《理论力学 动力学》 第十二讲 瞬时转动轴·角速度·角加速度,各点的速度、加速度
第十二章 理论力学动力学动能定理2

机器的功率方程 dT = P入 − P = Pi − Po − Pl 出−P 损 dt
例12-7: 机车作直线行驶, 机车作直线行驶,受迎风面阻力为kmg,k常数,m 为 质量。试求: 试求:机车功率。 机车功率。
mv 2 ∑ d w = d w − kmg d s 解: T= 2 d T = d w − kmg d s
A
h
v mg
C Fk k
ωC
设各物体初位置为各重力的零势 ωO vC O 点,弹簧以原长为零势点。 弹簧以原长为零势点。 1 0.5mg V1 = kδ12 A 2 1 h 1 2 C v V2 = −mgh + mg ⋅ + kδ 2 2 2 2 mg ωC 1 Fk k M = 0 2 ( F ⋅ r − F + mg ) r = 0 ∑ iP 1 k 2 3 F k = mg 2 0.5mg h F2 δ 2 = δ1 + F1 代入到 T1 + V1 = T2 + V2 2 1 23 2 1 2 1 h 1 2 mv + kδ1 = −mgh + mg ⋅ + kδ 2 C P 2 16 2 2 2 2 v
V2 =
k l (l sin 30°) 2 − P sin 30° 2 2
T1 + V1 = T2 + V2
ω = 15.5 rad/ s
例12-12:质量为m的物块A离地面高度为h,匀质圆轮O与C的 质量均为0.5m,半径均为r,弹簧的刚度系数为k。若给静止的 系统以初速v,试求恰能使物A到达地面的初速v。 解: T2=0
§12-6 机械能守恒定律
d w = d T = − dV
理论力学 第十二章 动能定理

2009年12月8日第十二章动能定理具体内容:6 普遍定理的综合应用举例一、常力的功••运动路程SF ⋅W2π正功2π负功2πFM 1M 2M Sθ二、变力的功元功:WδrF d⋅变力的功:∫=WWδM M上)⋅d rF (自然形式)(矢量形式)(直角坐标形式)解析表达式三、几种常见力作的功mgF F F z y x −===,0,0质点重力作功可见:开始终了高度差与运动轨迹的形状无关i (z i 1-z i 2)由质心坐标公式,有)(2112C C z z mg W−=∑质点系重力作功可见:与质心运动轨迹的形状无关弹性力δk F =)(0l r k −=弹性极限)(2222112δδ−=k W 21,δδ可见:起始终了变形量与质点的轨迹形状无关r0)(e l r k −−=[例12-1]解:)(21)(C C P z z mg W−=)(22221)(δδ−=k W F 23. 定轴转动刚体上作用力的功元功F 力F 所作的功1ϕ2ϕ∫=21d 12ϕϕϕz M W 力偶z M r F d ⋅4. 平面运动刚体上力系的功无限小位移=i r d C r d iCr d +iF iM CCr d ϕd iC r d θϕd d ⋅=C M r i iC C r d ϕd 元功r F d ⋅r F d ⋅r F d ⋅=⋅iC i r F d θcos ⋅C M F i i ϕd )(⋅=i C F MiF iM CCr d ϕd iCr d r F d ⋅F 力系元功⋅r F d F r F d ⋅′力系作功∫∫+⋅′=2121d d R 12ϕϕϕC C C C M r F W R F ′主矢C M 质心主矩可见:力系向质心简化所得的力和力偶作功之和一、质点的动能221mv •••动量异:同:平方标量一次方矢量二、质点系的动能T质点系内各质点动能的算术和。
