第08讲 函数的单调性(学生版) 备战2021年新高考数学微专题讲义
函数单调性课件ppt

x2 )
x1
(2x1
x2 ,
1) (2x2
x1 x2
1)
0
2(x1
x2 )
—
—作差
f (x1) f (x2 ) 0 即f (x1) f (x2 ) — —论证结果
则函数 f (x) 2x 1在区间(, )
是增函数.
— —写出结论
证明函数单调性一般步骤:
⑴取值:设x1 ,x2是给定区间内的两个任意 值,且x1< x 2 (或x1 >x 2);
函数f(x)区间 I 上是单调减函
数,I称为f(x)的单调 减 区间.
单调区间
(1)如果函数 y =f(x)在区间I是增函数或减函数,那么就说函数
y =f(x)在区间I上具有严格单调性。
在单调区间上,增函数的图象是上升的,减函数的图象是下 降的。
(2)函数单调性是针对某个区间而言的,因此函数单调
性是一个局部性质;
14 x
y
图象在区间I逐渐上升
区间I内随着x的增大,y也增大
f(x2)
N
?
对区间I内 任意 x1,x2 ,
f(x1) O
M
4 I x1 x2
当x1<x2时, 有f(x1)<f(x2)
14 x
y
图象在区间I逐渐上升
区间I内随着x的增大,y也增大
N
f(x2)
对区间I内 任意 x1,x2 ,
f(x1) O
30 19.71
20 7.56
10 4.67
2001 2002 2003 2004 年份
常宁市日平均出生人数统计表
人数 (人)
45
42
36
《函数单调性的概念》课件

如果函数f(x)在区间[a, b]上连续,且f'(x) > 0,那么函数f(x)在区间[a, b]上单 调递增。
证明
设x1, x2是区间[a, b]上的任意两点,且x1 < x2,考虑差值f(x2) - f(x1)。由于 f'(x) > 0,差值可以表示为f'(c)(x2 - x1) > 0,其中c位于x1和x2之间。因此, f(x2) > f(x1),说明函数在区间[a, b]上单调递增。
通过观察函数的图像来判断函数的增减性。如果图像在某区间内从左到
右上升,则函数在该区间内单调递增;如果图像在某区间内从左到右下
降,则函数在该区间内单调递减。
导数在判定单调性中的应用
导数大于0的区间内 ,函数单调递增。
导数等于0的点可能 是函数的极值点或拐 点。
导数小于0的区间内 ,函数单调递减。
单调性判定定理的证明
周期性
单调函数可能是周期函数,但并非所 有单调函数都具有周期性。
单调函数的极限和积分性质
极限性质
单调函数的极限值存在且唯一,且极限 值等于函数值。
VS
积分性质
单调函数的积分值与被积函数值成正比, 即对于任意区间[a, b],有 ∫baf(x)dx=k∫baf(x)dxf(x)dx int_a^b f(x) dx = k int_a^b f(x) dxf(x)dx∫abf(x)dx=k∫abf(x)dxdx,其 中k为常数。
《函数单调性的概念 》ppt课件
REPORTING
• 函数单调性的定义 • 函数单调性的判定 • 函数单调性的应用 • 函数单调性的性质 • 函数单调性的扩展知识
目录
PART 01
函数的单调性(公开课课件)

04 函数单调性的应用举例
利用函数单调性求最值问题
极值问题
通过判断函数在某一点的单调性 ,可以确定该点是否为极值点, 从而求得函数的最值。
最值问题
利用函数在整个定义域上的单调 性,可以确定函数在定义域上的 最大值和最小值。
利用函数单调性解不等式问题
单调性比较法
通过比较两个函数的单调性,可以确定它们的大小关系,从而解决一些不等式问题。
02
建议学生多参与数学建模和数学竞赛等活动,提高数学应用发展
03
学生可以通过阅读数学期刊、参加学术会议等方式,了解数学
学科的最新发展动态和前沿研究领域。
THANKS FOR WATCHING
感谢您的观看
单调性分析法
利用函数的单调性,可以分析不等式的解集和边界情况。
利用函数单调性解决实际问题
优化问题
在经济学、金融学等领域中,经常需要解决一些优化问题,如最优化生产、最优化投资等。利用函数 单调性可以找到最优解或近似最优解。
决策问题
在企业管理、市场营销等领域中,经常需要做出一些决策,如选择最佳的营销策略、确定最优的产品 价格等。利用函数单调性可以分析不同决策方案的效果,从而做出更好的决策。
03 函数单调性的判定方法
导数法判定函数单调性
总结词
通过求导数判断函数的单调性
详细描述
求函数的导数,然后分析导数的符号,如果导数大于0,则函数在该区间内单调递增;如 果导数小于0,则函数在该区间内单调递减。
举例
