新人教A版选修(22)《曲边梯形的面积》word教案

合集下载

2020年人教版A版数学选修2-2全册完整讲义学案(教师用书)

2020年人教版A版数学选修2-2全册完整讲义学案(教师用书)

第一章导数及其应用§1.1变化率与导数§1.1.1变化率问题§1.1.2导数的概念§1.1.3导数的几何意义§1.2导数的计算§1.2.1几个常用函数的导数§1.2.2基本初等函数的导数公式及导数的运算法则(一) §1.2.2基本初等函数的导数公式及导数的运算法则(二) §1.3导数在研究函数中的应用§1.3.1函数的单调性与导数§1.3.2函数的极值与导数§1.3.3函数的最大(小)值与导数§1.4生活中的优化问题举例§1.5定积分的概念§1.5.1曲边梯形的面积§1.5.2汽车行驶的路程§1.5.3定积分的概念§1.6微积分基本定理§1.7定积分的简单应用§1.7.1定积分在几何中的应用§1.7.2定积分在物理中的应用章末整合提升章末达标测试第二章推理与证明§2.1合情推理与演绎推理§2.1.1合情推理§2.1.2演绎推理§2.2直接证明与间接证明§2.2.1综合法和分析法§2.2.2反证法§2.3数学归纳法章末整合提升章末达标测试第三章数系的扩充与复数的引入§3.1数系的扩充和复数的概念§3.1.1数系的扩充和复数的概念§3.1.2复数的几何意义§3.2复数代数形式的四则运算§3.2.1复数代数形式的加、减运算及其几何意义§3.2.2复数代数形式的乘除运算章末整合提升章末达标测试模块综合检测§1.1 变化率与导数§1.1.1 变化率问题 §1.1.2 导数的概念[课标要求]1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景.(难点) 2.会求函数在某一点附近的平均变化率.(重点)3.会利用导数的定义求函数在某点处的导数.(重点、难点)一、函数平均变化率如果函数关系用y =f (x )表示,那么变化率可用式子f (x 2)-f (x 1)x 2-x 1表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率.习惯上用Δx 表示x 2-x 1,即Δx =x 2-x 1,可把Δx 看作是相对于x 1的一个“增量”,可用x 1+Δx 代替x 2;类似地,Δy =f (x 2)-f (x 1).于是平均变化率可以表示为Δy Δx. 二、导数的有关概念 1.瞬时变化率函数y =f (x )在x =x 0处的瞬时变化率是f (x 0+Δx )-f (x 0)Δx =ΔyΔx. 2.函数y =f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率称为函数y =f (x )在x =x 0处的导数,记作,即f ′(x 0)=ΔyΔx=f (x 0+Δx )-f (x 0)Δx.知识点一 平均变化率 【问题1】 气球的膨胀率 阅读教材,思考下面的问题.吹一只气球,观察一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度,如何描述这种现象呢?答案 气球的半径r (单位:dm)与体积V (单位:L)之间的函数关系是r (V )=33V4π, (1)当空气容量V 从0增加到1 L 时,气球半径增加了r (1)-r (0)≈0.62(dm), 气球的平均膨胀率为r (1)-r (0)1-0≈0.62(dm/L).(2)当空气容量V 从1 L 增加到2 L 时,气球半径增加了r (2)-r (1)≈0.16(dm), 气球的平均膨胀率为r (2)-r (1)2-1≈0.16(dm/L).可以看出,随着气球体积逐渐变大,它的平均膨胀率逐渐变小了. 【问题2】 高台跳水人们发现,在高台跳水运动中,运动员相对于水面的高度h (单位:m)与起跳后的时间t (单位:s)存在函数关系h (t )=-4.9t 2+6.5t +10.计算运动员在时间段①0≤t ≤0.5,②1≤t ≤2内的平均速度v ,并思考平均速度有什么作用? 答案 (1)在0≤t ≤0.5这段时间里,v =h (0.5)-h (0)0.5-0=4.05(m/s);(2)在1≤t ≤2这段时间里,v =h (2)-h (1)2-1=-8.2(m/s).由以上计算体会到平均速度可以描述运动员在某段时间内运动的快慢. 【问题3】 结合问题1和问题2说出你对平均变化率的理解.答案 (1)如果上述两个问题中的函数关系用y =f (x )表示,那么问题1中的变化率可用式子f (x 2)-f (x 1)x 2-x 1表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率,平均变化率可以描述一个函数在某个范围内变化的快慢.问题1中的平均变化率表示在空气容量从V 1增加到V 2时,气球半径的平均增长率.问题2中的平均变化率表示在时间从t 1增加到t 2时,高度h 的平均增长率.(2)平均变化率的几何意义就是函数y =f (x )图象上两点P 1(x 1,f (x 1)),P 2(x 2,f (x 2))所在直线的斜率. (3)平均变化率的取值①平均变化率可以表现函数的变化趋势,平均变化率为0,并不一定说明函数f (x )没有发生变化.②自变量的改变量Δx 取值越小,越能准确体现函数的变化规律. (4)平均变化率的物理意义平均变化率的物理意义是把位移s 看成时间t 的函数s =s (t ),在时间段[t 1,t 2]上的平均速度,即v =s (t 2)-s (t 1)t 2-t 1.知识点二 函数在某点处的导数【问题1】 (1)物体的平均速度能否精确反映它的运动状态? (2)什么叫做瞬时速度? (3)它与平均速度有什么关系?答案 (1)物体的平均速度不能精确地反映物体的运动状态,如高台跳水运动员相对于水面的高度h 与起跳时间t 的函数关系h (t )=-4.9t 2+6.5t +10,易知h (6549)=h (0),v =h (6549)-h (0)6546-0=0,而运动员依然是运动状态.(2)设物体运动的路程与时间的关系是s =f (t ),当Δt 趋近于0时,函数f (t )在t 0到t 0+Δt 之间的平均变化率f (t 0+Δt )-f (t 0)Δt趋近于常数,我们把这个常数称为t 0时刻的瞬时速度.(3)平均速度只能粗略地描述物体的运动状态,并不能反映物体在某一时刻的瞬时速度.当时间间隔|Δt |趋近于0时,平均速度v 就无限趋近于t 0时的瞬时速度.【问题2】 平均变化率与瞬时变化率有什么关系?答案 (1)区别:平均变化率不是瞬时变化率.平均变化率刻画函数值在区间[x 1,x 2]上变化的快慢,瞬时变化率刻画函数值在x 0点处变化的快慢.(2)联系:当Δx 趋近于0时,平均变化率ΔyΔx 趋近于一个常数,这个常数即为函数在x 0处的瞬时变化率,它是一个固定值.【问题3】 导数与瞬时变化率有什么关系? 答案 导数与瞬时变化率的关系导数是函数在x 0及其附近函数的改变量Δy 与自变量的改变量Δx 之比在Δx 趋近于0时所趋近的数,它是一个局部性的概念,若ΔyΔx存在,则函数y =f (x )在x 0处有导数,否则不存在导数.可以说导数就是函数在某点处的导数,例如,位移s 关于时间t 的导数就是运动物体在某时刻的瞬时速度.题型一 求函数的平均变化率求函数f (x )=x 2在x 0到x 0+Δx 之间的平均变化率. 【解析】 函数f (x )=x 2在x 0到x 0+Δx 的平均变化率为 f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=x 20+2x 0Δx +(Δx )2-x 2Δx=2x 0·Δx +(Δx )2Δx =2x 0+Δx .●规律方法求函数y =f (x )平均变化率的步骤(1)先计算函数值的改变量Δy =f (x 2)-f (x 1). (2)再计算自变量的改变量Δx =x 2-x 1. (3)得平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1.[特别提醒](1)求函数平均变化率时注意Δx ,Δy ,两者都可正、可负,但Δx 的值不能为零,Δy 的值可以为零. (2)求点x 0附近的平均变化率,可用f (x 0+Δx )-f (x 0)Δx的形式.1.若本例中,Δx =13,x 0=1,2,3,比较函数f (x )=x 2在哪一点附近的平均变化率最大?解析 x 0=1到x =1+13=43的平均变化率k 1=f ⎝⎛⎭⎫43-f (1)13=⎝⎛⎭⎫432-1213=73, x 0=2到x =73的平均变化率k 2=f ⎝⎛⎭⎫73-f (2)13=⎝⎛⎭⎫732-2213=133,x 0=3到x =103的平均变化率k 3=f ⎝⎛⎭⎫103-f (3)13=⎝⎛⎭⎫1032-3213=193,由于k 1<k 2<k 3,∴函数f (x )=x 2在x 0=3附近的平均变化率最大. 题型二 物体运动的瞬时速度物体自由落体的运动方程是s =12gt 2(g =9.8 m/s 2),求物体在t =3 s 这一时刻的速度.【解析】 平均速度Δs Δt =12g (3+Δt )2-12g ×32Δt=12g (6+Δt ). 当Δt 趋于0时,Δs Δt =12g (6+Δt )趋于3g ,所以v =3g =29.4(m/s),即物体在t =3 s 时的速度为29.4 m/s.●规律方法求运动物体瞬时速度的步骤(1)求时间改变量Δt 和位置改变量Δs =s (t 0+Δt )-s (t 0). (2)求平均速度v =ΔsΔt.(3)求瞬时速度:当Δt 无限趋近于0,ΔsΔt 无限趋近于的常数v 即为瞬时速度.提示 求ΔyΔx (当Δx 无限趋近于0时)的极限的方法(1)在极限表达式中,可把Δx 作为一个变量来参与运算.(2)求出ΔyΔx的表达式后,Δx 无限趋近于0就是令Δx =0,求出结果即可.2.一辆汽车按规律s =2t 2+3做直线运动,求这辆车在t =2时的瞬时速度(时间单位:s ,位移单位:m). 解析 设这辆车在t =2附近的时间变化量为Δt ,则位移的增量Δs =[2(2+Δt )2+3]-(2×22+3)=8Δt +2(Δt)2,ΔsΔt=8+2Δt,ΔsΔt=(8+2Δt)=8.所以,这辆车在t=2时的瞬时速度为8 m/s.题型三求函数在某点处的导数(6分)求函数y=x-1x在x=1处的导数.【规范解答】因为Δy=(1+Δx)-11+Δx-(1-11)=Δx+Δx1+Δx,(2分)所以ΔyΔx=Δx+Δx1+ΔxΔx=1+11+Δx.(4分)当Δx→0时,f′(1)=ΔyΔx=(1+11+Δx)=2,即函数y=x-1x在x=1处的导数为2.(6分)●规律方法求函数y=f(x)在x=x0处的导数的步骤(1)求函数值的变化量Δy=f(x0+Δx)-f(x0);(2)求平均变化率ΔyΔx=f(x0+Δx)-f(x0)Δx;(3)取极限,得导数f′(x0)=ΔyΔx.3.利用导数的定义求函数f(x)=-x2+3x在x=2处的导数.解析由导数的定义知,函数在x=2处的导数f′(2)=f(2+Δx)-f(2)Δx,而f(2+Δx)-f(2)=-(2+Δx)2+3(2+Δx)-(-22+3×2)=-(Δx)2-Δx,于是f′(2)=-(Δx)2-ΔxΔx=(-Δx-1)=-1.易错误区(一) 对导数的概念理解不清致误若函数f (x )在x =a 的导数为m ,那么 f (a +2Δx )-f (a -2Δx )Δx 的值为________.【解析】f (a +2Δx )-f (a -2Δx )Δx=f (a +2Δx )-f (a )+f (a )-f (a -2Δx )Δx=f (a +2Δx )-f (a )Δx +f (a )-f (a -2Δx )Δx ①=2f (a +2Δx )-f (a )2Δx+2f (a -2Δx )-f (a )-2Δx=2m +2m =4m . 【答案】 4m [易错防范]1.误认为①处两极限值均为m ,即运算结果为2m .2.对平均变化率中自变量的增加量“Δx ”理解不当.在平均变化率f (x 0+Δx )-f (x 0)Δx 中,分子中的“Δx ”与分母中的“Δx ”应取相同值,且可正可负.3.熟记瞬时变化率(即导数)的几种变形形式f (x 0+Δx )-f (x 0)Δx=f (x 0-Δx )-f (x 0)-Δx=f (x 0+n Δx )-f (x 0)n Δx=f (x 0+Δx )-f (x 0-Δx )2Δx=f ′(x 0).若f ′(1)=2 016,则f (1+Δx )-f (1)-2Δx=________.解析f (1+Δx )-f (1)-2Δx=-12f (1+Δx )-f (1)Δx=-12f ′(1)=-12×2 016=-1 008.答案 -1 008[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.质点运动规律s =2t 2+5,则在时间(2,2+Δt )中,相应的平均速度等于 A .8+2Δt B .8+2Δt +4ΔtC .4+ΔtD .8+Δt解析 Δs =s (2+Δt )-s (2)=2(2+Δt )2+5-(2×22+5)=2(Δt )2+8Δt . ∴Δs Δt =2(Δt )2+8Δt Δt =8+2Δt . 答案 A2.函数y =x 2-2x 在x =2附近的平均变化率是 A .2B .ΔxC .Δx +2D .1解析 Δy =f (2+Δx )-f (2) =(2+Δx )2-2(2+Δx )-(4-4) =(Δx )2+2Δx ,∴Δy Δx =(Δx )2+2Δx Δx=Δx +2.答案 C3.设函数y =f (x )可导,则f (1+3Δx )-f (1)Δx 等于 A .f ′(1)B .3f ′(1) C.13f ′(1) D .以上都不对 解析 f (1+3Δx )-f (1)Δx=3f (1+3Δx )-f (1)3Δx =3f ′(1). 答案 B4.一个物体的运动方程为s =(2t +1)2,其中s 的单位是米,t 的单位是秒,那么该物体在1秒末的瞬时速度是A .10米/秒B .8米/秒C .12米/秒D .6米/秒解析 ∵s =4t 2+4t +1,Δs =[4(1+Δt )2+4(1+Δt )+1]-(4×12+4×1+1)=4(Δt )2+12Δt ,Δs Δt =4(Δt )2+12Δt Δt=4Δt +12, ∴v =Δs Δt =(4Δt +12)=12(米/秒). 答案 C5.如果函数y =f (x )=x 在点x =x 0处的瞬时变化率是33,那么x 0的值是 A.34B.12 C .1D .3解析 函数f (x )=x 在x =x 0处的瞬时变化率,f ′(x 0)=x 0+Δx -x 0Δx =Δx Δx (x 0+Δx +x 0)=12x 0=33,答案 A 6.某物体做直线运动,其运动规律是s =t 2+16t(t 的单位是秒,s 的单位是米),则它的瞬时速度为0米/秒的时刻为A .8秒末B .6秒末C .4秒末D .2秒末解析 设当t =t 0时该物体瞬时速度为0米/秒,∵Δs Δt =(t 0+Δt )2+16t 0+Δt -⎝⎛⎭⎫t 20+16t 0Δt =2t 0+Δt -16(t 0+Δt )t 0, ∴Δs Δt=2t 0-16t 20, 由2t 0-16t 20=0得t 0=2. 答案 D二、填空题(每小题5分,共15分)7.