单元测试:选修2-3第三章《统计案例》

合集下载

(北师大版)上海市高中数学选修2-3第三章《统计案例》检测卷(包含答案解析)

(北师大版)上海市高中数学选修2-3第三章《统计案例》检测卷(包含答案解析)

一、选择题1.利用独立性检验的方法调查大学生的性别与爱好某项运动是否有关,通过随机询问400名不同的大学生是否爱好某项运动,利用22⨯列联表,计算可得2K 的观测值7.556k ≈,附表:20()P K k ≥0.15 0.100.050.025 0.010 0.005 0.001 0k 2.0722.7063.8415.0246.6357.87910.828参照附表,得到的正确结论是A .有99%以上的把握认为“爱好该项运动与性别无关”B .有99%以上的把握认为“爱好该项运动与性别有关”C .在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过1%的前提下,认为“爱好该项运动与性别无关”2.两个分类变量X 和Y ,值域分别为{x 1,x 2}和{y 1,y 2},其样本频数分别是a =10,b =21,c +d =35,若X 与Y 有关系的可信程度为90%,则c =( ) A .4 B .5 C .6D .73.某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如下表:附表:经计算2K 的观测值10k =,则下列选项正确的是( ) A .有99.5%的把握认为使用智能手机对学习有影响 B .有99.5%的把握认为使用智能手机对学习无影响 C .有99.9%的把握认为使用智能手机对学习有影响 D .有99.9%的把握认为使用智能手机对学习无影响 4.下列命题正确的个数是:( )①对于两个分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握程度越大;②在相关关系中,若用211c x y c e =拟合时的相关指数为21R ,用2y bx a =+拟合时的相关指数为22R ,且2212R R >,则1y 的拟合效果好;③利用计算机产生0~1之间的均匀随机数a ,则事件“310a ->”发生的概率为23; ④“0,0a b >>”是“2b aa b+≥”的充分不必要条件 A .1B .2C .3D .45.给出下列说法:①用()()221211ˆni i i n i i i y y R y y ==-=--∑∑刻画回归效果,当2R 越大时,模型的拟合效果越差,反之则越好;②归纳推理是由特殊到一般的推理,而演绎推移则是由一般到特殊的推理;③综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”;④设有一个回归方程ˆ35yx =+,变量x 增加1个单位时,y 平均增加5个单位;⑤线性回归方程ˆˆˆy bx a =+必过点(),x y .其中错误的个数有( )A .0个B .1个C .2个D .3个6.某班主任对全班50名学生进行了作业量的调查,数据如表:若推断“学生的性别与认为作业量大有关”,则这种推断犯错误的概率不超过( )附:()()()()()22n ad bc K a b c d a c b d -=++++A .0.01B .0.025C .0.10D .0.057.某研究型学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如下表:使用智能手机 不使用智能手机 总计 学习成绩优秀 4 8 12 学习成绩不优秀 16 2 18 总计201030计算得K 2=10,则下列选项正确的是( ) A .有99.5%的把握认为使用智能手机对学习有影响B.有99.5%的把握认为使用智能手机对学习无影响C.在犯错误的概率不超过0.1%的前提下,认为使用智能手机对学习有影响D.在犯错误的概率不超过1%的前提下,认为使用智能手机对学习无影响8.为考察数学成绩与物理成绩的关系,在高二随机抽取了300名学生,得到下面的列联表:现判断数学成绩与物理成绩有关系,则犯错误的概率不超过()A.0.005 B.0.01 C.0.02 D.0.059.春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”,得到如下的列联表:由此表得到的正确结论是()A.在犯错误的概率不超过0.01的前提下,认为“该市居民能否做到‘光盘’与性别有关”B.在犯错误的概率不超过0.01的前提下,认为“该市居民能否做到‘光盘’与性别无关”C.在犯错误的概率不超过0.1的前提下,认为“该市居民能否做到‘光盘’与性别有关”D.在犯错误的概率不超过0.1的前提下,认为“该市居民能否做到‘光盘’与性别无关”10.以下四个命题中:①在回归分析中,可用相关指数R2的值判断拟合的效果,R2越大,模型的拟合效果越好;②两个随机变量的线性相关性越强,相关系数的绝对值越接近1;③若数据x1,x2,x3,…,x n的方差为1,则2x1,2x2,2x3,…,2x n的方差为2;④对分类变量x与y的随机变量K2的观测值k来说,k越小,判断“x与y有关系”的把握程度越大.其中真命题的个数为()A.1 B.2C.3 D.411.利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅临界值表来确定推断“X与Y有关系”的可信度,如果k>5.024,那么就推断“X和Y有关系”,这种推断犯错误的概率不超过()A .0.25B .0.75C .0.025D .0.97512.某工厂为了调查工人文化程度与月收入的关系,随机抽取了部分工人,得到如下列表:由上表中数据计算得2K =()21051030204555503075⨯⨯-⨯⨯⨯⨯≈6.109,请根据下表,估计有多大把握认为“文化程度与月收入有关系”( )A .1%B .99%C .2.5%D .97.5%二、填空题13.在一次独立试验中,有200人按性别和是否色弱分类如下表(单位:人)男 女 正常 73 117 色弱73你能在犯错误的概率不超过_____的前提下认为“是否色弱与性别有关”?14.利用独立性检验考察两个分类变量X 与Y 是否有关系时,若K2的观测值k=6.132,则有__________的把握认为“X 与Y 有关系”. P(K2≥k0) 0.05 0.025 0.010 0.005 k03.8415.0246.6357.87915.已知的取值如表所示:若与呈线性相关,且回归方程为,则等于 .2 3 454616.下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形ABCD 为长方形,2AB =,1BC =,O 为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 2y x =的图象; ④已知回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x =+.其中正确的命题有__________.(填上所有正确命题的编号)17.4月16日摩拜单车进驻大连市旅顺口区,绿色出行引领时尚,旅顺口区进行了“经常使用共享单车与年龄关系”的调查,得下列22⨯列联表:年轻人 非年轻人 合计 经常使用单车用户 100 20 120 不常使用单车用户 60 20 80 合计16040200则得到的2χ=__________.(小数点后保留一位) (附:()()()()()22χ-=++++n ad bc a b c d a c b d )18.已知下列命题:①从匀速传递的产品生产流水线上,质检员每30分钟从生产流水线中抽取一件产品进行某项指标检测,这样的抽样方法是系统抽样;②两个变量的线性相关程度越强,则相关系数的值越接近于1;③两个分类变量X 与Y 的观测值2k ,若2k 越小,则说明“X 与Y 有关系”的把握程度越大;④随机变量X ~(0,1)N ,则(1)2(1)1P X P X <=<-. 其中为真命题的是__________. 19.给出下列四个结论:(1)相关系数r 的取值范围是1r <;(2)用相关系数r 来刻画回归效果,r 的值越大,说明模型的拟合效果越差;(3)一个袋子里装有大小相同的5个白球和5个黑球,从中任取4个,则其中所含白球个数的期望是2;(4) 一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,且(),,0,1a b c ∈,已知他投篮一次得分的数学期望为2,则213a b+的最小值为163.其中正确结论的序号为______________.20.2018年春季,世界各地相继出现流感疫情,这已经成为全球性的公共卫生问题.为了考察某种流感疫苗的效果,某实验室随机抽取100只健康小鼠进行试验,得到如下列联表:感染 未感染 总计 注射 10 40 50 未注射 20 30 50 总计3070100参照附表,在犯错误的概率最多不超过____的前提下,可认为“注射疫苗”与“感染流感”有关系.(参考公式:()()()()()22n ad bc K a b c d a c b d -=++++.) 20()P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.828三、解答题21.我国新型冠状病毒肺炎疫情期间,以网络购物和网上服务所代表的新兴消费展现出了强大的生命力,新兴消费将成为我国消费增长的新动能.某市为了了解本地居民在2020年2月至3月两个月网络购物消费情况,在网上随机对1000人做了问卷调查,得如表频数分布表:(1)作出这些数据的频率分布直方图,并估计本市居民此期间网络购物的消费平均值; (2)在调查问卷中有一项是填写本人年龄,为研究网购金额和网购人年龄的关系,以网购金额是否超过4000元为标准进行分层抽样,从上述1000人中抽取200人,得到如表列联表,请将表补充完整并根据列联表判断,在此期间是否有95%的把握认为网购金额与网购人年龄有关.参考公式和数据:()()()()()22n ad bcKa b c d a c b d-=++++.(其中n a b c d=+++为样本容量)22.2020年3月,因为新冠肺炎疫情的影响,我市全体学生只能在网上在线学习,为了研究学生在线学习情况,市教研院数学学科随机从市区各高中学校抽取120名学生对线上教学情况进行调查(其中,男生与女生的人数之比为3:1),结果发现:男生中有40名对于线上教学满意,女生中有10名表示对于线上教学不满意.(1)请完成如表2×2列联表,并回答能否有95%的把握认为对“线上教学是否满意与性别有关”;态度性别满意不满意合计男生女生合计120(2)采用分层抽样的方法,从被调查的对线上教学满意的学生中,抽取6名学生,再从这6名学生中抽取2名学生,作线上学习的经验介绍,求所选取的2名学生性别不同的概率.附:参考公式及临界值表()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++23.新冠肺炎疫情防控时期,各级各类学校纷纷组织师生开展了“停课不停学”活动,为了解班级线上学习情况,某位班主任老师进行了有关调查研究.(1)从班级随机选出5名同学,对比研究了线上学习前后两次数学考试成绩,如下表:参考公式:在线性回归方程y bx a=+,()()()() 1122211n ni i i ii in ni ii ix x y y x y nx ybx x x n x ====---==--∑∑∑∑,a y bx=-(2)针对全班45名同学(25名女生,20名男生)的线上学习满意度调查中,女姓满意率为80%,男生满意率为75%,填写下面列联表,判断能否在犯错误概率不超过0.01的前提下,认为线上学习满意度与学生性别有关?参考公式和数据:()()()()()2n ad bcxa b c d a c b d-=++++,()20.0500.0100.0013.8416.63510.828P x kk≥24.某足球运动员进行射门训练,若打进球门算成功,否则算失败.已知某天该球员射门成功次数与射门距离的统计数据如下:(1)请问是否有90%的把握认为该球员射门成功与射门距离是否超过30米有关?参考公式及数据:22(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++.(2)当该球员距离球门30米射门时,设射门角(射门点与球场底线中点的连线和底线所成的锐角或直角)为([0,])2πθθ∈,其射门成功率为2+3()cos sin 4f θθθθθ=+⋅-,求该球员射门成功率最高时射门角θ的值.25.某大学读书协会为了解本校大学生网上阅读与传统纸质阅读的情况,调查了该大学1000名大学生(男、女各占一半),就偏向网上阅读和偏向传统纸质阅读的情况做了调查记录.记录显示,偏向网上阅读的男大学生比偏向传统纸质阅读的男大学生多300人,这1000名大学生中,偏向传统纸质阅读的大学生共有400人. (1)根据题意,完成下列2×2列联表;(2)根据列联表,判断能否有99.9%的把握认为该大学的大学生的阅读方式与性别有关,说明你的理由.附: 22(-)()()()()n ad bc K a b c d a c b d =++++(n=a+b+c+d ).26.2016年欧洲杯将于2016年6月10日到7月10日在法国举行.为了使得赛会有序进行,欧足联在全球范围内选聘了30名志愿者(其中男性16名,女性14名).调查发现,男性中有10人会英语,女性中有6人会英语. (1)根据以上数据完成以下2×2列联表:并回答能否在犯错的概率不超过0.10的前提下认为性别与会英语有关?参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++参考数据:(2)会英语的6名女性志愿者中曾有4人在法国工作过,若从会英语的6名女性志愿者中随机抽取2人做导游,则抽出的2人都在法国工作过的概率是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据2K 的观测值7.556k ≈,对照表中数据,即可得到相应的结论. 【详解】根据2K 的观测值7.556k ≈,对照表中数据得出有0.01的几率说明这两个变量之间的关系是不可信的,即有10.0199%-=的把握说明两个变量之间有关系,故选B . 【点睛】本题主要考查独立性检验的应用,独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式计算2K 的观测值k ;(3)查表比较k 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误)2.B解析:B 【解析】【分析】根据22⨯列联表,以及独立检验随机变量的临界值参考表,计算2K 对应的值,验证24,5,6,7,c K =是否恰好满足即可【详解】列22⨯列联表可知:()22661030521 3.024 2.70615513135K ⨯⨯-⨯=≈>⨯⨯⨯,所以5c =时,X 与Y 有关系的可信程度为90%,而其余的值4,6,7c c c ===皆不满足,故选B . 【点睛】独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)3.A解析:A 【解析】 【分析】由题意结合2K 的观测值k 由独立性检验的数学思想给出正确的结论即可. 【详解】由于2K 的观测值10k =7.879>,其对应的值0.0050.5%=,据此结合独立性检验的思想可知:有99.5%的把握认为使用智能手机对学习有影响. 本题选择A 选项. 【点睛】独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.4.C解析:C 【解析】分析:根据独立性检验的性质可判断①;根据回归分析的基本原理可判断②;根据几何概型概率公式可判断③; 根据不等式的性质可判断④.详解:①对于两个分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握程度越小,①错误;②在相关关系中,若用211c x y c e =拟合时的相关指数为21R ,用2y bx a =+拟合时的相关指数为22R ,且2212R R >,则1y 的拟合效果好,②正确;③利用计算机产生0~1之间的均匀随机数a ,则事件“310a ->”发生的概率为1123103-=-,正确; ④“0,0a b >>”可得到“2b a a b +≥”, “2b aa b+≥”时“0,0a b >>”不一定成立,所以“0,0a b >>”是“2b aa b+≥”的充分不必要条件,正确,即正确命题的个数是3,故选C. 点睛:本题主要通过对多个命题真假的判断,主要综合独立性检验、回归分析、几何概型概率公式、不等式的性质,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.5.B解析:B 【解析】分析:①可由相关指数的概念判断;②③由推理,综合法和反证法的概念判断;④和⑤由线性回归分析判断即可.详解:①相关指数2R 越大,则相关性越强,模型的拟合效果越好.错误;② 归纳推理是由特殊到一般的推理,而演绎推理是由一般到特殊的推理,由归纳推理与演绎推理的概念可知正确.③综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”,由概念可知正确. ④由回归方程的系数意义知,当变量x 增加1个单位时,y 平均增加5个单位,正确;⑤线性回归方程ˆˆˆy bx a =+必过样本中心点(),x y ,正确.故选B.点睛:本题是一道综合性考题,即考查了推理与证明的原理,又考查了利用2R 判断模型拟合程度,同时还考查了线性回归分析的相关概念,属于中档题.6.B解析:B分析:根据表格中所给数据,代入公式()()()()()22n ad bcKa b c d a c b d-=++++,求出观测值,把所求的观测值同临界值进行比较,从而可得结果.详解:根据表中数据得到()22501815895.059 5.02427232426K⨯⨯-⨯=≈>⨯⨯⨯,所以,若推断“学生的性别与认为作业量大有关”,则这种推断犯错误的概率不超过0.025,故选B.点睛:本题主要考查独立性检验的应用,解题的关键是正确求出这组数据的观测值,计算过程一定要细心,避免出现计算错误,属于基础题.7.A解析:A【解析】因为7.879<K2<10.828,所以有99.5%的把握认为使用智能手机对学习有影响.故选A.8.D解析:D【解析】因为K2的观测值k=2300(371433585) 12217872228⨯-⨯⨯⨯⨯≈4.514>3.841,所以在犯错误的概率不超过0.05的前提下认为数学成绩与物理成绩有关系. 选D. 9.C解析:C【解析】由2×2列联表得到a=45,b=10,c=30,d=15.则a+b=55,c+d=45,a+c=75,b+d=25,ad=675,bc=300,n=100.所以K2的观测值k=2100675-30055457525⨯⨯⨯()≈3.030.因为2.706<3.030<3.841.选C.点睛:根据卡方公式求K2,再与参考数据比较,最后作出判断.10.B解析:B【解析】由题意得,若数据x1,x2,x3,…,x n的方差为1,则2x1,2x2,2x3,…,2x n的方差为4,所以③不正确;对分类变量x与y的随机变量K2的观测值k来说,k越小,判断“x与y 有关系”的把握程度越小,所以④不正确.其中①、②是正确的,故选B.11.C解析:C【解析】∵P(k>5.024)=0.025,故在犯错误的概率不超过0.025的条件下,认为“X和Y考点:独立性检验.12.D解析:D 【解析】 试题由题根据二列联表得出;2K =()21051030204555503075⨯⨯-⨯⨯⨯⨯≈6.109,对应参考值得 2 5.024K >,则有10.0250.975-=,即有97.5%的把握认为文化程度与月收入有关系。