对于函数$f(x) = x^3$,其导数$f'(x) = 3x^2$,在$x > 0$时,$f'(x) > 0$,因此函数 $f(x)$在$x > 0$时单调递增。
2021年高考数学函数的单调性必考知识点

2021年高考数学函数的单调性必考知识点高中数学知识点:函数的单调性一般地,设函数fx的定义域为I:如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1fx2.那么就是fx在这个区间上是减函数。
高中数学知识点:函数的单调区间单调区间是指函数在某一区间内的函数值Y,随自变量X增大而增大或减小恒成立。
如果函数y=fx在某个区间是增函数或减函数。
那么就说函数y=fx在这一区间具有严格的单调性,这一区间叫做y=fx的单调区间。
高中数学知识点:函数的单调图像高中数学知识点:函数的单调性的应用高中数学知识点:求函数单调性的基本方法解:先要弄清概念和研究目的,因为函数本身是动态的,所以判断函数的单调性、奇偶性,还有研究函数切线的斜率、极值等等,都是为了更好地了解函数本身所采用的方法。
其次就解题技巧而言,当然是立足于掌握课本上的例题,然后再找些典型例题做做就可以了,这部分知识仅就应付解题而言应该不是很难。
最后找些考试试卷题目来解,针对考试会出的题型强化一下,所谓知己知彼百战不殆。
1、把握好函数单调性的定义。
证明函数单调性一般初学最好用定义用定义谨防循环论证,如果函数解析式异常复杂或者具有某种特殊形式,可以采用函数单调性定义的等价形式证明。
另外还请注意函数单调性的定义是[充要命题]。
2、熟练掌握基本初等函数的单调性及其单调区间。
理解并掌握判断复合函数单调性的方法:同增异减。
3、高三选修课本有导数及其应用,用导数求函数的单调区间一般是非常简便的。
还应注意函数单调性的应用,例如求极值、比较大小,还有和不等式有关的问题。
高中数学知识点:例题判断函数的单调性y = 1/ x的平方-2x-3。
设x^2-2x-3=t,令x^2-2x-3=0,解得:x=3或x=-1,当x>3和x<-1时,t>0,当-1所以得到x^2-2x-1对称轴是1。
高中数学《函数的单调性》说课课件

增函数的定义
如果对于任意$x_1 < x_2$,都有 $f(x_1) < f(x_2)$,则称函数$f(x)$在 区间$[a, b]$上是增函数。
单调性的判定方法
1 2 3
定义法
通过比较函数在某区间内任意两点上的函数值来 确定函数的单调性。
导数法
利用导数来判断函数的单调性,如果导数大于0 ,则函数在该区间内单调递增;如果导数小于0 ,则函数在该区间内单调递减。
练习题
选择适当的函数,利用所 学的证明方法,证明其单 调性。
CHAPTER 04
函数的单调性与导数
导数与单调性的关系
导数大于0与函数单调增
当一个函数的导数大于0时,该函数在其定义域内单调递增。
导数小于0与函数单调减
当一个函数的导数小于0时,该函数在其定义域内单调递减。
单调性判定定理的推导
基于导数的定义和性质,通过数学推 导得到单调性判定定理。
判断函数单调性的方法
讲解了如何通过导数、图像、表格等方法判 断函数的单调性。
与其他知识点的关联
强调了函数单调性与高中数学其他知识点的 联系,如与不等式、极值等的关系。
课程学习效果的评估
课堂互动情况
评估了学生在课堂上的参与度 和互动情况,以及他们对单调
性概念的理解程度。
作业完成情况
分析了学生的作业完成情况, 包括对单调性判断的准确性和 解题思路的清晰度。
02
本课程将介绍函数单调性的定义 、性质和判定方法,以及其在解 决实际问题中的应用。
课程目标
理解函数单调性的定 义和性质,掌握判定 函数单调性的方法。
培养学生对数学的兴 趣和热爱,激发其主 动探索和学习的精神 。
能够运用函数单调性 解决实际问题,提高 数学应用能力。
第08讲 函数的单调性(教师版) 备战2021年新高考数学微专题讲义

第8讲:函数的单调性一、课程标准1.理解函数的单调性、最大(小)值及其几何意义2.掌握求函数的单调性的方法·3.能处理函数的最值问题。