函数y =-3x 2+6在区间[1,1+Δx ]内的平均变化率是________.解析 Δy Δx =[-3(1+Δx )2+6]-(-3×12+6)Δx=-6Δx -3(Δx )2Δx=-6-3Δx . 答案 -6-3Δx8.一质点的运动方程为s =1t,则t =3时的瞬时速度为________. 解析 由导数定义及导数的物理意义知s ′=1t +Δt -1t Δt=-Δt (t +Δt )·t ·Δt =-1t 2+t ·Δt =-1t 2, ∴s ′ |t =3=-19,即t =3时的瞬时速度为-19.9.已知曲线y =1x -1上两点A ⎝⎛⎭⎫2,-12、B ⎝⎛⎭⎫2+Δx ,-12+Δy ,当Δx =1时,割线AB 的斜率为________. 解析 Δy =⎝ ⎛⎭⎪⎫12+Δx -1-⎝⎛⎭⎫12-1 =12+Δx -12=2-(2+Δx )2(2+Δx )=-Δx 2(2+Δx ). ∴Δy Δx =-Δx2(2+Δx )Δx =-12(2+Δx ), 即k =Δy Δx =-12(2+Δx ). ∴当Δx =1时,k =-12×(2+1)=-16. 答案 -16三、解答题(本大题共3小题,共35分)10.(10分)一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2.(1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度;(3)求t =0到t =2的平均速度.解析 (1)v 0=s (Δt )-s (0)Δt=3Δt -(Δt )2Δt=(3-Δt )=3. (2)v 2=s (2+Δt )-s (2)Δt =(-Δt -1)=-1.(3)v -=s (2)-s (0)2=6-4-02=1. 11.(12分)已知f (x )=x 2,g (x )=x 3,求适合f ′(x 0)+2=g ′(x 0)的x 0值.解析 由导数的定义知,f ′(x 0)=Δf Δx =(x 0+Δx )2-x 20Δx =2x 0,g ′(x 0)=Δg Δx =(x 0+Δx )3-x 30Δx=3x 20. 因为f ′(x 0)+2=g ′(x 0),所以2x 0+2=3x 20,即3x 20-2x 0-2=0,解得x 0=1-73或x 0=1+73.12.(13分)节日期间燃放烟花是中国的传统习惯之一,制造时通常希望它在达到最高点时爆裂.如果烟花距地面的高度h (m)与时间t (s)之间的关系式为h (t )=-4.9t 2+14.7t +18,求烟花在t =2 s 时的瞬时速度,并解释烟花升空后的运动状况.解析 因为Δh Δt =h (t +Δt )-h (t )Δt=-9.8t -4.9Δt +14.7, 所以h ′(t )=Δh Δt =(-9.8t -4.9Δt +14.7)=-9.8t +14.7,所以h ′(2)=-4.9,即在t =2 s 时烟花正以4.9 m/s 的速度下降.由h ′(t )=0得t =1.5,所以在t =1.5 s 附近,烟花运动的瞬时速度几乎为0,此时达到最高点并爆裂,在1.5 s 之前,导数大于0且递减,所以烟花以越来越小的速度上升,在1.5 s 之后,导数小于0且绝对值越来越大,所以烟花以越来越大的速度下降,直至落地.§1.1.3 导数的几何意义[课标要求]1.了解导函数的概念;理解导数的几何意义.(难点)2.会求导函数.(重点)3.根据导数的几何意义,会求曲线上某点处的切线方程.(重点、易错点)一、导数的几何意义1.切线:如图,当点P n (x n ,f (x n ))(n =1,2,3,4…)沿着曲线f (x )趋近于点P (x 0,f (x 0))时,割线PP n 趋近于确定的位置,这个确定位置的直线PT 称为点P 处的切线.显然割线PP n 的斜率是k n =f (x n )-f (x 0)x n -x 0,当点P n 无限趋近于点P 时,k n 无限趋近于切线PT 的斜率.2.几何意义:函数y =f (x )在x =x 0处的导数的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,即曲线y =f (x )在点P (x 0,f (x 0))处的切线斜率k =f (x 0+Δx )-f (x 0)Δx=f ′(x 0).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).二、函数y =f (x )的导函数从求函数f (x )在x =x 0处导数的过程可以看到,当x =x 0时,f ′(x 0)是一个确定的数.这样,当x 变化时, f ′(x )便是x 的一个函数,我们称它为f (x )的导函数(简称导数).y =f (x )的导函数有时也记作y ′,即f ′(x )=y ′=f (x +Δx )-f (x )Δx.知识点一 导数的几何意义【问题1】 曲线的切线是不是一定和曲线只有一个公共点?答案 不一定.曲线的切线和曲线不一定只有一个公共点,和曲线只有一个公共点的直线和曲线也不一定相切.如图,曲线的切线是通过逼近将割线趋于确定位置的直线.【问题2】 曲线f (x )在点(x 0,f (x 0))处的切线与曲线过某点(x 0,y 0)的切线有何不同?答案 曲线f (x )在点(x 0,f (x 0))处的切线,点(x 0,f (x 0))一定是切点,只要求出k =f ′(x 0),利用点斜式写出切线即可;而曲线f (x )过某点(x 0,y 0)的切线,给出的点(x 0,y 0)不一定在曲线上,即使在曲线上也不一定是切点.知识点二 导数与函数的单调性【问题1】 观察下面两个图形,在曲线的切点附近(Δx →0时)曲线与那一小段线段有何关系?答案 能在曲线的切点附近,曲线与切线贴合在一起,可用切线近似代替曲线.【问题2】 按照切线近似代替曲线的思想,切线的单调性能否表示曲线的变化趋势?如上左图,若在某一区间上曲线上各点的切线斜率均为负,则可判定在该区间上曲线的单调性如何?答案 在连续区间上切线斜率的正负,对应了曲线的单调性.【问题3】 如问题1中右图,当t 在(t 0,t 2)上变化时,其对应各点的导数值变化吗?会怎样变化? 答案 会.当t 变化时h ′(t )便是t 的一个函数,我们称它为h (t )的导函数.知识点三 函数y =f (x )的导函数【问题】 函数在某点处的导数与导函数有什么关系?答案 区别:(1)f ′(x )是函数f (x )的导函数,简称导数,是对一个区间而言的,它是一个确定的函数,依赖于函数本身,而与x 0,Δx 无关;(2)f ′(x 0)表示的是函数f (x )在x =x 0处的导数,是对一个点而言的,它是一个确定的值,与给定的函数及x 0的位置有关,而与Δx 无关.联系:在x =x 0处的导数f ′(x 0)是导函数f ′(x )在x =x 0处的函数值,因此求函数在某一点处的导数,一般先求导函数,再计算导函数在这点的函数值.题型一 求曲线的切线方程已知曲线y =13x 3上一点P ⎝⎛⎭⎫2,83,如图,求:(1)点P 处的切线的斜率;(2)点P 处的切线方程.【解析】 (1)∵y =13x 3, ∴y ′=Δy Δx =13(x +Δx )3-13x 3Δx =133x 2Δx +3x (Δx )2+(Δx )3Δx =13[3x 2+3x Δx +(Δx )2]=x 2, y ′|x =2=22=4.∴点P 处的切线的斜率等于4.(2)在点P 处的切线方程是y -83=4(x -2), 即12x -3y -16=0.●规律方法求曲线上某点处的切线方程的步骤(1)求出该点的坐标.(2)求出函数在该点处的导数,即曲线在该点处的切线的斜率.(3)利用点斜式写出切线方程.1.例1中的P 点换为坐标原点(0,0),其他不变,如何解答?解析 由例1知y =13x 3的导函数为y ′=x 2. (1)点P 处的切线斜率k =0.(2)在点P 处的切线方程是y -0=0×(x -0)即y =0.(注意:原点处的切线即x 轴,结合图象理解切线的定义)题型二 求切点坐标过曲线y =x 2上哪一点的切线满足下列条件?(1)平行于直线y =4x -5;(2)垂直于直线2x -6y +5=0;(3)倾斜角为135°.【解析】 f ′(x )=f (x +Δx )-f (x )Δx=(x +Δx )2-x 2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,x 0=2,y 0=4,即P (2,4)是满足条件的点.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,得x 0=-32,y 0=94, 即P ⎝⎛⎭⎫-32,94是满足条件的点. (3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,得x 0=-12,y 0=14, 即P ⎝⎛⎭⎫-12,14是满足条件的点. ●规律方法求切点坐标的一般步骤(1)先设切点坐标(x 0,y 0).(2)求导函数f ′(x ).(3)求切线的斜率f ′(x 0).(4)由已知条件求出切线的斜率k .由此得到方程f ′(x 0)=k ,解此方程求出x 0.(5)由于点(x 0,y 0)在曲线y =f (x )上,故将x 0代入曲线方程可得y 0,即可写出切点坐标.2.(1)曲线y =x 2-3x 在点P 处的切线平行于x 轴,则点P 的坐标为________.(2)已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________. 解析 (1)根据题意可设切点为P (x 0,y 0),因为Δy =(x +Δx )2-3(x +Δx )-(x 2-3x )=2x Δx +(Δx )2-3Δx , Δy Δx =2x +Δx -3, 所以f ′(x )=Δy Δx =(2x +Δx -3)=2x -3.由f ′(x 0)=0,即2x 0-3=0,得x 0=32, 代入曲线方程得y 0=-94, 所以P ⎝⎛⎭⎫32,-94. (2)由导数的几何意义得f ′(1)=12, 由切线方程得f (1)=12×1+2=52, 所以f (1)+f ′(1)=3.答案 (1)⎝⎛⎭⎫32,-94 (2)3 题型三 导数几何意义的综合应用已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 1,l 2的方程;(2)求由直线l 1、l 2和x 轴所围成的三角形的面积.【解析】 (1)f ′(1)=Δy Δx =f (1+Δx )-f (1)Δx=[(1+Δx )2+(1+Δx )-2]-(1+1-2)Δx=(Δx +3)=3, 所以直线l 1的方程为y =3x -3.设直线l 2与曲线y =x 2+x -2相切于点B (b ,b 2+b -2),则可求得切线l 2的斜率为2b +1.因为l 1⊥l 2,则有2b +1=-13,b =-23. 所以直线l 2的方程为y =-13x -229. (2)解方程组⎩⎪⎨⎪⎧y =3x -3,y =-13x -229,得⎩⎨⎧x =16,y =-52.所以直线l 1和l 2的交点坐标为⎝⎛⎭⎫16,-52. l 1、l 2与x 轴交点的坐标分别为(1,0)、⎝⎛⎭⎫-223,0. 所以所求三角形的面积S =12×253×⎪⎪⎪⎪-52=12512. ●规律方法与导数几何意义相关题目的解题策略(1)与导数的几何意义相关的综合问题解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可以求切点,切点的坐标是常设的未知量.(2)与导数的几何意义相关的题目往往涉及解析几何的相关知识,如直线间的位置关系等,因此要综合应用所学知识解题.3.设函数f (x )=x 3+ax 2-9x -1(a <0),若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求a 的值. 解析 ∵Δy =f (x 0+Δx )-f (x 0)=(x 0+Δx )3+a (x 0+Δx )2-9(x 0+Δx )-1-(x 30+ax 20-9x 0-1)=(3x 20+2ax 0-9)Δx +(3x 0+a )(Δx )2+(Δx )3, ∴Δy Δx=3x 20+2ax 0-9+(3x 0+a )Δx +(Δx )2.当Δx 无限趋近于零时,Δy Δx 无限趋近于3x 20+2ax 0-9,即f ′(x 0)=3x 20+2ax 0-9. ∴f ′(x 0)=3⎝⎛⎭⎫x 0+a 32-9-a23. 当x 0=-a 3时,f ′(x 0)取最小值-9-a 23.∵斜率最小的切线与12x +y =6平行, ∴该切线斜率为-12. ∴-9-a 23=-12.解得a =±3.又a <0,∴a =-3.规范解答(一) 求曲线过点P (x 1,y 1)的切线方程(12分)已知函数y =f (x )=x 3-3x 及y =f (x )上一点P (1,-2),求过点P 与曲线y =f (x )相切的直线l的方程.[审题指导]【规范解答】 (1)y ′=(x +Δx )3-3(x +Δx )-x 3+3xΔx=3x 2-3.(2分)设切点坐标为(x 0,x 30-3x 0), 则直线l 的斜率k =f ′(x 0)=3x 20-3,所以直线l 的方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0).又因为直线l 过点P (1,-2),所以-2-(x 30-3x 0)=(3x 20-3)(1-x 0), 所以2x 30-3x 20+1=0,即(x 0-1)2(2x 0+1)=0,解得x 0=1或x 0=-12.(6分)故所求直线斜率为k =3x 20-3=0或k =3x 20-3=-94, 于是y -(-2)=0·(x -1)或y -(-2)=-94(x -1),即y =-2或y =-94x +14.(10分)故过点P (1,-2)的切线方程为 y =-2或y =-94x +14.(12分)[题后悟道]1.求过点P (x 1,y 1)的切线方程的步骤: (1)设切点(x 0,f (x 0)).(2)利用所设切点求斜率k =Δy Δx. (3)用(x 0,f (x 0)),P (x 1,y 1)表示斜率(或利用切点和斜率写出切线方程).(4)根据斜率相等求得x 0,然后求得斜率k (或利用已写出的切线过点P (x ,y ),求出x 0,然后求得斜率k ). (5)根据点斜式写出切线方程. 2.注意事项:(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异.过点P 的切线,点P 不一定是切点,也不一定在曲线上;在点P 处的切线,点P 必为切点,且在曲线上.(2)若曲线y =f (x )在点x 0处的导数f ′(x 0)不存在,则切线与y 轴平行或不存在;若f ′(x 0)=0,则切线与x 轴平行.已知曲线y =2x 2-7,求曲线过点P (3,9)的切线方程. 解析 y ′=Δy Δx=[2(x +Δx )2-7]-(2x 2-7)Δx=(4x +2Δx )=4x .由于2×32-7=11≠9,故点P (3,9)不在曲线上.设切点为A (x 0,y 0),则切线的斜率k =4x 0, 故所求切线方程为y -y 0=4x 0(x -x 0). 将P (3,9)及y 0=2x 20-7代入上式,得 9-(2x 20-7)=4x 0(3-x 0).