ' ( x) 0 即f ( x)在(1,1)上为减函数. 存在实数a 3,使f ( x)在(1,1)上单调递减.
学习目标
1、利用导数研究函数的单调性。 2、利用导数研究函数的极值。 3、利用导数研究函数的最大(小)值。
[温故]
1、导数与单调性: 设函数y=f(x)在某个区间内可导,
如果
f ( x) 0
,则f(x) 在这个区间内 单调递增;
, 则y=f(x) 在这个区间内单调递减
如果 f ( x) 0
分析 : 函数f ( x)递增区间是f '( x) 0恒成立的区间, 函数f ( x)递减区间是f '( x) 0恒成立的区间 (在定义域的任意子集上导数不恒为0).
例3.已知函数f ( x) x3 ax 1
题型三
综合应用
()若f ( x)在实数集R上单调递增,求实数a的取值范围; 1 (2)是否存在实数a,使f ( x)在(1,1)上单调递减?若存在,求出a的取值范围; 若不存在,说明理由。 解(1) f ( x) x3 ax 1 f ' ( x) 3x2 a
综上所述 : a 0时,(x)的单调递增区间为( , ), 无单调递减区间; f
整合
a 0时,(x)的单调递增区间为( , a ),( a , ), 单调递减区间为( a , a ). f
例4.(2009年高考陕西卷.文) 已知函数(x) x3 3ax 1, a 0 f (1)求(x)的单调区间. f (2)若(x)在x 1处取得极值,直线y m与y (x)的图象有三个不同的交点,求m的取值范围. f f
(检验)
温馨提示
f ( x)是增函数 f ( x) 0
f ( x)是减函数 f ( x) 0
不等式恒成立问题
注意 : 检验参数的值是否使f '( x)恒为0.
化归与转化思想
题型三
(1)求(x)的单调区间. f
综合应用
例4.(2009年高考陕西卷.文) 已知函数(x) x 3 3ax 1, a 0 f (2)若(x)在x 1处取得极值,直线y m与y (x) f f 的图象有三个不同的交点,求m的取值范围.
课堂互动探究
题型一
利用导数求函数的单调区间
1 例1.求函数f(x)= x ln x 1的单调递增区间. 2
解: f ( x)
1 1 2 x
x2 . 2x
错解 忘记函数定义域
x2 由f ( x) 0即 0得 : x 0或 x 2 2x
函数f ( x)的单调递增区间是(,0)和(2, )
0 极大值 f(-1)

1
(1,+∞)

0 极小值 f(1)
+

由上表知:当x 1时,f ( x)有极大值(1 f )=1,当x 1时,f ( x)有极小值() 3. f 1
直线y m与y (x)的图象有三个不同的交点, f 且( 3) 19 3, (3) 17 1, 3 m 1 f f
m的取值范围是( 3,1 ).
温馨提示
数学思想
(1)分类与整合(分类讨论) (2)数形结合
可导函数y f ( x)在x0处有极值,则f ( x0 ) 0. 反之不成立.
小结:
一.知识疏理: 1.利用导数求函数 f ( x) 的单调区间 定义域优先 2.利用导数求函数 f ( x) 的极值和最值 规范的步骤. 3.已知函数 f ( x) 的单调性求参数范围 f ( x)是增函数 f ( x) 0 注意 : 检验参数的值 f ( x)是减函数 f ( x) 0 是否使f '( x)恒为0.
(1)解: (x) x3 3ax 1, a 0 f (x) 3x2 3a 3( x2 a) f '
f 当a 0时, 对x R, 有f (x) 0 a 0时,(x)的单调递增区间为( , ); '
当a 0时由f (x) 0解得x a或x a ,由f (x) 0解得 a x a , 分类 , ' ' a 0时,(x)的单调递增区间为( , a ),( a , ), 单调递减区间为( a , a ). f
如果对x0附近的所有的点,都有 f ( x) f ( x0 ) ,就说f(x0)
是 函数f(x)的一个极大值
x0是 极大值点 .
,记作 y极大值 f ( x0 ) ,
如果对x0附近的所有的点,都有 f ( x) f ( x0 ) ,就f(x0)

函数f(x)的一个极小值
,记作 y极小值 f ( x0 ) ,
题型二
利用导数求函数的极值和最值
例2.已知函数f ( x) x3 3x 2 9 x a (1)求函数f ( x)在 2,的极值 2 (2)若函数f ( x)在 2,的最小值是 7,求f ( x)在 2,的最大值 2 2
(1)解 : f '( x) 3x2 6x 9 3( x 1)( x 3)
x0是 极小值点 .极大值与极小值统称为极值.
极值点两侧导数正负符号有何规律?
y yf(x)
f (x)<0 极大值点两侧 f (x)>0 f (x)>0 x2 b x f (x)<0
O a x1 极小值点两侧
结论:可导函数极值点处,f(x) =0
[温故]
# 如果在x0附近的左侧f ( x) 0,右侧f ( x) 0, 那么f ( x0 )是极大值
令 f ( x) 0
'
求导
求f '( x) 0的根
x,
X
f
-2
'
( x)
得x=-1或x=3(舍) (x) 的变化情况如下表 f
(-1,2) 2
(-2,-1) -1Fra bibliotek— 0极小值 (-1 f )
f
'
( x)
+
(2) f
列 表
(x) ( 2) f f
由上表知:当x 1时,f ( x)有极小值f (1) 5 a, 无极大值
又 f ( x)在实数集R上单调递增 f ' ( x) 3x2 a 0( x R)恒成立(不等式恒成立问题)
相关文档
最新文档