新苏教版高中数学选修2-2教学案(全册 共214页)

合集下载

苏教版高中数学选修2-2《复数的几何意义》教案2

苏教版高中数学选修2-2《复数的几何意义》教案2

3.3 复数的几何意义教学目标:知识与技能:理解复数与从原点出发的向量的对应关系过程与方法:了解复数的几何意义情感、态度与价值观:画图得到的结论,不能代替论证,然而通过对图形的观察,往往能起到启迪解题思路的作用教学重点:复数与从原点出发的向量的对应关系.教学难点:复数的几何意义。

教学设想:复数z =a +bi (a 、b ∈R )与有序实数对(a ,b )是一一对应关系这是因为对于任何一个复数z =a +bi (a 、b ∈R ),由复数相等的定义可知,可以由一个有序实数对(a ,b )惟一确定.教学过程:学生探究过程:1.若(,)A x y ,(0,0)O ,则(),OA x y =2. 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --= 两个向量和与差的坐标分别等于这两个向量相应坐标的和与差3. 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --= 一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标 即 AB =OB -OA =( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)讲授新课:复平面、实轴、虚轴:复数z =a +bi (a 、b ∈R )与有序实数对(a ,b )是一一对应关系这是因为对于任何一个复数z =a +bi (a 、b ∈R ),由复数相等的定义可知,可以由一个有序实数对(a ,b )惟一确定,如z =3+2i 可以由有序实数对(3,2)确定,又如z =-2+i 可以由有序实数对(-2,1)来确定;又因为有序实数对(a ,b )与平面直角坐标系中的点是一一对应的,如有序实数对(3,2)它与平面直角坐标系中的点A ,横坐标为3,纵坐标为2,建立了一一对应的关系 由此可知,复数集与平面直角坐标系中的点集之间可以建立一一对应的关系.点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴 实轴上的点都表示实数对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z =0+0i =0表示是实数.故除了原点外,虚轴上的点都表示纯虚数在复平面内的原点(0,0)表示实数0,实轴上的点(2,0)表示实数2,虚轴上的点(0,-1)表示纯虚数-i ,虚轴上的点(0,5)表示纯虚数5i 非纯虚数对应的点在四个象限,例如点(-2,3)表示的复数是-2+3i ,z =-5-3i 对应的点(-5,-3)在第三象限等等.复数集C 和复平面内所有的点所成的集合是一一对应关系,即这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应.这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法. 1.复平面内的点(,)Z a b ←−−−→一一对应平面向量OZ2. 复数z a bi =+←−−−→一一对应平面向量OZ例1.(2007年辽宁卷)若35ππ44θ⎛⎫∈ ⎪⎝⎭,,则复数(cos sin )(sin cos )i θθθθ++-在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解:选B .例2.已知复数z 1=cosθ-i ,z 2=sinθ+i ,求| z 1·z 2|的最大值和最小值.[解] |)sin (cos cos sin 1|||21i z z θθθθ-++=⋅.2sin 412cos sin 2)sin (cos )cos sin 1(22222θθθθθθθ+=+=-++= 故||21z z ⋅的最大值为,23最小值为2. 例3.满足条件||||z i i -=+34的复数z 在复平面上对应点的轨迹是( )A. 一条直线B. 两条直线C. 圆D. 椭圆解:选C.巩固练习:课后作业:题3. 1 A 组4,5,6 B 组1,2教学反思:复数集C 和复平面内所有的点所成的集合是一一对应关系,即这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应.这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法. 1.在复平面内,把复数i 33-对应的向量按顺时钟方向旋转3π,所得向量对应的复数是:( B )(A )23 (B )i 32- (C )3i 3- (D )3+i 32.已知复数z 的模为2,则│z -i│的最大值为:( D )(A)1 (B)2 (C) (D)3 3.若C z ∈且|22|,1|22|i z i z --=-+则的最小值是( B )A .2B .3C .4D .54.(2007年上海卷)若,a b 为非零实数,则下列四个命题都成立:①10a a +≠ ②()2222a b a ab b +=++ ③若a b =,则a b =± ④若2a ab =,则a b =则对于任意非零复数,a b上述命题仍然成立的序号是_____。