m柯尼希定理Cmmv∑+即:质心平移坐标系注意:以质心为基点?三、刚体的动能平移221Cmv =定轴转动221ωz J =平面运动221C mv 221ωC J +221ωP J =[例12-2]质心平移解:(定轴转动盘杆系统T T T +=AωOA?=A ωBl v AAθ平移平面运动解:v v v +=BAv Av [例12-3]系统的动能:221cos )(θθ&lv m v m m A A +++22cos θθ&lv m v m A A ++Bl v AAθBAv Av[思考]√一、质点的动能定理d F v =v d F r d ⋅r d ⋅r d =⋅r tvm d d d v v m ⋅d )d(2v v m ⋅=2d 2v m =)21d(2mv =)21d(2mv Wδ=微分形式21222121mv mv −12W =积分形式(某一瞬时)(某一运动过程)二、质点系的动能定理i ∑=iW δ质点系动能定理的微分形式∑=−iW T T 12质点系动能定理的积分形式i d(T d 即:即:∑=i W T δd ∑=−iW T T 12讨论:质点系的内力,因有些情况下内力作功和不等于零。
定轴转动刚体内各点的速度和加速度

a
aτ2 an2 r
2 4
arctan
aτ an
arctan
2
式中:——全加速度的方向与转动半径间的夹角。
1.3 转动刚体内各点的速度和加速度的分布规律
由上面各式可得到转动刚体内各点的速度和加速度的下述分布 规律:
1)在任一瞬时,转动刚体内各点的速度、切向加速度、法向 加速度及全加速度的大小均与该点的转动半径成正比。
= 0.5 m的圆轮绕定轴O转动,转动
方程为=-t2+3t, 的单位为rad,
t的单位为s。求t = 1s时轮缘上任一 点M的速度和加速度。如果在此轮 缘上绕一柔软而不可伸长的绳子, 绳端悬挂一物块A,求t = 1s时物块 A的速度和加速度。
目录
刚体的运动\定轴转动刚体内各点的速度和加速度
【解】 由圆轮的转动方程,可得其在任 一瞬时的角速度和角加速度为
下面求物块A的速度和加速度,由于绳子不 可伸长,A点落下的距离与M点转过的弧长相同,
A点的运动方程为s= r,t = 1 s时的速度和加速
度为
v ds r d r (0.51) m/s 0.5 m/s
dt dt
a dv r d r [0.5 (2)] m/s2 1m/s2
dt dt
目录
刚体的运动\定轴转动刚体内各点的速度和加速度 2)在任一瞬时,转动刚体内各点的速度方向垂直于各自的转
动半径;全加速度的方向与各点的转动半径的夹角均相同且小于 90°。
因此,刚体内通过转轴且与其垂直的任一直线上各点在同一 瞬时的速度和全加速度是按线性规律分布的,如图所示。
目录
刚体的运动\定轴转动刚体内各点的速度和加速度 【例6.3】 如图所示,一半径r
理论力学 刚体的简单运动

度、角加速度是刚体绕定轴转动的 整体性质的度量。 能否这样说:刚体在定轴转动的每 一瞬时,这一点有一个角速度、角 加速度,另一Байду номын сангаас有不同的角速度和 角加速度? 再有,对一个点,能否说这个点具 有角速度和角加速度?
7.3 转动刚体内各点的速度和加速度
当刚体绕定轴转动时, 刚体内任意一点都作圆周运 动,圆心在轴线上,圆周所 在的平面与轴线垂直,圆周 的半径R等于该点到轴线的 垂直距离。 设刚体由定平面A绕定轴O转动任一角度j,到达B 位置,其上任一点由O'运动到M。以固定点O'为弧坐 标s的原点,按j角的正向规定弧坐标s的正向,于是
当刚体转动时,转角 j 是时间t的单值连续函数, 即
j f (t )
这就是刚体绕定轴转动的运动方程。 转角 j 对时间的一阶导数,称为刚体的瞬时角速度, 用w表示: dj w j dt 角速度表征刚体转动的快慢和方向,其单位用rad/s (弧度/秒)表示。 角速度是代数量,从轴的正端向负端看,刚体逆时针 转动时角速度取正值,反之取负值。
aA aB
结论:当刚体平行移动时,其上各点的轨迹形 状相同;在每一瞬时,各点的速度相同,加速 度也相同。 因此,研究刚体的平移,可以归结为研究刚体 内任一点的运动。
若平移刚体内各点的轨迹为直线,则称 为直线平移;若平移刚体内各点的轨迹 为平面曲线,则称为平面曲线平移;若 平移刚体内各点的轨迹为空间曲线,则 称为空间曲线平移。 思考题: 作平移运动的刚体有无角速度、角加速 度? 秋千的运动是不是平移? 作直线运动的车厢是平移,车厢转弯时 车厢的运动是不是平移?