解得x 0=2或x 0=4,所以切点为(2,1)或(4,25). 从而所求切线方程为8x -y -15=0或16x -y -39=0.[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.已知y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定解析 由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小, 结合导数的几何意义知f ′(x A )<f ′(x B ),选B. 答案 B2.曲线y =12x 2-2在点⎝⎛⎭⎫1,-32处的切线的倾斜角为 A .1 B.π4 C.5π4D .-π4解析 f ′(1)=12(1+Δx )2-2+32Δx=12+Δx +12(Δx )2-2+32Δx=(1+12Δx )=1,即切线的斜率为1,故切线的倾斜角为π4.答案 B3.若曲线y =2x 2-4x +a 与直线y =1相切,则a 等于 A .1 B .2 C .3D .4解析 设切点坐标为(x 0,1), 则f ′(x 0)=[2(x 0+Δx )2-4(x 0+Δx )+a ]-(2x 20-4x 0+a )Δx=(4x 0+2Δx -4)=4x 0-4=0,∴x 0=1,即切点坐标为(1,1). ∴2-4+a =1,即a =3. 答案 C4.设曲线y =x 2+x -2在点M 处的切线斜率为3,则点M 的坐标为 A .(0,-2) B .(1,0) C .(0,0)D .(1,1)解析 设点M (x 0,y 0), ∴k =(x 0+Δx )2+(x 0+Δx )-2-(x 20+x 0-2)Δx=2x 0+1, 令2x 0+1=3,∴x 0=1,则y 0=0.故选B. 答案 B5.曲线y =x 2在点(1,1)处的切线与坐标轴所围三角形的面积为 A.14B.12 C .1D .2 解析 f ′(1)=Δy Δx=(1+Δx )2-1Δx=(2+Δx )=2.则曲线在点(1,1)处的切线方程为y -1=2(x -1), 即y =2x -1.则三角形的面积为S =12×1×12=14.答案 A6.已知点P 在曲线F :y =x 3-x 上,且曲线F 在点P 处的切线与直线x +2y =0垂直,则点P 的坐标为 A .(1,1)B .(-1,0)C .(-1,0)或(1,0)D .(1,0)或(1,1)解析 设点P (x 0,y 0),则f ′(x 0)=ΔyΔx=[(x 0+Δx )3-(x 0+Δx )]-(x 30-x 0)Δx=3x 20-1=2⇒x 0=±1. 答案 C二、填空题(每小题5分,共15分)7.如果函数f (x )在x =x 0处的切线的倾斜角是钝角,那么函数f (x )在x =x 0附近的变化情况是________(填“逐渐上升”或“逐渐下降”).解析 由题意知f ′(x 0)<0,根据导数的几何意义知,f (x )在x =x 0附近的变化情况是“逐渐下降”. 答案 逐渐下降8.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则ab =________.解析a (1+Δx )2+b -(a +b )Δx=(a Δx +2a )=2a =2,∴a =1,又3=a ×12+b ,∴b =2, 即a b =12. 答案 129.已知曲线y =x 24的一条切线的斜率为12,则切点的坐标为________.解析 设切点的坐标为(x 0,y 0), 因为Δy Δx =(x 0+Δx )24-x 204Δx =12x 0+14Δx ,当Δx →0时,Δy Δx →12x 0,而切线的斜率为12,所以12x 0=12,所以x 0=1,y 0=14.故切点坐标为⎝⎛⎭⎫1,14. 答案 ⎝⎛⎭⎫1,14 三、解答题(本大题共3小题,共35分) 10.(10分)已知曲线C :y =x 3.求:(1)曲线C 上横坐标为1的点处的切线的方程;(2)第(1)小题中的切线与曲线C 是否还有其他的公共点? 解析 (1)将x =1代入曲线C 的方程得y =1, ∴切点为P (1,1). ∵y ′=ΔyΔx=(x +Δx )3-x 3Δx=3x 2Δx +3x (Δx )2+(Δx )3Δx=[3x 2+3x Δx +(Δx )2]=3x 2,∴y ′|x =1=3.∴点P 处的切线方程为y -1=3(x -1), 即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)(x 2+x -2)=0,解得x 1=1,x 2=-2.从而求得公共点为P (1,1)或P (-2,-8). 故第(1)小题中的切线与曲线C 还有其他的公共点.11.(12分)已知一物体的运动方程是s =⎩⎪⎨⎪⎧3t 2+2,0≤t <3,29+3(t -3)2,t ≥3.求此物体在t =1和t =4时的瞬时速度. 解析 当t =1时,Δs Δt =3(1+Δt )2+2-(3×12+2)Δt =6+3Δt , 所以s ′(1)=ΔsΔt=(6+3Δt )=6.故当t =1时的瞬时速度为6. 当t =4时,Δs Δt =29+3(4+Δt -3)2-[29+3×(4-3)2]Δt =6+3Δt , 所以s ′(4)=ΔsΔt=(6+3Δt )=6,故当t =4时的瞬时速度为6.12.(13分)已知曲线f (x )=x 2的一条在点P (x 0,y 0)处的切线,求: (1)切线平行于直线y =-x +2时切点P 的坐标及切线方程; (2)切线垂直于直线12x -4y +5=0时切点P 的坐标及切线方程;(3)切线的倾斜角为60°时切点P 的坐标及切线方程. 解析 f ′(x 0)=(x 0+Δx )2-x 20Δx=2x 0.(1)因为切线与直线y =-x +2平行, 所以2x 0=-1,x 0=-12,即P ⎝⎛⎭⎫-12,14, 所以切线方程为y -14=-⎝⎛⎭⎫x +12, 即4x +4y +1=0.(2)因为切线与直线12x -4y +5=0垂直,所以2x 0·18=-1,x 0=-4,即P (-4,16).所以切线方程为y -16=-8(x +4), 即8x +y +16=0.(3)因为切线的倾斜角为60°,所以切线的斜率为3,即2x 0=3,x 0=32, 所以P ⎝⎛⎭⎫32,34,所以切线方程为y -34=3⎝⎛⎭⎫x -32, 即43x -4y -3=0.§1.2 导数的计算§1.2.1 几个常用函数的导数§1.2.2 基本初等函数的导数公式及导数的运算法则(一)[课标要求]1.能根据导数的定义求函数y =c ,y =x ,y =x 2,y =x ,y =1x 的导数.(难点)2.掌握基本初等函数的导数公式并能进行简单的应用.(重点、难点)一、常用函数的导数原函数导函数f (x )=c f ′(x )=0 f (x )=x f ′(x )=1 f (x )=x 2 f ′(x )=2x f (x )=1xf ′(x )=-1x 2f (x )=xf ′(x )=12x二、基本初等函数的导数公式原函数导函数①f (x )=c f ′(x )=0 ②f (x )=x n (n ∈Q *) f ′(x )=nx n -1 ③f (x )=sin x f ′(x )=cos_x ④f (x )=cos x f ′(x )=-sin_x ⑤f (x )=a x (a >0) f ′(x )=a x ln_a ⑥f (x )=e xf ′(x )=e x ⑦f (x )=log a x (a >0且a ≠1) f ′(x )=1x ln a⑧f (x )=ln xf ′(x )=1x知识点一 几个常用函数的导数【问题1】 用定义求下列常用函数的导数: ①y =c ;②y =x ;③y =x 2;④y =1x ;⑤y =x .答案 ①y ′=0;②y ′=1;③y ′=2x ;④y ′=Δy Δx=1x +Δx -1xΔx=-1x (x +Δx )=-1x 2(其他类似);⑤y ′=12x.【问题2】 导数的几何意义是曲线在某点处的切线的斜率.物理意义是运动物体在某一时刻的瞬时速度. (1)函数y =f (x )=c (常数)的导数的物理意义是什么? (2)函数y =f (x )=x 的导数的物理意义呢?答案 (1)若y =c 表示路程关于时间的函数,则y ′=0可以解释为某物体的瞬时速度始终为0,即一直处于静止状态.(2)若y =x 表示路程关于时间的函数,则y ′=1可以解释为某物体做瞬时速度为1的匀速运动. 【问题3】 由正比例函数y =kx (k ≠0)的图象及导数可知;|k |越大函数增加(k >0)或减少(k <0)的速度越 快.画出函数y =x 2的图象,结合图象及导数说明函数y =x 2的变化情况.答案 图象如图从导数作为函数在一点的瞬时变化率来看,y ′=2x 表明:当x <0时,随着x 的增加,y =x 2减少得越来越慢;当x >0时,随着x 的增加,y =x 2增加得越来越快.若y =x 2表示路程关于时间的函数,则y ′=2x 可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x .知识点二 基本初等函数的导数公式【问题】 你能说出基本初等函数的导数公式的特点吗? 答案 (1)常数函数的导数为零.(2)有理数幂函数f (x )=x α的导数依然为幂函数,且系数为原函数的次数,幂指数是原函数的幂指数减去1. (3)正弦函数的导数为余弦函数,余弦函数的导数为正弦函数的相反数. (4)指数函数的导数依然为指数函数,且系数为原函数底数的自然对数. (5)公式⑥是公式⑤的特例,公式⑧是公式⑦的特例.题型一 利用公式求导数求下列函数的导数:(1)y =x 7;(2)y =1x 2;(3)y =3x ;(4)y =2sin x 2cos x2;(5)y =log 12x 2-log 12x .【解析】 (1)y ′=7x 7-1=7x 6. (2)∵y =x -2,∴y ′=-2x -2-1=-2x -3. (3)∵y =x 13,∴y ′=13x -23.(4)∵y =2sin x 2cos x2=sin x ,∴y ′=cos x .(5)∵y =log 12x 2-log 12x =log 12x ,∴y ′=(log 12x )′=1x ln 12.●规律方法用公式求函数导数的方法(1)若所求函数符合导数公式,则直接利用公式求解.(2)对于不能直接利用公式的类型,关键是将其合理转化为可以直接应用公式的基本函数的模式,如y =1x 2可以写成y =x -2,y = 3x =x 13等,这样就可以直接使用幂函数的求导公式求导,以免在求导过程中出现指数或系数的运算失误.1.求下列函数的导数:(1)y =lg 4;(2)y =2x;(3)y =x 2x ;(4)y =2cos 2x 2-1. 解析 (1)y ′=(lg 4)′=0;(2)y ′=(2x )′=2x ln 2;(3)∵y =x 2x=x 2-12=x 32,∴y ′=(x 32)′=32x 12; (4)∵y =2cos 2x 2-1=cos x , ∴y ′=(cos x )′=-sin x .题型二 导数公式在解决切线问题中的应用(6分)已知点P (-1,1),点Q (2,4)是曲线y =x 2上的两点,求与直线PQ 平行的曲线y =x 2的切线方程.【规范解答】 y ′=(x 2)′=2x ,设切点为M (x 0,y 0),则y ′0|x x ==2x 0.(2分)∵PQ 的斜率为k =4-12+1=1,而切线平行于PQ , ∴k =2x 0=1,即x 0=12,所以切点为M ⎝⎛⎭⎫12,14.(4分) ∴所求的切线方程为y -14=x -12,(5分) 即4x -4y -1=0.(6分)●规律方法利用导数解决求曲线的切线方程问题的策略求曲线的切线方程主要有两种类型.(1)已知切点型,其步骤为: 求导函数―→求切点处导数,即切线斜率―→写出切线方程 (2)未知切点型,其步骤为:设切点―→求导函数―→求切线斜率k =f ′(x 0) 写出切线的点斜式方程―→列出关于x 0的方程(组)―→求切点―→写出切线方程2.求曲线y =x 过点(3,2)的切线方程.解析 ∵点(3,2)不在曲线y =x 上,∴设过(3,2)与曲线y =x 相切的直线在曲线的切点为(x 0,y 0),则y 0=x 0. ∵y =x ,∴y ′=(x 12)′=12x 12-1=12x. ∴根据导数的几何意义,曲线在点(x 0,y 0)处的切线斜率k =12x 0. ∵切线过点(3,2),∴2-y 03-x 0=12x 0,2-x 03-x 0=12x 0, 整理得(x 0)2-4x 0+3=0,解得x 0=1,x 0=9,∴切点坐标为(1,1)或(9,3).(1)当切点坐标为(1,1)时,切线斜率k =12, ∴切线方程为y -2=12(x -3),即x -2y +1=0. (2)当切点坐标为(9,3)时,切线斜率k =16,∴切线方程为y -2=16(x -3),即x -6y +9=0. 综上可知:曲线y =x 过点(3,2)的切线方程为:x -2y +1=0或x -6y +9=0.易错误区(二) 正确使用求导公式已知直线y =kx 是曲线f (x )=e x 的切线,则k 的值等于________.【解析】 设切点的坐标为(x 0,y 0),由f (x )=e x ,可得y ′=f ′(x )=e x ,又k =y 0x 0,f ′(x 0)=0e x , 所以0e x =y 0x 0且y 0=0e x ①. 解得x 0=1,y 0=e.k =y 0x 0=e. 【答案】 e[易错防范]1.①处一要注意导数0e x ,即切线斜率y 0x 0,二要注意切点在曲线上,即y 0=0e x . 2.导数几何意义的应用本例实质是求过点(0,0)且与曲线y =e x 相切的直线方程的斜率.要把切线的斜率与导数联系起来,要注意切点的坐标既满足切线方程又满足曲线方程.3.牢记导数公式导数公式是函数导数计算的关键,解题时要注意使用.例如,在本例中,要正确应用公式(e x )′=e x .已知曲线y =1x3在点P (-1,-1)处的切线与直线m 平行且距离等于10,求直线m 的方程.解析 因为y ′=-3x 4, 所以曲线在点P (-1,-1)处的切线斜率为k =-3,则切线方程为y +1=-3(x +1),即3x +y +4=0.由题意设直线m 的方程为3x +y +b =0(b ≠4),所以|b -4|32+12=10,所以|b -4|=10, 所以b =14或b =-6,所以直线m 的方程为3x +y +14=0或3x +y -6=0.[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.下列结论不正确的是A .若y =3,则y ′=0B .若y =1x ,则y ′=-x 2C .若y =x ,则y ′=12x D .若y =x ,则y ′=1解析 对于A ,常数的导数为零,故A 正确;对于B ,y ′=(x -12)′=-12x -32=-12x 3,故B 错误; 对于C ,y ′=(x 12)′=12x -12=12x,故C 正确; 对于D ,y ′=x ′=1,故D 正确.答案 B2.已知曲线f (x )=x 3的切线的斜率等于3,则切线有A .1条B .2条C .3条D .不确定 解析 ∵f ′(x )=3x 2=3,解得x =±1,切点有两个,即可得切线有两条.。

