宽带高动态范围限幅放大器
2.5Gb 和3.125Gb 速率级CMOS 限幅放大器

2.5Gb/s和3.125Gb/s速率级CMOS限幅放大器*胡艳,王志功**,冯军,陶蕤(东南大学射频与光电集成电路研究所,南京市四牌楼2号,210096)摘要:本文采用TSMC 0.35µm CMOS工艺实现了可用于SONET/SDH 2.5Gb/s和3.125Gb/s 速率级光纤通信系统的限幅放大器。
通过在芯片测试其输入动态范围超过40dB,输出摆幅为400mVp-p,功耗250mW,含信号丢失检测功能,可以满足商用化光纤通信系统的使用标准。
关键字:光纤通信,限幅放大器,CMOS工艺,SONET/SDHDesign of CMOS Limiting Amplifier for SDH 2.5Gb/s and3.125Gb/s SystemsHU Yan, WANG Zhi-gong, FENG Jun, TAO Rui (Institute of RF- & OE-IC’s, Southeast University, Nanjing 210018,China) Abstract: In this paper, a limiting amplifier was realized in TSMC 0.35µm CMOS technology for the use of SDH 2.5 Gb/s and 3.125 Gb/s systems. Evaluated via on-wafer testing, this limiting amplifier offers an input dynamic range of more than 40dB, provides a constant output 400mVp-p and includes a module of loss detection. Therefore, this limiting amplifier can meet the requirement of optical communication system.Key words: optical communication; limiting amplifier; CMOS technology; SONET/SDH1引言随着人们对信息服务的种类和质量要求的不断提高,同步光纤网/同步数字序列(SONET/SDH)应运而生并不断发展。
10Gb/s CMOS宽带限幅放大器设计

功耗更低 , 因而应用更广。因此设计 工艺限制, M S C O 很难用于高速电路的设计 中, 但 加器件更少 , 是随着 C O 工艺向着亚微米 和深亚微米方向发 具有高增益及较宽输入动态范 围的高速限幅放大 MS 展, 其工作速率上限 已逐渐接近砷化镓和双极性 器 已成为实现高速光接收的关键 。
Ab ta t stek ycmp n n f pia rc ie .d sg fahs sr c :A e o o e to t l e ev r eino ih—s e dl i n mp f rw t ih h o c p e i t g a l e i ls m i i i h l
维普资讯
第1 7卷 第 2期 20 年 4月 06
贵州教育学院学报 ( 自然科学 )
Junl f uzo d ctnIs tt N tr cec ) o ra o i uE u a o tue( a a Sine G h i ni ul
V0. 7 No 2 11 . . Ap . 0 6 r2 0
Ke r s i t ga l e ;o t a e ev r c v n u tr y wo d :l i mpi r pi lrc ie ;a t eid co mi n i f c i
ห้องสมุดไป่ตู้
0 弓言 l
随着 长距 离 光通 信 系 统 向高 速 ( 于 等 于 大 1G / ) 0 b s发展 , 如何设计高灵敏度、 高速 、 低功耗的 光接收机是至关 重要 的问题。作为光纤通信系统 中的关键部分 , 限幅放大器对光接收机的整体性能 起决定性的作用 , 以该部分的设计成为问题 的关 所 键 。以往, 高速率的限幅放大器 大多数用制造 费 用高的砷化镓或 双极性硅工艺来 实现【2。由于 1】 .