(必考题)高中数学高中数学选修2-3第三章《统计案例》检测(含答案解析)

(必考题)高中数学高中数学选修2-3第三章《统计案例》检测(含答案解析)

一、选择题1.以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,其变换后得到线性回归方程0.53z x =+,则c =( ) A .3B .3eC .0.5D .0.5e2.已知两个统计案例如下:①为了探究患肺炎与吸烟的关系,调查了339名50岁以上的人,调查结果如下表:②为了解某地母亲与女儿身高的关系,随机测得10对母女的身高如下表:则对这些数据的处理所应用的统计方法是( ) A .①回归分析,②取平均值 B .①独立性检验,②回归分析 C .①回归分析,②独立性检验D .①独立性检验,②取平均值3.假设有两个分类变量X 和Y 的22⨯列联表为:对同一样本,以下数据能说明X 与Y 有关系的可能性最大的一组为参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.A .5,35b d ==B .15,25b d ==C .20,20b d ==D .30,10b d ==4.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:2()P K k≥0.0500.0250.0100.0050.001k 3.841 5.024 6.6357.87910.828由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是() A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.有99.9%的把握认为课外阅读量大与作文成绩优秀有关D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关5.某中学共有5000人,其中男生3500人,女生1500人,为了了解该校学生每周平均体育锻炼时间的情况以及该校学生每周平均体育锻炼时间是否与性别有关,现在用分层抽样的方法从中收集300位学生每周平均体育锻炼时间的样本数据(单位:小时),其频率分布直方图如下:附:22()=()()()()n ad bcKa cb d a d b c-++++,其中n a b c d=+++.2()P K k≥0.100.050.010.005k 2.706 3.841 6.6357.879已知在样本数据中,有60位女生的每周平均体育锻炼时间超过4小时,根据独立性检验原理,我们()A.没有理由认为“该校学生每周平均体育锻炼时间与性别有关”B.有95%的把握认为“该校学生每周平均体育锻炼时间与性别有关”C.有95%的把握认为“该校学生每周平均体育锻炼时间与性别无关”D .有99.5%的把握认为“该校学生每周平均体育锻炼时间与性别有关”6.通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:做不到“光盘” 能做到“光盘” 男 45 10 女3015则有( )以上的把握认为“该市民能否做到‘光盘’与性别有关”,附表及公式()20P K k ≥0.100 0.050 0.010 0.001 0k 2.7063.8416.63510.828()()()()()22n ad bc K a b c d a c b d -=++++A .90%B .95%C .99%D .99.9%7.为了普及环保知识,增强环保意识,随机抽取某大学30名学生参加环保知识测试,得分如图所示,若得分的中位数为m e ,众数为m 0,平均数为x -,则( )A .m e =m 0=x -B .m 0<x -<m e C .m e <m 0<x -D .m 0<m e <x -8.某科研机构为了研究中年人秃发与心脏病是否有关,随机调查了一些中年人的情况,具体数据见下表:心脏病 无心脏病 秃发 20 300 不秃发5450根据表中数据得到()277520450530015.96820750320455k ⨯⨯-⨯=≈⨯⨯⨯,因为K 2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为( ) A .0.1B .0.05C .0.01D .0.0019.给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;②在刻画回归模型的拟合效果时,R2的值越大,说明拟合的效果越好;③设随机变量ξ服从正态分布N(4,22),则P(ξ>4)=12;④对分类变量X与Y,若它们的随机变量K2的观测值k越小,则判断“X与Y有关系”的犯错误的概率越小.其中正确的说法是()A.①④B.②③C.①③D.②④10.在一项中学生近视情况的调查中,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力()A.平均数与方差 B.回归分析C.独立性检验 D.概率11.某中学学生会为了调查爱好游泳运动与性别是否有关,通过随机询问110名性别不同的高中生是否爱好游泳运动得到如下的列联表:由()()()()()22n ad bcka b c d a c b d-=++++并参照附表,得到的正确结论是A.在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”B.在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别无关”C.有99.9%的把握认为“爱好游泳运动与性别有关”D.有99.9%的把握认为“爱好游泳运动与性别无关”12.通过随机询问2016名性别不同的大学生是否爱好某项运动,得到2 6.023K=,则根据这一数据查阅表,则有把握认为“爱好该项运动与性别有关”的可信程度是()2()P K k≥…0.250.150.100.0250.0100.005…k… 1.323 2.072 2.706 5.024 6.6357.879…A.90%B.95%C.97.5%D.99.5%二、填空题13.给出下列结论:①在回归分析中,可用相关指数2R的值判断模型的拟合效果,2R越大,模型的拟合效果越好;②某工厂加工的某种钢管,内径与规定的内径尺寸之差是离散型随机变量;③随机变量的方差和标准差都反映了随机变量的取值偏离均值的平均程度,它们越小,则随机变量偏离均值的平均程度越小;④甲、乙两人向同一目标同时射击一次,事件A:“甲、乙中至少一人击中目标”与事件B:“甲、乙都没有击中目标”是相互独立事件.其中结论正确的是______.14.新闻媒体为了了解观众对央视某节目的喜爱与性别是否有关,随机调查了观看该节目的观众110名,得到如下的2×2列联表:试根据样本估计总体的思想,估计约有________的把握认为“喜爱该节目与否和性别有关”.参考附表:(参考公式:K2=()()()()()2n ad bca b c d a c b d-++++,其中n=a+b+c+d)15.某市电信宽带私人用户月收费标准如下表:假定每月初可以和电信部门约定上网方案.若某用户每月上网时间为66小时,应选择__________方案最合算.16.下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量y与月份x 之间有较好的线性相关关系,其线性回归方程是=﹣0.7x+,则= . 月 份x 1 2 3 4 用水量y4.5432.517.为了判断高中二年级学生是否喜欢足球运动与性别的关系,现随机抽取50名学生,得到22⨯列联表:喜欢 不喜欢 总计 男 15 10 25 女520 25 总计 203050(参考公式22()()()()()n ad bc k a b c d a c b d -=++++,()n a b c d =+++)20()P K k ≥ 0.010 0.005 0.0010k 6.635 7.879 10.828则有___________以上的把握认为“喜欢足球与性别有关”.18.为了判断高中三年级学生选修文理科是否与性别有关,现随机抽取50名学生,得到2×2列联表:理科 文科 总计 男 13 10 23 女 7 20 27 总计203050已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025.根据表中数据,得到≈4.844,则认为选修文理科与性别有关系出错的可能性约为________. 19.下列说法:①分类变量A 与B 的随机变量2K 越大,说明“A 与B 有关系”的可信度越大.②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则,c k 的值分别是4e 和0.3.③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y a bx =+中,1,1,3b x y ===则1a =.正确的序号是________________.20.已知下列命题:①从匀速传递的产品生产流水线上,质检员每30分钟从生产流水线中抽取一件产品进行某项指标检测,这样的抽样方法是系统抽样;②两个变量的线性相关程度越强,则相关系数的值越接近于1;③两个分类变量X 与Y 的观测值2k ,若2k 越小,则说明“X 与Y 有关系”的把握程度越大;④随机变量X ~(0,1)N ,则(1)2(1)1P X P X <=<-. 其中为真命题的是__________.三、解答题21.为研究男、女生的身高差异,现随机从高三某班选出男生、女生各10人,并测量他们的身高,测量结果如下(单位:厘米): 男:173 178 174 185 170 169 167 164 161 170 女:165 166 156 170 163 162 158 153 169 172(1)根据测量结果完成身高的茎叶图(单位:厘米),并分别求出男、女生身高的平均值;(2)请根据测量结果得到20名学生身高的中位数h (单位:厘米),将男、女生身高不低于h 和低于h 的人数填入下表中,并判断是否有90%的把握认为男、女生身高有差异? 人数 男生 女生身高h ≥ 身高h <参照公式:()()()()()22n ad bc k a b c d a c b d -=++++()20P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.828175厘米为偏高.采用分层抽样的方法从以上男生中抽取5人作为样本.若从样本中任取2人,试求恰有1人身高属于正常的概率.22.某实验学校为提高学习效率,开展学习方式创新活动,提出了完成某项学习任务的两种新的学习方式.为比较两种学习方式的效率,选取40名学生,将他们随机分成两组,每组20人,第一组学生用第一种学习方式,第二组学生用第二种学习方式.40名学生完成学习任务所需时间的中位数40min m =,并将完成学习任务所需时间超过min m 和不超过min m 的学生人数得到下面的列联表:(Ⅰ)估计第一种学习方式且不超过m 的概率、第二种学习方式且不超过m 的概率; (Ⅱ)能否有99%的把握认为两种学习方式的效率有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,23.某科研小组为了验证一种治疗新冠肺炎的新药的效果,选60名患者服药一段时间后,记录了这些患者的生理指标x 和y 的数据,并统计得到如下的22⨯列联表(不完整):在生理指标 1.8x >的人中,设A 组为生理指标65y ≤的人,B 组为生理指标65y >的人,将他们服用这种药物后的康复时间(单位:天)记录如下: A 组:10,11,12,13,14,15,16,17,19. B 组:12,13,14,15,16,17,20,21,25.(1)填写上表,并判断是否有95%95%的把握认为患者的两项生理指标x 和y 有关系; (2)从A ,B 两组人中随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙,求乙的康复时间比甲的康复时间长的概率.附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.)20k0.2524.在第十五次全国国民阅读调查中,某地区调查组获得一个容量为200的样本,其中城镇居民150人,农村居民50人,在这些居民中,经常阅读的城镇居民100人,农村居民24人.(1)完成上面2×2列联表,并判断是否有95%的把握认为经常阅读与居民居住地有关?(2)从该地区居民城镇的居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为X,若用样本的频率作为概率,求随机变量X的分布列和期望.附:K2=2()()()()()n ad bca b c d a c b d-++++,其中n=a+b+c+d.25.某足球运动员进行射门训练,若打进球门算成功,否则算失败.已知某天该球员射门成功次数与射门距离的统计数据如下:(1)请问是否有90%的把握认为该球员射门成功与射门距离是否超过30米有关?参考公式及数据:22(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++.(2)当该球员距离球门30米射门时,设射门角(射门点与球场底线中点的连线和底线所成的锐角或直角)为([0,])2πθθ∈,其射门成功率为2+3()cos sin 4f θθθθθ=+⋅-,求该球员射门成功率最高时射门角θ的值.26.已知某种新型病毒的传染能力很强,给人们生产和生活带来很大的影响,所以创新研发疫苗成了当务之急.为此,某药企加大了研发投入,市场上这种新型冠状病毒的疫苗A 的研发费用x (百万元)和销量y (万盒)的统计数据如下:(1)根据上表中的数据,建立y 关于x 的线性回归方程y bx a =+(用分数表示); (2)根据所求的回归方程,估计当研发费用为1600万元时,销售量为多少?参考公式:()()()1122211nniii i i i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据指对数互化求解即可. 【详解】解:因为0.53z x =+,ln z y =,所以0.53ln x y +=,所以0.5330.5x x y e e e +==⨯,故3c e=.故选:B.【点睛】本题考查非线性回归问题的转化,是基础题.2.B解析:B【分析】根据独立性检验和回归分析的概念,即可作出判定,得到答案.【详解】由题意,独立性检验通常是研究两个分类变量之间是否有关系,所以①采用独立性检验,回归分析通常是研究两个具有相关关系的变量的相关程度,②采用回归分析,综上可知①是独立性检验,②是回归分析,故选B.【点睛】本题主要考查了独立性检验和回归分析的概念及其判定,其中解答中熟记独立性检验和回归分析的概念是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.3.D解析:D【解析】【分析】根据公式()()()()()22n ad bcKa b c d a c b d-=++++,分别利用4个选项中所给数据求出2K的值,比较所求值的大小即可得结果.【详解】选项A:22160(535155)3204010502K⨯⨯-⨯==⨯⨯⨯,选项B:22260(5251515)152040204016K⨯⨯-⨯==⨯⨯⨯,选项C:22360(5201520)24204025357K⨯⨯-⨯==⨯⨯⨯,选项D:22 460(5101530)96 204035257K⨯⨯-⨯==⨯⨯⨯,可得222431K K K>>22K>,所以由选项D中的数据得到的2K值最大,说明X与Y有关系的可能性最大,故选D.【点睛】本题主考查独立性检验的基本性质,意在考查对基本概念的理解与应用,属于基础题.解答独立性检验问题时,要注意应用2K越大两个变量有关的可能性越大这一性质.4.D解析:D【解析】【分析】由题意结合独立性检验的结论和临界值表给出结论即可.【详解】根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.本题选择D选项.【点睛】本题主要考查独立性检验的思想及其应用等知识,意在考查学生的转化能力和计算求解能力.5.B解析:B【解析】分析:根据题设收集的数据,得到男生学生的人数,进而得出22⨯的列联表,利用计算公式,求解2K的值,即可作出判断.详解:由题意得,从5000人中,其中男生3500人,女生1500人,抽取一个容量为300人的样本,其中男女各抽取的人数为35003002105000⨯=人,1500300905000⨯=人,又由频率分布直方图可知,每周体育锻炼时间超过4小时的人数的频率为0.75,所以在300人中每周体育锻炼时间超过4小时的人数为3000.75225⨯=人,又在每周体育锻炼时间超过4小时的人数中,女生有60人,所以男生有22560165-=人,可得如下的22⨯的列联表:结合列联表可算得22300(456016530)4.762 3.8412109075225K⨯⨯-⨯=≈>⨯⨯⨯,所以有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”,故选B.点睛:本题主要考查了独立性检验的基础知识的应用,其中根据题设条件得到男女生的人数,得出22⨯的列联表,利用公式准确计算是解答的关键,着重考查了分析问题和解答问题的能力.6.A解析:A【解析】分析:根据列联表中数据代入公式计算k 的值,和临界值表比对后即可得到答案. 详解:将列联表中数据代入公式可得()210045153010 3.030 2.70675255545k ⨯⨯-⨯=≈>⨯⨯⨯,所以有0090的把握认为“该市居民能否做到‘光盘’”与性别有关.点睛:独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)7.D解析:D 【解析】由条形图知,30名学生的得分情况依次为2个人得3分,3个人得4分,10个人得5分,6个人得6分,3个人得7分,2个人得8分,2个人得9分,2个人得10分,中位数为第15,16个数(分别为5,6)的平均数,即m e =5.5,5出现的次数最多,故众数为m 0=5,平均数为x =130(2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×10)≈5.97,故m 0<m e <x . 故答案为D.点睛:这个题目考查的是条型分布直方表的应用,以及基本量:均值,平均数的考查;一般在这类图中平均数就是将数据加到一起除以数据的个数即可,在频率分布直方表中是取每个长方条的中点乘以相应的频率并相加即可.8.D解析:D 【解析】010.828,10.0010.99999.90k ≥∴-==,则有0099.9以上的把握认为秃发与患心脏病有关,故这种判断出错的可能性为10.9990.001-=,故选D.【方法点睛】本题主要考查独立性检验的实际应用,属于难题.独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)9.B解析:B 【解析】①中各小长方形的面积等于相应各组的频率;②正确,相关指数R 2越大,拟合效果越好,R 2越小,拟合效果越差;③随机变量ξ服从正态分布N (4,22),正态曲线对称轴为x =4,所以P (ξ>4)=;④对分类变量X 与Y ,若它们的随机变量K 2的观测值k 越小,则说明“X 与Y 有关系”的犯错误的概率越大.故选B.10.C解析:C【解析】判断两个分类变量是否有关的最有效方法是进行独立性检验,故选C. 考点:独立性检验的意义.11.A解析:A 【解析】()22110403020207.8 6.63560506050k ⨯-⨯=≈>⨯⨯⨯,所以有99%的把握认为“爱好游泳运动与性别有关”,所以在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”12.C解析:C 【解析】因为2 6.023K =,且5.024 6.023 6.635≤≤,所以有把握认为“爱好该项运动与性别有关”的可信度P 满足10.02510.010P -≤≤-,即0.9750.99P ≤≤,应选答案C 。