人教版A版高中数学选修2-2:定积分的概念教学内容

人教版A版高中数学选修2-2:定积分的概念教学内容
由此,我们得到求曲边梯形面积的第三步为:
求和:求出n个小矩形面积之和,作为曲边梯
n
形面积S的近似值,即S Sn i1
1 f i 1 n n
n
由 Sn
i 1
1 f i 1 n n
n
1
i
1
2
i1 n n
1
0
1
1
2
1
2
2
1
n
1
2
n n n n n n n
1 n3
n
1n2n
1
0.8
0.6
0.4
f(x) = x2
0.2
01
n
0.2
2 3 4 0.5 nn n
i 1 i nn
f (i 1) n
1 n
A
1
f(i) n
f (i 1) n
f(i) n
1 n
1 n
1.5
2
0.4
1.4
以第一种方1.2法为例,可把曲边梯形分割成n个小矩形
1
0.8
0.6
0.4
f(x) = x2
0.2
0
0.5
1
0.2
当分割的小矩形越来越多时,观察所有的矩形面积之 1.4
和与曲边梯形的面积有什么关系
1.2
1
0.8
0.6
n = 10.00
0.4
f(x) = x2
0.2
0
0.5
1
0.2
当分割的1.4小矩形越来越多时,观察所有的矩形面积之 和与曲边梯形的面积有什么关系
1.2
1
0.8
0.6
n = 20.00
即S