限幅放大器原理

限幅放大器原理详解1. 什么是限幅放大器?限幅放大器(Clipping Amplifier)是一种电子放大器,用于对输入信号进行放大,并对输出信号进行限制,使其不超过设定的幅度范围。
限幅放大器通常用于音频和视频信号处理、通信系统以及测量仪器等领域。
2. 限幅放大器的基本原理限幅放大器的基本原理是利用非线性元件(如二极管)的特性,将输入信号的幅度限制在一个设定的范围内。
当输入信号的幅度超过限制范围时,输出信号将被剪切,使其保持在限制范围内。
限幅放大器通常由三个部分组成:输入级、放大级和输出级。
下面将详细介绍每个部分的原理。
2.1 输入级输入级是限幅放大器的第一个部分,其主要功能是接收并放大输入信号。
输入级通常由一个差分放大器组成,差分放大器由两个晶体管构成。
输入信号通过耦合电容进入差分放大器,经过放大后输出到下一个级别。
2.2 放大级放大级是限幅放大器的第二个部分,其主要功能是进一步放大信号。
放大级通常由多个级联的放大器组成,每个放大器都会将输入信号放大一定倍数。
放大级的增益可以根据需要进行调整,以满足不同的应用要求。
2.3 输出级输出级是限幅放大器的最后一个部分,其主要功能是限制输出信号的幅度。
输出级通常由一个非线性元件(如二极管)和一个负反馈电路组成。
当输入信号的幅度超过限制范围时,非线性元件将剪切输出信号,使其保持在限制范围内。
负反馈电路用于稳定输出信号的幅度,并降低非线性失真。
3. 限幅放大器的工作原理限幅放大器的工作原理可以通过以下步骤进行解释:3.1 输入信号放大当输入信号进入限幅放大器时,首先通过输入级进行放大。
输入级的差分放大器将输入信号的微弱变化放大到一个可操作的范围内。
3.2 信号放大放大级会进一步放大信号的幅度。
每个放大器都会将输入信号放大一定倍数,从而增加信号的幅度。
放大级的增益可以根据需要进行调整。
3.3 信号限制当信号的幅度超过限制范围时,输出级的非线性元件(如二极管)将剪切输出信号。
12Gbit/s用于光纤传输系统的0.5μm SiGe HBT限幅放大器

1 引言
益 ,因而 基 区 电 阻 R 很 小 。并 且 由于 注 入 效 率 高, 发射 区 可 低 掺 杂 , 减 小 发 射 结 电 容 , 样 使 可 这 得 到 提 高 , 明显 减小 功 耗 和提 高 开关 速度 。 能 第
二 , ieHB SG T的 噪声 系数 和 基 区 电阻 R 、 区渡 越 基
Hale Waihona Puke 近年来 , 随着 电信 网 、 算 机 网络 和 Itre 网 计 nen t 络 的 迅 猛 发 展 . 动 态 范 围 的 高 速 限 幅 放 大 器 已 宽 广 泛 应 用 于 光 纤 通 信 系 统 的 光 接 收 机 中 。过 去 ,
工 作 速 率 在 lG is以 上 的 限 幅 放 大 器 多 采 用 成 O bt /
维普资讯
20 0 6年第 2 3卷第 7期
微 电子学 与计 算机
9 3
1Gbt 用于 光纤传输 系统 的 05 m i T 2 is / .1 SGeHB x 限幅 放 大 器
徐 跃
( 京 邮 电大 学 光 电 工程 学 院 ,江 苏 南 京 2 0 0 ) 南 10 3 摘 要 : 文 章 介 绍 了一 种 用 I M 公 司 0 p ie B C S H T工 艺设 计 的 1 G i s 于 光 纤传 输 系 统 的 限 幅 放 B . , SC i MO B 5 m 2 bt 用 / 大器 。整 个 系统 包 括 一 个 输 入 缓 冲 级 、 三个 放 大 单 元 、 个 用 于驱 动 5 一 O传 输 线 的 输 出缓 冲 级 和 一个 失调 电压 补 偿
XU Yu e
(o eeo polc i E gne n , aj gU i ri f ota d eeo nct n, aj g 10 3C i ) C l g f t etc nier gN ni n esyo s n lcmuia osN ni 0 0 hn l O e r i n v t P s T i n2 a
UX2109-AN-CH

一.概述UX2109是一款高增益、高灵敏度、宽输入速率、宽输入动态范围、低功耗的155Mbps 的限幅放大器,带有可编程的信号丢失检测功能、输出关断功能,采用先进、低成本的深亚微米CMOS工艺制造。
可应用于OC-3/Fast Ethernet等光通讯接收系统,配合UX2006可构成一套性能优异的接收芯片组。
采用TSSOP 16pin封装,管脚与MAX3645、NT20045、I7050兼容。
UX2109数据信号输出为PECL电平,LOSN输出电平为PECL/CMOS/TTL可选,通过设置第15pin LNSEL可选择PECL或CMOS/TTL输出逻辑电平。
UX2109采用先进的电路技术设计,可不需要CAZ/CF电容、LOSN输出下拉电阻等片外无源器件,可为客户提供更灵活、更低成本的方案选择。