二、基础知识回顾1. 函数单调性的定义(1)一般地,对于给定区间上的函数f(x),如果对于属于这个区间的任意两个自变量x1、x2,当x1<x2时,都有f(x1)<f(x2)(或都有f(x1)>f(x2),那么就说f(x)在这个区间上是增函数(或减函数).(2)如果函数y=f(x)在某个区间上是增函数(或减函数),那么就说f(x)在这个区间上具有(严格的)单调性,这个区间叫做f(x)的单调区间;若函数是增函数则称该区间为增区间,若函数为减函数则称该区间为减区间.2. 函数单调性的图像特征对于给定区间上的函数f(x),若函数图像从左向右连续上升,则称函数在该区间上单调递增;若函数图像从左向右连续下降,则称函数在该区间上单调递减.3. 复合函数的单调性对于函数y=f(u)和u=g(x),如果当x∈(a,b)时,u∈(m,n),且u=g(x)在区间(a,b)上和y=f(u)在区间(m,n)上同时具有单调性,则复合函数y=f(g(x))在区间(a,b)上具有单调性,并且具有这样的规律:增增(或减减)则增,增减(或减增)则减.4. 函数单调性的常用结论(1)对∀x1,x2∈D(x1≠x2),f(x1)-f(x2)x1-x2>0⇔f(x)在D上是增函数;f()x1-f()x2x1-x2<0⇔f(x)在D上是减函数.(2)对勾函数y=x+ax(a>0)的增区间为(-∞,-a]和[a,+∞),减区间为(-a,0)和(0,a).(3)在区间D上,两个增函数的和是增函数,两个减函数的和是减函数.(4)函数f(g(x))的单调性与函数y=f(u)和u=g(x)的单调性的关系是“同增异减”5.常用结论1.若函数f(x),g(x)在区间I上具有单调性,则在区间I上具有以下性质:(1)当f (x ),g (x )都是增(减)函数时,f (x )+g (x )是增(减)函数;(2)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (3)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反;(4)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”. 2.增函数与减函数形式的等价变形:∀x 1,x 2∈[a ,b ]且x 1≠x 2,则 (x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在[a ,b ]上是减函数. 三、自主热身、归纳总结1、函数y =x 2-5x -6在区间[2,4]上是( ) A .递减函数 B .递增函数C .先递减再递增函数D .先递增再递减函数【答案】C【解析】作出函数y =x 2-5x -6的图象(图略)知开口向上,且对称轴为x =52,在[2,4]上先减后增.故选C.2、函数y =1x -1在[2,3]上的最小值为( ) A .2 B.12 C.13 D .-12【答案】B【解析】 因为y =1x -1在[2,3]上单调递减,所以y min =13-1=12.故选B. 3、设函数f(x)在R 上为增函数,则下列结论一定正确的是(D ) A. y =1f (x )在R 上为减函数 B. y =|f (x )|在R 上为增函数C. y =-1f (x )在R 上为增函数 D. y =-f (x )在R 上为减函数 【答案】D.【解析】 如f (x )=x 3,则y =1f (x )的定义域为(-∞,0)∪(0,+∞),在x =0时无意义,A 、C 错;y =|f (x )|是偶函数,在R 上无单调性,B 错.故选D.4、对数函数log (0a y x a =>且1)a ≠与二次函数2(1)y a x x =--在同一坐标系内的图象不可能是( )A .B .C .D .【答案】BD .【解析】:若1a >,则对数函数log a y x =在(0,)+∞上单调递增,二次函数2(1)y a x x =--开口向上,对称轴102(1)x a =>-,经过原点,可能为A ,不可能为B .若01a <<,则对数函数log a y x =在(0,)+∞上单调递减,二次函数2(1)y a x x =--开口向下,对称轴102(1)x a =<-,经过原点,可能为C ,不可能为D .故选:BD .5、已知函数2()361f x x x =--,则( ) A .函数()f x 有两个不同的零点B .函数()f x 在(1,)-+∞上单调递增C .当1a >时,若()x f a 在[1x ∈-,1]上的最大值为8,则3a =D .当01a <<时,若()x f a 在[1x ∈-,1]上的最大值为8,则13a =【答案】ACD .【解析】因为二次函数对应的一元二次方程的判别式△2(6)43(1)480=--⨯⨯-=>, 所以函数()f x 有两个不同的零点,A 正确;因为二次函数()f x 图象的对称轴为1x =,且图象开口向上, 所以()f x 在(1,)+∞上单调递增,B 不正确;令x t a =,则22()()3613(1)4x f a g t t t t ==--=--. 当1a >时,1t a a,故()g t 在1[,]a a 上先减后增,又112a a +>,故最大值为g (a )23618a a =--=,解得3a =(负值舍去). 