高中数学 1.5.1曲边梯形的面积学案 新人教A版选修2-2

高中数学 1.5.1曲边梯形的面积学案 新人教A版选修2-2

1.5 定积分的概念1.5.1 曲边梯形的面积1.了解求曲边梯形的面积的方法.2.了解“以直代曲”和逼近的思想,借助几何直观体会定积分的基本思想.基础梳理1.连续函数:如果函数y=f(x)在某个区间I上的图象是一条连续不断的曲线,那么就把它称为区间I上的连续函数.2.曲边梯形:在直角坐标系中,由连续曲线y=f(x),直线x=a、x=b及x轴所围成的图形叫做曲边梯形(如图所示).3.将曲边梯形分成n个小曲边梯形,并用小矩阵形的面积代替小曲边梯形的面积,于是曲边梯形的面积S近似的表示为S=S1+S2+…+S n,当n越来越大,即小曲边梯形越来越多时,这些小曲边梯形的面积之和就无限趋近于曲边梯形的面积(如下图所示).想一想:求由抛物线f (x )=x 2,直线x =0,x =1以及x 轴所围成的平面图形的面积时,若将区间[0,1]5等分,如图所示,以小区间中点的纵坐标为高,则所有小矩形的面积之和为________.解析:由题意得面积之和S =(0.12+0.32+0.52+0.72+0.92)×0.2=0.33. 自测自评 1.函数f (x )=x 2在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上(D )A .f (x )的值变化很小B .f (x )的值变化很大C .f (x )的值不变化D .当n 很大时,f (x )的值变化很小 解析:函数f (x )=x 2在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上,随着n 的增大,f (x )的值的变化逐渐缩小,当n 很大时,f (x )的值变化很小.2.当n 很大时,函数f (x )=x 2在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上的值可以用下列哪个值近似代替(C )A .f ⎝ ⎛⎭⎪⎫1n B .f ⎝ ⎛⎭⎪⎫2n C .f ⎝ ⎛⎭⎪⎫i n D .f (0)解析:当n 很大时,f (x )=x 2在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上的值可用该区间上任何一点的函数值近似代替,显然可以用左端点或右端点的函数值近似代替.基础巩固1.在计算由曲线y =-x 2以及直线x =-1,x =1,y =0所围成的图形的面积时,若将区间[-1,1]n 等分,则每个小区间的长度为(B )A.1nB.2nC.2n -1 D.2n +12.在求由函数y =1x与直线x =1,x =2,y =0所围成的平面图形的面积时,把区间[1,2]等分成n 个小区间,则第i 个小区间为(B )A.⎣⎢⎡⎦⎥⎤i -1n ,i n B.⎣⎢⎡⎦⎥⎤n +i -1n ,n +i nC .[i -1,i ] D.⎣⎢⎡⎦⎥⎤i n ,i +1n 解析:把区间[1,2]等分成n 个小区间后,每个小区间的长度为1n,且第i 个小区间的左端点不小于1,故选B.3.在“近似代替”中,函数f (x )在区间[x i ,x i +1]上的近似值(C ) A .只能是左端点的函数值f (x i ) B .只能是右端点的函数值f (x i +1)C .可以是该区间内任一点的函数值f (ξi )(ξi ∈[x i ,x i +1]D .以上答案均不正确解析:由求曲边梯形面积的“近似代替”知,选项C 正确,故选C.4.在区间[1,10]上等间隔地插入8个点,则将它等分成9个小区间,每个小区间的长度为1.能力提升5.对于由函数y =x 3和直线x =1,y =0围成的曲边梯形,把区间[0,1]三等分,则曲边梯形面积的近似值(每个ξi 取值均为小区间的左端点)是(A )A.19B.125 C.127 D.130解析:S =0×13+⎝ ⎛⎭⎪⎫133×13+⎝ ⎛⎭⎪⎫233×13=19.6.在等分区间的情况下,f (x )=11+x 2(x ∈[0,2])及x 轴所围成的曲边梯形面积和式的极限形式正确的是 (B )解析:将区间[0,2]进行n 等分每个区间长度为2n,故应选B.答案:38.直线x =0,x =2,y =0与曲线y =x 2+1围成曲边梯形,将区间[0,2]五等分,按照区间左端点和右端点估计曲边梯形面积分别为________、________.解析:分别以小区间左、右端点的纵坐标为高,求所有小矩形面积之和.S 1=(02+1+0.42+1+0.82+1+1.22+1+1.62+1)×0.4=3.92; S 2=(0.42+1+0.82+1+1.22+1+1.62+1+22+1)×0.4=5.52.答案:3.92 5.529.求出由直线x =0,x =3,y =0和曲线y =4-(x -1)2围成的平面图形的面积. 解析:圆(x -1)2+y 2=4在第一象限的面积如下图:∠ACB =2π3,OB =3,面积S =S △BOC +S 扇形ACB =32+12×2×2×2π3 =32+4π3. 10.求y =x 3与x =0,y =±2围成的图形的面积.解析:所求面积如图阴影部分,由对称性知S 1=S 2,故所求面积为2S 1.先求y =x 3与y =0,x =0,x =2围成的面积S 1′如下:(1)分割:将[0,2]分成n 等份⎣⎢⎡⎦⎥⎤2(i -1)n ,2i n (i =1,2,3,…,n ),每个小区间距离为Δx =2n.(2)近似代替:ΔS i =f (ξi )Δx =⎝ ⎛⎭⎪⎫2i n 3Δx . (3)求和:12S =∑i =1n ΔS i ≈∑i =1n⎝⎛⎭⎪⎫2i n 3Δx =∑i =1n⎝⎛⎭⎪⎫2i n 32n . (4)求极限:12S=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2n 2+⎝ ⎛⎭⎪⎫4n 3+…+⎝ ⎛⎭⎪⎫2n n 3=24[12+23+…+n 3]n4=24·14n2(n+1)2n4=4(n2+2n+1)n2=4.所以由y=x3,x=0,x=2,y=0围成的图形的面积S1′=4,∴S1=2×8-4=12.故所求面积为S=2S1=24.。

苏教版高中数学选修2-2《曲边梯形的面积》教学教案1

苏教版高中数学选修2-2《曲边梯形的面积》教学教案1

1.5.1 曲边梯形的面积学习目标:通过探求曲边梯形的面积,了解定积分的实际背景,了解“以直代曲”“逼近”的思想方法,建立定积分概念的认知基础,为理解定积分概念和几何意义奠定基础。

学习重点:定积分的概念,体会如何把曲线围成区域的面积转化为矩形面积的和。

学习过程:一、复习与思考:1、我们会求哪些平面图形的面积?这些平面图形的主要特点是什么?2、圆的面积是如何计算的?二、引入新课我们已经学会了正方形,三角形,梯形等面积的计算。

这些图形有一个共同的特征:每条边都是直线段。

但我们生活与工程实际中经常接触的大都是曲边图形,他们的面积怎么计算呢?三、情境创设微积分在几何上有两个基本问题1.如何确定曲线上一点处切线的斜率;2.如何求曲线下方“曲线梯形”的面积。

直线 几条线段连成的折线 曲线四、数学建构直线x =0、x =1、y =0及曲线y =x 2所围成的图形(曲边三角形)面积S 是多少? 为了计算曲边三角形的面积S ,将它分割成许多小曲边梯形对任意一个小曲边梯形,用“直边”代替“曲边”(即在很小范围内以直代曲),有x y 0 xy 0 xyo以下三种方案“以直代曲” 。

分割越细,面积的近似值就越精确。

当分割无限变细时,这个近似值就无限逼近所求曲边梯形的面积A ≈ A 1+ A 2 + ⋅ ⋅ ⋅ + A n下面用第一种方案“以直代曲”的具体操作过程(1)分割把区间[0,1]等分成n 个小区间:11211[0,],[,],,[,],,[,],i i n n n n n n n n n--⋅⋅⋅⋅⋅⋅ 11 i i x n n n-∆=-=每个区间的长度为 过各区间端点作x 轴的垂线,从而得到n 个小曲边梯形,他们的面积分别记作12,,,,,.i n S S S S ∆∆⋅⋅⋅∆⋅⋅⋅∆(2) 以直代曲2111()()i i i S f x n n n--∆≈∆= (3)作和 xO 112121122223-11-11 ()()1 [012(1)]nn ii n n i i S S S S S i i f n n n n n n====∆+∆+⋅⋅⋅+∆=∆≈==+++⋅⋅⋅+-∑∑∑(4)逼近2222330()111[012(1)](1)(21)61111(1)(2)631133x n n n n n n n n n S ∆→→+∞+++⋅⋅⋅+-=--=--→=当分割无限变细,即亦即时,所以,即所求曲边三角形的面积为。

小学五年级数学(人教版)《梯形的面积(第2课时)》-教学设计、课后练习、学习任务单

小学五年级数学(人教版)《梯形的面积(第2课时)》-教学设计、课后练习、学习任务单

教学设计课程基本信息课例编号学科数学年级五学期上课题梯形的面积(第2课时)教学人员姓名单位授课教师指导教师学习目标学习目标:1.通过练习,加深对梯形面积计算公式的理解,进一步沟通图形之间的联系,提高解决问题的能力。

2.在解决问题的过程中,体会方法的多样性,进一步培养灵活解题的意识和能力。

3.在解题过程中发展探究思考和解决实际问题的意识。

学习重点:运用梯形面积计算公式解决图形问题。

学习难点:培养学生灵活解决实际问题的能力。

教学过程时间教学环节主要师生活动30秒一、谈话引入在前面的学习中,我们学习了梯形的面积计算方法。

今天就让我们一起来运用所学的知识解决一些问题。

(一)解决梯形的面积问题(单位:cm)1.第一幅图。

质疑:梯形的高在哪里?预设:9厘米就是隐蔽的高,可以把它叫做形外高,用梯形面积公式18分钟二、运用知识,解决问题计算,列式:(18+12)×9÷2=135(平方厘米)。

2.第二幅图。

质疑:梯形的下底是7.2厘米,高是4.8厘米,它的上底是多少呢?预设:可以把这个梯形看成是长方形的一部分,长方形的对边相等,都是7.2厘米,梯形的上底可以用7.2-1.6-2.2求出来,是3.4厘米,之后用梯形的面积公式计算:(3.4+7.2)×4.8÷2=25.44(平方厘米)。

3. 第三幅图。

预设:梯形的上底是5厘米,高是3.4厘米,下底没有直接给出来,可以把这个梯形看成是平行四边形的一部分,平行四边形的对边相等,都是5厘米,用5-2.3=2.7(厘米),计算出梯形的下底是2.7厘米。

之后用梯形的面积公式计算:(5+2.7)×3.4÷2=13.09(平方厘米)。

4. 总结方法。

预设1:在运用梯形面积计算公式求面积时,要选择正确的数据,有些条件是隐蔽条件,需要转化才能找到。

预设2:有些条件不是直接给的,是间接给的,比如第二个图形中的上底和第三个图形中的下底,要找到所给数据之间的联系,将间接条件转化成我们需要的条件,才能计算梯形的面积。

人教a版数学【选修2-2】练习:1.5.1、2曲边梯形的面积(含答案)

人教a版数学【选修2-2】练习:1.5.1、2曲边梯形的面积(含答案)