二.特性采用低成本的CMOS工艺设计制造3.3V 或 5V 供电电压无负载静态功耗13mAPECL数据信号输出,LOSN告警电平可选PECL/CMOS/TTL可选CAZ/CF电容、LOSN输出下拉电阻的灵活应用方案差分1mV输入灵敏度( BER=10-12)1Mbps~400Mbps宽阔的输入速率范围宽阔的迟滞检测范围、稳定的迟滞系数三.应用领域1.SDH STM-12.SONET OC-33.Fast Ethernet4.FDDI/ FTTx/ESCON receiver四.封装信息、管脚定义TSSOP 16PIN封装Fig1. TSSOP 16PIN管脚描述:TSSOP 16Pin No.Name Function1 AZ1直流失调回路校准电容引脚。
可在AZ1/AZ2之间并接电容,也可悬空该引脚 2 AZ2直流失调回路校准电容引脚。
可在AZ1/AZ2之间并接电容,也可悬空该引脚 3 GNDA 模拟地引脚,必须与GNDE 接在相同的最低电位上 4 INP 正相数据输入端 5 INN 反相数据输入端6 VCCA 模拟电源引脚,必须与VCCE 接在相同的最高电位上7 CF峰值检测电路滤波电容,可在该引脚到VCC 之间接CF 电容,也可悬空该引脚8 JAM 输出禁止引脚,兼容PECL/CMOS/TTL 电平,JAM 置为高电平时,信号输出被禁止。
2.0~2.4GHz限幅低噪声放大器设计

虑采用此种设计方法。
3 LNA 电路仿真与优化
图 2 直流偏置电路
借助 Agilent 公司的 ADS 仿真软件进行设计。选用 S 参数模型仿真, 采用 Roggers4350B 基片, 介质基片厚度为 H = 0. 508 mm, 相对介电常数为 E r = 3. 38, 表面覆铜厚度 为 35Lm。在仿真中充分考虑了器件的寄生参数的影响及 封装对版图的影响同时要考虑最终仿真出来的电路结构 的可实现性, 使仿真更接近实际电路。
Abstr act : This paper has introduced a new method of the S2band limiter LNA designing, which innovatively used lumped par amet ers and distributed parameter s mixed and matched, t aking int o account t he requirement of the volume and noise. T o optimize the str ucture, we ut ilized the simulation software named ADS, the parasit ic parameter sp impact to the device and the effect of packaging on the map has been considered, t o make the simulation r esult closer to the actual circuit t han before. Besides, we handed out the solution of the self2excitation problem in am plifier debugging for the fir st t ime. F rom the exper iment data, we can see that the limiter before LNA could operat e perfectly when the input pulse power is up to 400W, the noise, the gain and SWR of the amplifier also reached the target well. KeyWor ds: PIN diode; LNA; Limiter ; Stability; ADS
放大电路中的放大器类型介绍

放大电路中的放大器类型介绍在电子设备中,放大器是一种关键的电子元件,用于将信号的幅度增大,以便在不同的应用中实现放大功能。
放大器可以分为不同的类型,每个类型都有其特定的应用和特点。
本文将为您介绍一些常见的放大器类型。
一、低频放大器低频放大器是用于放大音频信号的一种类型。
它们通常工作在20Hz至20kHz的频率范围内,适用于音频放大器和音响系统。
低频放大器的特点是具有较高的增益和良好的线性性能,以确保音频信号的准确放大和高保真度。
二、高频放大器高频放大器是用于放大射频信号的一种类型。
它们主要用于无线通信设备、雷达系统和卫星通信系统等高频应用领域。
高频放大器需要具备较高的频率响应和较低的噪声系数,以确保对信号的准确放大和高质量的信号传输。