高中数学新苏教版精品教案《苏教版高中数学选修2-2 2.3 数学归纳法》

高中数学新苏教版精品教案《苏教版高中数学选修2-2 2.3 数学归纳法》

数学归纳法(1)苏州市第三中学 夏正华教学目标:1理解数学归纳法的概念,掌握数学归纳法的证明步骤.2通过数学归纳法的学习,体会用不完全归纳法发现规律,用数学归纳法证明规律的途径.掌握从特殊到一般是应用的一种主要思想方法.教学重点:掌握数学归纳法的原理及证明问题的方法.教学难点:能用数学归纳法证明一些简单的数学命题.活动一:情境引入,给出定义和操作步骤一、情景引入:老师:前面我们用归纳法得到许多结论,如等差数列{n a }的通项公式1(1)n a a n d =+-;自然数平方和公式2222(1)(21)1236n n n n ++++++=这些命题都与自然数有关,自然数有无限个,我们无法对所有的自然数逐一验证,那么问题:能否依据归纳法的特征来证明这些与自然数有关的命题呢?我们今天一起来研究这个内容老师:大家用归纳法来求一个数列的通项公式问题:已知数列{n a },1a =1,且11n n na a a +=+(n =1,2,3…),计算2a ,3a ,4a ,猜想n a 学生:212a =,313a =,414a =,1n a n= 老师:我们用3次计算猜出了通项公式,后面的没有验证怎么能够保证通项公式一定正确呢?这里用了不完全归纳,由有限项归纳出无限项,这未必可靠,如何解决这个问题呢?我们不能用前面学习过的完全归纳法来解决,我们生命是有限的。

问题:能否寻找到一种方法,通过有限步骤的推理,替代无限的逐个验证呢?老师:我们一起来回顾找到通项公式的过程12a a ⎛⎫ ⎪⇓ ⎪ ⎪⎝⎭23a a ⎛⎫ ⎪⇓ ⎪ ⎪⎝⎭34a a ⎛⎫ ⎪⇓ ⎪ ⎪⎝⎭… 老师:不想一直写下去。

观察推理结构特征,能否得出一般的推理形式呢?学生:若能由1k a k =推出111k a k +=+即可 老师:这样就解决了无穷的问题老师:大家说对吗?很多学生有疑惑,没关系。