选修2-2第一章 1.5 1.5.1、2一、选择题1.和式i =15(y i +1)可表示为()A .(y 1+1)+(y 5+1)B .y 1+y 2+y 3+y 4+y 5+1C .y 1+y 2+y 3+y 4+y 5+5D .(y 1+1)(y 2+1),(y 5+1)[答案] C[解析]i =15(y i +1)=(y 1+1)+(y 2+1)+(y 3+1)+(y 4+1)+(y 5+1)=y 1+y 2+y 3+y 4+y 5+5,故选 C.2.在求由x =a 、x =b(a<b)、y =f(x)(f(x)≥0)及y =0围成的曲边梯形的面积S 时,在区间[a ,b]上等间隔地插入n -1个分点,分别过这些分点作x 轴的垂线,把曲边梯形分成n个小曲边梯形,下列说法中正确的个数是()①n 个小曲边梯形的面积和等于S ;②n 个小曲边梯形的面积和小于S ;③n 个小曲边梯形的面积和大于S ;④n 个小曲边梯形的面积和与S 之间的大小关系无法确定A .1个B .2个C .3个D .4个[答案] A[解析]n 个小曲边梯形是所给曲边梯形等距离分割得到的,因此其面积和为S.∴①正确,②③④错误,故应选A.3.在“近似代替”中,函数f(x)在区间[x i ,x i +1]上的近似值等于()A .只能是左端点的函数值f(x i )B .只能是右端点的函数值f(x i +1)C .可以是该区间内任一点的函数值f(ξi )(ξi ∈[x i ,x i +1])D .以上答案均不正确[答案] C[解析]由求曲边梯形面积的“近似代替”知,C 正确,故应选 C.4.求由抛物线y =2x 2与直线x =0、x =t(t>0)、y =0所围成的曲边梯形的面积时,将区间[0,t]等分成n 个小区间,则第i -1个区间为()A .i -1n ,in B .i n ,i +1n C .t i -1n ,tin D .t i -2n ,t i -1n[答案] D[解析]在[0,t]上等间隔插入(n -1)个分点,把区间[0,t]等分成n 个小区间,每个小区间的长度均为tn,故第i -1个区间为t i -2n ,t i -1n,故选 D. 5.在求由函数y =1x 与直线x =1、x =2、y =0所围成的平面图形的面积时,把区间[1,2]等分成n 个小区间,则第i 个小区间为()A .[i -1n ,in ] B .[n +i -1n ,n +in ] C .[i -1,i] D .[i n ,i +1n][答案] B[解析]把区间[1,2]等分成n 个小区间后,每个小区间的长度为1n,且第i 个小区间的左端点不小于1,排除A 、D ;C 显然错误;故选B.6.在等分区间的情况下,f(x)=11+x2(x ∈[0,2])及x 轴所围成的曲边梯形面积和式的极限形式正确的是() A .lim n →∞i =1n[11+i n2·2n ] B .lim n →∞i =1n[11+2i n2·2n] C .lim n →∞i =1n11+i 2·1nD .lim n→∞i =1n [11+i n2·n][答案] B[解析]将区间[0,2]n 等分后每个区间长度为2n ,第i 个小区间为[2i -1n ,2in](i =1,2,3,,,n),故应选 B.二、填空题7.直线x =0、x =2、y =0与曲线y =x 2+1围成的曲边梯形,将区间[0,2]5等分,按照区间左端点和右端点估计梯形面积分别为________、________.[答案]3.925.528.已知某物体运动的速度为v =t ,t ∈[0,10],若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高,则物体运动的路程近似值为________.[答案]559.在求由直线x=0、x=1、y=0和曲线y=x3所围成的曲边梯形面积时,若令Δx=1 n ,ξi=i-1n,则曲边梯形的面积表达式为________.[答案]i=1n1n·i-1n3三、解答题10.求直线x=0、x=2、y=0与曲线y=x2所围成曲边梯形的面积.[解析]将区间[0,2]等分成n个小区间,则第i个小区间为2i-1n,2in.第i个小区间的面积ΔS i=f2i-1n·2n,∴S n=i=1nf2i-1n·2n=2ni=1n4i-12n2=8n3i=1n(i-1)2=8n3[02+12+22+,+(n-1)2]=8n3·n-1n2n-16=4n-12n-13n2.S=limn→∞S n=limn→∞4n-12n-13n2=43limn→∞[(1-1n)(2-1n)]=83,∴所求曲边梯形面积为83.一、选择题11.曲线y=cosx(0≤x≤2π)与y=1围成的面积是()A.4π B.5π2C.3π D.2π[答案] D[解析]如图,求曲线y=cosx(0≤x≤2π)与y=1围成的面积可转化为求由直线y=0、y=1、x=0、x=2π围成的矩形面积.[点评]这里利用了曲线y =cosx(0≤x ≤2π)的图象的对称性质,将不规则的图形转化为矩形求得面积,自己再用求曲边梯形面积的方法求出所求面积.12.lim n →∞i =1n[(15i n )·(5n )]的含义可以是()A .求由直线x =1,x =5,y =0,y =3x 围成的图形的面积B .求由直线x =0,x =1,y =0,y =15x 围成的图形的面积C .求由直线x =0,x =5,y =0,y =3x 围成的图形的面积D .求由直线x =0,x =5,y =0及曲线y =5x 围成的图形的面积[答案] C[解析]将区间[0,5]n 等分,则每一区间的长度为5n,各区间右端点对应函数值为y =15i n,因此i =1n[(15i n )·(5n )]可以表示由直线x =0、x =5、y =0和y =3x 围成的图形的面积的近似值.二、填空题13.由直线x =0、x =1、y =0和曲线y =x 2+2x 围成的图形的面积为________.[答案]43[解析]将区间[0,1]n 等分,每个区间长度为1n,区间右端点函数值y =(i n )2+2·i n =i 2n 2+2i n.作和i =1n[(i 2n 2+2i n )1n ]=i =1n(i 2n3+2in 2)=1n 3i =1n i 2+2n 2i =1ni =1n 3×16n(n +1)(2n +1)+2n 2×n n +12=n +12n +16n 2+n +1n =8n 2+9n +16n2,∴所求面积S =lim n →∞8n 2+9n +16n 2=lim n →∞(43+32n +16n 2)=43. 三、解答题14.汽车以速度v 做匀速直线运动时,经过时间t 所行驶的路程s =vt.如果汽车做变速直线运动,在时刻t 的速度为v(t)=t 2+2(单位:km/h),那么它在1≤t ≤2(单位:h)这段时间行驶的路程是多少?[分析]汽车行驶路程等于速度与时间的乘积,由于是变速运动,故路程类似曲边梯形面积,根据曲边梯形求面积思想,求和后再求极限值.[解析]将区间[1,2]等分成n 个小区间,第i 个小区间为1+i -1n ,1+in. ∴Δs i =f 1+i -1n·1n . s n =i =1nf 1+i -1n ·1n =1n i =1n1+i -1n2+2=1n i =1ni -12n 2+2i -1n+3=1n 3n +1n 2[02+12+22+,+(n -1)2]+1n [0+2+4+6+,+2(n -1)] =3+n -12n -16n 2+n -1n .s =lim n →∞s n =lim n →∞3+n -12n -16n 2+n -1n=133. ∴这段时间行驶的路程为133km. 15.求由直线x =1、x =2、y =0及曲线y =1x 2围成的图形的面积S .[解析](1)分割在区间[1,2]上等间隔地插入n -1个点,将它等分成n 个小区间:1,n +1n ,n +1n ,n +2n ,,,n +n -1n ,2,记第i 个区间为n +i -1n ,n +in(i =1,2,,,n),其长度为Δx =n +i n -n +i -1n =1n . 分别过上述n -1个分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形(如下图),它们的面积记作:ΔS 1、ΔS 2、,、ΔS n ,则小曲边梯形面积的和为S =i =1nΔS i .(2)近似代替记f(x)=1x2.当n很大,即Δx很小时,在区间n+i-1n,n+in上,可以认为f(x)=1x2的值变化很小,近似地等于一个常数,不妨认为它等于f(n+i-1n·n+in).从图形上看,就是用平行于x轴的直线段近似地代替小曲边梯形的曲边.这样,在区间n+i-1n,n+in上,用小矩形面积ΔS i′近似地代替ΔS i,即在局部小范围内“以直代曲”,则有ΔS i≈ΔS i′=f n+i-1n·n+inΔx=n2n+i-1n+i·1n=nn+i-1n+i(i=1,2,,,n).(3)求和小曲边梯形的面积和S n=i=1nΔS i≈i=1nΔS i′=i=1n nn+i-1n+i=nn n+1+nn+1n+2+,+nn+n-1n+n=n1n-1n+1+1n+1-1n+2+,+1n+n-1-1n+n=n1n-12n=12.(4)取极限S=limn→∞S n=12.∴由直线x=1、x=2、y=0及曲线y=1x2围成的图形的面积S为12.。

人教版高中数学选修2-2第一章导数及其应用第五节(第一课时)曲边梯形的的面积和定积分的概念(共19张


n nn
nn
nn
每个区间的长度为 x i i 1 1 nn n
过各区间端点作x轴的垂线,从而得到n 个小曲边梯形,他们的面积分别记作
S1, S2,, Si ,, Sn.
2、近似代替
S第i个黄色矩形
1 n
f
(i-1) n
10
S第1个黄色矩形
n
f
() n
0
S第2个黄色矩形
1 n
f
(1) n
1 n3
凡 事 都是 多 棱 镜 , 不 同 的 角 度 会 看 到 不 同 的 结果 。 若 能 把 一 些 事 看 淡 了 ,就 会 有 个 好 心 境 , 若 把 很 多事 看 开 了 , 就 会有 个 好 心 情 。 让 聚 散 离 合 犹 如 月 缺 月 圆那 样 寻 常 , 让 得 失 利 弊 犹 如花 开 花 谢 那 样 自 然 , 不 计 较, 也 不 刻 意 执 着; 让 生 命 中 各 种 的 喜 怒 哀 乐 , 就 像 风 儿一 样 , 来 了 , 不 管 是 清 风 拂面 , 还 是 寒 风 凛 冽 , 都 报 以自 然 的 微 笑 , 坦然 的 接 受 命 运 的 馈 赠 , 把 是 非 曲 折 , 都当 作 是 人
n
i 1
f i x
n i 1
ba n
f i
当n→∞时,上式无限接近某个常数,这个常数叫做函数
f
(x)在区间[a,b]上的定积分
记作 b a
f
xdx
b a
f xdx lim n
n i 1
ba n
f i
定积分的定义:即
b a
f
(x)dx
lim
n
n i1

基于数学交流的教学设计探究——以《计算曲边梯形的面积(人教A版选修2-2)》为例

基于数学交流的教学设计探究——以《计算曲边梯形的面积
(人教A版选修2-2)》为例
徐明杰
【期刊名称】《福建中学数学》
【年(卷),期】2012(000)008
【总页数】3页(P28-30)
【作者】徐明杰
【作者单位】福建省晋江市养正中学 362261
【正文语种】中文
【相关文献】
1.高中数学教材中数学提问的比较研究--以人教A版和湘教版选修2-2“导数及其应用”中的提问为例 [J], 林慧
2.基于微课的翻转课堂在小学数学教学中的应用研究--以人教版小学数学《圆的面积》为例 [J], 叶智辉;韦宏方;王祖华
3.基于概念认知,回归基础练习r——以人教版五上"三角形面积的计算"教学为例[J], 罗梅兰
4.基于学情设计探究活动扶持生命顺势生长——以人教版数学四年级上册《认识平行四边形》教学为例 [J], 林秋菊
5.基于微课的翻转课堂在小学数学教学中的运用分析——以人教版小学数学《圆的面积》为例 [J], 钟丽燕
因版权原因,仅展示原文概要,查看原文内容请购买。

曲边梯形面积与定积分课件新人教B版选修22ppt


S
直线段. 在过去的学习中,我们曾经
o
1x
图1.5 2
用多边形逼近圆的方法,利用多边形面积求出圆
的面积.这种" 以直代曲"的思想启发我们,是否也
能用直边形(比如矩形)逼近曲边梯形的方法,求图
1.5 2 中阴影部分面积呢?
2020/10/30
江西省赣州一中刘利剑 整理 heishu800101@
1 1 n
1 2n
1. 3
2020/10/30
heishu800101@
我们通过下表还可以从数值上看出这一变化趋势.
区间0,1的等分数n
2
S的近似值Sn
0.12500000
4
0.21875000
8
0.27343750
16
0.30273438
32
0.31787109
64
0.32556152
2020/10/30
heishu800101@
i1
y
o y
o
2020/10/30
y x2
2近似代替 记fx x2.
如图1.5 3 ,当n很大 ,即
i1 i nn
1x
图1.5 3
Δx很小时,在区间i
1, n
i n
上,可以认为函数fx x2
的值变化很小,近似等于一
y x2
图1.5 5的演变过程,也可以用几何画板演示.
4取极限 分别将区间0,1等分成4,8,,20, 等份
图1.5 5,可以看到,当n趋向于无穷大,即Δx趋向
于0时,Sn
1 1 3
1 1 n
1 趋向于S,从而有S 2n
lim Sn