同理当01a <<时,1a t a ,()g t 在1[,]a a 上的最大值为2136()18g a a a=--=, 解得13a =(负值舍去).故选:ACD .6、函数y =|-x 2+2x +1|的单调递增区间是 ;单调递减区间是 . 【答案】(1-2,1),(1+2,+∞);(-∞,1-2),(1,1+2).【解析】作出函数y =|-x 2+2x +1|的图像如图所示.由图像可知,函数y =|-x 2+2x +1|的单调增区间为(1-2,1),(1+2,+∞);单调递减区间是(-∞,1-2),(1,1+2).故应分别7、已知f(x)=xx -a (x≠a),若a >0且f(x)在(1,+∞)上是减函数,则实数a 的取值范围是 . 【答案】(0,1]【解析】 任设1<x 1<x 2,则f(x 1)-f(x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1) (x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f(x 1)-f(x 2)>0,只需(x 1-a)(x 2-a)>0恒成立.∴a≤1. 综上所述,a 的取值范围是(0,1].8、函数y =x 2+x -6的单调递增区间为__________,单调递减区间为____________. 【答案】 (1)B (2)[2,+∞) (-∞,-3]【解析】 (1)y =|x 2-3x +2|=⎩⎪⎨⎪⎧x 2-3x +2,x ≤1或x ≥2,-(x 2-3x +2),1<x <2. 如图所示,函数的单调递增区间是⎣⎡⎦⎤1,32和[2,+∞).(2)令u =x 2+x -6,则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数. 令u =x 2+x -6≥0,得x ≤-3或x ≥2.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在[0,+∞)上是增函数, ∴y =x 2+x -6的单调递减区间为(-∞,-3],单调递增区间为[2,+∞).三、例题选讲考点一 函数的单调区间 例1、求下列函数的单调区间 (1)y =-x 2+2|x|+1; (2)f(x)=x 2-2x -3; (3)212log (32)y x x =-+【解析】(1)由2221,0-x 21,0x x x x x ⎧-++⎪⎨-+⎪⎩≥,<,即22(1)2,0-1)2,0.x x y x x ⎧--+⎪=⎨++⎪⎩≥(<画出函数图像如图所示,单调增区间为(-∞,-1],[0,1],单调减区间为[-1,0], [1,+∞).(2)f(x)=x 2-2x -3的定义域为(-∞,-1]∪[3,+∞).令t =x 2-2x -3,∵t =x 2-2x -3在x ∈(-∞,-1]上是减函数,在x ∈[3,+∞)为增函数,又y =t 在t ∈(0,+∞)上是增函数,∴函数f(x)=x 2-2x -3的单调减区间是(-∞,-1],单调递增区间是[3,+∞). (3)令u =x 2-3x +2,则原函数可以看成12log y u =与u =x 2-3x +2的复合函数.由x 2-3x +2>0,解得x <1或x >2.∴函数的定义域为(-∞,1)∪(2,+∞). 又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是减函数,在(2,+∞)上是增函数.而12log y u =在(0,+∞)上是减函数,∴的单调减区间为(2,+∞),单调增区间为(-∞,1).变式1、(2019·河北石家庄二中模拟)函数f (x )=|x 2-3x +2|的单调递增区间是( )A.⎣⎡⎭⎫32,+∞ B.⎣⎡⎦⎤1,32和[2,+∞)C .(-∞,1]和⎣⎡⎦⎤32,2D.⎝⎛⎦⎤-∞,32和[2,+∞)【答案】B【解析】y =|x 2-3x +2|=⎩⎪⎨⎪⎧x 2-3x +2,x ≤1或x ≥2,-x 2-3x +2,1<x <2.如图所示,函数的单调递增区间是⎣⎡⎦⎤1,32和[2,+∞).变式2、已知函数f (x )=log a (-x 2-2x +3)(a >0且a ≠1),若f (0)<0,则此函数的单调递增区间是( )A.(-∞,-1]B.[-1,+∞)C.[-1,1)D.(-3,-1]212log (32)y x x =-+212log (32)y x x =-+【答案】C【解析】令g (x )=-x 2-2x +3,由题意知g (x )>0,可得-3<x <1,故函数的定义域为{x |-3<x <1}.