最新北师大版高中数学高中数学选修2-3第三章《统计案例》测试题(包含答案解析)

最新北师大版高中数学高中数学选修2-3第三章《统计案例》测试题(包含答案解析)

一、选择题1.已知x 与y 之间的几组数据如下表:参考公式:线性回归方程y bx a =+,其中()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =-;相关系数()()niix x y y r --=∑上表数据中y 的平均值为2.5,若某同学对m 赋了三个值分别为1.5,2,2.5得到三条线性回归直线方程分别为11y b x a =+,22y b x a =+,33y b x a =+,对应的相关系数分别为1r ,2r ,3r ,下列结论中错误..的是( ) A .三条回归直线有共同交点 B .相关系数中,2r 最大 C .12b b >D .12a a >2.下列说法错误..的是( ) A .10xy ≠是5x ≠或2y ≠的充分不必要条件B .若命题p :x R ∀∈,210x x ++≠,则p ⌝:x R ∃∈,210x x ++=C .已知随机变量()2~2,X N σ,且()40.84P X ≤=,则()00.16P X ≤=D .相关系数r 越接近1,表示线性相关程度越弱. 3.已知两个统计案例如下:①为了探究患肺炎与吸烟的关系,调查了339名50岁以上的人,调查结果如下表:②为了解某地母亲与女儿身高的关系,随机测得10对母女的身高如下表:则对这些数据的处理所应用的统计方法是( ) A .①回归分析,②取平均值 B .①独立性检验,②回归分析 C .①回归分析,②独立性检验D .①独立性检验,②取平均值4.对于独立性检验,下列说法正确的是( ) A .2 3.841K >时,有95%的把握说事件A 与B 无关 B .2 6.635K >时,有99%的把握说事件A 与B 有关 C .2 3.841K ≤时,有95%的把握说事件A 与B 有关 D .2 6.635K >时,有99%的把握说事件A 与B 无关 5.下列命题中正确命题的个数是(1)对分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握越大;(2)若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变; (3)在残差图,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高; (4)设随机变量ξ服从正态分布()0,1N ; 若()1P p ξ>=,则()1102P p ξ-<<=-( ) A .4B .3C .2D .16.对四对变量Y 和x 进行线性相关性检验,已知n 是观测值组数,r 是相关系数,且已知: ①n=7,r=0.953 3;②n=15,r=0.301 2;③n=17,r=0.499 1;④n=3,r=0.995 0,则变量Y 和x 具有线性相关关系的是( ) A .①和② B .①和③ C .②和④D .③和④7.给出下列说法:①用()()221211ˆni i i n i i i y y R y y ==-=--∑∑刻画回归效果,当2R 越大时,模型的拟合效果越差,反之则越好;②归纳推理是由特殊到一般的推理,而演绎推移则是由一般到特殊的推理;③综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”;④设有一个回归方程ˆ35yx =+,变量x 增加1个单位时,y 平均增加5个单位;⑤线性回归方程ˆˆˆy bx a =+必过点(),x y .其中错误的个数有( )A .0个B .1个C .2个D .3个8.为了普及环保知识,增强环保意识,某大学从理工类专业的A 班和文史类专业的B 班各抽取20名同学参加环保知识测试,统计得到成绩与专业的列联表:( )附:参考公式及数据:(1)统计量:()()()()()22n ad bcKa b c d a c b d-=++++,(n a b c d=+++).(2)独立性检验的临界值表:则下列说法正确的是A.有95%的把握认为环保知识测试成绩与专业有关B.有95%的把握认为环保知识测试成绩与专业无关C.有99%的把握认为环保知识测试成绩与专业有关D.有99%的把握认为环保知识测试成绩与专业无关9.通过随机询问250名不同性别的高中生在购买食物时是否看营养说明书,得到如下列联表:从调查的结果分析,认为性别和读营养说明书的关系为()附:()()()()()22n ad bc K a b c d a c b d -=++++ . A .95%以上认为无关 B .90%~95%认为有关 C .95%~99.9%认为有关D .99.9%以上认为有关10.某种产品的广告费支出x 与销售额y (单位:万元)之间有下表关系: x 2 4 5 6 8 y3040605070y 与x 的线性回归方程为 6.5175ˆ.y x =+,当广告支出5万元时,随机误差的效应(残差)为( ) A .40 B .20 C .30D .1011.下列说法中,不正确的是A .两个变量的任何一组观测值都能得到线性回归方程B .在平面直角坐标系中,用描点的方法得到表示两个变量的关系的图象叫做散点图C .线性回归方程反映了两个变量所具备的线性相关关系D .线性相关关系可分为正相关和负相关 12.有下列数据: x123y35.9912.01下列四个函数中,模拟效果最好的为( ) A .B .C .D .二、填空题13.对相关系数r ,①r 越大,线性相关程度越大; ②r 越小,线性相关程度越大;③|r|越大,线性相关程度越小,|r|越接近0,线性相关程度越大; ④|r|≤1且|r|越接近1,线性相关程度越大,|r|越接近0,线性相关程度越小 以上说法中,正确说法的序号是__________.14. 2.5PM 是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,下图是据某地某日早7点至晚8点甲、乙两个 2.5PM 监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是_________.15.某单位为了了解用电量y (度)与气温x (度)之间的关系,随机统计了某4天的用电量与当天气温,并制作了如下的对照表由表中数据,得回归直线方程ˆˆˆy bx a =+,若ˆ2b=-,则ˆa =________. 16.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁,为了考查某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:附表:参照附表,在犯错误的概率不超过______(填百分比)的前提下,认为“小动物是否被感染与有没有服用疫苗有关”.17.已知方程ˆ0.8582.71yx =-是根据女大学生的身高预报她的体重的回归方程,其中x 的单位是cm ,ˆy的单位是kg ,那么针对某个体(160,53)的残差是______________. 18.给出下列结论:(1)在回归分析中,可用相关指数R 2的值判断模型的拟合效果,R 2越大,模型的拟合效果越好;(2)某工产加工的某种钢管,内径与规定的内径尺寸之差是离散型随机变量; (3)随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度,它们越小,则随机变量偏离于均值的平均程度越小;(4)若关于x 的不等式2x x a a -+-≥在R 上恒成立,则a 的最大值是1;(5)甲、乙两人向同一目标同时射击一次,事件A :“甲、乙中至少一人击中目标”与事件B :“甲,乙都没有击中目标”是相互独立事件.其中结论正确的是 .(把所有正确结论的序号填上)19.给出下列四个结论:(1)相关系数r的取值范围是1r<;(2)用相关系数r来刻画回归效果,r的值越大,说明模型的拟合效果越差;(3)一个袋子里装有大小相同的5个白球和5个黑球,从中任取4个,则其中所含白球个数的期望是2;(4) 一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c,且(),,0,1a b c∈,已知他投篮一次得分的数学期望为2,则213a b+的最小值为163.其中正确结论的序号为______________.20.为了了解司机开车时礼让斑马线行人的情况,交警部门调查了100名机动车司机,得到以下统计数据:礼让斑马线行人不礼让斑马线行人男性司机人数4015女性司机人数2025若以2χ为统计量进行独立性检验,则2χ的值是__________.(结果保留2位小数)参考公式()11221221 21212n n n n nn n n nχ++++-=三、解答题21.我国新型冠状病毒肺炎疫情期间,以网络购物和网上服务所代表的新兴消费展现出了强大的生命力,新兴消费将成为我国消费增长的新动能.某市为了了解本地居民在2020年2月至3月两个月网络购物消费情况,在网上随机对1000人做了问卷调查,得如表频数分布表:(1)作出这些数据的频率分布直方图,并估计本市居民此期间网络购物的消费平均值;(2)在调查问卷中有一项是填写本人年龄,为研究网购金额和网购人年龄的关系,以网购金额是否超过4000元为标准进行分层抽样,从上述1000人中抽取200人,得到如表列联表,请将表补充完整并根据列联表判断,在此期间是否有95%的把握认为网购金额与网购人年龄有关.参考公式和数据:()()()()()22n ad bcKa b c d a c b d-=++++.(其中n a b c d=+++为样本容量)22.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;箱产量<50kg箱产量≥50kg合计旧养殖法新养殖法合计(2)在新养殖法养殖的网箱中,按照分层抽样的方法从箱产量少于50kg和不少于50kg的网箱中随机抽取5箱,再从中抽取3箱进行研究,这3箱中产量不少于50kg的网箱数为X,求X的分布列和数学期望.()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++ ()2P K k ≥ 0.1000.050 0.010 0.005 0.001 k 2.706 3.8416.6357.87910.82823.支付宝和微信支付是目前市场占有率较高的支付方式,某第三方调研机构对使用这两种支付方式的人数作了对比,从全国随机抽取了100个地区作为研究样本,计算了各个地区样本的使用人数,其频率分布直方图如下,(1)记A 表示事件“微信支付人数低于50千人”,估计A 的概率;(2)填写下面2╳2列联表,并根据2╳2列联表判断是否有99%的把握认为支付人数与支付方式有关;()()()()()2n ad bc K a b c d a c b d -=++++.24.在第十五次全国国民阅读调查中,某地区调查组获得一个容量为200的样本,其中城镇居民150人,农村居民50人,在这些居民中,经常阅读的城镇居民100人,农村居民24人.(1)完成上面2×2列联表,并判断是否有95%的把握认为经常阅读与居民居住地有关? (2)从该地区居民城镇的居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为X ,若用样本的频率作为概率,求随机变量X 的分布列和期望.附:K 2=2()()()()()n ad bc a b c d a c b d -++++,其中n =a +b +c +d .25.电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下列联表,并判断能否在犯错误率不超过0.05的前提下认为“体育迷”与性别有关?非体育迷体育迷合计男女合计(2)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.附:参考公式:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.()2P K k≥0.050.01k 3.841 6.63526.为迎接2022年北京冬季奥运会,普及冬奥知识,某校开展了“冰雪答题王”冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]得到如图所示的频率分布直方图.(Ⅰ)求a 的值;(Ⅱ)记A 表示事件“从参加冬奥知识竞赛活动的学生中随机抽取一名学生,该学生的比赛成绩不低于80分”,估计A 的概率;(Ⅲ)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优秀”.请在答题卡上将22⨯列联表补充完整,并判断是否有99.9%的把握认为“比赛成绩是否优秀与性别有关”?参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++.()20P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.828【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题意可得5m n +=,分别取m 与n 的值,由公式计算出1122123,,,,,,b a b a r r r 的值,逐一分析四个选项,即可得到答案. 【详解】由题意,1410m n +++=,即5m n +=. 若 1.5m =,则 3.5n =,此时12342.54x +++==, 2.5y =. ()()()()()()()()()()411 2.51 2.52 2.5 1.5 2.53 2.5 3.5 2.54 2.54 2.5 5.5iii x x y y =--=--+--+--+--=∑ ,()()()4222221 1.50.50.5 1.55i i x x =-=-+-++=∑ , ()()()42222211.511 1.5 6.5i i y y =-=-+-++=∑.则1 5.51.15b ==,1 2.5 1.1 2.50.25a =-⨯=- ,1r =≈; 若2m =,则3n =,此时12342.54x +++==, 2.5y =. ()()()()()()()()()()411 2.51 2.52 2.52 2.53 2.53 2.54 2.54 2.55iii x x y y =--=--+--+--+--=∑,()4215ii x x =-=∑,()()()42222211.50.50.5 1.55i i y y =-=-+-++=∑.2515b ==,2 2.51 2.50a =-⨯=,21r ==; 若 2.5m =,则 2.5n =,此时12342.54x +++==, 2.5y =. ()()()()()()()()()()411 2.51 2.52 2.5 2.5 2.53 2.5 2.5 2.54 2.54 2.5 4.5iii x x y y =--=--+--+--+--=∑,()4215i i x x =-=∑,()()422211.5 1.5 4.5i i y y =-=-+=∑,3r ==由样本点的中心相同,故A 正确;由以上计算可得,相关系数中,2r 最大,12b b >,12a a <,故B ,C 正确,D 错误. 故选:D . 【点睛】本题考查线性回归方程与相关系数的求法,考查计算能力,是中档题.2.D解析:D 【分析】A 选项,由“若10xy ≠,则5x ≠或2y ≠”的逆否命题判断充分性,由其否命题判断必要性;由全称命题的否定的概念判断选项B ;由正态分布的性质判断选项C ;由相关系数的概念判断选项D. 【详解】对于选项A,命题“若10xy ≠,则5x ≠或2y ≠”的逆否命题为“若5x =且2x =,则10xy =”,为真命题,而命题“若10xy =,则5x =且2x =”为假命题,所以10xy ≠是5x ≠或2y ≠的充分不必要条件,故A 正确;对于选项B,由全称命题的否定可得p ⌝:x R ∃∈,210x x ++=,故B 正确;对于选项C,由随机变量()2~2,X N σ,且()40.84P X ≤=,则()()()041410.840.16P X P X P X ≤=≥=-≤=-=,故C 正确;对于选项D,相关系数r 越接近1,表示线性相关程度越强,故D 错误, 故选:D 【点睛】本题考查充分不必要条件的判断,考查全称命题的否定,考查正态分布的概率,考查相关系数的概念,熟练掌握各知识点是解题关键.3.B解析:B 【分析】根据独立性检验和回归分析的概念,即可作出判定,得到答案. 【详解】由题意,独立性检验通常是研究两个分类变量之间是否有关系,所以①采用独立性检验, 回归分析通常是研究两个具有相关关系的变量的相关程度,②采用回归分析, 综上可知①是独立性检验,②是回归分析,故选B . 【点睛】本题主要考查了独立性检验和回归分析的概念及其判定,其中解答中熟记独立性检验和回归分析的概念是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4.B解析:B 【分析】根据独立性检验中卡方的概念知,选B. 【详解】根据独立性检验中卡方的概念知,2 6.635K >时,有99%的把握说事件A 与B 有关选B. 【点睛】本题主要考查了独立性检验中卡方的概念,属于中档题.5.B解析:B 【解析】 【分析】根据独立性检验的定义可判断(1);根据方差的性质可判断(2);根据残差的性质可判断(3);根据正态分布的对称性可判断(4). 【详解】(1)对分类变量X 与Y 的随机变量2K 的观测值K 来说,K 越大,判断“X 与Y 有关系”的把握越大,故(1)错误;(2)若将一组样本数据中的每个数据都加上同一个常数后,数据的离散程度不变,则样本的方差不变,故(2)正确;(3)根据残差的定义可知,在残差图,残差点分布的带状区域的宽度越狭窄,预测值与实际值越接近,其模型拟合的精度越高,(3)正确;(4)设随机变量ξ服从正态分布()0,1N ,若()1P p ζ>=,则()1P p ζ<-=,则()1112P p ζ-<<=-,则()1102P p ζ-<<=-,故(4)正确, 故正确的命题的个数为3个,故选B. 【点睛】本题主要通过对多个命题真假的判断,主要综合考查独立性检验的定义、方差的性质、残差的性质以及正态分布的对称性,属于中档题. 这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.6.B解析:B 【解析】分析:先查相关系数检验的临界值表,再判断变量Y 和x 具有线性相关关系的选项. 详解: 查相关系数检验的临界值表 ①r 0.05=0.754,r >r 0.05; ②r 0.05=0.514,r <r 0.05; ③r 0.05=0.482,r >r 0.05; ④r 0.05=0.997,r 0.05>r.∴y 和x 具有线性相关关系的是①③.故答案为B.点睛:本题主要考查相关系数,意在考查学生对这些知识的掌握水平.7.B解析:B 【解析】分析:①可由相关指数的概念判断;②③由推理,综合法和反证法的概念判断;④和⑤由线性回归分析判断即可.详解:①相关指数2R 越大,则相关性越强,模型的拟合效果越好.错误;② 归纳推理是由特殊到一般的推理,而演绎推理是由一般到特殊的推理,由归纳推理与演绎推理的概念可知正确.③综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”,由概念可知正确. ④由回归方程的系数意义知,当变量x 增加1个单位时,y 平均增加5个单位,正确;⑤线性回归方程ˆˆˆy bx a =+必过样本中心点(),x y ,正确.故选B.点睛:本题是一道综合性考题,即考查了推理与证明的原理,又考查了利用2R 判断模型拟合程度,同时还考查了线性回归分析的相关概念,属于中档题.8.A【解析】分析:首先计算观测值k 0的值,然后给出结论即可. 详解:由列联表计算观测值:()2401413672804.912 3.8412119202057k ⨯⨯-⨯==≈>⨯⨯⨯, 则有95%的把握认为环保知识测试成绩与专业有关. 本题选择A 选项.点睛:本题主要考查独立性检验及其应用等知识,意在考查学生的转化能力和计算求解能力.9.D解析:D 【解析】分析:由列联表中的数据,利用公式()()()()()22n ad bc K a b c d a c b d -=++++求得2K ,与邻界值比较,即可得到结论. 详解:()222509070603021.6310.828120130150100K ⨯⨯-⨯=≈>⨯⨯⨯,∴有0099.9的把握认为性别和读营养说明书的有关.点睛:独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)10.D解析:D 【解析】∵y 与x 的线性回归方程为 6.5175ˆ.y x =+ 当5x =时,ˆ50y=. 当广告支出5万元时,由表格得:60y = 故随机误差的效应(残差)为605010.-= 故选D .11.A解析:A 【解析】要得到线性回归方程应至少有两个变量的两组观测值,因此A 不正确.根据散点图、线性回归方程、线性相关关系的概念可得B ,C ,D 都正确.故选A .12.A【解析】当x=1,2,3时,分别代入求y值,离y最近的值模拟效果最好,可知A模拟效果最好.故选A.考点:非线性回归方程的选择.二、填空题13.④【解析】两个变量之间的相关系数r的绝对值越接近于1表示两个变量的线性相关性越强r的绝对值非常接近于0时表示两个变量之间几乎不存在线性相关故答案为④解析:④【解析】两个变量之间的相关系数,r的绝对值越接近于1,表示两个变量的线性相关性越强,r的绝对值非常接近于0时,表示两个变量之间几乎不存在线性相关.故答案为④.14.甲【解析】根据茎叶图中的数据可知甲地的数据都集中在006和007之间数据分布比较稳定而乙地的数据分布比较分散不如甲地数据集中故甲地的方差小故答案为甲解析:甲【解析】根据茎叶图中的数据可知,甲地的数据都集中在0.06和0.07之间,数据分布比较稳定,而乙地的数据分布比较分散,不如甲地数据集中,故甲地的方差小,故答案为甲. 15.【解析】试题分析:由题意得即样本中心点代入回归直线方程得考点:回归直线方程的应用解析:60【解析】试题分析:由题意得18131011542x++-==,24343864404y+++==,即样本中心点15(,40)2,代入回归直线方程,得15402602ˆˆa a=-⨯+⇒=.考点:回归直线方程的应用.16.%【解析】试题分析:所以在犯错误不超过%的前提下认为小动物是否被感染与有没有服用疫苗有关考点:1卡方统计量2统计;【易错点晴】本题主要考查的是统计中的卡方统计量属于容易题解题时一定要注意计算问题很多解析:%【解析】试题分析:,所以在犯错误不超过%的前提下,认为“小动物是否被感染与有没有服用疫苗有关” . 考点:1.卡方统计量,2.统计;【易错点晴】本题主要考查的是统计中的卡方统计量,属于容易题.解题时一定要注意计算问题,很多同学列式正确计算错误,从而不能正确得到结果.另外,学生容易把答案写为%,所以一定要注意本题中的问题是什么,否则很容易出现错误.17.【解析】将代入得所以残差 解析:0.29-【解析】将160x =代入0.85 2.1ˆ87yx =-,得0.8516082.71ˆ53.29y =⨯-=,所以残差5353.ˆ290ˆ.29ey y =-=-=-. 18.(1)(3)(4)【分析】根据相关指数离散型随机变量随机变量的方差和标准差绝对值不等式和相互独立事件相关的知识对五个结论逐一分析由此得出正确结论的序号【详解】对于(1)R2越大模型的拟合效果越好结论解析:(1),(3),(4) 【分析】根据相关指数、离散型随机变量、随机变量的方差和标准差、绝对值不等式和相互独立事件相关的知识,对五个结论逐一分析,由此得出正确结论的序号. 【详解】对于(1),R 2越大,模型的拟合效果越好,结论正确.对于(2),内径与规定的内径尺寸之差是连续型随机变量,结论错误.对于(3),根据随机变量的方差和标准差的知识可判断出结论正确.对于(4),根据绝对值不等式有22x x a a a -+-≥-≥,所以2a a -≤-或2a a -≥,前者解得1a ≤,后者无解,故a 的最大值为1,结论正确.对于(5),事件A :“甲、乙中至少一人击中目标”与事件B :“甲,乙都没有击中目标”是对立事件,不是相互独立事件,结论错误.综上所述,正确结论为(1),(3),(4). 【点睛】本小题主要考查关指数、离散型随机变量、随机变量的方差和标准差、绝对值不等式和相互独立事件相关的知识,考查分析与解决问题的能力,属于基础题.19.(3)(4)【解析】分析:(1)相关系数的范围;(2)由相关指数r 的含有知|r|的值越大说明模型的拟合效果越好;(3)离散型随机变量的期望;(4)根据期望公式得到3a+2b=2进而利用均值不等式求最解析:(3)(4) 【解析】分析:(1)相关系数的范围;(2)由相关指数r 的含有知,|r|的值越大,说明模型的拟合效果越好;(3)离散型随机变量的期望;(4)根据期望公式得到3a+2b=2,进而利用均值不等式求最值.详解:(1)相关系数r 的取值范围是1r ≤,故(1)错误;(2)用相关指数r 来刻画回归效果,|r|的值越大,说明模型的拟合效果越好,故(2)错误;(3)含零个白球的概率为5210,含一个白球的概率为50210,含二个白球的概率为100210,含三个白球的概率为50210,含四个白球的概率为5210, 白球个数的期望为:550100505012342210210210210210⨯+⨯+⨯+⨯+⨯=,故(3)正确; (4)∵3a+2b+0•c=2,a ,b ,c ∈(0,1), ∴213a b +=(213a b +)•12(3a+2b )=12(6+4b a +a b +23)≥12(203+24b aa b ⋅) =12(203+4)=163(当且仅当a=2b ,即a=12,b=14时取“=”),故(4)正确. 其中正确结论的序号为:(3)(4). 故答案为(3)(4).点睛:本题考查相关系数的有关概念,考查离散型随机变量的期望及概率统计与基本不等式的综合应用,属于中档题.20.【解析】分析:根据题意填写2×2列联表计算观测值对照临界值得出结论详解:填写2×2列联表如下:根据数表计算=≈825>7879所以有995的把握认为开车时使用手机与司机的性别有关;点睛:独立性检验的 解析:8.25【解析】分析:根据题意填写2×2列联表,计算观测值,对照临界值得出结论. 详解:填写2×2列联表,如下:根据数表,计算()()()()()22n ad bc a b c d a c b d -X =++++=()21004025201555456040⨯⨯-⨯⨯⨯⨯≈8.25>7.879,所以有99.5%的把握认为开车时使用手机与司机的性别有关;点睛:独立性检验的一般步骤:(I )根据样本数据制成22⨯列联表;(II )根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(III ) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)三、解答题21.(1)直方图见解析,3360元;(2)列联表见解析,没有95%的把握认为网购金额与网购人年龄有关. 【分析】(1)由频数分布表计算出各组数据的纵坐标(频率除以组距),再做出频率分布直方图, 由频率分布直方图估计平均值的定义可得本市居民此期间网络购物的消费平均值; (2) 根据频数分布表中的数据可知网购金额不超过4000元的有700人,超过4000元的有300人,根据分层抽样可得网购金额不超过4000元需要抽取140人,超过4000元的需要抽取60人,再根据列联表的性质即可完成表格,再根据列联表的数据计算出2K 并与给定的参考表对照得到结论. 【详解】(1)由题可知随机对1000人做问卷调查,消费数据的组距为2000, 可求得频率分布直方图纵轴上每组的数据(频率除以组距), 即3000.0001510002000=⨯,4000.000210002000=⨯,1800.0000910002000=⨯,600.0000310002000=⨯,则[]0,2000,(]2000,4000,(]4000,6000,(]6000,8000,(]8000,10000, 对应的的数据(频率除以组距)分别是0.00015,0.0002,0.00009,0.00003,0.00003, 从而得出频率分布直方图,由频率分布直方图估计平均值的定义,可得10000.330000.450000.1870000.0690000.0630012009004205403360x =⨯+⨯+⨯+⨯+⨯=++++=(元),故本市居民此期间网络购物的消费平均值为3360元; (2)由数据可知以网购金额不超过4000元的有2007001401000⨯=(人), 超过4000元的有200300601000⨯=(人),可得列联表.由()()()()220075356525502.3813.8411406010010021n ad bc K a b c d a c b d -⨯⨯-⨯===≈<++++⨯⨯⨯. 故在此期间没有95%的把握认为网购金额与网购人年龄有关. 【点睛】本题第一问考查了平均数的计算、画出频率分布直方图,其中主要是计算出纵坐标的值(频率除以组距)属于常见题型,第二问主要考查完善列联表,2K 的计算,属于中档题目,解题中对计算能力要求较高.22.(1)列联表见解析,有把握;(2)分布列见解析,1.8. 【分析】(1)完成列联表求出2K ,从而有99%的把握认为箱产量与养殖方法有关.(2)推导出X 的可能取值为1,2,3,分别求出相应的概率,由此能求出X 的分布列和数学期望. 【详解】解:(1)依题意,得下表:2200(62603840)9.68 6.63510298100100K ⨯-⨯∴=≈>⨯⨯⨯,即2( 6.635)0.010P K ∴>=所以,有99%的把握认为箱产量与养殖方法有关;(2)按照分层抽样的方法从箱产量少于50kg 和不少于50kg 的网箱中随机抽取5箱,分别为2箱和3箱,从中再抽3箱,则1,2,3X =则2123353(1)10C C P X C ===,1223356(2)10C C P X C ===,0323351(3)10C C P X C ===,X 的分布列为所以,1123 1.8101010EX=⨯+⨯+⨯=【点睛】本题考查独立检验的应用,考查离散型随机变量的分布列、数学期望的求法,考查运算求解能力,属于中档题.23.(1)0.62;(2)列联表见解析,有99%的把握认为支付人数与支付方式有关.【分析】(1)由频率分布直方图可得微信支付人数低于50千人的频率;(2)根据频率分布直方图得出<50千人和≥50千人的人数,得列联表,计算出2K,比较后可得结论.【详解】(1)根据题意,由微信支付人数的频率分布直方图可得:()()0.0120.0140.0240.0340.04050.62P A=++++⨯=(2)根据题意,补全列联表可得:则有()22006266383415.705 6.63510010096104K⋅⨯-⨯=≈>⨯⨯⨯,故有99%的把握认为支付人数与支付方式有关.【点睛】本题考查频率分布直方图,考查列联表,独立性检验,计算出2K即得,本题属于基础题.24.(1)见解析;(2)分布列见解析,期望是10 3.【分析】(1)先根据题中数据完成列联表,再进行计算,判断;(2)根据题意得X服从二项分布,进而求解.【详解】(1)由题意得,。

