离合器参数设计

合集下载

离合器的设计 [文档在线提供]

离合器的设计 [文档在线提供]

目录1 离合器主要参数的选择 (2)2 离合器基本参数的优化 (2)2.1 设计变量 (2)2.2 目标函数 (2)2.3 约束条件 (2)3 膜片弹簧的设计 (3)3.1 膜片弹簧的基本参数的选择 (3)3.2 膜片弹簧的弹性特性曲线 (4)3.3 强度校核 (7)4 扭转减振器的设计 (7)4.1 扭转减振器主要参数 (7)4.2 减振弹簧的计算 (8)5 从动盘总成的设计 (10)5.1 从动盘毂 (10)5.2 从动片 (10)5.3 波形片和减振弹簧 (10)6 压盘设计 (10)6.1 离合器盖 (10)6.2 压盘 (10)6.3 传动片 (10)6.4 分离轴承 (10)7 小结 (11)参考文献 (11)文献检索摘要 (12)1 离合器主要参数的选择1.1 初选摩擦片外径D 、内径d 、厚度b根据《汽车离合器》(徐石安,江发潮编著,清华大学出版社出版)式3.2.1,有D =A T e max 100,对于小轿车 A=47,得D==203.689mm , 根据《汽车离合器》(徐石安,江发潮编著,清华大学出版社出版)表3.2.1可知,取D=225mm,d=150mm, b=3.5mm1.2 后备系数β由于所设计的离合器为膜片弹簧离合器,在使用过程中其摩擦片的磨损工作压力几乎不会变小(开始时还有些增加),再加上小轿车的后备功率比较大,使用条件较好,宜取较小值,故取β=1.3。

1.3 单位压力0P根据《汽车离合器》(徐石安,江发潮编著,清华大学出版社出版)表 3.2.1可知,对于小轿车当D=>230mm 时,则0P =1.18/D Mpa ;当D< 230mm 时,则0P =0.25Mpa.所以由于D =225mm,取0P =0.25Mpa.故根据《汽车设计》(王望予编著,机械工业出版社出版)表2-2可知, 当0.15Mpa<0P <0.35Mpa 时,摩擦片材料选择石棉基材料。

离合器设计说明书

离合器设计说明书

目录一离合器结构设计 (2)离合器结构选择与论证离合器结构设计要点离合器主要零件的设计二离合器的设计计算及说明 (7)离合器设计所需数据摩擦片主要参数选择摩擦片基本参数设计优化膜片弹簧主要参数的选择膜片弹簧的优化设计膜片弹簧的载荷与变形关系膜片弹簧的应力计算扭转减震器设计减震弹簧的设计踏板行程及踏板力计算从动轴的计算从动盘毂分离轴承的寿命计算三心得体会 (25)四参考文献 (26)一离合器的结构设计为了达到计划书所给的数据要求,设计时应根据车型的类别、使用要求、制造条件,以及“系列化、通用化、标准化”的要求等,合理选择离合器结构。

离合器结构选择与论证摩擦片的选择单片离合器因为结构简单,尺寸紧凑,散热良好,维修调整方便,从动部分转动惯量小,在使用时能保证分离彻底接合平顺,所以被广泛使用于轿车和中、小型货车,因此该设计选择单片离合器。

摩擦片数为2。

压紧弹簧布置形式的选择离合器压紧装置可分为周布弹簧式、中央弹簧式、斜置弹簧式、膜片弹簧式等。

其中膜片弹簧的主要特点是用一个膜片弹簧代替螺旋弹簧和分离杠杆。

膜片弹簧与其他几类相比又有以下几个优点[9]:(1)由于膜片弹簧有理想的非线性特征,弹簧压力在摩擦片磨损范围内能保证大致不变,从而使离合器在使用中能保持其传递转矩的能力不变。

当离合器分离时,弹簧压力不像圆柱弹簧那样升高,而是降低,从而降低踏板力;(2)膜片弹簧兼起压紧弹簧和分离杠杆的作用,使结构简单紧凑,轴向尺寸小,零件数目少,质量小;(3)高速旋转时,压紧力降低很少,性能较稳定;而圆柱弹簧压紧力明显下降;(4)由于膜片弹簧大断面环形与压盘接触,故其压力分布均匀,摩擦片磨损均匀,可提高使用寿命;(5)易于实现良好的通风散热,使用寿命长;(6)平衡性好;(7)有利于大批量生产,降低制造成本。