根据f (0)=log a 3<0,可得0<a <1,又g (x )在定义域(-3,1)内的减区间是[-1,1),∴f (x )的单调递增区间为[-1,1).变式3、.函数y =|x |(1-x )的单调递增区间是________. 【答案】 ⎣⎢⎡⎦⎥⎤0,12【解析】 y =|x |(1-x )=⎩⎨⎧x (1-x ),x ≥0,-x (1-x ),x <0 =⎩⎨⎧-x 2+x ,x ≥0,x 2-x ,x <0,函数的大致图象如图所示.由图易知函数的单调递增区间是⎣⎢⎡⎦⎥⎤0,12.方法总结:求函数的单调区间的常用方法与判断函数的单调性的方法类似,有定义法、图像法、利用常见函数的单调性、导数法等.值得引起高度重视的是:(1)函数的单调区间是函数定义域的子区间,所以求单调区间,必须先求出定义域; (2)对于基本初等函数的单调区间,可以直接利用已知结论求解;(3)如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间. 考点二 复合函数的单调区间例2、(2019·黑龙江大庆实验中学模拟)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞) D .(4,+∞)【答案】D【解析】函数y =x 2-2x -8=(x -1)2-9图象的对称轴为直线x =1,由x 2-2x -8>0,解得x >4或x <-2,所以(4,+∞)为函数y =x 2-2x -8的一个单调递增区间.根据复合函数的单调性可知,函数f (x )=ln(x 2-2x -8)的单调递增区间为(4,+∞).变式1、函数y =log 12(-x 2+x +6)的单调增区间为( )A.⎝⎛⎭⎫12,3B.⎝⎛⎭⎫-2,12C.(-2,3)D.⎝⎛⎭⎫12,+∞【答案】 A【解析】 由-x 2+x +6>0,得-2<x <3,故函数的定义域为(-2,3),令t =-x 2+x +6,则y =log 12t ,易知其为减函数,由复合函数的单调性法则可知本题等价于求函数t =-x 2+x +6在(-2,3)上的单调递减区间.利用二次函数的性质可得t =-x 2+x +6在定义域(-2,3)上的单调递减区间为⎝⎛⎭⎫12,3,故选A.变式2、函数f (x )=2x -x 2的单调递增区间为( ) A.⎝⎛⎦⎤-∞,12B.⎣⎡⎦⎤0,12C.⎣⎡⎭⎫12,+∞D.⎣⎡⎦⎤12,1【答案】B【解析】令t =x -x 2,由x -x 2≥0,得0≤x ≤1,故函数的定义域为[0,1].因为g (t )=2t 是增函数,所以f (x )的单调递增区间即t =x -x 2的单调递增区间.利用二次函数的性质,得t =x -x 2的单调递增区间为⎣⎡⎦⎤0,12,即原函数的单调递增区间为⎣⎡⎦⎤0,12.故选B.方法总结:求复合函数的单调性,首先要注意复合函数的定义域,其次要确定函数是有哪些基本函数复合而成,根据同增异减的性质确定复合函数的单调性。
函数的单调性(公开课课件)

单调减函数是指函数在某个区间内,对于任意两个自变量$x_1$和$x_2$($x_1 < x_2$),如果$x_1$和$x_2$ 都在这区间内,那么函数值$f(x_1) geq f(x_2)$。也就是说,函数的图像随着$x$的增加而下降。
严格单调函数的定义
总结词
严格单调函数是指函数在某个区间内,严格满足单调增或单调减条件的函数。
利用单调性解方程
利用函数的单调性,可以求解方程。
通过分析函数的单调性,可以确定方程解的范围,从而求解方程。例如,对于一元二次方程$ax^2 + bx + c = 0$,如果$a > 0$,则函数$f(x) = ax^2 + bx + c$在区间$(-infty, -frac{b}{2a})$上单调递减,在区间$(-frac{b}{2a}, +infty)$上单调递增 ,因此方程的解必定落在$(-frac{b}{2a}, +infty)$区间内。
函数单调性的反例
04
单调增函数的反例
总结词
非严格单调增函数
详细描述
有些函数在其定义域内并非严格单调递增,即存在某些区间内函数值先减小后 增大。例如,函数$f(x) = x^3$在区间$(-2, -1)$内是单调减函数。
单调减函数的反例
总结词
非严格单调减函数
详细描述
有些函数在其定义域内并非严格单调递减,即存在某些区间 内函数值先增大后减小。例如,函数$f(x) = frac{1}{x}$在区 间$(1, +infty)$内是单调增函数。
详细描述
单调增函数是指函数在某个区间内,对于任 意两个自变量$x_1$和$x_2$($x_1 < x_2$ ),如果$x_1$和$x_2$都在这区间内,那么 函数值$f(x_1) leq f(x_2)$。也就是说,函数 的图像随着$x$的增加而上升。