【单元综合测评】高中数学选修2-3-第三章--统计案例

【单元综合测评】高中数学选修2-3-第三章--统计案例

高中数学2-3单元综合测评三(时间:90分钟满分:120分)第Ⅰ卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(u i,v i)(i=1,2,…,10),得散点图2.由这两个散点图可以判断( )A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关解析:由图1可知,各点整体呈递减趋势,x与y负相关,由图2可知,各点整体呈递增趋势,u与v正相关.答案:C2.在下列量与量之间的关系中是相关关系的是( )①正方体的体积与棱长之间的关系②一块农田的小麦的产量与施肥量之间的关系③人的身高与年龄之间的关系④家庭的收入与支出之间的关系⑤某家庭用水量与水费之间的关系A.②③B.③④C.④⑤D.②③④解析:①⑤属于函数关系.答案:D3.某工厂某产品单位成本y(元)与产量x(千件)满足回归直线方程y=75.7-2.13x,则以下说法中正确的是( )A.产量每增加1 000件,单位成本下降2.13元B.产量每减少1 000件,单位成本下降2.13元C.产量每增加1 000件,单位成本上升75.7元D.产量每减少1 000件,单位成本上升75.7元解析:在回归直线方程y^=b^x+a^中,b^=-2.13是斜率的估计值,说明产量每增加1 000件,单位成本下降2.13元.答案:A4.分析人的身高与体重的关系,可以用( )A.残差分析B.回归分析C.等高条形图D.独立性检验解析:回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,显然,人的身高与体重具有相关关系,故选B.答案:B5.(2012·辽宁沈阳高二检测)为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算K2≈0.99,根据这一数据分析,下列说法正确的是( ) A.有99%的人认为该栏目优秀B.有99%的人认为该栏目是否优秀与改革有关系C.有99%的把握认为电视栏目是否优秀与改革有关系D.没有理由认为电视栏目是否优秀与改革有关系解析:由于K2=0.99<3.841,所以没有理由认为电视栏目是否优秀与改革有关系,故选D.答案:D6.若两个变量的残差平方和是325,∑i =1n(y i -y -)2=923,则随机误差对预报变量的贡献率约为( )A .64.8%B .60%C .35.2%D .40%解析:相关指数R 2表示解释变量对预报变量变化的贡献率,故随机误差对预报变量的贡献率为残差平方和总偏差平方和×100%=325923×100%≈35.2%,故选C.答案:C7.为预测某种产品的回收率y ,需要研究它和原料有效成分含量x 之间的相关关系,现取了8组观察值.计算知∑i =18x i =52,i =18=228,∑i =18x 2i =478,∑i =18x i y i =1 849,则y 对x 的回归方程是()A.y ^=11.47+2.62xB.y ^=-11.47+2.62xC.y ^=2.62+11.47xD.y ^=11.47-2.62x解析:由已知数据计算可得b ^=2.62,a ^=11.47,所以回归方程是y ^=11.47+2.62x ,故选A.答案:A8.在研究吸烟与患肺癌的关系中,通过收集数据并整理、分析,得到“吸烟与患肺癌有关”的结论,并且有99%的把握认为这个结论成立.下列说法正确的个数是( )①在100个吸烟者中至少有99个人患肺癌②如果一个人吸烟,那么这个人有99%的概率患肺癌③在100个吸烟者中一定有患肺癌的人④在100个吸烟者中可能一个患肺癌的人也没有A.4 B.3C.2 D.1解析:有99%的把握认为“吸烟与患肺癌有关”,指的是“吸烟与患肺癌有关”这个结论成立的可能性或者可信程度有99%,并不表明在100个吸烟者中至少有99个人患肺癌,也不能说如果一个人吸烟,那么这个人就有99%的概率患肺癌;更不能说在100个吸烟者中一定有患肺癌的人,反而有可能在100个吸烟者中,一个患肺癌的人也没有.故正确的说法仅有④,选D.答案:D9.(2012·山东潍坊高二检测)调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表:晚上白天总计男婴243155女婴82634总计325789认为婴儿的性别与出生时间有关系( )A.0.2 B.0.1C.0.05 D.0.01解析:k=89×24×26-31×8255×34×32×57≈3.689,查表可知,在犯错误的概率不超过0.1的前提下,可认为婴儿的性别与出生时间有关系.故选B.答案:B10.假设有两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其2×2列联表为:组为( )A.a=5,b=4,c=3,d=2 B.a=5,b=3,c=4,d=2 C.a=2,b=3,c=4,d=5 D.a=2,b=3,c=5,d=4 解析:可计算|ad-bc|的值,值越大说明X与Y有关的可能性越大.答案:D第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)11.对于回归直线方程y^=4.75x+257,当x=28时,y的估计值是________.解析:将x的值代入回归直线方程得估计值y=4.75×28+257=390.答案:39012.下列命题:①用相关指数R2来刻画回归的效果时,R2的值越大,说明模型拟合的效果越好;②对分类变量X 与Y 的随机变量K 2的观测值k 来说,k 越小,“X 与Y 有关系”可信程度越大;③两个随机变量相关性越强,则相关系数的绝对值越接近1; 其中正确命题的序号是________.(写出所有正确命题的序号) 解析:②应该是k 越大,“X 与Y 有关系”可信程度越大. 答案:①③13.下表为收集到的一组数据:已知变量x 、y ________.解析:∑i =15x i =25,x -=5;∑i =15y i =60,y -=12,∑i =15x 2i =165,∑i =15x i y i=382,∴b ^=∑i =15x i y i -5x -y -∑i =15x 2i -5x -2=382-5×5×12165-5×52=8240=2.05,a ^=y --b ^x -=12-2.05×5=1.75, ∴回归直线方程为y =1.75+2.05x . 答案:y =1.75+2.05x14.某校在高二文理分科时,对学生数学成绩是否优秀和所选科类进行了调查,具体数据如下:数学优秀 10 13 数学不优秀207根据上述数据,如果判断“科学与数学是否优秀有关系”,那么这种判断出错的概率为________.解析:由于k =50×10×7-13×20223×27×30×20≈4.844>3.841,所以我们有95%的把握认为“科类与数学是否优秀有关系”,因此这种判断出错的概率约为0.05.答案:0.05三、解答题(本大题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤)15.(12分)有5组数据如下:x 1 2 3 4 10 y 3 4 10 5 12相关性?解:作出散点图如图所示.观察散点图,可以发现A ,B ,D ,E 四个点大致在某条直线附近,具有较强的线性相关关系,故应将点C (3,10)去掉.16.(12分)(2012·广东佛山高二质检)在2008年北京奥运会上,水立方游泳项目的世界记录屡屡被打破,充满了神奇色彩.据有些媒体的报道,这可能与运动员身上的新式泳衣有着绝对的关系.为此有人进行了调查统计,对某游泳队的96名运动员的成绩进行了调查,其中使用新式泳衣成绩提高的有12人,没有提高的有36人;没有使用新式泳衣成绩提高的有8人,没有提高的有40人.请根据该游泳队的成绩判断:成绩提高与使用新式泳衣是否有关系?解:根据给出的数据可以列出下列2×2列联表:成绩提高成绩没有提高总计用新式泳衣123648未用新式泳衣84048总计207696于是K2=48×48×20×76≈1.011,由于1.011<3.841,所以我们没有足够的理由认为成绩提高与使用新式泳衣有关系.17.(12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.x 345 6y 2.534 4.5(1)(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y^=b^x+a^;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低了多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)解:(1)散点图如图所示:(2)由对照数据,计算得x -=4.5,y -=3.5,∑i =14x i y i =66.5,∑i =14x 2i =32+42+52+62=86,b ^=66.5-4×4.5×3.586-4×4.52=0.7,a ^=y --b ^x -=3.5-0.7×4.5=0.35, 所求的回归方程为y ^=0.7x +0.35.(3)当x =100时,y =100×0.7+0.35=70.35(吨),预测生产100吨甲产品的生产能耗比技改前降低90-70.35=19.65(吨标准煤).18.(14分)(2010·新课标全国高考)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:性别是否需要志愿者男女 需要 40 30不需要160 270(1) (2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.附:K2=n ad-bc2a+b c+d a+c b+d解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为70500=14%.(2)K2=500×40×270-30×1602200×300×70×430≈9.967.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层,采用分层抽样方法比采用简单随机抽样方法更好.。