刚才从数的角度理解有困难,找形来帮忙把。

游戏:播放多米诺骨牌视频播放视频:多米诺骨牌(正常)问题:同学们眼神都很惊诧,你在惊诧什么呢?学生:第一块骨牌倒下后,其它的都倒下了。

苏教版高中数学选修2-2《单调性》教学教案1

苏教版高中数学选修2-2《单调性》教学教案1

1.3.1《单调性》教案一、学习目的:1.正确理解利用导数判断函数的单调性的原理;2.掌握利用导数判断函数单调性的方法. 二、学习重点:利用导数判断函数单调性. 三、学习难点:利用导数判断函数单调性. 四、学习过程 【复习引入】1.常见函数的导数公式:0'=C ; 1)'(-=n n nx x ; x x cos )'(sin =; x x sin )'(cos -= x x 1)'(ln =; e xx a a log 1)'(log =; x x e e =)'( ; a a a x x ln )'(= 2.法则1 '''[()()]()()f x g x f x g x ±=±.法则2 [()()]'()()()'()f x g x f x g x f x g x '=+, [()]'()cf x cf x '=法则3 '2()'()()()'()(()0)()()f x f x g x f x g x g x g x g x ⎛⎫-=≠ ⎪⎝⎭【讲解新课】函数单调性:函数 y = f (x ) 在给定区间 G 上,当 x 1、x 2 ∈G 且 x 1< x 2 时: 1)都有 f ( x 1 ) < f ( x 2 ),则 f ( x ) 在G 上是增函数; 2)都有 f ( x 1 ) > f ( x 2 ),则 f ( x ) 在G 上是减函数.导数与函数的单调性有什么关系?【问题探究】1. 函数的导数与函数的单调性的关系: 我们已经知道,曲线y =f (x )的切线的斜率就是函数y =f (x )的导数.从函数342+-=x x y 的图像 可以看到:在区间(2,+∞)内,切线的斜率为正,函数y =f (x )的值随着x 的增大而增大,即/y >0时,函数y =f (x ) 在区间(2,+∞)内为增函数;在区间(-∞,2)内,切线的斜率为负,函数y =f (x )的值随着x 的增大而减小,即/y <0时,函数y =f (x ) 在区间(-∞,2)内为减函数.定义:一般地,设函数y =f (x ) 在某个区间内有导数,如果在这个区间内/y >0,那么函数y =f (x ) 在为这个区间内的增函数;如果在这个区间内/y <0,那么函数y =f (x ) 在为这个区间内的减函数 【构建数学】一般地,对于给定区间上的函数f (x ),如果对于属于这个区间的任意两个自变量的值x 1,x 2,当x 1<x 2时,f (x 1)<f (x 2),那么f (x )在这个区间上是增函数.即x 1-x 2与f (x 1)-f (x 2)同号,即:1212()()00f x f x yx x x-∆>>-∆也即:增函数时有1212()()00f x f x yx x x -∆>>-∆也即:减函数时有1212()()00f x f x yx x x-∆<<-∆也即结论:一般地,设函数y =f (x )在某个区间内可导,则函数在该区间: 如果f ′(x )>0,则f (x )为增函数;y =f (x )=x 2-4x +3 切线的斜率 f ′(x )(2,+∞) 增函数 正 >0 (-∞,2) 减函数负<0321f x () = x 2-4⋅x ()+3xOyB A如果f ′(x )<0,则f (x )为减函数. 【数学应用】例1 确定函数f (x )=x 2-2x +4在哪个区间内是增函数,哪个区间内是减函数. 解:f ′(x )=(x 2-2x +4)′=2x -2. 令2x -2>0,解得x >1.∴当x ∈(1,+∞)时,f ′(x )>0,f (x )是增函数. 令2x -2<0,解得x <1.∴当x ∈(-∞,1)时,f ′(x )<0,f (x )是减函数.例2 确定函数f (x )=2x 3-6x 2+7在哪个区间内是增函数,哪个区间内是减函数. 解:f ′(x )=(2x 3-6x 2+7)′=6x 2-12x 令6x 2-12x >0,解得x >2或x <0∴当x ∈(-∞,0)时,f ′(x )>0,f (x )是增函数. 