高二数学函数单调性课件

目录
• 函数单调性的定义 • 一次函数的单调性 • 二次函数的单调性 • 分段函数的单调性 • 复合函数的单调性
01
函数单调性的定义
函数单调性的定义
函数单调性是指函数在某个区间内的增减性。如果函数在某个区间内单调递增, 则表示函数值随着自变量的增加而增加;如果函数在某个区间内单调递减,则表 示函数值随着自变量的增加而减小。
复合函数单调性取决于内层函数和外 层函数的单调性以及两者之间的对应 关系。
内层函数和外层函数单调性相同,复 合函数为增函数;内层函数和外层函 数单调性相反,复合函数为减函数。
复合函数单调性的判断
首先确定内层函数和外层函数的单调性,然后根据单调性相同或相反判断复合函数的单调性。
对于内层函数,可以通过求导数判断其单调性;对于外层函数,可以根据函数的增减性和导数符号判 断其单调性。
分段函数单调性的应用
解决实际问题
分段函数单调性可以用于 解决一些实际问题,如经 济问题、物理问题等。
数学分析
在数学分析中,分段函数 单调性可以用于研究函数 的极限、连续性和可导性 等性质。
计算机科学
在计算机科学中,分段函 数单调性可以用于算法设 计和数据结构分析等领域 。
05
复合函数的单调性
复合函数的单调性
判断二次函数的单调性,也可以通过观察二次函数的对称 轴和开口方向。如果二次项系数a>0,则对称轴为x=b/2a,开口向上;如果二次项系数a<0,则对称轴为x=b/2a,开口向下。
二次函数单调性的应用
利用二次函数的单调性判断函数的值域
对于开口向上的二次函数,其最小值出现在对称轴上,即x=-b/2a处,此时函数值为y=-d/4a;对于 开口向下的二次函数,其最大值出现在对称轴上,即x=-b/2a处,此时函数值为y=d/4a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8讲:函数的单调性一、课程标准1.理解函数的单调性、最大(小)值及其几何意义2.掌握求函数的单调性的方法·3.能处理函数的最值问题。
二、基础知识回顾1. 函数单调性的定义(1)一般地,对于给定区间上的函数f(x),如果对于属于这个区间的任意两个自变量x1、x2,当x1<x2时,都有f(x1)<f(x2)(或都有f(x1)>f(x2),那么就说f(x)在这个区间上是增函数(或减函数).(2)如果函数y=f(x)在某个区间上是增函数(或减函数),那么就说f(x)在这个区间上具有(严格的)单调性,这个区间叫做f(x)的单调区间;若函数是增函数则称该区间为增区间,若函数为减函数则称该区间为减区间.2. 函数单调性的图像特征对于给定区间上的函数f(x),若函数图像从左向右连续上升,则称函数在该区间上单调递增;若函数图像从左向右连续下降,则称函数在该区间上单调递减.3. 复合函数的单调性对于函数y=f(u)和u=g(x),如果当x∈(a,b)时,u∈(m,n),且u=g(x)在区间(a,b)上和y=f(u)在区间(m,n)上同时具有单调性,则复合函数y=f(g(x))在区间(a,b)上具有单调性,并且具有这样的规律:增增(或减减)则增,增减(或减增)则减.4. 函数单调性的常用结论(1)对∀x1,x2∈D(x1≠x2),f(x1)-f(x2)x1-x2>0⇔f(x)在D上是增函数;f()x1-f()x2x1-x2<0⇔f(x)在D上是减函数.(2)对勾函数y=x+ax(a>0)的增区间为(-∞,-a]和[a,+∞),减区间为(-a,0)和(0,a).(3)在区间D上,两个增函数的和是增函数,两个减函数的和是减函数.(4)函数f(g(x))的单调性与函数y=f(u)和u=g(x)的单调性的关系是“同增异减”5.常用结论1.若函数f(x),g(x)在区间I上具有单调性,则在区间I上具有以下性质:(1)当f (x ),g (x )都是增(减)函数时,f (x )+g (x )是增(减)函数;(2)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反;(3)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反;(4)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”.2.增函数与减函数形式的等价变形:∀x 1,x 2∈[a ,b ]且x 1≠x 2,则(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.