但膜片弹簧的制造工艺较复杂,对材料质量和尺寸精度要求高,其非线性特性在生产中不易控制,开口处容易产生裂纹,端部容易磨损。

离合器摩擦片技术参数

离合器摩擦片技术参数

技术参数:车型:沃尔沃整车质量(kg):1637最大扭矩/转速(N•m/rpm):400/4000主减速比:3.38一档速比:3.77滚动半径:306mm4、离合器主要参数的选择4.1后备系数β后备系数β是离合器设计中的一个重要参数,它反映了离合器传递发动机最大转矩的可靠程度。

在选择β时,应考虑摩擦片在使用中的磨损后离合器仍能可靠地传递发动机最大转矩、防止离合器滑磨时间过长、防止传动系过载以及操纵轻便等因素。

乘用车β选择:1.20~1.75 ,本次设计取β = 1.2。

4.2摩擦因数f、摩擦面数Z和离合器间隙△t摩擦片的摩擦因数f取决于摩擦片所用的材料及其工作温度、单位压力和滑磨速度等因素。

摩擦因数f的取值范围见下表。

表4-1 摩擦材料的摩擦因数f的取值范围摩擦材料摩擦因数石棉基材料模压0.20~0.25编织0.25~0.35粉末冶金材料铜基0.25~0.35铁基0.35~0.50金属陶瓷材料0.70~1.50本次设计取f = 0.30 。

摩擦面数Z为离合器从动盘数的两倍,决定于离合器所需传递转矩的大小及其结构尺寸。

本次设计取单片离合器Z = 2 。

离合器间隙△t是指离合器处于正常结合状态、分离套筒被回位弹簧拉到后极限位置时,为保证摩擦片正常磨损过程中离合器仍能完全结合,在分离轴承和分离杠杆内端之间留有的间隙。

该间隙△t一般为3~4mm 。

本次设计取△t =3 mm 。

4.3单位压力p单位压力p 决定了摩擦表面的耐磨性,对离合器工作性能和使用寿命有很大影响,选取时应考虑离合器的工作条件、发动机后备功率的大小、摩擦片尺寸、材料及其质量和后备系数等因素。

p 取值范围见表4-2。

表4-2 摩擦片单位压力p 的取值范围摩擦片材料单位压力p /Mpa石棉基材料模压0.15~0.25编织0.25~0.35粉末冶金材料铜基0.35~0.50铁基金属陶瓷材料0.70~1.50p 选择:0.10 MPa ≤ p0 ≤ 1.50 MPa ,本次设计取p = 0.3MPa 。

离合器的相关计算

离合器的相关计算
能。
通过气压传递扭矩,适 用于高速运转和重载工
况。
离合器规格
离合器尺寸
根据工作需求选择合适的尺寸,包括直径、宽度 和长度等参数。
离合器转速
根据输入输出转速选择合适的离合器转速,确保 正常工作。
离合器负载
根据工作负载选择合适的离合器,确保能够承受 足够的扭矩和冲击。
离合器材料
01
02
03
金属材料
如铸铁、铸钢、铝合金等, 具有较高的强度和耐磨性。
离合器的相关计算
• 离合器基本参数 • 离合器计算公式 • 离合器设计流程 • 离合器性能测试 • 离合器应用案例
01
离合器基本参数
离合器类型
摩擦片离合器
电磁离合器
液力离合器
气压离合器
利用摩擦力传递扭矩, 具有缓冲和减震作用。
通过磁场传递扭矩,响 应速度快,控制精度高。
利用液体介质传递扭矩, 具有自动调节和缓冲功
热对流
热对流是指离合器表面与周围空气之间的热量交换过程。 计算热对流的方法需要考虑周围空气的温度、速度和换热 系数等因素。
03
离合器设计流程
需求分析
确定设计目标
明确离合器的使用场景、性能要求和 使用寿命等。
市场调研
了解同类产品的性能、价格和用户反 馈,以便进行有针对性的设计。
参数设定
输入参数
设定离合器的输入功率、转速和转矩 等参数。源自扭矩传递计算扭矩传递
扭矩传递是衡量离合器传递扭矩的能力,它是衡量离合器性能的重要指标。计算扭矩传递的方法需要根据离合器的具 体结构和工况进行选择。
静态扭矩传递
静态扭矩传递是指在静止状态下,离合器能够传递的最大扭矩。计算方法是根据离合器的几何尺寸、摩擦系数和最大 静摩擦力矩进行计算。