当x ∈(2,+∞)时,f ′(x )>0,f (x )是增函数. 令6x 2-12x <0,解得0<x <2.∴当x ∈(0,2)时,f ′(x )<0,f (x )是减函数. 例3 证明函数f (x )=x1在(0,+∞)上是减函数. 证法一:(用以前学的方法证)任取两个数x 1,x 2∈(0,+∞)设x 1<x 2. f (x 1)-f (x 2)=21122111x x x x x x -=- ∵x 1>0,x 2>0,∴x 1x 2>0 ∵x 1<x 2,∴x 2-x 1>0, ∴2112x x x x ->0 ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2) ∴f (x )=x1在(0,+∞)上是减函数. 证法二:(用导数方法证) ∵/()f x =(x 1)′=(-1)·x -2=-21x,x >0,∴x 2>0,∴-21x<0. ∴/()0f x <, ∴f (x )=21x在(0,+∞)上是减函数. 点评:比较一下两种方法,用求导证明是不是更简捷一些.如果是更复杂一些的函数,用导数的符号判别函数的增减性更能显示出它的优越性. 例4 已知函数y =x +x1,试讨论出此函数的单调区间. 解:y ′=(x +x1)′ =1-1·x -2=222)1)(1(1x x x x x -+=- 令2)1)(1(xx x -+>0. 解得x >1或x <-1. ∴y =x +x1的单调增区间是(-∞,-1)和(1,+∞). 令2)1)(1(xx x -+<0,解得-1<x <0或0<x <1. ∴y =x +x1的单调减区间是(-1,0)和(0,1) 四、课堂练习:1.确定下列函数的单调区间 (1)y =x 3-9x 2+24x (2)y =x -x 3(1)解:y ′=(x 3-9x 2+24x )′=3x 2-18x +24=3(x -2)(x -4) 令3(x -2)(x -4)>0,解得x >4或x <2.∴y =x 3-9x 2+24x 的单调增区间是(4,+∞)和(-∞,2)令3(x -2)(x -4)<0,解得2<x <4.∴y =x 3-9x 2+24x 的单调减区间是(2,4) (2)解:y ′=(x -x 3)′=1-3x 2=-3(x 2-31)=-3(x +33)(x -33)令-3(x +33)(x -33)>0,解得-33<x <33. ∴y =x -x 3的单调增区间是(-33,33). 令-3(x +33)(x -33)<0,解得x >33或x <-33. ∴y =x -x 3的单调减区间是(-∞,-33)和(33,+∞) 2.讨论二次函数y =ax 2+bx +c (a >0)的单调区间. 解:y ′=(ax 2+bx +c )′=2ax +b, 令2ax +b >0,解得x >-ab2 ∴y =ax 2+bx +c (a >0)的单调增区间是(-ab2,+∞) 令2ax +b <0,解得x <-ab 2. ∴y =ax 2+bx +c (a >0)的单调减区间是(-∞,-ab 2) 3.求下列函数的单调区间(1)y =xx 2+ (2)y =92-x x(3)y =x +x(1)解:y ′=(x x 2+)′=2222x x x x -=--∵当x ≠0时,-22x<0,∴y ′<0. ∴y =xx 2+的单调减区间是(-∞,0)与(0,+∞) (2)解:y ′=(92-x x )′222)9(29-⋅--=x x x x 222222)9(9)9(9-+-=---=x x x x 当x ≠±3时,-222)9(9-+x x <0,∴y ′<0.∴y =92-x x的单调减区间是(-∞,-3),(-3,3)与(3,+∞). (3)解:y ′=(x +x )′12112121+=+=-xx .当x >0时x21+1>0,∴y ′>0. ∴y =x +x 的单调增区间是(0,+∞)五、小结 :根据导数确定函数的单调性 1.确定函数f (x )的定义域. 2.求出函数的导数.3.解不等式f ′(x )>0,得函数单增区间;解不等式f′(x)<0,得函数单减区间. 六、课后作业:。