高中数学优质展示课

等差数列--整节课例_高中数学广东名师课堂教学展示视频等差数列的前n项和--整节课例_高中数学广东名师课堂教学展示视频函数的思想--整节课例_高中数学广东名师课堂教学展示视频排列——求解有限制条件的排列问题的常用方法--整节课例_高中数学广东名师课堂教学展示视频观通项定类型巧放缩--整节课例_高中数学广东名师课堂教学展示视频基本不等式--整节课例_高中数学广东名师课堂教学展示视频函数与方程--整节课例_高中数学广东名师课堂教学展示视频排列组合之均匀分配问题--整节课例_高中数学广东名师课堂教学展示视频函数的极值与导数--整节课例_高中数学广东名师课堂教学展示视频求三角函数最值的方法--整节课例_高中数学广东名师课堂教学展示视频等比数列--整节课例_高中数学广东名师课堂教学展示视频数形结合--整节课例_高中数学广东名师课堂教学展示视频空间元素的平行关系--整节课例_高中数学广东名师课堂教学展示视频求函数的解析式--整节课例_高中数学广东名师课堂教学展示视频函数思想---不等式--整节课例_高中数学广东名师课堂教学展示视频余弦定理--整节课例_高中数学广东名师课堂教学展示视频平面向量的数量积--整节课例_高中数学广东名师课堂教学展示视频正态分布--整节课例_高中数学广东名师课堂教学展示视频直线的参数方程--整节课例_高中数学广东名师课堂教学展示视频平面向量的数量积--整节课例(1)_高中数学广东名师课堂教学展示视频椭圆和双曲线的构造实验--整节课例_高中数学广东名师课堂教学展示视频随机事件的概率--整节课例_高中数学广东名师课堂教学展示视频直线与圆锥曲线的位置关系--整节课例_高中数学广东名师课堂教学展示视频函数的单调性与导数--整节课例_高中数学广东名师课堂教学展示视频椭圆--整节课例_高中数学广东名师课堂教学展示视频直线与平面垂直的判定--整节课例_高中数学广东名师课堂教学展示视频正态分布习题课人教版复习课高三数学优秀课展示实录视频抛物线的标准方程苏教版选修庄素娟高三数学优秀课展示实录视频正态分布习题课人教版高三数学优秀课展示实录视频正态分布人教版高三数学优秀课展示实录视频园锥曲线的统一定义苏教版选修教材高三数学优秀课展示实录视频圆锥曲线的共性探究人教版高三数学优秀课展示实录视频直线与平面垂直的判定人教版高三数学优秀课展示实录视频复数的几何意义苏教版高三数学优秀课展示实录视频函数的图像北师大版舒焰高三数学优秀课展示实录视频正态分布高三数学优秀课展示实录视频椭圆的简单几何性质人教版高三数学优秀课展示实录视频几种常见函数的导数人教版高三数学优秀课展示实录视频直线与双曲线的位置关系人教版高三数学优秀课展示实录视频抛物线性质人教版高三数学优秀课展示实录视频椭圆及其标准方程二(复习)人教版高三数学优秀课展示实录视频导数及其应用苏教版高三数学优秀课展示实录视频椭圆及其标准方程人教版高三数学优秀课展示实录视频等差数列复习课苏教版高三数学优秀课展示实录视频函数的奇偶性人教版高三数学优秀课展示实录视频里程碑上的数北师大版_高一数学优质课实录展示视频等比数列北师大版高三数学优秀课展示实录视频等差等比数列的运用人教版高三数学优秀课展示实录视频中位数和众数郭爱玲_高一数学优质课实录展示视频空间线面的位置关系数学必修2_高一数学优质课实录展示视频平面与平面平行的判定人教版高一数学优秀课展示实录视频向量的运算人教版高一数学优秀课展示实录视频探索三角形相似的条件北师大版_高一数学优质课实录展示视频(1)探索多边形的内角和北师大版_高一数学优质课实录展示视频谁的包裹多北师大版_高一数学优质课实录展示视频余弦定理高中数学必修5_高一数学优质课实录展示视频求最大公约数人教版高一数学优秀课展示实录视频求函数的解析式人教版高一数学优秀课展示实录视频二元一次方程组(第一课时) 北师大版_高一数学优质课实录展示视频函数的奇偶性数学(上册)_高一数学优质课实录展示视频梯形北师大版_高一数学优质课实录展示视频直线与平面垂直的判定人教版高一数学优秀课展示实录视频变化的“鱼” 北师大版_高一数学优质课实录展示视频古典概型人教版高一数学优秀课展示实录视频面面平行性质定理苏教版《必修2》高一数学优秀课展示实录视频素质_高一数学优质课实录展示视频生活中的平移北师大版_高一数学优质课实录展示视频图案欣赏与设计人教版高一数学优秀课展示实录视频选择结构人教版高一数学优秀课展示实录视频线性回归方程人教版_高一数学优质课实录展示视频加减法解二元一次方程组北师大版_高一数学优质课实录展示视频利用表格分析不等式组应用题北师大版_高一数学优质课实录展示视频指数函数及其性质(1)人教版 a版_高一数学优质课实录展示视频向量数乘运算及期几何意义人教版高一数学优秀课展示实录视频一元二次不等式数学基础模块_高一数学优质课实录展示视频整式的运算复习二北师大版_高一数学优质课实录展示视频形状相同的图形北师大版_高一数学优质课实录展示视频函数的单调性和导数人教版_高一数学优质课实录展示视频任意角的三角涵数高教版_高一数学优质课实录展示视频谁的包裹多北师大版(1)_高一数学优质课实录展示视频数列求和的常用方法人教版职高基础模块(下)_高一数学优质课实录展示视频中位数和众数北师大版_高一数学优质课实录展示视频平面向量的数量积苏教版高一数学优秀课展示实录视频函数的单调性人教a版_高一数学优质课实录展示视频直线与平面平行的判定人教版高一数学优秀课展示实录视频探索勾股定理北师大版_高一数学优质课实录展示视频归纳法人教版高一数学优秀课展示实录视频点斜式方程_高一数学优质课实录展示视频中心投影与平等投影空间几何体的三视图人教版_高一数学优质课实录展示视频等比数列前n项和新人教版_高一数学优质课实录展示视频函数的单调性全国中职数学_高一数学优质课实录展示视频直线与平面垂直的判定人教版_高一数学优质课实录展示视频指数函数苏教版_高一数学优质课实录展示视频探索三角形相似的条件北师大版_高一数学优质课实录展示视频0074张广平_线面平行的判定0072李启龙_直线与平面平行的性质0074唐雪莲_由立体图形到视图(1)0072高二数学公开课多面体欧拉定理0074唐雪莲_由立体图形到视图0071陈颈彬_系统抽样0074椭圆与双曲线的构造实验(信息技术与学科整合)0072函数的建模与应用吴万辉_不等式的证明(两课时)2丁益祥_等差数列(两课时)20074吴立波_画立体图形吴万辉_不等式的证明(两课时)1游戏公平吗丁益祥_等差数列(两课时)1设计遮阳蓬椭圆与它的标准方程圆的参数方程简单的图案设计三角函数的图像与性质抛物线的简单几何性质对数导数等可能性事件的概率等差数列01等差数列02函数图像的四类变换分类讨论思想(高中)计数基本原理(职教数学)抽样调查举例函数的再值互斥事件有一个发生的概率立体图形与平面图形函数的应用平移高三数学复习课数学:圆形统计图数列复习等差数列(高三)函数的复习(高三)圆的标准方程(高二)椭圆的定义及其标准方程(高二)生活中的数学一元二次不等式图解虚根函数的单调性集合抛物线及其标准方程二次函数yax2bxc的图象1二次函数yax2bxc的图象2球的体积课堂实录四二次函数yax2的图象2二次函数yax2的图象1球的体积课堂实录三球的体积课堂实录五球的体积课堂实录二球的概念和性质课堂实录三球的概念和性质教学设计球的体积课堂实录一函数yasin(ωχφ)的图象4球的概念和性质课堂实录二函数yasin(ωχφ)的图象1球的概念和性质课堂实录一函数yasin(ωχφ)的图象3函数yasin(ωχφ)的图象2高三数学优质课展示《等差等比数列的运用》人教版_陆老师高三数学优质课视频《试卷分析》研究课_李世强高一数学优质课视频《任意角》人教版_王老师高一高中数学优质示范课视频《函数的单调性》1高一高中数学优质示范课视频《函数的单调性》2高一高中数学优质示范课视频《平面向量数量积的坐标表示》高一高中数学优质示范课视频《平面向量》高一高中数学优质示范课视频《平移_习题课》高一高中数学优质示范课视频《一类恒成立、存在性函数问题的化归》课堂实录高一高中数学优质示范课视频《一元二次方程根的分布(一)》_陈永胜高一数学优质课视频《正余弦函数周期性》高中数学优质课视频《方程的根与函数的零点》44中学王璐璐高中数学优质课视频《三角函数的诱导公式》工大附中李静高中数学优质课视频《三角函数的诱导公式》中实学校赵立娟高中数学优质课视频《三角函数的诱导公式》13中学贾功亮高中数学优质课视频《三角函数的诱导公式》37中学张巍高二高中数学优质课视频《椭圆的标准方程》丁老师_江苏省高中青年教师优质课观摩高二高中数学优质课视频《椭圆的标准方程》陈老师_江苏省高中青年教师优质课观摩高二高中数学优质课视频《椭圆的标准方程》翟老师_江苏省高中青年教师优质课观摩高二高中数学优质课视频《椭圆的标准方程》赵老师_江苏省高中青年教师优质课观摩高二高中数学优质课视频《椭圆的标准方程》方老师_江苏省高中青年教师优质课观摩高二高中数学优质课视频《椭圆的标准方程》邱老师_江苏省高中青年教师优质课观摩高二高中数学优质课视频选修2《平均变化率》董老师_江苏省高中青年数学教师优秀课观摩与评比活动高二高中数学优质课展《导数在研究函数中的应用》高二高中数学优质示范课《双曲线的第二定义》_文静妍高二高中数学优质课视频选修2《平均变化率》杜老师_江苏省高中青年数学教师优秀课观摩与评比活动高二高中数学优质课视频选修2《平均变化率》朱老师_江苏省高中青年数学教师优秀课观摩与评比活动高二高中数学优质示范课《总体分布的估计》(1)高一高中数学优质课视频展示《函数的单调性》高老师_江苏省高中青年教师优质课观摩高三高中数学优质示范课视频《数列复习》_熊贵旭高一高中数学优质课视频展示《函数的单调性》解老师_江苏省高中青年教师优质课观摩活动高一高中数学优质课视频展示《函数的单调性》凌老师_江苏省高中青年教师优质课观摩活动高一高中数学优质课视频展示《函数的单调性》秦老师_江苏省高中青年教师优质课观摩高一高中数学优质课视频展示《函数的单调性》杨老师_江苏省高中青年教师优质课观摩活动高一高中数学优质课视频展示《函数的单调性》沈老师_江苏省高中青年教师优质课观摩高一高中数学优质课视频展示《函数的单调性》张老师_江苏省高中青年教师优质课观摩高一高中数学优质课视频展示《函数综合运用》高一高中数学优质课视频展示《空间几何体的表面积》浦老师1、函数奇偶性问题探究朱胜强3、如何研究圆锥曲线离心率的问题孔繁海2、运用同角函数之间的关系求值周德3、数列中通项与和式的关系探究易雪梅4、如何研究直线与圆锥曲线中与分线段成比例有关的问题?:孔繁海《简单的线性规划问题》优质示范课2_雷波《两个变量之间的线性相关》优质示范课1_曹慧斌《两个变量之间的线性相关》优质示范课3_曹慧斌1、如何利用导数研究“恒成立”的问题刘明2、如何用导数解决与切线有关的问题?刘明《两个变量之间的线性相关》优质示范课2_曹慧斌《两个变量之间的线性相关》优质示范课4_曹慧斌《数学归纳法》2_曾群凤优质示范课《直线的倾斜角与斜率》1吴剑松优质示范课5、如何利用从特殊到一般的思想解决数列问题杨东福6、如何从函数的角度思考数列问题杨东福优质示范课a0548高三数学讲座直线与园的位置关系a0644高三数学讲座《直线与园的位置关系》a0549高三数学讲座例说数学解题思考方法《数学归纳法》1_曾群凤优质示范课a1252第四届“南回杯”优课评比录像三《函数与方程》a1253第四届“南回杯”优课评比录像四《坐标法在解三角形中的运用》g0425高一数学优质示范课《for循环语句》_郭小喜g0425高一数学优质示范课《分段函数的探索与应用》_程伟华g0425高一数学优质示范课《三角函数的图象与性质》_陈向东g0426高一数学优质示范课《函数模型的选择与求解》_陈丹妮g0427高二数学优质示范课《空间角-线面角》_曾菲g0427高二数学优质示范课《两条平行直线和重合的条件》_路彦星g0428高二数学优质示范课《椭圆及其标准方程》_曾菲g0429高二数学优质示范课立体几何《二面角》_邹建平g0430高二数学优质示范课《算法与程序设计》_林启明g0430高二数学优质示范课《算法与程序设计》_刘琦g0431高三数学优质示范课_高三数学第二轮复习《数形结合与最值》_袁海勇g0432高三数学优质示范课《正态分布》g0433高三数学优质示范课《高中数学专题复习—分类讨论思想》_王宗祥g0433高三数学优质示范课《高中数学专题复习—分类讨论思想》专家点评《函数概念及其表示》一轮复习优质示范课g44586高一数学微课示范必修5《数学的概念及其通项》讲授类教学片段_人教版g47046高三数学优质课展示《数列中的分类讨论思想》_李老师g44622高三数学优质课展示《等差数列复习课》苏教版_熊老师g73650高一数学优质课展示《线性回归方程》人教版_冯老师h5066高二数学优质课展示《双曲线及其标准方程》_曹东辉h5063高二数学优质课展示《平面与平面垂直的性质》黄海波h5057高二数学优质课展示《从抛物线定义引出的不变性问题》h5062高二数学优质课展示《抛物线性质》_h5070高二数学优质课展示《正态分布习题课》_袁志斌h5072高三数学优质课展示《导数的应用》_俞立柱h5071高二数学优质课展示《直线与平面垂直的判定》_尹向勇h5069高二数学优质课展示《正态分布习题课》_袁扬h5074高三数学优质课展示《第二轮高考数学复习:第五讲数列极限数学归纳法》h5068高二数学优质课展示《正态分布》_袁志斌h5073高二数学优质课展示《归纳推理》_管敏慧h5076高三数学优质课展示《复数的几何意义》_陈正坤h5075高二数学优质课展示选修2《椭圆及其标准方程》_-李勇成h5082高一数学优质课展示《等差数列》_吴莫林h5083高一数学优质课展示《等差数列与等比数列的类比》实录说课h5080高三数学优质课展示《圆锥曲线的共性探究》复习课_史强h5081高一必修2数学优质课展示《直线与平面垂直》_郭长慧(一等奖)h5086高一数学优质课展示《方程的根与函数的零点》_刘成雨h5088高一数学优质课展示《归纳法》_袁志斌h5087高一数学优质课展示《古典概型》_刘强h5085高一数学优质课展示《反函数》_松江二中h5089高一数学优质课展示《函数图像变换》_汪燕h5090高一数学优质课展示《平面向量的数量》_积陆春h5092高一数学优质课展示《求函数的解析式》_金海淑h5095高一数学优质课展示《数学归纳法》_刘娟h5094高一数学优质课展示《三角函数图像性质》_王家陵h5093高一数学优质课展示《求最大公约数》_罗江云h5097高一数学优质课展示《同角三角函数的基本关系》_崔传志h5098高一数学优质课展示《图案欣赏与设计》_冯辉h5096高一数学优质课展示《数学建模论文研读》h5099高一数学优质课展示《向量的运算》_赖春雨h5100高一数学优质课展示《向量的运用》_李勇h5102高一数学优质课展示《向量数乘运算及期几何意义》_陈开金h6739高二数学优质课展《导数在研究函数中的应用》h5105高中数学优质课展示《一个最值问题的解法研究》h6740高二数学优质课展示《二面角》侯老师h6742高二数学优质课展示《两平面垂直》h5103高一数学优质课展示《选择结构》_黎永生h6744高二数学优质课展示《椭圆的标准方程》丁老师_江苏省高中青年教师优质课观摩h6743高二数学优质课展示《椭圆的标准方程》陈老师_江苏省高中青年教师优质课观摩h6745高二数学优质课展示《椭圆的标准方程》方老师_江苏省高中青年教师优质课观摩h6746高二数学优质课展示《椭圆的标准方程》蒋老师_江苏省高中青年教师优质课观摩h6747高二数学优质课展示《椭圆的标准方程》磊老师_江苏省高中青年教师优质课观摩h6748高二数学优质课展示《椭圆的标准方程》潘老师_江苏省高中青年教师优质课观摩h6749高二数学优质课展示《椭圆的标准方程》濮阳老师_江苏省高中青年教师优质课观摩h6750高二数学优质课展示《椭圆的标准方程》邱老师_江苏省高中青年教师优质课观摩h6751高二数学优质课展示《椭圆的标准方程》徐老师_江苏省高中青年教师优质课观摩h6752高二数学优质课展示《椭圆的标准方程》杨老师_江苏省高中青年教师优质课观摩h6753高二数学优质课展示《椭圆的标准方程》营老师_江苏省高中青年教师优质课观摩h6754高二数学优质课展示《椭圆的标准方程》翟老师_江苏省高中青年教师优质课观摩h6755高二数学优质课展示《椭圆的标准方程》赵老师_江苏省高中青年教师优质课观摩h6757高一数学优质课展示必修5《一元二次不等式》h6756高二数学优质课展示《椭圆上的点对两焦点张角的探究》h6758高二数学优质课展示选修2《平均变化率》曹老师_江苏省高中青年数学教师优秀课观摩与评比活动h6759高二数学优质课展示选修2《平均变化率》董老师_江苏省高中青年数学教师优秀课观摩与评比活动h6760高二数学优质课展示选修2《平均变化率》杜老师_江苏省高中青年数学教师优秀课观摩与评比活动h6763高二数学优质课展示选修2《平均变化率》侯老师_江苏省高中青年数学教师优秀课观摩与评比活动h6761高二数学优质课展示选修2《平均变化率》葛老师_江苏省高中青年数学教师优秀课观摩与评比活动h6764高二数学优质课展示选修2《平均变化率》朱老师_江苏省高中青年数学教师优秀课观摩与评比活动h6766高三数学优质课展示《空间的距离复习课》h6765高三数学优质课展示《等值线的判读与运用》h6768高一数学优质课展必修2《平面图形的翻折》h6767高三数学优质课展示《探索性问题和开放性问题》h6771高一数学优质课展示《函数的单调性》淮老师_江苏省高中青年教师优质课观摩h6773高一数学优质课展示《函数的单调性》秦老师_江苏省高中青年教师优质课观摩h6772高一数学优质课展示《函数的单调性》陆老师_江苏省高中青年教师优质课观摩h6769高一数学优质课展示《分期付款》杨老师_江苏省高中青年数学教师优秀课观摩与评比活动h6774高一数学优质课展示《函数的单调性》沈老师_江苏省高中青年教师优质课观摩h6775高一数学优质课展示《函数的单调性》水老师_江苏省高中青年教师优质课观摩h6777高一数学优质课展示《函数的单调性》张老师_江苏省高中青年教师优质课观摩h5073高三数学优质课展示《第二轮高考数学复习:第四讲复数变换专题》h6778高一数学优质课展示《函数的单调性》解老师_江苏省高中青年教师优质课观摩活动h6781高一数学优质课展示《函数的单调性》吴老师_江苏省高中青年教师优质课观摩活动h6780高一数学优质课展示《函数的单调性》陆老师_江苏省高中青年教师优质课观摩活动h6782高一数学优质课展示《函数的单调性》杨老师_江苏省高中青年教师优质课观摩活动h6776高一数学优质课展示《函数的单调性》伍老师_江苏省高中青年教师优质课观摩h6784高一数学优质课展示《函数的奇偶性》h6783高一数学优质课展示《函数的单调性》张老师_江苏省高中青年教师优质课观摩活动h6779高一数学优质课展示《函数的单调性》凌老师_江苏省高中青年教师优质课观摩活动h6788高一数学优质课展示《空间几何体的表面积》浦老师h6790高一数学优质课展示《映射的概念》钱老师h6789高一数学优质课展示《生活中的变量关系》h6791高一数学优质课展示必修3《算法的含义》唐老师h5075高三数学优质课展示《第二轮高考数学复习:第一讲函数不等式专题(上)》h7780高中数学特级教师精品示范课《复数的乘法和除法》h7781高中数学特级教师精品示范课《复数的概念》h6785高一数学优质课展示《函数综合运用》h7773高一数学优质课展示必修2《空间线面的位置关系》_陈老师h7782高中数学特级教师精品示范课《复数的加法和减法》h7783高中数学特级教师精品示范课《复数复习》h7784高中数学特级教师精品示范课《极坐标系》h7787高中数学特级教师精品示范课《圆锥曲线复习(二)》h6786高一数学优质课展示《角的概念的推广》h7788高中数学特级教师精品示范课《圆锥曲线复习(一)》h7772高一数学优质课展示《直线与平面垂直的判定》人教版_蔡老师h7792高二数学特级教师精品示范课《排列组合应用问题》h7785高中数学特级教师精品示范课《极坐标系和直角坐标的互化》h7793高二数学特级教师精品示范课《组合与组合数公式(二)》h7790高二数学特级教师精品示范课《排列组合应用问题(续)》h7786高中数学特级教师精品示范课《圆锥曲线的轨迹问题》h7799高三数学特级教师精品示范课《函数综合复习》h30081高三数学优质课展示《恒成立问题(一)》人教版_俞老师h7791高二数学特级教师精品示范课《排列组合应用问题(一)》h75147高一数学优质课展示《函数的单调性》人教a版_黎老师h75149高二数学优质课展示《等差数列求和》_黄老师h77343高一数学优质课展示《任意角的三角涵数》高教版_郑老师h75148高一数学优质课展示《指数函数及其性质(1)》人教a版_刘老师。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名师精编 优秀教案
学校: 临清一中 学科:数学 编写人:张华 审稿人:张林
1.5.1曲边梯形的面积