2 离合器基本参数分析

2 离合器基本参数分析

2 离合器基本参数分析摩擦离合器靠摩擦表面间的摩擦力矩来传递发动机转矩。

根据摩擦定律,离合器的静摩擦力矩可表示为:T =fFZR (1)式中,T 为静摩擦力矩(N·m);f为摩擦表面间的静摩擦系数;F为压盘施加在摩擦面上的工作压力(N);R 为摩擦片的平均摩擦半径(m);Z为摩擦面数。

假设摩擦片上压力均匀,则有:Rc一一丽D2+Dd+d2F—p。

A—p。

~—r(D 2-dz)汽车离合器基本参数的优化设计式中,P。

为摩擦面单位面积上的压力(N/m。

);A为一个摩擦面的面积(m );D 为摩擦片外径(m);d为摩擦片内径(m)。

将式(2)、式(3)代入式(1)得:T = fZp。

D。

(1一c。

) (4)上厶式中,c为摩擦片内外径之比,c=d/D。

为了保证离合器在任何工况下都能可靠地传递发动机的最大转矩,设计时Tc应大于发动机最大转矩,即:T 一一 (5)式中,T一为发动机最大转矩(N·m);p为离合器的后备系数,p>1。

由以上分析可知,离合器的基本参数主要有性能参数p和P。

、尺寸参数d和D。

后备系数p反映了离合器传递发动机最大转矩的可靠程度,是重要的离合器设计参数,各类汽车p的取值范围见表1。

单位面积压力P。

对离合器工作性能和使用寿命有很大影响,选取时应考虑离合器的工作条件、发动机后备功率大小、摩擦片尺寸、摩擦片材料、质量和后备系数等因素。

根据摩擦片材料,P。

按表2选取。

表1 各类汽车B的取值范围轿车和轻型货车 p一1.2~1.75中型和重型货车 p一1.5~2.25越野车、带拖挂的重型汽车和牵引汽车 p一1.8~4.0表2 po的取值范围石棉基材料 po一0.10~0.35MPa烧结金属材料 P0-0.35~0.60MPa金属陶瓷材料 po一0.70~1.50MPa当离合器结构型式及摩擦片材料已选定,发动机最大转矩T一已知,结合式(1)和式(5),适当选取后备系数p和单位压力P。

离合器的设计

离合器的设计
பைடு நூலகம்
第六节
与制动器助力相似
例题
干式
P=M.N
1)外摩擦片
2)内摩擦片
图4-1 摩擦片结构示意图
轴向压力F---摩擦力---传递转矩 。
图4-2 摩擦离合器结构示意图 1-主动盘; 2-从动盘; 3-滑环
主动轴1与外壳2相联接
图4-3 多片式摩擦离合器 1-主动轴; 2-外鼓; 3-被动片; 6-压板; 4-摩擦片;
离合器的选型:
1).干式: 摩擦片数多可以增大所传递的转矩。但片数过多, 将各层间压力分布不均匀。
6. 摩擦片外径D,内径d和厚度
摩擦片外径D(mm)也可根据如下经验公式选用: DKD Temax 式中:KD为直径系数,KD =14.5~24.0。 摩擦片的厚度b主要有3.2mm、3.5mm和4.0mm三种
7.离合器传递的转矩 T m
8. 离合器的储备系数
离合器在接合过程中除承受工作载荷外,还要承受惯性载荷。
并引起摩擦片的磨损和发热。为了限制磨损和发热, 应使接合面上的单位压力不超过许用单位压力 。 2.对湿式离合器而言,摩擦副的面积应为扣除油槽面积后的 有效摩擦工作面面积
4.摩擦副材料的摩擦系数f,基本许用单位压力见表4-1。
5.摩擦片单位压力值p对离合器工作性能和使用寿命有很大影响,选取时应考虑
离合器的工作条件,发动机后备功率大小,摩擦片尺寸,材料及其质量和后备系数等因素。 离合器使用频繁,发动机后备系数较小时, 应取小些;当摩擦片外径较大时,为了降 低摩擦片外缘处的热负荷, 应取小些;后备系数较大时,可适当增大 。 工程机械在工作时经常需要频繁地使用离合器,而且它们的工作条件差,属于重载荷类 型,因此应选用较小的值
摩擦转矩、储备系数、摩擦副数量和摩擦衬片的内外径等。