苏教版高中数学选修2-2 导数的概念及其几何意义 教案

苏教版高中数学选修2-2 导数的概念及其几何意义  教案

2019-2020学年苏教版选修2-2 导数的概念及其几何意义 教案[例1] 求函数y =4x2在x =2处的导数.[思路点拨] 由所给函数解析式求Δy =f (Δx +x 0)-f (x 0);计算Δy Δx ;求lim Δx →0 ΔyΔx . [精解详析] ∵f (x )=4x2,∴Δy =f (2+Δx )-f (2)=42+Δx2-1=-4Δx -Δx 22+Δx 2,∴Δy Δx =-4-Δx 2+Δx2, ∴lim Δx →0 Δy Δx =lim Δx →0 -4-Δx 2+Δx2=-1,∴f ′(2)=-1. [一点通] 由导数的定义,求函数y =f (x )在点x 0处的导数的方法: ①求函数的增量Δy =f (x 0+Δx )-f (x 0); ②求平均变化率Δy Δx=f x 0+Δx -f x 0Δx;③取极限,得导数f ′(x 0)=lim Δx →0ΔyΔx.1.函数y =x 2在x =1处的导数为( ) A .2x B .2+Δx C .2D .1解析:选C y =x 2在x =1处的导数为:f ′(1)=lim Δx →01+Δx2-1Δx=2.2.设函数f (x )=ax +b ,若f (1)=f ′(1)=2,则f (2)=________. 解析:函数f (x )=ax +b 在x =1处的导数为f ′(1)=li m Δx →0 f 1+Δx -f 1Δx=lim Δx →0[a1+Δx +b ]-a +b Δx=lim Δx →0 a ΔxΔx =a ,又f ′(1)=2,得a =2,而f (1)=2,有a +b =2,于是b =0,所以f (x )=2x ,有f (2)=4.答案:43.求函数f (x )=x -1x在x =1处的导数.解:Δy =(1+Δx )-11+Δx -⎝ ⎛⎭⎪⎫1-11=Δx +Δx 1+Δx ,Δy Δx =Δx +Δx1+Δx Δx =1+11+Δx , ∴lim Δx →0Δy Δx =lim Δx →0⎝ ⎛⎭⎪⎫1+11+Δx =2, 从而f ′(1)=2.求曲线的切线方程[例2] 已知曲线y =3x 2-x ,求曲线上的点A (1,2)处的切线斜率及切线方程. [思路点拨] 利用导数的几何意义求出切线的斜率,进而求得切线方程. [精解详析] 因为 Δy Δx=31+Δx 2-1+Δx -3×12-1Δx=5+3Δx ,当Δx 趋于0时,5+3Δx 趋于5,所以曲线y =3x 2-x 在点A (1,2)处的切线斜率是5. 所以切线方程为y -2=5(x -1), 即5x -y -3=0.[一点通] 过曲线上一点求切线方程的三个步骤4.曲线y =x 2在点(1,1)处的切线与坐标轴所围成的三角形的面积为( ) A.14 B.12 C .1D .2解析:选A f ′(1)=lim Δx →0 ΔyΔx =lim Δx →0 1+Δx 2-1Δx=lim Δx →0(2+Δx )=2. 则曲线在点(1,1)处的切线方程为y -1=2(x -1), 即y =2x -1.因为y =2x -1与坐标轴的交点为(0,-1),⎝ ⎛⎭⎪⎫12,0,所以所求三角形的面积为S =12×1×12=14.5.求曲线f (x )=2x在点(-2,-1)处的切线方程.解:∵点(-2,-1)在曲线y =2x上,∴曲线y =2x 在点(-2,-1)处的切线斜率就等于y =2x在x =-2处的导数.∴k =f ′(-2)=lim Δx →0f -2+Δx -f -2Δx=lim Δx →0 2-2+Δx -2-2Δx =lim Δx →0 1-2+Δx =-12,∴曲线y =2x 在点(-2,-1)处的切线方程为y +1=-12(x +2),整理得x +2y +4=0.导数几何意义的综合应用[例3] (1)抛物线上哪一点处的切线的倾斜角为45°? (2)抛物线上哪一点处的切线平行于直线4x -y -2=0? (3)抛物线上哪一点处的切线垂直于直线x +8y -3=0? [精解详析] 设点的坐标为(x 0,y 0),则Δy =2(x 0+Δx )2+1-2x 20-1=4x 0·Δx +2(Δx )2. ∴ΔyΔx=4x 0+2Δx . 当Δx 趋于零时,ΔyΔx 趋于4x 0.即f ′(x 0)=4x 0.(1)∵抛物线的切线的倾斜角为45°, ∴切线的斜率为tan 45°=1,即f ′(x 0)=4x 0=1,得x 0=14,该点为⎝ ⎛⎭⎪⎫14,98. (2)∵抛物线的切线平行于直线4x -y -2=0, ∴切线的斜率为4,即f ′(x 0)=4x 0=4,得x 0=1,该点为(1,3). (3)∵抛物线的切线与直线x +8y -3=0垂直,∴切线的斜率为8,即f ′(x 0)=4x 0=8,得x 0=2,该点为(2,9).[一点通] 解答此类题目时,所给的直线的倾斜角或斜率是解题的关键,由这些信息得知函数在某点处的导数,进而可求此点的横坐标.解题时注意解析几何中直线方程知识的应用,如直线的倾斜角与斜率的关系,直线的平行、垂直等.6.已知曲线y =x 3+3x 在点P 处的切线与直线y =15x +3平行,则P 点坐标为( ) A .(2,14) B .(-2,-14) C .(2,14)或(-2,-14) D .以上都不对解析:选C 由题意可得 y ′=li mΔx →0 x +Δx3+3x +Δx -x 3-3x Δx=3x 2+3,又由题意得3x 2+3=15,所以x =±2. 