最新北师大版高中数学高中数学选修2-3第三章《统计案例》测试题(含答案解析)

最新北师大版高中数学高中数学选修2-3第三章《统计案例》测试题(含答案解析)

一、选择题1.下列四个命题中,正确的有( )①两个变量间的相关系数r 越小,说明两变量间的线性相关程度越低;②命题“x ∃∈R ,使得210x x ++<”的否定是:“对x ∀∈R ,均有210x x ++>”; ③命题“p g ∧为真”是命题“p q ∨为真”的必要不充分条件;④若函数322()3f x x ax bx a =+++在1x =-有极值0,则2a =,9b =或1a =,3b =.A .0B .1C .2D .32.为检测某药品服用后的多长时间开始有药物反应,现随机抽取服用了该药品的1000人,其服用后开始有药物反应的时间(分钟)与人数的数据绘成的频率分布直方图如图所示.若将直方图中分组区间的中点值设为解释变量x (分钟),这个区间上的人数为y (人),易见两变量x ,y 线性相关,那么一定在其线性回归直线上的点为( )A .()1.5,0.10B .()2.5,0.25C .()2.5,250D .()3,3003.为研究某两个分类变量是否有关系,根据调查数据计算得到k≈15.968,因为P(K 2≥10.828)=0.001,则断定这两个分类变量有关系,那么这种判断犯错误的概率不超过( ). A .0.1B .0.05C .0.01D .0.0014.某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如下表所示: 序号 12345678910 11 12 13 14 15 16 17 18 19 20数学成95 75 80 94 92 65 67 84 98 7167 93 64 787790 57 83 72 83若数学成绩90分(含90分)以上为优秀,物理成绩85(含85分)以上为优秀,则有多少把握认为学生的数学成绩与物理成绩有关系( ) A .95%B .97.5%C .99.5%D .99.9%5.通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:则有( )以上的把握认为“该市民能否做到‘光盘’与性别有关”,附表及公式()()()()()22n ad bc K a b c d a c b d -=++++A .90%B .95%C .99%D .99.9%6.为了考查两个变量x 和y 之间的线性相关性,甲、乙两位同学各自独立地做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l 1和l 2,已知两个人在试验中发现对变量x 的观测数据的平均值都是s ,对变量y 的观测数据的平均值都是t ,那么下列说法正确的是( ) A .l 1和l 2有交点(s ,t )B .l 1与l 2相交,但交点不一定是(s ,t )C .l 1与l 2必定平行D .l 1与l 2必定重合7.某科研机构为了研究中年人秃发与心脏病是否有关,随机调查了一些中年人的情况,具体数据见下表:不秃发 5 450根据表中数据得到()277520450530015.96820750320455k ⨯⨯-⨯=≈⨯⨯⨯,因为K 2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为( ) A .0.1B .0.05C .0.01D .0.0018.假设有两个分类变量X 和Y 的22⨯列联表如下:注:2K 的观测值2()()()()()()()n ad bc a b a ck n a b c d a c b d a c b d a b c d-==--++++++++.对于同一样本,以下数据能说明X 和Y 有关系的可能性最大的一组是( ) A .45,15a c ==B .40,20a c ==C .35,25a c ==D .30,30a c ==9.有人发现,多看电视容易使人变冷漠,下表是一个调查机构对此现象的调查结果:冷漠 不冷漠 总计 多看电视 68 42 110 少看电视 20 38 58 总计8880168则认为多看电视与人冷漠有关系的把握大约为( ) 附:K 2=. P (K 2≥k 0) 0.10 0.05 0.025 0.010 0.005 0.001 k 02.7063.8415.0246.6357.87910.828A .99%B .97.5%C .95%D .90%10.有下列数据: x123y35.9912.01下列四个函数中,模拟效果最好的为( ) A .B .C .D .11.某家具厂的原材料费支出x 与销售量y (单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出y 与x 的线性回归方程为ˆ8ˆy x b =+,则^b为( ) x 2 4 5 6 8 y2535605575A .5B .15C .10D .2012.为考察数学成绩与物理成绩的关系,在高二随机抽取了300名学生,统计数据如下表 数学 物理 85~100分 85分以下 合计 85~100分 37 85 122 85分以下 35 143 178 合计722283002()P K k ≥ 0.050 0.010 0.001 k 3.8416.63510.828附:经计算2 4.514K ≈,现判断数学成绩与物理成绩有关系,则判断出错的概率不会超过 A .0.5%B .1%C .2%D .5%二、填空题13.若两个分类变量X 与Y 的列联表为:y 1 y 2 x 1 10 15 x 24016则“X 与Y 之间有关系”这个结论出错的可能性为________.14.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁,为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:参照附表,在犯错误的概率最多不超过______(填百分比)的前提下,可认为“该种疫苗有预防埃博拉病毒感染的效果”.参考公式:K 2=2()()()()()n ad bc a b c d a c b d -++++15.已知方程是根据女大学生的身高预报她的体重的回归方程,其中的单位是,的单位是,那么针对某个体的残差是______.16.给出下列四个结论:(1)如图Rt ABC ∆中,2,90,30.AC B C =∠=︒∠=︒是斜边上的点,.以为起点任作一条射线交于点,则点落在线段上的概率是3;(2)设某大学的女生体重与身高具有线性相关关系,根据一组样本数据,用最小二乘法建立的线性回归方程为,则若该大学某女生身高增加,则其体重约增加;(3)若()f x 是定义在上的奇函数,且满足,则函数()f x 的图像关于对称;(4)已知随机变量ξ服从正态分布()()21,,40.79,N Pσξ≤=则.其中正确结论的序号为________________17.已知下列说法:①分类变量A与B的随机变量越大,说明“A与B有关系”的可信度越大;②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是和;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为,若,,,则.其中说法正确的为_____________.(填序号)18.以下4个命题中,正确命题的序号为_________.①“两个分类变量的独立性检验”是指利用随机变量2K来确定是否能以给定的把握认为“两个分类变量有关系”的统计方法;②将参数方程cossinxyθθ=⎧⎨=⎩(θ是参数,[]0,θπ∈)化为普通方程,即为221x y+=;③极坐标系中,22,3Aπ⎛⎫⎪⎝⎭与()3,0B19④推理:“因为所有边长相等的凸多边形都是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形”,推理错误在于“大前提”错误.19.某班主任对全班50名学生的积极性和对待班级工作的态度进行了调查,统计数据如下表所示:积极参加班级工作不太积极参加班级工作合计学习积极性高18725学习积极性一般61925合计242650则至少有________的把握认为学生的学习积极性与对待班级工作的态度有关.(请用百分数表示).注:独立性检验界值表()2P K k≥0.0250.0100.0050.001k 5.024 6.6357.87910.82820.下列说法中,正确的有_______.①回归直线ˆˆˆy bx a =+恒过点(),x y ,且至少过一个样本点;②根据22⨯列列联表中的数据计算得出2 6.635K ≥,而()26.6350.01P K ≥≈,则有99%的把握认为两个分类变量有关系;③2k 是用来判断两个分类变量是否相关的随机变量,当2k 的值很小时可以推断两个变量不相关;三、解答题21.网购是当前人们购物的新方式,某公司为了改进营销方式,随机调查了100名市民,统计了不同年龄的人群网购的人数如下表:(1)若把年龄在2060,的人称为“网购迷”,否则称为“非网购迷”,请完成下面的22⨯列联表,并判断能否在犯错误的概率不超过1%的前提下,认为网购与性别有关?附:()()()()()2n ad bc K a b c d a c b d -=++++.两人年龄都小于20岁的概率.22.为了解某企业生产的某产品的年利润与年广告投入的关系,该企业对最近一些相关数据进行了调查统计,得出相关数据见下表:根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程:方程甲,2(1)(1) 2.75yb x =-+^^;方程乙,(2)1.6yc x =-^^.(1)求b ^(结果精确到0.01)与c ^的值.(2)为了评价两种模型的拟合效果,完成以下任务.①完成下表(备注:i i ie y y =-^^,i e ^称为相应于点(x i ,y i )的残差); 年广告投入x (万元) 2 3 4 5 6 年利润y (十万元)346811模型甲估计值(1)iy^ 残差(1)i e ^模型乙估计值(2)iy^ 残差(2)ie^②分别计算模型甲与模型乙的残差平方和Q 1及Q 2,并通过比较Q 1,Q 2的大小,判断哪个模型拟合效果更好.23.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;箱产量<50kg箱产量≥50kg 合 计(2)在新养殖法养殖的网箱中,按照分层抽样的方法从箱产量少于50kg 和不少于50kg 的网箱中随机抽取5箱,再从中抽取3箱进行研究,这3箱中产量不少于50kg 的网箱数为X ,求X 的分布列和数学期望.()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++24.某中学在2020年元旦校运动会到来之前,在高三年级学生中招募了16名男性志愿者和14名女性志愿者,其中男性志愿者,女性志愿者中分别有10人和6人喜欢运动会,其他人员均不喜欢运动会.(1)根据题设完成下列22⨯列联表:(2)在犯错误的概率不超过0.050的前提下能否有95%的把握认为喜欢运动会与性别有关?并说明理由.(3)如果喜欢运动会的女性志愿者中只有3人懂得医疗救护,现从喜欢运动会的女性志愿者中随机抽取2人负责医疗救护工作,求“抽取得2名志愿者都懂得医疗救护”的概率.注:()()()()()()22n ad bc K n a b c d a b c d a c b d -==+++++++临界值表k 3.841 5.024 6.63510.82825.某公司(人数众多)为鼓励员工利用网络进行营销,准备为员工办理手机流量套餐.为了解员工手机流量使用情况,按照男员工和女员工1:3的比例分层抽样,得到200名员工的月使用流量L(单位:M)的数据,其频率分布直方图如图所示.求a的值,并估计这200名员工月使用流量的平均值x(同一组中的数据用中点值代表);(2)若将月使用流量在800M以上(含800M)的员工称为“手机营销达人”,填写下面的22⨯列联表,能否有超过0095的把握认为“成为手机营销达人与员工的性别有关”;男员工女员工合计手机营销达人5非手机营销达人合计200(3)若这200名员工中有2名男员工每月使用流量在[]900,1000,从每月使用流量在[]900,1000的员工中随机抽取名3进行问卷调查,记女员工的人数为X,求X的分布列和数学期望.参考公式及数据:()()()()()22n ab bcKa b c d a c b d-=++++,其中n a b c d=+++.()2P K k≥0.150.100.050.0250.0100.005k 2.072 2.706 3.841 5.024 6.6357.87926.云南是世界茶树的原产地之一,也是中国四大茶产区之一,独特的立体气候为茶叶的种质资源多样性创造了良好的自然条件,茶叶产业是云南高原特色农业的闪亮名片.某大型茶叶种植基地为了比较A、B两品种茶叶的产量,某季采摘时,随机选取种植A、B两品种茶叶的茶园各30亩,得到亩产量(单位:kg/亩)的茎叶图如下(整数位为茎,小数位为叶,如55.4的茎为55,叶为4):亩产不低于60kg的茶园称为“高产茶园”,其它称为“非高产茶园”.(1)请根据已知条件完成以下22⨯列联表,并判断是否有95%的把握认为“高产茶园”与茶叶品种有关?A品种茶叶(亩数)B品种茶叶(亩数)合计高产茶园非高产茶园合计(2)用样本估计总体,将频率视为概率,现从该种植基地A品种的所有茶园中随机抽取4亩,且每次抽取的结果相互独立,设被抽取的4亩茶园中“高产茶园”的亩数为X,求X 的分布列和数学期望()E X.附:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++ ()2P K k≥0.0500.0100.001k 3.841 6.63510.828【参考答案】***试卷处理标记,请不要删除一、选择题1.A【分析】根据相关系数的定义可知①错误;根据特称命题(又叫存在性命题)的否定可知②错误;根据真值表即可判断“p q ∧为真”是命题“p q ∨为真”的充分不必要条件,故③错误;由条件可得,(1)0,(1)0,f f '-=-= 解得a=2,b=9或a=1,b=3,经检验,当a=1,b=3时,22()3633(1)0f x x x x '=++=+≥恒成立,此时()f x 没有极值点,故④错误。

人教版高中数学(选修2-3)第三章统计案例单元测试题

人教版高中数学(选修2-3)第三章统计案例单元测试题

A.52 54
B.54 52
C.94 146
D.146 94
答案 A
解析 由 a+21= 73,得 a= 52, a+ 2=b,得 b=54. 故选 A.