(整理)离合器摩擦片技术参数

(整理)离合器摩擦片技术参数

技术参数:车型:沃尔沃整车质量(kg):1637最大扭矩/转速(N•m/rpm):400/4000主减速比:3.38一档速比:3.77滚动半径:306mm4、离合器主要参数的选择4.1后备系数β后备系数β是离合器设计中的一个重要参数,它反映了离合器传递发动机最大转矩的可靠程度。

在选择β时,应考虑摩擦片在使用中的磨损后离合器仍能可靠地传递发动机最大转矩、防止离合器滑磨时间过长、防止传动系过载以及操纵轻便等因素。

乘用车β选择:1.20~1.75 ,本次设计取β = 1.2。

4.2摩擦因数f、摩擦面数Z和离合器间隙△t摩擦片的摩擦因数f取决于摩擦片所用的材料及其工作温度、单位压力和滑磨速度等因素。

摩擦因数f的取值范围见下表。

表4-1 摩擦材料的摩擦因数f的取值范围摩擦材料摩擦因数石棉基材料模压0.20~0.25编织0.25~0.35粉末冶金材料铜基0.25~0.35铁基0.35~0.50金属陶瓷材料0.70~1.50本次设计取f = 0.30 。

摩擦面数Z为离合器从动盘数的两倍,决定于离合器所需传递转矩的大小及其结构尺寸。

本次设计取单片离合器Z = 2 。

离合器间隙△t是指离合器处于正常结合状态、分离套筒被回位弹簧拉到后极限位置时,为保证摩擦片正常磨损过程中离合器仍能完全结合,在分离轴承和分离杠杆内端之间留有的间隙。

该间隙△t一般为3~4mm 。

本次设计取△t =3 mm 。

4.3单位压力p单位压力p 决定了摩擦表面的耐磨性,对离合器工作性能和使用寿命有很大影响,选取时应考虑离合器的工作条件、发动机后备功率的大小、摩擦片尺寸、材料及其质量和后备系数等因素。

p 取值范围见表4-2。

表4-2 摩擦片单位压力p 的取值范围摩擦片材料单位压力p /Mpa石棉基材料模压0.15~0.25编织0.25~0.35粉末冶金材料铜基0.35~0.50铁基金属陶瓷材料0.70~1.50p 选择:0.10 MPa ≤ p0 ≤ 1.50 MPa ,本次设计取p = 0.3MPa 。