三、功率放大器功率放大器是一种特殊类型的放大器,用于将信号的功率增大。
它们通常用于驱动高功率负载,如扬声器、电机和发电机等。
功率放大器需要具备较大的功率输出能力、低失真和高效率,以确保稳定的功率放大和可靠的负载驱动。
四、差分放大器差分放大器是一种特殊构型的放大器,它们用于对差分信号进行放大和处理。
差分放大器的特点是具有较高的共模抑制比和良好的抗干扰能力,可以应对噪声和干扰信号的影响。
差分放大器常用于模拟信号处理、电压比较器和差分运算放大器等应用中。
五、运算放大器运算放大器是一种用于放大和处理模拟信号的集成电路。
它们通常用于模拟计算、滤波器设计和传感器接口等应用。
运算放大器具有高增益、高输入阻抗和低输出阻抗,可以实现准确的信号放大和精确的信号处理。
六、继电器放大器继电器放大器是一种特殊的放大器,它们通常用于控制电路中的电气开关。
继电器放大器通过放大控制信号,使继电器能够控制更大电流和更高电压的负载。
继电器放大器常用于工业自动化和电力控制系统中,以实现对各种设备和机械的精确控制。
以上是一些常见的放大器类型介绍,它们在不同的应用中扮演着重要的角色。
了解这些放大器类型的特点和应用可以帮助工程师和设计师选择合适的放大器来满足特定的需求。
宽带高频功率放大器

5.4 宽带高频功率放大器以LC谐振回路为输出电路的功率放大器,因其相对通频带只有百分之几甚至千分之几,因此又称为窄带高频功率放大器。
这种放大器比较适用于固定频率或频率变换范围较小的高频设备,如专用的通讯机、微波激励源等。
除了LC谐振回路以外,常用于高频功放电路负载还有普通变压器和传输线变压器两类。
这种以非谐振网络构成的放大器能够在很宽的波段内工作且不需调谐,称之为宽带高频功率放大器。
以高频变压器作为负载的功率放大器最高工作频率可达几百千赫至十几兆赫,但当工作频率更高时,由于线圈漏感和匝间分布电容的作用,其输出功率将急剧下将,这不符合高频电路的要求,因此很少使用。
以传输线变压器作为负载的功率放大器,上限频率可以达到几百兆赫乃至上千兆赫,它特别适合要求频率相对变化范围较大和要求迅速更换频率的发射机,而且改变工作频率时不需要对功放电路重新调谐。
本节重点分析传输线变压器的工作原理,并介绍其主要应用。
5.4.1 传输线变压器1. 传输线变压器的结构与工作原理传输线变压器是将传输线(双绞线、带状线、或同轴线)绕在高导磁率铁氧体的磁环上构成的。
如图5-24(a)所示为1:1传输线变压器的结构示意图。
传输线变压器是基于传输线原理和变压器原理二者相结合而产生的一种耦合元件,它是以传输线方式和变压器方式同时进行能量传输。
对于输入信号的高频频率分量是以传输线方式为主进行能量传输的;对于输入信号的低频频率分量是以变压器方式为主,频率愈低,变压器方式愈突出。
如图5-24(b)为传输线方式的工作原理图,图中,信号电压从1、3端输入,经传输线R上。
如果信号的波长与传输线的长度相比拟,变压器的传输,在2、4端将能量传到负载L两根导线固有的分布电感和相互间的分布电容就构成了传输线的分布参数等效电路,如图5-24(d)所示。
若认为分布参数为理想参数,信号源的功率全部被负载所吸收,而且信号的上限频率将不受漏感、分布电容与高导磁率磁芯的限制,可以达到很高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选择内部增益级的主要考虑因素包括工作频率范围、增益与温 度的关系、增益平坦度、饱和谐波成分、非线性性能。成功的 限幅放大器设计应该最大程度地减少增益级和专用器件数,以 减少热补偿和平坦度问题。此外,设计成功很大程度上还取决 于器件最大输入功率额定值,以及所选增益级的压缩特性。为 了完成具有40 dB限幅动态范围要求的设计,建议部署至少四个 增益级,理想情况下,每个放大器级将在小于10 dB的压缩条件 下工作。四个增益级还应在温度范围内充分实现4放大器或低 噪声放大器(LNA)适合用于限幅放大器设计。噪声系数要求通常 需要使用低噪声放大器,而不是增益模块放大器。但是,由于 RF输入功率额定值通常较低,LNA增益级可能带来设计挑战。 理想的增益级器件具有较高的最大RF输入功率额定值,在高压 缩级别下能够安全工作。
2.0 构建和放大器考虑因素
微波限幅放大器设计首先是选择首选构建方法和内部增益级 放大器。对于高频应用,混合芯片和电线组件通常优于表面 贴装设计,以便最大程度地减少由于封装寄生效应导致的不 良性能影响,混合芯片和电线组件的可靠性非常出色,因为 混合组件经过了彻底检测,能够很好地应对环境压力。此 外,这些组件体积小,重量轻,易于密封。混合芯片和电线 组件包括裸片形式的单芯片微波集成电路(MMIC)、薄膜技术、 可线焊的无源组件。
17.0 16.5 16.0 15.5 15.0 14.5 14.0 13.5 13.0 12.5 12.0 2 4 6 8 10 12 Frequency (GHz) 14 16 18 Stage 2 Input Stage 3 Input Stage 4 Input