【教学目标】
1、通过问题情景,经历求曲面梯形的形成过程,了解定积分概念的实际背景。理解求
曲面梯形的一般步骤。
2、通过问题的探究体会以直代曲、以不变代变及无限逼近的思想。通过类比体会从具
体到抽象、从特殊到一般的数学思想方法。
3、体验和认同“有限和无限对立统一”的辩证观点,接受用运动变化的辩证唯物主义
思想处理数学问题的积极态度。
【教学重难点】
教学重点:求一般曲面梯形面积的方法。
教学难点:对以直代曲、无限逼近思想的理解。
【教学过程】
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
(二)情景导入、展示目标
教师:我们在小学、初中就学习过求平面图形面积的问题。但基本是规则的平面图形,
如矩形、三角形、梯形。而现实生活中更多的是不规则的平面图形。对于不规则的图形我们
该如何求面积?比如我们山东省的国土面积?

通过实际问题引发学生思考,可结合问题:“在‘割圆术’中, 是如何利用正多边形
的面积得到圆的面积的?具体步骤如何?”做进一步引导,并给出本节目标。
(三)合作探究、精讲点拨
(1)提出概念
概念:如图,由直线x=a,x=b,x轴,曲线y=f(x)所围成的图形称为曲边梯形。

(2)引导探究
图4
a
b

x y O

y=f(x)
名师精编 优秀教案
问题:对于由y=x2与x轴及x=1所围成的面积该怎样求?(该图形为曲边三角形,是
曲边梯形的特殊情况)
(3)自主探究
探究1:分割,怎样分割?分割成多少个?分成怎样的形状?有几种方案? (分割)
探究2:采用哪种好?把分割的几何图形变为代数的式子。(近似代替)、(求和)
探究3:如何用数学的形式表达分割的几何图形越来越多? (取极限)
探究4:采用过剩求和与不足求和所得到的结果一样,其意义是什么?(夹逼原理的意
义)
由学生结合已有的知识,提出自己的看法,同伴之间进行交流。老师及时点评指导,最
后归纳、总结,讲评。
(四)反馈测评
练习1:求直线x=0,x=1,y=0与曲线y=x2所围成的曲边梯形的面积。

练习2:求直线x=1,x=4,y=0与曲线y=x2所围成的曲边梯形的面积。
(五)课堂总结
思考:
1、对于一般曲边梯形,如何求面积?
答:用化归为计算矩形面积和逼近的思想方法求出曲边梯形的面积。
2、求曲边梯形面积的方法步骤是什么?
答:第一步:分割;第二步:近似替代:第三步:求和;第四步:取极限。
【作业布置】
发导学案、布置预习。

相关文档
最新文档