多片式摩擦离合器设计

多片式摩擦离合器设计

多片式摩擦离合器设计摩擦离合器是一种常见的传动装置,其主要用途是在发动机和变速器之间传递动力,实现汽车或其他动力机械的起步、加速、减速和停车等动作。

为了满足不同的应用需求,摩擦离合器的设计形式也较为多样化。

本文将针对一种多片式摩擦离合器进行设计分析。

1. 设计原理多片式摩擦离合器的结构由摩擦片、摩擦盘、压盘、增压器和活塞等部件组成。

其工作原理是通过压盘将摩擦片夹在摩擦盘之间,利用摩擦力瞬间传递动力,实现离合和结合状态的转换。

特别地,活塞的作用是利用油压助力将摩擦片与摩擦盘紧密接触,使得离合器的结合程度更加稳定和坚固。

2. 参数设计在设计过程中,需要对离合器的相关参数进行细致的测算和调试,以保障其稳定性和可靠性。

例如,在确定离合器的直径、摩擦片的数量和厚度、以及摩擦盘的内直径等方面,需分别考虑以下因素:(1)负载能力。

根据离合器所需承载的扭矩和功率,来确定其技术参数和适合的规格型号。

(2)使用寿命。

离合器一般需具备较长的使用寿命和稳定的传动性能,同时应考虑瞬时承载能力和过热现象的问题。

(3)设计工艺。

离合器的设计应符合机械制造工艺和生产要求,易于加工和安装,并采用高强度、耐磨损的材料。

3. 结构设计在确定离合器的参数和工艺后,需对其结构形式进行选择和设计。

对于多片式摩擦离合器而言,其结构形式可分为独立式、半浸式和浸润式等多种形式。

其中,浸润式离合器结构较为复杂,但具备较好的散热性能和减震能力。

因此,在进行结构设计时,需根据离合器的具体应用环境和工作要求,综合考虑各种因素,进行选择和优化。

4. 总结综上所述,多片式摩擦离合器的设计需要综合考虑多种因素,包括应用要求、参数设计和结构形式等。

在实际制造过程中,应注重工艺控制和品质保障,以保证离合器的稳定性和可靠性,并满足用户的需求。

同时,应加强科技创新和研发投入,推动离合器技术的不断升级和完善,为汽车和机械传动领域的发展做出贡献。

对多片式摩擦离合器进行数据分析可以从多个角度出发,例如扭矩传递能力、瞬时功率、摩擦力系数、摩擦片温度、摩擦片磨损等方面进行分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

54600
67800
72900
取摩擦片外径 D=250mm,选定摩擦片的内径 d=155mm,厚度 b=。
单位压力的确定
离合器摩擦力矩 Tc 的计算
离合器压盘施加在摩擦面上的工作压力的计算
(3-2)
施加在摩擦面的工作压力为
(3-3)
(3-4) 式中:z 为摩擦面数,单片离合器的 z=2,f 为摩擦面间的静摩擦系数,这里取。
(3-1) 式中:KD 为直径系数,轻卡取 17;最大总质量为~的商用车,单片离合器取~;Temax 是发 动机最大扭矩,原始设计数据为:
由公式(3-1)代入相关数据,取得:D=178mm 根据离合器摩擦片的标准化,系列化原则,根据下表“离合器摩擦片尺寸系列和参数” (即 GB1457—74)
表离合器摩擦片尺寸系列和参数
单位压力:
(3-5) 粉末冶金铁基材料单位压力要求小于,本离合器的单位压力比规定值小,故满足要 求。
膜片弹簧基本参数的选择
1、比值 H/h 和 h 的选择:此比值对膜片弹簧的弹性特性影响极大,因此,要利用 H/ h 对弹簧特性的影响正确地选择该比值,以得到理想的特性曲线及获得最佳的使用性能。 一般汽车的膜片弹簧 H/h 值在如下范围之内:H/h=~20。 2、R 及 R/r 确定: 比值 R/r 对弹簧的载荷及应力特性都有影响,从材料利用率的角度, 比值在~时,碟形弹簧储存弹性的能力为最大,就是说弹簧的质量利用率和好。因此设 计用来缓和冲击,吸收振动等需要储存大量弹性能时的碟簧时选用。对于汽车离合器的 膜片弹簧,设计上并不需要储存大量的弹性能,而是根据结构布置与分离的需要来决定, 一般 R/r 取值为~.对于 R,膜片弹簧大端外径 R 应满足结构上的要求和摩擦片的外径相 适应,大于摩擦片内径,近于摩擦片外径。此外,当 H,h 及 R/r 等不变时,增加 R 有 利于膜片弹簧应力的下降。初步确定 R/r= 3、 膜片弹簧起始圆锥底角: 汽车膜片弹簧
从 动 盘 发 动 机 转 矩 花键 花键 花键 键齿宽 有效 挤压
外 径 e max /N • m
D/mm
小于 6t 的商用车 6~14t 的商用车