三、自主热身、归纳总结1、函数y =x 2-5x -6在区间[2,4]上是( )A .递减函数B .递增函数C .先递减再递增函数D .先递增再递减函数2、函数y =1x -1在[2,3]上的最小值为( )A .2 B.12C.13 D .-123、设函数f(x)在R 上为增函数,则下列结论一定正确的是(D )A. y =1f (x )在R 上为减函数B. y =|f (x )|在R 上为增函数C. y =-1f (x )在R 上为增函数D. y =-f (x )在R 上为减函数4、对数函数log (0a y x a =>且1)a ≠与二次函数2(1)y a x x =--在同一坐标系内的图象不可能是()A .B .C .D .5、已知函数2()361f x x x =--,则( )A .函数()f x 有两个不同的零点B .函数()f x 在(1,)-+∞上单调递增C .当1a >时,若()x f a 在[1x ∈-,1]上的最大值为8,则3a =D .当01a <<时,若()x f a 在[1x ∈-,1]上的最大值为8,则13a =6、函数y =|-x 2+2x +1|的单调递增区间是 ;单调递减区间是 .7、已知f(x)=x x -a (x≠a),若a >0且f(x)在(1,+∞)上是减函数,则实数a 的取值范围是 .8、函数y =x 2+x -6的单调递增区间为__________,单调递减区间为____________.三、例题选讲考点一 函数的单调区间例1、求下列函数的单调区间(1)y =-x 2+2|x|+1;(2)f(x)=x 2-2x -3;(3)212log (32)y x x =-+变式1、(2019·河北石家庄二中模拟)函数f (x )=|x 2-3x +2|的单调递增区间是( )A.⎣⎡⎭⎫32,+∞B.⎣⎡⎦⎤1,32和[2,+∞) C .(-∞,1]和⎣⎡⎦⎤32,2D.⎝⎛⎦⎤-∞,32和[2,+∞)变式2、已知函数f (x )=log a (-x 2-2x +3)(a >0且a ≠1),若f (0)<0,则此函数的单调递增区间是( )A.(-∞,-1]B.[-1,+∞)C.[-1,1)D.(-3,-1]变式3、.函数y =|x |(1-x )的单调递增区间是________.方法总结:求函数的单调区间的常用方法与判断函数的单调性的方法类似,有定义法、图像法、利用常见函数的单调性、导数法等.值得引起高度重视的是:(1)函数的单调区间是函数定义域的子区间,所以求单调区间,必须先求出定义域;(2)对于基本初等函数的单调区间,可以直接利用已知结论求解;(3)如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间.考点二 复合函数的单调区间例2、(2019·黑龙江大庆实验中学模拟)函数f (x )=ln(x 2-2x -8)的单调递增区间是( )A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞)变式1、函数y =log 12(-x 2+x +6)的单调增区间为( )A.⎝⎛⎭⎫12,3B.⎝⎛⎭⎫-2,12C.(-2,3)D.⎝⎛⎭⎫12,+∞变式2、函数f (x )=2x -x 2的单调递增区间为( )A.⎝⎛⎦⎤-∞,12B.⎣⎡⎦⎤0,12C.⎣⎡⎭⎫12,+∞D.⎣⎡⎦⎤12,1方法总结:求复合函数的单调性,首先要注意复合函数的定义域,其次要确定函数是有哪些基本函数复合而成,根据同增异减的性质确定复合函数的单调性。
考点三 函数单调性的证明与判断例3、判断函数f(x)=x 1+x 2在区间[1,+∞)上的单调性并证明你的结论.变式1、已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值.变式2、试讨论函数f(x)=ax x 2+1(a >0)在(0,+∞)上的单调性,并证明你的结论.方法总结: 1. 判断函数的单调性,通常的方法有:(1)定义法;(2)图像法;(3)利用常见函数的单调性;(4)导数法.而要证明一个函数的单调性,基本方法是利用单调性定义或导数法.2. 应用函数单调性的定义证明函数的单调性,其基本步骤如下: 取值→作差→变形→确定符号→得出结论其中,变形是十分重要的一步,其目的是使得变形后的式子易于判断符号,常用的方法是(1)分解因式;(2)配方;(3)通分约分等.考点四 函数单调性的应用例4、已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是________.