当x =2时,y =23+6=14, 当x =-2时,y =(-2)3-6=-14. 所以点P 的坐标为(2,14)或(-2,-14).7.已知函数y =f (x )的图像在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.解析:由导数的几何意义,易得f ′(1)=12,由切线方程得f (1)=12×1+2=52,所以f (1)+f ′(1)=3.答案:38.求经过点(2,0)且与曲线y =1x相切的直线方程.解:可以验证点(2,0)不在曲线上,设切点为P (x 0,y 0).由y ′|x =x 0=li mΔ x →0 1x 0+Δx -1x 0Δx=lim Δx →0 -ΔxΔx ·x 0+Δx ·x 0 =lim Δx →0-1x 0x 0+Δx =-1x 20.故所求直线方程为y -y 0=-1x 20(x -x 0).由点(2,0)在所求的直线上,得x 20y 0=2-x 0,再由P (x 0,y 0)在曲线y=1x上,得x 0y 0=1,联立可解得x 0=1,y 0=1, 所以直线方程为x +y -2=0.求曲线的切线方程,首先要判断所给点是否在曲线上.若在曲线上,可用切线方程的一般方法求解;若不在曲线上,可设出切点,写出切线方程,结合已知条件求出切点坐标或切线斜率,从而得到切线方程.1.曲线y =f (x )在点(x 0,f (x 0))处的切线方程为2x -y +1=0,则( ) A .f ′(x 0)>0 B .f ′(x 0)<0 C .f ′(x 0)=0D .f ′(x 0)不存在解析:选A 因为曲线y =f (x )在点(x 0,f (x 0))处的导数就是切线的斜率,又切线2x -y +1=0的斜率为2,所以f ′(x 0)>0.2.抛物线y =14x 2在点Q (2,1)处的切线方程为( )A .x -y -1=0B .x +y -3=0C .x -y +1=0D .x +y -1=0解析:选A f ′(2)=lim Δx →0 142+Δx 2-14×4Δx=lim Δx →0 ⎝ ⎛⎭⎪⎫14Δx +1=1, ∴过点(2,1)的切线方程为y -1=1·(x -2), 即x -y -1=0.故选A.3.已知y =f (x )的图像如图,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定解析:选B 由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小,结合导数的几何意义知f ′(x A )<f ′(x B ),选B.4.已知直线ax -by -2=0与曲线y =x 3在点P (1,1)处的切线互相垂直,则a b为( ) A.13 B.23 C .-23D .-13解析:选D 由导数的定义可得y ′=3x 2,∴y =x 3在点P (1,1)处的切线斜率k =y ′|x=1=3,由条件知,3×a b =-1,∴a b =-13.5.已知曲线y =2x 2+4x 在点P 处切线斜率为16,则点P 坐标为________. 解析:设P (x 0,2x 20+4x 0), 则f ′(x 0)=lim Δx →0f x 0+Δx -f x 0Δx=lim Δx →02Δx2+4x 0Δx +4ΔxΔx=4x 0+4,又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)6.如图,函数f (x )的图像是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则li m Δx →0 f 1+Δx -f 1Δx=________.解析:由导数的概念和几何意义知,lim Δx →0f 1+Δx -f 1Δx =f ′(1)=k AB =0-42-0=-2.答案:-27.已知点P (2,-1)在曲线f (x )=1t -x上.求: (1)曲线在点P 处的切线的斜率; (2)曲线在点P 处的切线方程. 解:(1)将P (2,-1)的坐标代入f (x )=1t -x ,得t =1, ∴f (x )=11-x .∴f ′(2)=lim Δx →0f 2+Δx -f 2Δx=lim Δx →011-2+Δx -11-2Δx =lim Δx →011+Δx=1, 曲线在点P 处的切线斜率为1. (2)由(1)知曲线在点P 处的切线方程为y -(-1)=x -2,即x -y -3=0.8.已知曲线y =x 2+1,是否存在实数a ,使得经过点(1,a )能够作出该曲线的两条切线?若存在,求出实数a 的取值范围;若不存在,请说明理由.解:∵Δy Δx =x +Δx 2+1-x 2-1Δx =2x +Δx ,∴y ′=lim Δx →0ΔyΔx=li mΔx →0 (2x +Δx )=2x . 设切点为P (x 0,y 0),则切线的斜率为k =y ′|x =x 0=2x 0,由点斜式可得所求切线方程为y -y 0=2x 0(x -x 0).又∵切线过点(1,a ),且y 0=x 20+1, ∴a -(x 20+1)=2x 0(1-x 0), 即x 20-2x 0+a -1=0.∵切线有两条, ∴Δ=(-2)2-4(a -1)>0,解得a <2.故存在实数a ,使得经过点(1,a )能够作出该曲线的两条切线,a 的取值范围是(-∞,2).。