1
n1
n2 3
2
n3 4
解:求传动比:
n1 n1 n2 Z 2 Z 4 i13 34.8 n3 n2 n3 Z1 Z3
理论力学第12章-动量矩定理

z
M ,底圆半径为 R ,高为 h 。
r
h z dz
解:把圆锥体分成许多厚度为 d z
的薄圆片,该薄圆片的质量为
d m r2d z
O
y
R
x
为圆锥体的密度,r为薄圆片的半径。
圆锥体的质量
M 1R2h
3
薄圆片对自身直径的转动惯量
由几何关系知: r R h z
h 薄圆片对 y 轴转动惯量 d J y 为:
x
x yi
J z mi ri2
mi
xi2
yi
d
2
mi xi2 yi2 2 yid d 2
J z mi xi2 yi2 2d mi yi mi d 2
mi xi2 yi2 JzC
mid 2 Md 2
由质心坐标公式 :
因为
yC0
mi yi M yC
速度 a 。
解:小车与鼓轮组成质点系对 O 轴的动量矩为 :
LO J O m2 v R
作用于质点系的外力除M ,G 1 和 G 2 外,尚有轴承 O 的反力 Fo x 和 Fo y ,轨道对车的约束力FN 。其中G 1 , FO x ,Fo y 对 O 轴力矩为零。将 G 2 分解为 Gτ和 G n ,
(12-10)
l 为任意轴上的单位矢量。
动量矩的单位是牛·米·秒 ( N ·m ·s )。
12.2.3 定轴转动刚体的动量矩 设刚体绕固定轴 z 转动,某瞬时刚体
的角速度。对于刚体内任一质点 M i ,
其质量为 m i ,转动半径为 r i ,动量 m i v i 。 于是质点 M i 对轴的动量矩为:
LO MO mv r mv (12-8)
质点系对各坐标轴动量矩
理论力学课件 第十二章 动能定理

FRO
r1 r2 O
mg
解:取整体为研究对象,受力分析如图所示。 v1
A
v2
B
系统对O点的动量矩为
m1 g
m2 g
LO m1v1r1 m2v2r2 J0 (m1r12 m2r22 JO )
系统所受全部外力对O点的动量矩为
MO (F e ) m1gr1 m2gr2
质点系的动量矩定理为 dLO dt
WFN 0
WF F s fmgs cos 30 8.5 J
WF
1 2
k
(12
2 2
)
100 (0 0.52) 2
12.5 J
W Wi 24.5 0 8.512.5 3.5 J
12.2 质点和质点系的动能
12.2.1 质点的动能
设质量为m的质点,某瞬时的速度为v,则质点质量与其速度平方乘积的
路径无关。若质点下降,重力的功为正;若质点上升,重力的功为负。
对于质点系,重力的功等于各质点的重力功的和,即
上式也可写为
W12 mi g(zi1 zi2) W12 mg(zC1 zC2 )
2.弹力的功
设有一根刚度系数为k,自由长为l0的弹 簧, 一端固定于点O, 另一端与物体相连接,
如图所示。求物体由M1移动到M2过程中,弹 力F所做的功。
W12
M2 M1
(Fx
d
x
Fy
d
y
Fz
d
z)
12.1.3 常见力的功
1.重力的功
z M1 M
mg
设质点M的重力为mg,沿曲线由M1运动到
M2
M2,如图所示。因为重力在三个坐标轴上的
投影分别为Fx=Fy=0,Fz=-mg,故重力的功为
理论力学重点总结

理论力学重点总结理论力学重点总结绪论1.学习理论力学的目的:在于掌握机械运动的客观规律,能动地改造客观世界,为生产建设服务。
2.学习本课程的任务:一方面是运用力学基本知识直接解决工程技术中的实际问题;另一方面是为学习一系列的后继课程提供重要的理论基础,如材料力学、结构力学、弹性力学、流体力学、机械原理、机械零件等以及有关的专业课程。
此外,理论力学的学习还有助于培养辩证唯物主义世界观,树立正确的逻辑思维方法,提高分析问题与解决问题的能力。