7.设有一个回归方程为 y= 3- 5x,则变量 x 增加一个单位时 ( )
A.y 平均增加 3 个单位
B.y 平均减少 5 个单位
C.y 平均增加 5 个单位
B.v= log 1 t 2
D.v= 2t - 2
答案 C
解析 先画出散点图,利用散点图直观认ຫໍສະໝຸດ 变量间的关系,可选出较合适的模型为
C,或
将数据代入所给选项进行验证.
5.对于一组具有线性相关关系的数据 ( x1, y1) , ( x2, y2) ,…, ( xn, yn) ,其回归方程中
的截距为 (
)
C.(0 , y )
D.( x , y )
答案 D
解析 回归直线方程一定过样本点的中心 ( x , y ) .故选 D.
11.在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是
A.总偏差平方和 C.回归平方和
B.残差平方和 D .相关指数 R2
答案 B
()
∧∧
n∧
2
解析 yi - y= ei , e i 为残差平方和.故选 B.
答案 A
解析 求出样本中心 ( x , y ) 代入选项检验知选 A.
4.今有一组实验数据如下:
t 1.99 3.0
4.0 5.1 6.12
v 1.5
4.04 7.5 12 18.01
现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是
()

宜昌市高中数学选修2-3第三章《统计案例》检测(答案解析)

宜昌市高中数学选修2-3第三章《统计案例》检测(答案解析)

一、选择题1.已知x 与y 之间的几组数据如下表:参考公式:线性回归方程y bx a =+,其中()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =-;相关系数()()niix x y y r --=∑上表数据中y 的平均值为2.5,若某同学对m 赋了三个值分别为1.5,2,2.5得到三条线性回归直线方程分别为11y b x a =+,22y b x a =+,33y b x a =+,对应的相关系数分别为1r ,2r ,3r ,下列结论中错误..的是( ) A .三条回归直线有共同交点 B .相关系数中,2r 最大 C .12b b > D .12a a >2.为了调查某校高二学生的身高是否与性别有关,随机调查该校64名高二学生,得到2×2列联表如表:附:K 2()()()()2()n ad bc a b c d a c b d -=++++由此得出的正确结论是( )A .在犯错误的概率不超过0.01的前提下,认为“身高与性别无关”B .在犯错误的概率不超过0.01的前提下,认为“身高与性别有关”C .有99.9%的把握认为“身高与性别无关”D .有99.9%的把握认为“身高与性别有关”3.两个分类变量X 和Y ,值域分别为{x 1,x 2}和{y 1,y 2},其样本频数分别是a =10,b =21,c +d =35,若X 与Y 有关系的可信程度为90%,则c =( ) A .4 B .5 C .6D .74.下列命题中正确命题的个数是(1)对分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握越大;(2)若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变; (3)在残差图,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高; (4)设随机变量ξ服从正态分布()0,1N ; 若()1P p ξ>=,则()1102P p ξ-<<=-( ) A .4B .3C .2D .15.某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如下表所示:若数学成绩90分(含90分)以上为优秀,物理成绩85(含85分)以上为优秀,则有多少把握认为学生的数学成绩与物理成绩有关系( ) A .95%B .97.5%C .99.5%D .99.9%6.近年来,由于大学生不理智消费导致财务方面的新闻层出不穷,无力偿还校园贷,跳楼自杀也偶有发生,一时间人们对大学生的消费观充满了质疑.为进一步了解大学生的消费情况,对S 城某大学的10000名(其中男生6000名,女生4000名)在校本科生,按性别采用分层抽样的方式抽取了1000名学生进行了问卷调查,其中有一项是针对大学生每月的消费金额进行调查统计,通过整理得如图所示的频率分布直方图.已知在抽取的学生中,月消费金额超过2000元的女生有150人.根据上述数据和频率分布直方图,判断下列说法正确的是( )参考数据与参考公式:003 1.732,sin150.258,sin7.50.1305=≈≈.A .月消费金额超过2000元的女生人数少于男生人数B .所调查的同学中月消费金额不超过500元的共有4人C .样本数据的中位数约为1750元D .在犯错的概率不超过0.1%的情况下认为月消费金额在2000元以上的大学生与性别有关 7.为考察数学成绩与物理成绩的关系,在高二随机抽取了300名学生,得到下面的列联表:数学85~100分 数学85分以下 总计 物理85~100分 37 85 122 物理85分以下 35 143 178 总计72228300现判断数学成绩与物理成绩有关系,则犯错误的概率不超过 ( ) A .0.005B .0.01C .0.02D .0.058.假设有两个分类变量X 和Y 的22⨯列联表如下:注:2K 的观测值2()()()()()()()n ad bc a b a ck n a b c d a c b d a c b d a b c d-==--++++++++.对于同一样本,以下数据能说明X 和Y 有关系的可能性最大的一组是( ) A .45,15a c == B .40,20a c ==C .35,25a c ==D .30,30a c ==9.以下四个命题中:①某地市高三理科学生有15000名,在一次调研测试中,数学成绩ξ服从正态分布()2100,N σ,已知()801000.40P ξ<≤=,若按成绩分层抽样的方式抽取100分试卷进行分析,则应从120分以上(包括120分)的试卷中抽取15分; ②已知命题:p x ∀∈R ,sin 1x ≤,则:p x ⌝∃∈R ,sin 1x >;③在[]4,3-上随机取一个数m ,能使函数()222f x x mx =++在R 上有零点的概率为37; ④在某次飞行航程中遭遇恶劣气候,用分层抽样的20名男乘客中有5名晕机,12名女乘客中有8名晕机,在检验这些乘客晕机是否与性别有关时,采用独立性检验,有97%以上的把握认为与性别有关.()2P k k ≥0.15 0.1 0.05 0.025 0k 2.0722.7063.8415.024其中真命题的序号为( ) A .①②③B .②③④C .①②④D .①③④10.下列说法中正确的是①相关系数r 用来衡量两个变量之间线性关系的强弱, r 越接近于1,相关性越弱; ②回归直线y bx a =+一定经过样本点的中心(),x y ; ③随机误差e 的方差()D e 的大小是用来衡量预报的精确度;④相关指数2R 用来刻画回归的效果, 2R 越小,说明模型的拟合效果越好.( ) A .①②B .③④C .①④D .②③11.为考察数学成绩与物理成绩的关系,在高二随机抽取了300名学生,统计数据如下表 数学85~100分85分以下合计物理 85~100分 37 85 122 85分以下 35 143 178 合计722283002()P K k ≥ 0.050 0.010 0.001 k 3.8416.63510.828附:经计算2 4.514K ≈,现判断数学成绩与物理成绩有关系,则判断出错的概率不会超过 A .0.5%B .1%C .2%D .5%12.对两个变量x 和y 进行回归分析,得到一组样本数据: ()()1122,,,x y x y ,…(),n n x y ,则下列说法中不正确的是( )A .由样本数据得到的回归方程ˆˆˆy bx a =+必过样本中心(),x yB .残差平方和越小的模型,拟合的效果越好C .若变量y 和x 之间的相关系数为0.9362r =-,则变量y 和x 之间具有线性相关关系D .用相关指数2R 来刻画回归效果, 2R 越小,说明模型的拟合效果越好二、填空题13.已知方程是根据女大学生的身高预报她的体重的回归方程,其中x的单位是cm ,的单位是kg ,那么针对某个体(160,53)的残差是________.14. 2.5PM 是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,下图是据某地某日早7点至晚8点甲、乙两个 2.5PM 监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是_________.15.已知方程ˆ0.8582.71yx =-是根据女大学生的身高预报她的体重的回归方程,其中x的单位是cm ,ˆy的单位是kg ,那么针对某个体(160,53)的残差是______________. 16.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温.由表中数据得线性方程=+x 中=﹣2,据此预测当气温为5℃时,用电量的度数约为_____.17.某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2的列联表,根据列联表的数据,可以有_______%的把握认为该学校15至16周岁的男生的身高和体重之间有关系.超重 不超重 合计 偏高 4 1 5 不偏高 3 12 15 合计71320独立性检验临界值表()20P K k ≥0.025 0.010 0.005 0.001 0k 5.0246.6357.87910.828独立性检验随机变量2K 值的计算公式:22()()()()()n ad bc K a b c d a c b d -=++++18.在2017年3月15日,某市物价部门对本市的5家商场的某种商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示: 价格x 9 9.5 10 10.5 11 销售量y1110865由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,其线性回归方程是:3.2y x a =-+,则a =__________.19.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,若变量x 增加一个单位时,则y 平均增加5个单位; ③线性回归方程^^^y b x a =+所在直线必过(),x y ; ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个22⨯列联表中,由计算得213.079K =,则其两个变量之间有关系的可能性是0090.其中错误的是________. 20.下列说法:①线性回归方程y bx a =+必过(),x y ;②命题“21,34x x ∀≥+≥”的否定是“21,34x x ∃<+<” ③相关系数r 越小,表明两个变量相关性越弱;④在一个22⨯列联表中,由计算得28.079K =,则有99%的把握认为这两个变量间有关系;其中正确..的说法是__________.(把你认为正确的结论都写在横线上) 本题可参考独立性检验临界值表:三、解答题21.为了解使用手机是否对学生的学习有影响,某校随机抽取50名学生,对学习成绩和使用手机情况进行了调查,统计数据如表所示(不完整):使用手机 不使用手机 总计学习成绩优秀 5 20 学习成绩一般总计3050与使用手机有关;(2)现从上表不使用手机的学生中按学习成绩是否优秀分层抽样选出9人,再从这9人中随机抽取3人,记这3人中“学习成绩优秀”的人数为X ,试求X 的分布列与数学期望. 参考公式:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.参考数据:()20P x χ≥0.0500.010 0.00122.“直播带货”是指通过一些互联网平台,使用直播技术进行商品线上展示、咨询答疑、导购销售的新型服务方式.某高校学生会调查了该校100名学生2020年在直播平台购物的情况,这100名学生中有男生60名,女生40名.男生中在直播平台购物的人数占男生总数的23,女生中在直播平台购物的人数占女生总数的78. (1)填写22⨯列联表,并判断能否有99%的把握认为校学生的性别与2020年在直播平台购物有关?2020年在直播平台购物的概率,从全校所有学生中随机抽取4人,记这4人中2020年在直播平台购物的人数与未在直播平台购物的人数之差为X ,求X 的分布列与期望.附:n a b c d =+++,2()()()()()n ad bc K a b c d a c b d -=++++. 23.2019年4月,中国电信公布了2019年的终端洞察报告,其中,国产手机品牌表现抢眼,统治地位不容置疑.在2018年6~11月上市的新机中,用户最满意机型与用户推荐机型的项目中国产手机优势明显,华为及荣耀手机分别占据不同价位段的榜单第一,OPPO 、vivo 、小米、魅族均有机型占据榜单.在用户满意机型调研项目中,曾经位于神坛地位的苹果手机也仅仅只有iPhone XR 一款位列第三.(1)从上表中15个机型中任取3个,求这3个机型恰好有2个是“华为”或“荣耀”的概率; (2)测试数据源于消费者的反馈,从反馈信息中随机抽取500个“华为畅享9plus ”消费者,其中来自城市300个,来自农村200个,统计他们对“华为畅想9plus ”的满意情况如下:满意 不满意城市 270 30农村170 30(附:()()()()()22n ad bc a b c d a c b d χ-=++++,当2 3.841χ>时,有95%的把握说事件A 与B 有关;当26.635χ>时,有99%的把握说事件A 与B 有关;当2 3.841χ≤时,认为事件A 与B 是无关的)24.某企业的甲、乙两种产品在东部地区三个城市以及西部地区两个城市的销售量x ,y 的数据如下:东部城市A东部城市B东部城市C西部城市D西部城市Ex40 50 60 20 30 y1101802103070(1)已知销售量x 和销售量y 大致满足线性相关关系,求出y 关于x 的线性回归方程y bx a =+;(2)根据上述数据计算是否有99%的把握认为东、西部的地区差异与甲、乙两种产品的销售量相关.参考公式:()()()121nii i nii xx y yb xx==--=-∑∑,a y bx =-;()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++. 临界值表:25.为了解某企业生产的某产品的年利润与年广告投入的关系,该企业对最近一些相关数据进行了调查统计,得出相关数据见下表:根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程:方程甲,2(1)(1) 2.75yb x =-+^^;方程乙,(2)1.6yc x =-^^.(1)求b ^(结果精确到0.01)与c ^的值.(2)为了评价两种模型的拟合效果,完成以下任务.①完成下表(备注:i i ie y y =-^^,i e ^称为相应于点(x i ,y i )的残差);②分别计算模型甲与模型乙的残差平方和Q 1及Q 2,并通过比较Q 1,Q 2的大小,判断哪个模型拟合效果更好.26.“海水稻”就是耐盐碱水稻,是一种介于野生稻和栽培稻之间的普遍生长在海边滩涂地区,具有耐盐碱的水稻,它比其它普通的水稻均有更强的生存竞争能力,具有抗涝,抗病虫害,抗倒伏等特点,还具有预防和治疗多种疾病的功效,防癌效果尤为显著.海水稻的灌溉是将海水稀释后进行灌溉.某试验基地为了研究海水浓度x (‰)对亩产量y (吨)的影响,通过在试验田的种植实验,测得了某种海水稻的亩产量与海水浓度的数据如表.绘制散点图发现,可用线性回归模型拟合亩产量y 与海水浓度x 之间的相关关系,用最小二乘法计算得y 与x 之间的线性回归方程为.88ˆ0ˆy bx=+.(2)①完成上述残差表:②统计学中,常用相关指数2R 来刻画回归效果,2R 越大,模型拟合效果越好,并用它来说明预报变量与解释变量的相关性.你能否利用以上表格中的数据,利用统计学的相关知识,说明浇灌海水浓度对亩产量的贡献率?(计算中数据精确到0.01)(附:残差公式ˆˆi i i ey y =-,相关指数()()22121ˆ1ni i i nii y yR y y ==-=--∑∑)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题意可得5m n +=,分别取m 与n 的值,由公式计算出1122123,,,,,,b a b a r r r 的值,逐一分析四个选项,即可得到答案. 【详解】由题意,1410m n +++=,即5m n +=. 