谐波很低, MMIC 具有强大的平坦三阶谐波。饱和 dc 功率低于
3.0 RF预算分析
选择限幅放大器增益级后,接下来应考虑RF系统预算分析。RF 预算分析检查限幅放大器内不同测试点的宽带频率响应和RF功 率电平。必须完成分析,才能针对最坏情况的工作温度、增益 斜率和宽RF输入功率范围进行校正。如第2.0部分所述,具有40 dB限幅动态范围的限幅放大器的基本布局是级联的四个增益模 块放大器或LNA。理想的设计仅使用一个或两个专用放大器器 件,以减少在不同频率下的功率变化,最大程度地减少热 / 斜 率补偿需求。 图1 显示了温度校正和斜率补偿之前的首批初始限幅放大器框 图。完成宽带限幅放大器设计的一种推荐技巧是: 1. 管理限幅功率动态范围,消除RF过驱条件。 2. 优化温度范围内的性能 3. 最后,校正功率滚降,将小信号增益变平。 4. 最后一个细微校正可能是必需的,即在频率均衡功能被纳入 设计后,重新考虑温度补偿。
要求45±1.5 dB的增益、–40°C至+85°C的工作温度范围、小于1.5 W dc功率、40 dB的限幅动态范围。限幅动态范围定义为RF输出 功率固定的输入功率范围。ADI提供2 GHz至18 GHz宽带限幅放 大器产品HMC7891,满足上述要求。该放大器包括内部稳压功 能,采用密封连接器式封装。
请访问:/cn
2
宽带高动态范围限幅放大器
另一个重要考虑因素是每个增益级的饱和谐波成分。谐波成分 要求取决于限幅放大器的应用。例如,对于旨在生成方波输出 波形的应用,需要使用具有较低偶次谐波输出和较强奇次谐波 输出的增益级放大器。为了避免破坏输出波形,最好在所有四 个增益级位置使用相同的器件。最后,所选MMIC放大器必须无 条件地保持稳定,理想情况下无偏置序列要求,以简化设计。 HMC462是完成限幅放大器设计的理想MMIC。HMC462是一款自 偏置LNA,仅需单个5 V电源,提供大于13 dB的增益、2 GHz至18 GHz的极佳增益平坦度、平均2.5 dB的噪声系数。该器件具有18 dBm的饱和输出功率电平,能够在频段范围内安全地运行大于 14 dB 的压缩。最大输入功率额定值几乎与器件的饱和输出功 率相等,这使得它非常适合在一系列级联增益级中工作。二阶 400 mW。
1.0简介
很多新型EW系统需要低噪声接收机,能够耐受多个倍频程带宽 范围内的宽输入功率变化。这些接收机是保护敏感元器件免受 RF过驱影响、消除传入信号AM调制所必需的。此外,由于采用 多通道系统设计并且靠近接收机天线,因而需要低功耗和小封 装尺寸。应用包括IFM和测向前端、DRFM和干扰器系统。这些 系统必须在很宽的温度范围内工作,在所有工作条件下都需要 平坦的频率响应和低谐波成分。ADI的限幅放大器拥有业界领先 的封装尺寸、电气/RF性能,易于集成到更高级别的组件中,非 常适合很多前述应用。微波限幅放大器是高增益多级放大器, 随着输入功率增加而连续压缩内部增益级,从而限制输出功 率。增益级从输出级向输入压缩,其设计经过优化,能够在所 有工作条件下避免各个增益级过驱。宽带限幅放大器设计面临 着诸多挑战,包括有效功率限制、热补偿、多个倍频程带宽范 围内的频率均衡。此外,低噪声、低功耗和小封装尺寸的系统 要求也增加了设计的复杂性。
POUT (dBm)
图2 . RF过驱校正框图。
ADI 的宽带限幅放大器 HMC7891 采用四个 HMC462 增益级,以便 让工作范围达到10 dBm。绝对最大输入功率为15 dBm。各增益 级能够耐受18 dBm的最大RF输入。按照上一段中概述的设计步 骤,已在两个增益级之间添加衰减器,以确保最大放大器输入 功率电平不超过17 dBm。图3显示在设计中添加固定衰减器的 情况下,每个增益级输入端的最大功率电平。
रຍ࿔ቤ
|
ݴၛLinkedIn
|
ۉጱᆰॲ
宽带高动态范围限幅放大器
Adam Winter 高级微波设计工程师 Jerry Cornwell 产品开发经理
本文将回顾2 GHz至18 GHz限幅放大器的设计考虑因素和技巧,
摘要
宽带高动态范围微波限幅放大器是电子战(EW)系统中的 关键元器件,因为这些系统需要在很宽的输入功率范围 内提供稳定/压缩输出功率。这些EW系统通常需要高增益 和平坦的响应,必须能够在恶劣热环境中工作。要在多 个倍频程频段内保持可接受且可靠的性能,需要对放大 器链进行精心设计。放大器链的不当级联和饱和可能导 致性能不可靠且无法预测。本文将演示2 GHz至18 GHz的 设计,它使用ADI器件实现大于40 dB的限幅动态范围, 输出功率变化小于2 dB,噪声系数为4 dB,工作温度范 围为–40°C至+85°C。利用ADI独特的MMIC优势和子系统设 计能力,我们能够提供出色的解决方案,满足客户对高 级应用的需求。下文展示了性能测试结果。