第一章静力学的基本公理与物体的受力分析1-1静力学的基本概念1.刚体:即在任何情况下永远不变形的物体。
这一特征表现为刚体内任意两点的距离永远保持不变。
2.质点:指具有一定质量而其形状与大小可以忽略不计的物体。
1-3约束与约束力1.自由体:凡可以在空间任意运动的物体称为自由体。
2.非自由体:因受到周围物体的阻碍、限制不能作任意运动的物体称为非自由体。
3.约束:力学中把事先对于物体的运动(位置和速度)所加的限制条件称为约束。
约束是以物体相互接触的方式构成的,构成约束的周围物体称为约束体,有时也称为约束。
4.约束力:约束体阻碍限制物体的自由运动,改变了物体的运动状态,因此约束体必须承受物体的作用力,同时给予物体以相等、相反的反作用力,这种力称为约束力或称反力,属于被动力。
5.单面约束、双面约束:凡只能阻止物体沿一方向运动而不能阻止物体沿相反方向运动的约束称为单面约束;否则称为双面约束。
单面约束的约束力指向是确定的,即与约束所能阻止的运动方向相反;而双面约束的约束力指向还决定于物体的运动趋势。
6.柔性体约束:为单面约束。
只能承受拉力,作用在连接点或假想截割处,方向沿着柔软体的轴线而背离物体,常用符号F T表示。
(绳索、胶带、链条)7.光滑接触面(线)约束:为单面约束,其约束力常又称为法向约束力。
光滑接触面(线)的约束力只能是压力,作用在接触处,方向沿着接触表面在接触处的公法线而指向物体,常用符号F N表示。
理论力学重点总结

理论力学重点总结绪论1.学习理论力学的目的:在于掌握机械运动的客观规律,能动地改造客观世界,为生产建设服务。
2.学习本课程的任务:一方面是运用力学基本知识直接解决工程技术中的实际问题;另一方面是为学习一系列的后继课程提供重要的理论基础,如材料力学、结构力学、弹性力学、流体力学、机械原理、机械零件等以及有关的专业课程。
此外,理论力学的学习还有助于培养辩证唯物主义世界观,树立正确的逻辑思维方法,提高分析问题与解决问题的能力。
第一章静力学的基本公理与物体的受力分析1-1静力学的基本概念1.刚体:即在任何情况下永远不变形的物体。
这一特征表现为刚体内任意两点的距离永远保持不变。
2.质点:指具有一定质量而其形状与大小可以忽略不计的物体。
1-3约束与约束力1.自由体:凡可以在空间任意运动的物体称为自由体。
2.非自由体:因受到周围物体的阻碍、限制不能作任意运动的物体称为非自由体。
3.约束:力学中把事先对于物体的运动(位置和速度)所加的限制条件称为约束。
约束是以物体相互接触的方式构成的,构成约束的周围物体称为约束体,有时也称为约束。
4.约束力:约束体阻碍限制物体的自由运动,改变了物体的运动状态,因此约束体必须承受物体的作用力,同时给予物体以相等、相反的反作用力,这种力称为约束力或称反力,属于被动力。
5.单面约束、双面约束:凡只能阻止物体沿一方向运动而不能阻止物体沿相反方向运动的约束称为单面约束;否则称为双面约束。
单面约束的约束力指向是确定的,即与约束所能阻止的运动方向相反;而双面约束的约束力指向还决定于物体的运动趋势。
6.柔性体约束:为单面约束。
只能承受拉力,作用在连接点或假想截割处,方向沿着柔软体的轴线而背离物体,常用符号F T表示。
(绳索、胶带、链条)7.光滑接触面(线)约束:为单面约束,其约束力常又称为法向约束力。
光滑接触面(线)的约束力只能是压力,作用在接触处,方向沿着接触表面在接触处的公法线而指向物体,常用符号F N表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=
l sin q
w12
它垂直由α 和OM 形成的平面,指向如图。
因为α 垂直于ω和ω1, 所以α 垂直于平面OMC,故a1在OMC 平面内。
M点的向轴加速度a2大小为:
a2
=
w2
× ME
=
w2
× 2l