若 1.5m =,则 3.5n =,此时12342.54x +++==, 2.5y =. ()()()()()()()()()()411 2.51 2.52 2.5 1.5 2.53 2.5 3.5 2.54 2.54 2.5 5.5iii x x y y =--=--+--+--+--=∑ ,()()()4222221 1.50.50.5 1.55i i x x =-=-+-++=∑ , ()()()42222211.511 1.5 6.5i i y y =-=-+-++=∑.则1 5.51.15b ==,1 2.5 1.1 2.50.25a =-⨯=- ,1r =≈; 若2m =,则3n =,此时12342.54x +++==, 2.5y =. ()()()()()()()()()()411 2.51 2.52 2.52 2.53 2.53 2.54 2.54 2.55iii x x y y =--=--+--+--+--=∑,()4215ii x x =-=∑,()()()42222211.50.50.5 1.55i i y y =-=-+-++=∑.2515b ==,2 2.51 2.50a =-⨯=,21r ==; 若 2.5m =,则 2.5n =,此时12342.54x +++==, 2.5y =. ()()()()()()()()()()411 2.51 2.52 2.5 2.5 2.53 2.5 2.5 2.54 2.54 2.5 4.5iii x x y y =--=--+--+--+--=∑,()4215i i x x =-=∑,()()422211.5 1.5 4.5i i y y =-=-+=∑,3r ==由样本点的中心相同,故A 正确;由以上计算可得,相关系数中,2r 最大,12b b >,12a a <,故B ,C 正确,D 错误. 故选:D . 【点睛】本题考查线性回归方程与相关系数的求法,考查计算能力,是中档题.2.D解析:D 【分析】根据22⨯列联表,计算2k ,与临界值表比较即可得出结论. 【详解】K 的观测值:K 2264(862426)34303232⨯⨯-⨯=≈⨯⨯⨯20.330;由于20.330>10.828,∴有99.9%的把握认为“身高与性别有关”,即在犯错误的概率不超过0.001的前提下,认为“身高与性别有关” 故选:D . 【点睛】本题主要考查了独立性检验的应用问题,K 2的计算,22⨯列联表,考查了运算能力,属于中档题.3.B解析:B 【解析】 【分析】根据22⨯列联表,以及独立检验随机变量的临界值参考表,计算2K 对应的值,验证24,5,6,7,c K =是否恰好满足即可【详解】列22⨯列联表可知:()22661030521 3.024 2.70615513135K ⨯⨯-⨯=≈>⨯⨯⨯,所以5c =时,X 与Y 有关系的可信程度为90%,而其余的值4,6,7c c c ===皆不满足,故选B . 【点睛】独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)4.B解析:B 【解析】 【分析】根据独立性检验的定义可判断(1);根据方差的性质可判断(2);根据残差的性质可判断(3);根据正态分布的对称性可判断(4). 【详解】(1)对分类变量X 与Y 的随机变量2K 的观测值K 来说,K 越大,判断“X 与Y 有关系”的把握越大,故(1)错误;(2)若将一组样本数据中的每个数据都加上同一个常数后,数据的离散程度不变,则样本的方差不变,故(2)正确;(3)根据残差的定义可知,在残差图,残差点分布的带状区域的宽度越狭窄,预测值与实际值越接近,其模型拟合的精度越高,(3)正确;(4)设随机变量ξ服从正态分布()0,1N ,若()1P p ζ>=,则()1P p ζ<-=,则()1112P p ζ-<<=-,则()1102P p ζ-<<=-,故(4)正确, 故正确的命题的个数为3个,故选B. 【点睛】本题主要通过对多个命题真假的判断,主要综合考查独立性检验的定义、方差的性质、残差的性质以及正态分布的对称性,属于中档题. 这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.5.C解析:C 【解析】分析:根据题意,列出22⨯列联表,求出观测值2K ,根据观测值对应的数值得出结论. 详解:根据题意,列出22⨯列联表,如下;则220(51212)8.80177.879671413K ⨯⨯-⨯==>⨯⨯⨯,因为观测值对应的数值为0.005,所以有99.5%的把握认为学生的数学成绩与物理成绩之间有关系.故选C.点睛:本题考查了独立性检验的应用,属于基础题.考查利用数学知识研究实际问题的能力以及相应的运算能力.6.D解析:D【解析】分析:由题意首先求得a的值,然后结合分层抽样的定义和独立性检验的结论逐一考查所给选项是否正确即可.详解:由直方图知,(0.004+0.013+0.014+a+0.027+0.039+0.08)×5=1,解得a=0.023,故月消费金额超过2000元的大学生人数为(0.023+0.014+0.013)×5×1000=250人,由分层抽样知,男生、女生抽样的人数分别为600人和400人,由题知,月消费金额超过2000元的男生人数为100人,故A选项错误;月消费金额不超过500元的人数为0.004×5×1000=20人,故选项B错误;又由频率分布直方图知,当消费金额小于1750元时,频率为(0.004+0.027+0.039)×5+0.08×5×12=0.55>0.5.选项C错误;由条件可以列出列联表:故K2的观测值()()()()()50010.8289n ad bcka b c d a c b d-==>++++,所以在犯错的概率不超过0.1%的情况下可以判断月消费金额在2000元以上的大学生与性别有关.本题选择D选项.点睛:解决频率分布直方图的问题,关键在于找出图中数据之间的联系.这些数据中,比较明显的有组距、频率组距,间接的有频率、小长方形的面积,合理使用这些数据,再结合两个等量关系:小长方形面积=组距×频率组距=频率,小长方形面积之和等于1,即频率之和等于1,就可以解决直方图的有关问题.7.D解析:D【解析】因为K 2的观测值k=2300(371433585)12217872228⨯-⨯⨯⨯⨯≈4.514>3.841, 所以在犯错误的概率不超过0.05的前提下认为数学成绩与物理成绩有关系. 选D.8.A解析:A 【解析】根据独立性检验的方法和22⨯列联表可得,当10a a +与10cc +相差越大,则分类变量X 和Y 有关系的可能性越大,即,a c 相差越大,10a a +与10cc +相差越大.由各选项可得A 满足条件,选A .9.B解析:B 【解析】对于①,在一次调研测试中,数学成绩ξ服从正态分布N (100,σ2),∴数学成绩ξ关于ξ=100对称,∵P (80<ξ≤100)=0.40,∴P (ξ>120)=P (ξ<80)=0.5-0.40=0.1,则该班数学成绩在120分以上的人数为0.1×100=10,故①错误;对于②,已知命题p :∀x ∈R ,sinx≤1,则¬p :∃x ∈R ,sinx >1,故②正确;对于③,由)2−8≥0,解得m≤-2或m≥2,∴在[-4,3]上随机取一个数m ,能使函数()22f x x =+在R 上有零点的概率为37,故③正确;对于④,填写2×2列联表如下:则k 2的观测值k =()23215854 5.398 5.024********⨯⨯-⨯≈>⨯⨯⨯有97%以上的把握认为晕机与性别有关.故④对 故选B10.D解析:D 【解析】①相关系数r 用来衡量两个变量之间线性关系的强弱,r 越接近于1,则相关性越强,所以错误;②回归直线y bx a =+一定经过样本点的中心(),x y ,正确; ③随机误差e 的方差()D e 的大小是用来衡量预报的精确度,正确;④相关指数2R 用来刻画回归的效果,2R 越小,说明模型的拟合效果越不好,所以错误. 所以正确的有②③.故选D .11.D解析:D 【解析】23.841 4.514 6.635k <=<,则0.010.05P <<,出错概率不超过5%选D.12.D解析:D 【解析】逐一分析所给的各个选项:A. 由样本数据得到的回归方程ˆˆˆy bx a =+必过样本中心(),x yB. 残差平方和越小的模型,拟合的效果越好C. 若变量y 和x 之间的相关系数为0.9362r =-,则变量y 和x 之间具有线性相关关系D. 用相关指数2R 来刻画回归效果,2R 越大,说明模型的拟合效果越好,该说法错误. 本题选择D 选项.二、填空题13.【解析】将x =160代入得所以残差考点:线性回归方程残差 解析:【解析】 将x =160代入,得,所以残差考点:线性回归方程,残差.14.甲【解析】根据茎叶图中的数据可知甲地的数据都集中在006和007之间数据分布比较稳定而乙地的数据分布比较分散不如甲地数据集中故甲地的方差小故答案为甲解析:甲 【解析】根据茎叶图中的数据可知,甲地的数据都集中在0.06和0.07之间,数据分布比较稳定,而乙地的数据分布比较分散,不如甲地数据集中,故甲地的方差小,故答案为甲.15.【解析】将代入得所以残差 解析:0.29-【解析】将160x =代入0.85 2.1ˆ87yx =-,得0.8516082.71ˆ53.29y =⨯-=,所以残差5353.ˆ290ˆ.29ey y =-=-=-. 16.40【解析】试题分析:根据所给的表格做出本组数据的样本中心点根据样本中心点在线性回归直线上利用待定系数法做出a 的值现在方程是一个确定的方程根据所给的x 的值代入线性回归方程预报要销售的件数解:由表格得解析:40 【解析】试题分析:根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出a 的值,现在方程是一个确定的方程,根据所给的x 的值,代入线性回归方程,预报要销售的件数.解:由表格得=(14+12+8+6)÷4=10,=(22+26+34+38)÷4=30 即样本中心点的坐标为:(10,40), 又∵样本中心点(10,40)在回归方程 上且b=﹣2∴30=10×(﹣2)+a , 解得:a=50, ∴当x=5时,y=﹣2×(5)+50=40. 故答案为40.考点:回归分析的初步应用.17.5【分析】计算并与临界值表中数据比较即可得出答案【详解】故有的把握认为该学校至周岁的男生的身高和体重之间有关系故答案为:975【点睛】本题主要考查了独立性检验的实际应用属于中档题解析:5 【分析】计算2K ,并与临界值表中数据比较,即可得出答案. 【详解】2220(41213) 5.934 5.024713515K ⨯-⨯=≈>⨯⨯⨯故有97.5%的把握认为该学校15至16周岁的男生的身高和体重之间有关系. 故答案为:97.5 【点睛】本题主要考查了独立性检验的实际应用,属于中档题.18.40【解析】根据题意:解析:40 【解析】 根据题意:99.51010.511105x ++++==,111086585y ++++==,3.2y x a =-+, 3.210840a ∴=⨯+=19.②④⑤【解析】分析:根据方程性质回归方程性质及其含义卡方含义确定命题真假详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程若变量增加一个单位时则平均减少5个单位;曲线上的点与该点的坐解析:②④⑤ 【解析】分析:根据方程性质、回归方程性质及其含义、卡方含义确定命题真假. 详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程ˆ35yx =-中若变量x 增加一个单位时,则y 平均减少5个单位; 曲线上的点与该点的坐标之间不一定具有相关关系;在一个22⨯列联表中,由计算得213.079K =,只能确定两个变量之间有相关关系的可能性,所以②④⑤均错误.点睛:本题考查方程性质、回归方程性质及其含义、卡方含义,考查对基本概念理解与简单应用能力.20.①④【解析】分析:根据性回归方程独立性检验相关关系以及命题的否定等知识选出正确的得到结果详解:线性回归方程必过样本中心点故①正确命题的否定是故②错误③相关系数r 绝对值越小表明两个变量相关性越弱故不正解析:①④ 【解析】分析:根据性回归方程,独立性检验,相关关系,以及命题的否定等知识,选出正确的,得到结果.详解:线性回归方程ˆˆˆy bx a =+必过样本中心点(),x y ,故①正确.命题“21,34x x ∀≥+≥”的否定是“21,34x x ∃≥+<” 故②错误 ③相关系数r 绝对值越小,表明两个变量相关性越弱,故不正确;④在一个22⨯列联表中,由计算得28.079K =,则有99%的把握认为这两个变量间有关系,正确. 故答案为①④.点睛:本题以命题真假的判断为载体,着重考查了相关系数、命题的否定、独立性检验、回归直线方程等知识点,属于中档题.三、解答题21.(1)没有99.9%的把握认为学生的学习成绩与使用手机有关;(2)分布列见解析,()2E X =.【分析】(1)根据表格中数据和题中信息可完善22⨯列联表,计算出2χ的观测值,结合临界值表可得出结论;(2)由题意可知,随机变量X 的可能取值有0、1、2、3,计算出随机变量X 在不同取值下的概率,可得出随机变量X 的分布列,进而可求得随机变量X 的数学期望值. 【详解】(1)22⨯列联表如下表所示:()22505102015258.33310.828203025253χ⨯⨯-⨯==≈<⨯⨯⨯,所以,没有99.9%的把握认为学生的学习成绩与使用手机有关;(2)9人中学习成绩优秀的人有209630⨯=人,学习成绩一般的有109330⨯=人, X 可能的取值有0、1、2、3,()3911084P X C ===,()1263393114C C P X C ===,()21633915228C C P X C ===,()363953?21C P X C ===.所以,随机变量X 的分布列为()1232142821E X =⨯+⨯+⨯=. 【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率.22.(1)列联表答案见解析,没有99%的把握认为该校学生的性别与220年在直播平台购物有关;(2)分布列答案见解析,数学期望:2.(1)分析题意完成2×2列联表,直接套公式求出2K ,对照参数下结论;(2)分析出随机变量3~4,4Y B ⎛⎫ ⎪⎝⎭,而(4)24X Y Y Y =--=-,易求出X 的分布列与期望.. 【详解】解:(1)列22⨯列联表:2100(4053520) 5.556 6.63575256040K ⨯-⨯=≈<⨯⨯⨯.故没有99%的把握认为该校学生的性别与220年在直播平台购物有关 (2)设这4人中2020年在直播平台购物的人数为Y ,则0,1,2,3,4Y =,且3~4,4Y B ⎛⎫ ⎪⎝⎭,(4)24X Y Y Y =--=-,故4,2,0,2,4X =--,且40411(4)(0)4256P X P Y C ⎛⎫=-====⎪⎝⎭, 1314313(2)(1)4464P X P Y C ⎛⎫⎛⎫=-==== ⎪ ⎪⎝⎭⎝⎭, 22243127(0)(2)44128P X P Y C ⎛⎫⎛⎫===== ⎪ ⎪⎝⎭⎝⎭, 3343127(2)(3)4464P X P Y C ⎛⎫⎛⎫=====⎪ ⎪⎝⎭⎝⎭,444381(4)(4)4256P X P Y C ⎛⎫===== ⎪⎝⎭. 所以X 的分布列为()434E Y =⨯=,()(24)2()42342E X E Y E Y =-=-=⨯-=,【点睛】(1)独立性检验的题目直接根据题意完成完成2×2列联表,直接套公式求出2K ,对照参数下结论,一般较易;(2)求离散型随机变量的分布列时,要特别注意. 随机变量是否服从二项分布、超几何分布等特殊的分布. 23.(1)2791;(2)没有95%的把握认为消费者是否满意与城市用户还是农村用户有关,理由见解析. 【分析】(1)由题意可知,15个机型中,“华为”或“荣耀”的机型个数为6,利用组合计数原理以及古典概型的概率公式可求得所求事件的概率;(2)根据列联表中的数据可求得2χ的观测值,利用题中的参考数据可得出结论. 【详解】(1)由题意可知,15个机型中,“华为”或“荣耀”的机型个数为6,所以,从上表中15个机型中任取3个,这3个机型恰好有2个是“华为”或“荣耀”的概率为216931515927351391C C P C ⨯===⨯;(2)由列联表中的数据可得()225002703017030 2.841 3.84144060300200χ⨯⨯-⨯=≈<⨯⨯⨯,因此,没有95%的把握认为消费者是否满意与城市用户还是农村用户有关. 【点睛】本题考查古典概型概率的计算,同时也考查了利用独立性检验解决实际问题,考查数据处理能力,属于中等题.24.(1) 4.768y x =-;(2)列联表见解析,有99%的把握认为东、西部的地区差异与甲、乙两种产品的销售量相关. 【分析】(1)求出x 、y ,代入相应值求ˆb ,再由公式ˆˆa y bx=-求出ˆa ,即可求得线性回归方程;(2)作出列联表,计算观测值,观测值与表中对应临界值比较即可得出结论. 【详解】 (1)4050602030405x ++++==,11018021030701205y ++++==,。