变式1、(2019·安徽皖南八校第三次联考)已知函数f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥1,1,x <1,则满足f (2x +1)<f (3x -2)的实数x 的取值范围是( )A .(-∞,0]B .(3,+∞)C .[1,3)D .(0,1)变式2、已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x的取值范围是( )A.⎝⎛⎭⎫13,23B.⎣⎡⎭⎫13,23C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23变式3、如果函数f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.变式4、【2019年天津理科06】已知a =log 52,b =log 0.50.2,c =0.50.2,则a ,b ,c 的大小关系为( ) A .a <c <bB .a <b <cC .b <c <aD .c <a <b方法总结 1.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决. 2.求解函数不等式,其实质是函数单调性的逆用,由条件脱去“f ”.3.利用单调性求参数的取值(范围)的思路是:根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解.对于分段函数,要注意衔接点的取值.五、优化提升与真题演练1、【2019年新课标1理科03】已知a =log 20.2,b =20.2,c =0.20.3,则( )A .a <b <cB .a <c <bC .c <a <bD .b <c <a 2、【2017年新课标1理科05】函数f (x )在(﹣∞,+∞)单调递减,且为奇函数.若f (1)=﹣1,则满足﹣1≤f (x ﹣2)≤1的x 的取值范围是( )A .[﹣2,2]B .[﹣1,1]C .[0,4]D .[1,3]3、已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( )A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)4、函数22()log (34)f x x x =--的单调减区间为( ) A .(,1)-∞- B .3(,)2-∞- C .3(,)2+∞D .(4,)+∞5、【2019年新课标3理1】设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则( ) A .f (log 3)>f (2)>f (2)B .f (log 3)>f (2)>f (2)C .f (2)>f (2)>f (log 3)D .f (2)>f (2)>f (log 3)6、【2017年浙江05】若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M ﹣m ( ) A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关 7、(多选)已知f (x )是定义在[0,+∞)上的函数,根据下列条件,可以断定f (x )是增函数的是( ) A .对任意x ≥0,都有f (x +1)>f (x )B .对任意x 1,x 2∈[0,+∞),且x 1≥x 2,都有f (x 1)≥f (x 2)C .对任意x 1,x 2∈[0,+∞),且x 1-x 2<0,都有f (x 1)-f (x 2)<0D .对任意x 1,x 2∈[0,+∞),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>08、(2019·重庆南开中学模拟)若f (x )=⎩⎪⎨⎪⎧3a -1x +4a ,x <1,-ax ,x ≥1是定义在R 上的减函数,则a 的取值范围为________.9、定义在[-2,2]上的函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实数a 的取值范围为________. 10、设函数f (x )=ax +1x +2a 在区间(-2,+∞)上是增函数,那么a 的取值范围是________..11、设函数f (x )=⎩⎨⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________.12、已知f (x )=x x -a (x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.。