苏教版高中数学选修2-2 2.1.2 演绎推理 教案 (2)

苏教版高中数学选修2-2  2.1.2  演绎推理 教案 (2)

学习目标 1.整合本章知识要点.2.进一步理解合情推理与演绎推理的概念、思维形式、应用等.3.进一步熟练掌握直接证明与间接证明.4.理解数学归纳法,并会用数学归纳法证明问题.1.合情推理(1)归纳推理:由部分到整体、由个别到一般的推理.(2)类比推理:由特殊到特殊的推理.(3)合情推理:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.2.演绎推理(1)演绎推理:由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.3.直接证明和间接证明(1)直接证明的两类基本方法是综合法和分析法.①综合法是从已知条件推出结论的证明方法;②分析法是从结论追溯到条件的证明方法.(2)间接证明的一种方法是反证法,是从结论反面成立出发,推出矛盾的方法.4.数学归纳法数学归纳法主要用于解决与正整数有关的数学命题.证明时,它的两个步骤缺一不可,它的第一步(归纳奠基)是证当n=n0时结论成立;第二步(归纳递推)是假设当n=k时结论成立,推得当n=k+1时结论也成立.类型一 合情推理的应用例1 (1)有一个奇数列1,3,5,7,9,…,现在进行如下分组:第一组含一个数{1};第二组含两个数{3,5};第三组含三个数{7,9,11};第四组含四个数{13,15,17,19};…,试观察每组内各数之和f (n )(n ∈N *)与组的编号数n 的关系式为________. 答案 f (n )=n 3解析 由于1=13,3+5=8=23,7+9+11=27=33,13+15+17+19=64=43,…,猜想第n 组内各数之和f (n )与组的编号数n 的关系式为f (n )=n 3.(2)在平面几何中,对于Rt △ABC ,AC ⊥BC ,设AB =c ,AC =b ,BC =a ,则 ①a 2+b 2=c 2; ②cos 2A +cos 2B =1;③Rt △ABC 的外接圆半径为r =a 2+b 22.把上面的结论类比到空间写出相类似的结论;试对其中一个猜想进行证明. 解 选取3个侧面两两垂直的四面体作为直角三角形的类比对象.①设3个两两垂直的侧面的面积分别为S 1,S 2,S 3,底面面积为S ,则S 21+S 22+S 23=S 2. ②设3个两两垂直的侧面与底面所成的角分别为α,β,γ,则cos 2α+cos 2β+cos 2γ=1. ③设3个两两垂直的侧面形成的侧棱长分别为a ,b ,c ,则这个四面体的外接球的半径为R =a 2+b 2+c 22.下面对①的猜想进行证明.如图在四面体A -BCD 中,AB ,AC ,AD 两两垂直,面ABC ,面ABD ,面ACD 为三个两两垂直的侧面.设AB =a ,AC =b ,AD =c ,则在Rt △ABC 中,BC =AB 2+AC 2=a 2+b 2,S Rt △ABC =12ab .同理,CD =b 2+c 2,S Rt △ACD =12bc .BD =a 2+c 2,S Rt △ABD =12ac .∴S △BCD =14[BC 2·BD 2-14(BC 2+BD 2-CD 2)2]. 经检验,S 2Rt △ABC +S 2Rt △ACD +S 2Rt △ABD =S 2△BCD .即所证猜想为真命题.反思与感悟 (1)归纳推理中有很大一部分题目是数列内容,通过观察给定的规律,得到一些简单数列的通项公式是数列中的常见方法.(2)类比推理重在考查观察和比较的能力,题目一般情况下较为新颖,也有一定的探索性. 