~
本设计是基于一款轻型货车,故选择后备系数~,取后备系数β=。
摩擦片外径及其他尺寸的确定
摩擦片外径是离合器的基本尺寸参数,它对离合器的结构尺寸、质量的大小和使用 寿命的长短都有很大的影响。
摩擦片外径 D(mm)也可根据发动机最大扭矩 Temax 按如下经验公式进行初选:
外径 D / mm 内径 d / mm
160
110
180
125
200
140
225
150
250
155
280
165
300
175
325
190
350
195
380
205
厚度 h / mm
4 4
内外径之比 单 位 面 积
d/D
F / mm2
10600
13200
16000
22100
30200
40200
46600
一般起始圆锥底角 在 9°~15°之间,
=13
4、膜片弹簧小端半径 rf 及分离轴承的作用半径 rp: rf 的值主要由结构决定,最小值 应大于变速器第一轴花键外径,分离轴承作用半径 r p 大于 rf 。
5、分离指数目 n、切槽宽 、窗孔槽宽 、及半径 rc: 分离指数目 n 常取 18,大尺
寸膜片弹簧可取 24,小尺寸膜片弹簧可取 12,本设计取 n=18。切槽宽 约为 4mm;窗孔
,
1、根据下式()画出 P1 — 1 曲线
式中,E—弹性模数,钢材料取 E=× 10 5 Mp;
(5-1)
—泊松比,钢材料取; h—弹簧片厚,㎜; H—碟簧部分内截锥高,㎜; 1 —大端变形,㎜; R—碟簧部分外半径(大端半径),㎜; r—碟簧部分内半径,㎜; L—膜片弹簧与压盘接触半径,㎜; l—支承环平均半径,㎜; (2)推式轴向变形的关系式
由公式(5-3),取
则得
代入有关数值,得
4、求分离轴承的行程
由公式(5-2),取
,则
由公式(5-6)(5-7)得
由公式(5-5)得
代入有关数值,得
=
5、强度校核
膜片弹簧大端的最大变形(离合器彻底分离时)

将有关数值代入,得
从动盘毂花键的设计计算
花键的结构尺寸可根据从动盘外径和发动机转矩按国标 GB1144-74 选取。
图 膜片弹簧特性曲线
2、确定膜片弹簧的工作点位置
取离合器结合时膜片弹簧的大端变形量为 ,由特性曲线图可查得磨片弹簧的压紧力:
校核后备系数:
离合器彻底分离时,膜片弹簧大端的变形量为
压盘的行程 为
,故
离合器刚开始分离时,压盘的行程பைடு நூலகம்
,此时膜片弹簧最大端的变形量为
摩擦片磨损后,其最大磨损量
,故
3、求离合器彻底分离时分离轴承时轴承作用的载荷 P2
力强度及疲劳强度,高的冲击强度,同时应具有足够大的塑性变形性能。按上述要求,
国内常用的膜片弹簧材料为硅锰钢 60Si2MnA。
膜片弹簧的计算
参考同种类产品,并结合本车具体情况,初步选定弹簧的一些参数和尺寸如下:
,
,
,R=
确定膜片弹簧的所有尺寸 H=, h=,R=,r=90mm,l=92mm
L=110mm,rf=27mm,rp=29mm,n=18,
槽宽
;窗孔半径 rc 一般情况下由

算。
6、 承环的作用半径 l 和膜片与压盘接触半径 L:由于采用推式膜片弹簧,l,L 的大小
将影响膜片弹簧的刚度,一般来说,l 值应尽量靠近 r 而略大与 r。L 应接近 R 略小于 R。
7、膜片弹簧材料:制造膜片弹簧用的材料,应具有高的弹性极限和屈服极限,高的静
(5-2)
(3)膜片弹簧小端分离轴承处作用有分离力 P2 时膜片弹簧压盘接触处的变形 和 P2 的 关系式
(4)在 P2 力作用下膜片弹簧小端部分轴承处的变形 式中 , 为宽度系数:
设 因此式就成为:
(5-3) (5-4)
(5-5)
(56) (57)
把有关数值代入上述各式得
P1= = 1
= 1 1 1
后备系数的选择
离合器参数设计
离合器的后备系数 反映了离合器传递发动机最大扭矩的可靠度,它是离合器设计 的一个重要参数。在选择β时,应考虑摩擦片磨损后仍能可靠地传递发动机最大扭矩、 防止离合器滑磨时间过长、防止传动系数过载以及操纵轻便等因素。
表 后备系数表
车型 后备系数
乘用车及总质量 最 大 总 质 量 为 挂车
相关文档
最新文档