(典型题)高中数学高中数学选修2-3第三章《统计案例》测试题(包含答案解析)

(典型题)高中数学高中数学选修2-3第三章《统计案例》测试题(包含答案解析)

一、选择题1.设(1+x)n =a 0+a 1x+…+a n x n ,若a 1+a 2+…+a n =63,则展开式中系数最大的项是( ) A .15x 2B .20x 3C .21x 3D .35x 32.下列四个命题中,正确的有( )①两个变量间的相关系数r 越小,说明两变量间的线性相关程度越低;②命题“x ∃∈R ,使得210x x ++<”的否定是:“对x ∀∈R ,均有210x x ++>”; ③命题“p g ∧为真”是命题“p q ∨为真”的必要不充分条件;④若函数322()3f x x ax bx a =+++在1x =-有极值0,则2a =,9b =或1a =,3b =.A .0B .1C .2D .33.对两个分类变量A ,B 的下列说法中正确的个数为( ) ①A 与B 无关,即A 与B 互不影响; ②A 与B 关系越密切,则K 2的值就越大; ③K 2的大小是判定A 与B 是否相关的唯一依据 A .0 B .1 C .2 D .34.在独立性检验中,统计量2χ有三个临界值:2.706、3.841和6.635,在一项打鼾与患心脏病的调查中,共调查了1000人,经计算的2χ=18.87,根据这一数据分析,认为打鼾与患心脏病之间 ( )A .有95%的把握认为两者无关B .约有95%的打鼾者患心脏病C .有99%的把握认为两者有关D .约有99%的打鼾者患心脏病5.有人发现,多看电视容易使人变冷漠,下表是一个调查机构对此现象的调查结果:冷漠 不冷漠 总计 多看电视 68 42 110 少看电视 20 38 58 总计8880168则认为多看电视与人冷漠有关系的把握大约为( ) 附:K 2=. P (K 2≥k 0) 0.10 0.05 0.025 0.010 0.005 0.001 k 02.7063.8415.0246.6357.87910.828A .99%B .97.5%C .95%D .90%6.利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅临界值表来确定推断“X 与Y 有关系”的可信度,如果k >5.024,那么就推断“X 和Y 有关系”,这种推断犯错误的概率不超过( ) A .0.25 B .0.75 C .0.025 D .0.975 7.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,变量x 增加一个单位时,y 平均增加5个单位; ③线性回归方程^^^y b x a =+必过(),x y ;④在一个22⨯列联表中,由计算得213.079K =,则有99%以上的把握认为这两个变量间有关系.其中错误..的个数是( ) A .0 B .1 C .2D .38.若在区间[-5,5]内任取一个实数a ,则使直线x +y +a =0与圆(x -1)2+(y +2)2=2有公共点的概率为( ) A .25B .25C .35D .32109.如表为某公司员工工作年限x (年)与平均月薪y (千元)对照表.已知y 关于x 的线性回归方程为0.70.35y x =+,则下列结论错误的是( ) x 3 4 5 6 y2.5t44.5A .回归直线一定过点(4.5,3.5)B .工作年限与平均月薪呈正相关C .t 的取值是3.5D .工作年限每增加1年,工资平均提高700元10.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是A .10200ˆyx =-+ B .10200ˆyx =+ C .10200ˆyx =-- D .10200ˆyx =- 11.由某个22⨯列联表数据计算得随机变量2K 的观测值k 6.879=,则下列说法正确的是 ( )0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.0010.7081.3232.0722.7063.8415.0246.6357.87910.828A .两个分类变量之间有很强的相关关系B .有99%的把握认为两个分类变量没有关系C .在犯错误的概率不超过1.0%的前提下认为这两个变量间有关系D .在犯错误的概率不超过0.5%的前提下认为这两个变量间有关系12.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计人数后,得到2×2列联表,则随机变量2K 的观测值为A .0.600B .0.828C .2.712D .6.004二、填空题13.如图所示是世界20个地区受教育程度的人口百分比与人均收入的散点图,样本点基本集中在一个条型区域,因此两个变量呈线性相关关系.利用散点图中的数据建立的回归方程为ˆ 3.19388.193yx =+,若受教育的人口百分比相差10%,则其人均收入相差_________.14.已知方程是根据女大学生的身高预报她的体重的回归方程,其中x的单位是cm ,的单位是kg ,那么针对某个体(160,53)的残差是________.15.某市电信宽带私人用户月收费标准如下表:假定每月初可以和电信部门约定上网方案.若某用户每月上网时间为66小时,应选择__________方案最合算.16.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温.由表中数据得线性方程x b a yˆˆ+=中2ˆ-=b ,据此预测当气温为5℃时,用电量的度数约为 .17.某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2的列联表,根据列联表的数据,可以有_______%的把握认为该学校15至16周岁的男生的身高和体重之间有关系.独立性检验临界值表独立性检验随机变量2K 值的计算公式:22()()()()()n ad bc K a b c d a c b d -=++++18.下列说法:①分类变量A 与B 的随机变量2K 越大,说明“A 与B 有关系”的可信度越大.②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则,c k 的值分别是4e 和0.3.③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y a bx =+中,1,1,3b x y ===则1a =.正确的序号是________________.19.某大学进行自主招生时,需要进行逻辑思维和阅读表达两项能力的测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如下图所示:得出下面四个结论:①甲同学的阅读表达成绩排名比他的逻辑思维成绩排名更靠前 ②乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前 ③甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前 ④乙同学的总成绩排名比丙同学的总成绩排名更靠前 则所有正确结论的序号是_________. 20.有如下四个命题:①甲乙两组数据分别为甲:28,31,39,42,45,55,57,58,66;乙:29,34,35,48,42,46,55,53,55,67.则甲乙的中位数分别为45和44.②相关系数0.83r =-,表明两个变量的相关性较弱.③若由一个2⨯2列联表中的数据计算得2K 的观测值 4.103k ≈,那么有95%的把握认为两个变量有关.④用最小二乘法求出一组数据(,),(1,,)i i x y i n =的回归直线方程ˆˆˆy bx a =+后要进行残差分析,相应于数据(,),(1,,)i i x y i n =的残差是指()ˆˆˆi i ie y bx a =-+. 以上命题“错误”的序号是_________________三、解答题21.受新冠肺炎疫情影响,本学期同学们在家上网课时间达三个多月,电脑屏幕代替了黑板,对同学们的视力造成了很大的损伤.某学校为了了解同学们现阶段的视力情况,对全校高三1000名学生的视力情况进行了调查,从中随机抽取了100名学生的体检表,绘制了频率分布直方图如图:(1)求a 的值,并估计这1000名学生视力的中位数(精确到0.01);(2)为了进一步了解视力与学生成绩是否有关,对本年级名次在前50名与后50名的学生进行了调查,得到如下数据:前50名 后50名 近视4232 不近视 818根据表中数据,能否有95%把握认为视力与学习成绩有关?(3)若报考某高校某专业的资格为:视力不低于5.0,以该样本数据来估计全市高三学生的视力,现从全市视力在4.8以上的同学中随机抽取4名同学,这4名同学中有资格报该校该专业的人数为X ,求X 的分布列及数学期望.()2P K k ≥ 0.100.05 0.025 0.010 0.005k 2.706 3.841 5.024 6.635 7.87922.为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表: 2SO PM 2.5[0,50](50,150] (150,475][0,35] 32 18 4 (35,75]6 8 12 (75,115]3710(1)估计事件“该市一天空气中PM 2.5浓度不超过,且2浓度不超过”的概率; (2)根据所给数据,完成下面的22⨯列联表: 2SO PM 2.5[0,150] (150,475][0,75] (75,115]PM 2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k ≥ 0.050 0.010 0.001 k 3.841 6.63510.82823.2016年欧洲杯将于2016年6月10日到7月10日在法国举行.为了使得赛会有序进行,欧足联在全球范围内选聘了30名志愿者(其中男性16名,女性14名).调查发现,男性中有10人会英语,女性中有6人会英语. (1)根据以上数据完成以下2×2列联表:并回答能否在犯错的概率不超过0.10的前提下认为性别与会英语有关?参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++参考数据:(2)会英语的6名女性志愿者中曾有4人在法国工作过,若从会英语的6名女性志愿者中随机抽取2人做导游,则抽出的2人都在法国工作过的概率是多少?24.云南是世界茶树的原产地之一,也是中国四大茶产区之一,独特的立体气候为茶叶的种质资源多样性创造了良好的自然条件,茶叶产业是云南高原特色农业的闪亮名片.某大型茶叶种植基地为了比较A、B两品种茶叶的产量,某季采摘时,随机选取种植A、B两品种茶叶的茶园各30亩,得到亩产量(单位:kg/亩)的茎叶图如下(整数位为茎,小数位为叶,如55.4的茎为55,叶为4):亩产不低于60kg的茶园称为“高产茶园”,其它称为“非高产茶园”.(1)请根据已知条件完成以下22⨯列联表,并判断是否有95%的把握认为“高产茶园”与茶叶品种有关?A品种茶叶(亩数)B品种茶叶(亩数)合计高产茶园非高产茶园合计(2)用样本估计总体,将频率视为概率,现从该种植基地A品种的所有茶园中随机抽取4亩,且每次抽取的结果相互独立,设被抽取的4亩茶园中“高产茶园”的亩数为X,求X 的分布列和数学期望()E X.附:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++()20P K k ≥0.050 0.010 0.001 0k3.8416.63510.82825.根据国家统计局数据,1999年至2019年我国进出口贸易总额从3万亿元跃升至31.6万亿元,中国在国际市场上的贸易份额越来越大对外贸易在国民经济中的作用日益突出.将年份1999,2004,2009,2014,2019分别用1,2,3,4,5代替,并表示为t ,y 表示全国进出口贸易总额.(1)根据以上统计数据及图表,给出了下列两个方案,请解决方案1中的问题. 方案1:用y bt a =+作为全国进出口贸易总额y 关于t 的回归方程,根据以下参考数据,求出y 关于t 的回归方程,并求相关指数21R .方案2:用dt y ce =作为全国进出口贸易总额y 关于t 的回归方程,求得回归方程0.57212.3259x y e =,相关指数22R .(2)通过对比(1)中两个方案的相关指数,你认为哪个方案中的回归方程更合适,并利用此回归方程预测2020年全国进出口贸易总额. 参考数据:y()()51=--∑i i i t ty y()521i i y y=-∑17.14 74 555.792①0.140.340.66 1.86 2.048.192++++=②222220.140.34 1.86 2.04 2.1412.336++++=③8.1920.0147555.792≈④12.3360.0222555.792≈参考公式:线性回归方程中的斜率和截距的最小二乘法估计公式分别为:()()()121nii i nii xx y yb xx==--=-∑∑,a y bx =-,相关指数()()221211nii i n ii yy R yy==-=--∑∑.26.为了了解某班学生喜欢数学是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表,已知在全部50人中随机抽取1人抽到喜欢数学的学生的概率为35.喜欢数学 不喜欢数学 合计男生5女生 10合计50(1)能否在犯错误的概率不超过0.005的前提下认为喜欢数学与性别有关?说明你的理由;()20P K k ≥ 0.150.100.050.025 0.010 0.005 0.001 0k 2.702 2.7063.8415.0246.6357.87910.828(2)现从女生中抽取2人进一步调查,设其中喜欢数学的女生人数为ξ,求ξ的分布列与期望.临界表供参考:(参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 令x=1,则(1+1)n =++…+=64.∴n=6.故(1+x)6的展开式中系数最大的项为T 4=x 3=20x 3.2.A解析:A 【分析】根据相关系数的定义可知①错误;根据特称命题(又叫存在性命题)的否定可知②错误;根据真值表即可判断“p q ∧为真”是命题“p q ∨为真”的充分不必要条件,故③错误;由条件可得,(1)0,(1)0,f f '-=-= 解得a=2,b=9或a=1,b=3,经检验,当a=1,b=3时,22()3633(1)0f x x x x '=++=+≥恒成立,此时()f x 没有极值点,故④错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修2-3第三章《统计案例》
(时间120分钟 满分150分)
一、选择题(共60分)
1.下列属于相关现象的是( ) A.利息与利率
B.居民收入与储蓄存款 C.电视机产量与苹果产量
D.某种商品的销售额与销售价格
2.已知盒中装有3只螺口与7只卡口灯泡,这些灯泡的外形与功率都相
同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1
次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为 ( )
A.310
B.29
C.78
D.79 3.如图所示,图中有5组数据,去掉组数据后(填字母代号),剩下的4组数据的线性相关性最大( )
A.E B.C C.D D.A 4.为调查吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人, 得到如下结果(单位:人)
根据表中数据,你认为吸烟与患肺癌有关的把握有( ) A.90% B.95% C.99% D.100%
5.调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表:
你认为婴儿的性别与出生时间有关系的把握为( ) A.80% B.90% C.95% D.99%
6.已知有线性相关关系的两个变量建立的回归直线方程为$
y a bx =+,方程中的回归系数b ( )
A.可以小于0 B.只能大于0 C.可以为0 D.只能小于0
7.每一吨铸铁成本c y (元)与铸件废品率x %建立的回归方程568c y x =+,下列说法正确的是( )
A.废品率每增加1%,成本每吨增加64元 B.废品率每增加1%,成本每吨增加8% C.废品率每增加1%,成本每吨增加8元 D.如果废品率增加1%,则每吨成本为56元
8.下列说法中正确的有:①若0r >,则x 增大时,y 也相应增大;②若0r <,则x 增大时,y 也相应增大;③若1r =,或1r =-,则x 与y 的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上( )
A.①② B.②③ C.①③ D.①②③
9.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:
不患肺病 患肺病 合计 不吸烟 7775 42 7817 吸烟 2099 49 2148 合计 9874 91 9965 晚上 白天 合计 男婴 24 31 55 女婴 8 26 34
合计 32 57 89
A.100 B.143 C.200 D.243
10.甲、乙两个班级进行一门考试,按照学生考试成绩优秀和不优秀统计成绩后,得到如下列联表:
) A.0.3~0.4 B.0.4~0.5 C.0.5~0.6 D.0.6~0.7 二、填空题(共20分)
11.某矿山采煤的单位成本Y 与采煤量x 有关,其数据如下: 则Y 对x 的回归系数 .
的估计值为 .13.在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不=
是因为患心脏病而住院的男性病人中有175人秃顶,则2
χ .
14.设A 、B 为两个事件,若事件A 和B 同时发生的概率为3
10
,在事件A 发生的条件下,
事件B 发生的概率为1
2
,则事件A 发生的概率为________________.
15.由一个 2*2 列联表中数据计算得 2
χ = 4.013 ,有__________ 把握认为两个变量有关系.
三、解答题(共70分) 16.国庆节放假,甲去北京旅游的概率为13,乙、丙去北京旅游的概率分别为14,1
5
.假定三人的
行动相互之间没有影响,求这段时间内至少有1人去北京旅游的概率
17.某教育机构为了研究人具有大学专科以上学历(包括大学专科)和对待教育改革态度的
关系,随机抽取了392名成年人进行调查,所得数据如下表所示:
对于教育机构的研究项目,根据上述数据能得出什么结论.
18.1907年一项关于16艘轮船的研究中,船的吨位区间位于192吨到3246吨,船员的人数从5人到32人,船员的人数关于船的吨位的回归分析得到如下结果:船员人数=9.1+0.006×吨位.
(1)假定两艘轮船吨位相差1000吨,船员平均人数相差多少?
(2)对于最小的船估计的船员数为多少?对于最大的船估计的船员数是多少?
19.假设一个人从出生到死亡,在每个生日都测量身高,并作出这些数据散点图,则这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析.下表是一
(2)求出这些数据的回归方程;
(3)对于这个例子,你如何解释回归系数的含义?
(4)用下一年的身高减去当年的身高,计算他每年身高的增长数,并计算他从3~16岁身高的年均增长数.
(5)解释一下回归系数与每年平均增长的身高之间的联系.
20.某个服装店经营某种服装,在某周内获纯利y (元),与该周每天销售这种服装件数x 之间的一组数据关系见表:
已知721280i i x ==∑,72
145309i i y ==∑,7
13487i i i x y ==∑.
(1)求
x y ,; (2)画出散点图;
(3)判断纯利y 与每天销售件数x 之间是否线性相关,如果线性相关,求出回归方程.
21.甲、乙两人各射击一次,击中目标的概率分别是23和3
4.假设两人射击是否击中目标相互之间
没有影响;每人各次射击是否击中目标,相互之间也没有影响.
(1)求甲射击4次,至少有1次未击中目标的概率;
(2)假设某人连续2次未击中目标,则中止其射击.问:乙恰好射击5次后,被中止射击的概率是多少?
统计案例检测题答案
一、选择题
1-5 BDACB 6-10 ACCBB 二、填空题
11.0.1229- 12. 390 13. 16.373 14.3
5 15. 95% 四、解答题
16.解:因甲、乙、丙去北京旅游的概率分别为13,14,1
5.因此,他们不去北京旅游的概率分别
为23,34,45,所以,至少有1人去北京旅游的概率为P =1-23×34×45=35
. 17.解:22
392(3916715729) 1.7819619668324
K ⨯⨯-⨯=≈⨯⨯⨯.
因为1.78 2.706<,所以我们没有理由说人具有大学专科以上学历(包括大学专科)和对待教育改革态度有关.
18. 解:由题意知:(1)船员平均人数之差=0.006×吨位之差=0.006×1000=6, ∴船员平均相差6人;
(2)最小的船估计的船员数为:9.1+0.006×192=9.1+1.152=10.252≈10(人). 最大的船估计的船员数为:9.1+0.006×3246=9.1+19.476=28.576≈28(人). 19.解:(1)数据的散点图如下: (2)用y 表示身高,x 表示年龄,则数据的回归方程为y =6.317x +71.984; (3)在该例
中,回归系数6.317表示该人在一年中增加的高度;
(4)每年身高的增长数略.3~16岁身高的年均增长数约为6.323cm ; (5)回归系数与每年平均增长的身高之间近似相等. 20. 解:(1)345678967x ++++++==,66697381899091
79.867
y ++++++=≈;
(2)略;
(3)由散点图知,y 与x 有线性相关关系,
设回归直线方程:$
y bx a =+, 559
3487761337 4.7528073628
b -⨯⨯=
==-⨯,
79.866 4.7551.36a =-⨯=.
∴回归直线方程$
4.7551.36y x =+. 21.解:(1)记“甲连续射击4次至少有1次未击中目标”为事件A 1.由题意,射击4次,相当于作4次独立重复试验.
故P (A 1)=1-P (A 1)=1-(23)4=65
81

所以甲连续射击4次至少有一次未击中目标的概率为
65
81
. (2)记“乙恰好射击5次后被中止射击”为事件A 3,“乙第i 次射击未击中”为事件D i (i =1,2,3,4,5),则
A 3=D 5D 4·D 3·(D 2D 1),且P (D i )=1
4.
由于各事件相互独立,故
P (A 3)=P (D 5)·P (D 4)·P (D 3)·P (D 2D 1) =14×14×34×(1-14×14)=451 024
. 所以乙恰好射击5次后被中止射击的概率为
45
1 024
.。

相关文档
最新文档