sin q
=
2l sin q
w12
它的方向自点M指向E,也在OMC 平面内。
故: a = a1 + a2 由余弦定理得: a 2 = a12 + a22 - 2a1a2 cos 2q
3、瞬时转动轴·角速度·角加速度 各点的速度、加速度
刚体绕定点运动的运动学描述
(1) 瞬时转动轴·角速度·角加速度
Δt 趋于零时,Δφ 也趋于零,轴OC*趋近于某一 极限位置OC. 轴OC称为刚体在该瞬时的瞬时转动 轴,简称瞬轴。
刚体在不同的瞬时,瞬轴的位置不同。
刚体绕瞬轴转动的角速度ω 为矢量,大小为:
将a1, a2代入上式,并注意到:
cotq
=
l r
,
sinq
=
r r2 + l2
a = w12l
9
+
æ çè
l r
ö2 ÷ø
3、瞬时转动轴·角速度·角加速 度,各点的速度、加速度
vM
刚体绕定点运动的运动学描述
ω
=
lim Dj Dt®0 Dt
S A
M
NB
B'
Δφ
C*
A' O ω C
ω 方向沿瞬轴,指向按右手法则规定。
ω 为矢量,大小和方向都在变化, ω 对时间t的
一阶导数,称为刚体绕定点运动的角加速度,
用α 表示。
α
=
dω dt
α 也是矢量,方向沿角速度矢ω 的矢端曲线切线。
切线
ω α
O
一般情况下,α 与ω 不共线,这与刚体绕定轴转动不同。
θ
设行星轮绕瞬轴转动的角速度为ω。
θ
A
则行星轮中心A点速度为: vA = OAsinq ×w运动,速度为: vA = OA ×w1
w
=
w1 sinq
=常量
点M的速度大小为: vM
=
ME ×w
=
2r cosq
w1 sin q
考虑到M到OC的距离为A到OC距离的2倍,所以: 2r cosq = 2l sinq
3、瞬时转动轴·角速度·角加速 度,各点的速度、加速度
vM
= 2l sinq
w1 sin q
= 2lw1
它的方向垂直于平面OMC,指向如图。
刚体绕定点运动的运动学描述
行星齿轮的角加速度为:
α
=
dω dt
因为ω只改变方向不改变大小,而且它和z 轴间 ω
夹角β =90º-θ 的大小保持不变,所以它的矢端曲
3、瞬时转动轴·角速度·角加速 度,各点的速度、加速度
刚体绕定点运动的运动学描述
(2) 刚体上各点的速度和加速度
刚体上任一点M 的速度v,可表示为:
v =ω´r
大小:等于ωh1,方向: ω r v 满足右手定则。
刚体上任一点M 的加速度a,可表示为:
a=
dv dt
=
d dt
(
ω
×
r
)
=
ddωt ×
r
+
ω
´
dr dt
= α×r + ω×v
a2
h1 M
v
h2 r
a1
ωα
O
第一项 第二项
a1 = α × r a2 = ω ´ v
—转动加速度 大小:等于αh2,方向: α r a1 满足右手定则。 —向轴加速度 大小:等于h1ω2,方向: 垂直于ω 和v 指向瞬轴。
刚体绕定点运动时,刚体内任一点的速度等于绕瞬轴转动的角速度与矢径 的矢量积;该点的加速度等于绕瞬轴的向轴加速度与绕角加速度矢的转动 加速度的矢量和。
3、瞬时转动轴·角速度·角加速 度,各点的速度、加速度
刚体绕定点运动的运动学描述
例1 行星锥齿轮的轴OA以匀角速度ω1绕铅直轴OB转动,设OA=l,AC=r, 求
齿轮上点M的速度和加速度。
解:行星齿轮的运动是绕定点O的运动。大
齿轮不动,所以啮合点C的速度等于
ω
ω1
M vM
零,所以OC连线为瞬轴。
O
ω1
β
O
a1 θ
2θ M
a
θ
线是水平的圆周。 ω , ω1始终位于OMC 平面内。
θ
a2 A
有:
α
=
dω dt
=
ω1
´
ω
αB
EC
α
的大小为:a
= w1 ×w sin b
=
w1
w1 sinq
cosq
M点的转动加速度a1大小为: a1 = a × OM
= w12 cotq = w12 cotq
l cosq