跟踪训练1 (1)观察下列图形中小正方形的个数,则第n 个图形中有________个小正方形.(2)若数列{a n }为等差数列,S n 为其前n 项和,则有性质“若S m =S n (m ,n ∈N *且m ≠n ),则S m +n =0.”类比上述性质,相应地,当数列{b n }为等比数列时,写出一个正确的性质:________________. 答案 (1)n 2+3n +22(2)数列{b n }为等比数列,T m 表示其前m 项的积,若T m =T n (m ,n ∈N *,m ≠n ),则T m +n =1 解析 (1)第1个图有3个正方形记作a 1, 第2个图有3+3个正方形记作a 2, 第3个图有6+4个正方形记作a 3, 第4个图有10+5个正方形记作a 4, …,正方形的个数构成数列{a n }, 则a 2-a 1=3, (1) a 3-a 2=4, (2) a 4-a 3=5, (3) ⋮⋮ a n -a n -1=n +1,(n -1)(1)+(2)+…+(n -1),得a n -a 1=3+4+5+…+(n +1), a n =3+(n -1)(4+n )2=n 2+3n +22.类型二 证明方法命题角度1 综合法与分析法例2 设a >0,b >0,a +b =1,求证1a +1b +1ab ≥8.试用综合法和分析法分别证明.证明 方法一 (综合法)因为a >0,b >0,a +b =1,所以1=a +b ≥2ab ,ab ≤12,ab ≤14,所以1ab ≥4.又1a +1b =(a +b )(1a +1b )=2+b a +ab≥4, 所以1a +1b +1ab ≥8(当且仅当a =b =12时等号成立).方法二 (分析法)因为a >0,b >0,a +b =1, 要证1a +1b +1ab ≥8,只需证(1a +1b )+a +bab ≥8,只需证(1a +1b )+(1b +1a )≥8,即证1a +1b≥4.也就是证a +b a +a +bb ≥4.即证b a +ab≥2,由基本不等式可知,当a >0,b >0时,b a +ab≥2恒成立,所以原不等式成立.反思与感悟 分析法和综合法是两种思路相反的推理方法:分析法是倒溯,综合法是顺推,二者各有优缺点.分析法容易探路,且探路与表述合一,缺点是表述易错;综合法条件清晰,易于表述,因此对于难题常把二者交互运用,互补优缺,形成分析综合法,其逻辑基础是充分条件与必要条件.跟踪训练2 已知x >0,y >0,求证:(x 2+y 2)21>(x 3+y 3)31. 证明要证明(x 2+y 2)21>(x 3+y 3)31,只需证(x 2+y 2)3>(x 3+y 3)2.只需证x 6+3x 4y 2+3x 2y 4+y 6>x 6+2x 3y 3+y 6, 只需证3x 4y 2+3x 2y 4>2x 3y 3. 又x >0,y >0,∴x 2y 2>0, ∴只需证3x 2+3y 2>2xy . ∵3x 2+3y 2>x 2+y 2≥2xy , ∴3x 2+3y 2>2xy 成立,故(x 2+y 2)21>(x 3+y 3)31.命题角度2 反证法例3 若x ,y 都是正实数,且x +y >2,求证:1+x y <2或1+yx <2中至少有一个成立.证明 假设1+x y <2和1+yx <2都不成立,则有1+x y ≥2和1+yx ≥2同时成立.因为x >0且y >0,所以1+x ≥2y 且1+y ≥2x ,两式相加,得2+x +y ≥2x +2y ,所以x +y ≤2. 这与已知x +y >2矛盾. 故1+x y <2与1+y x<2至少有一个成立. 反思与感悟 反证法常用于直接证明困难或以否定形式出现的命题;涉及“都是……”“都不是……”“至少……”“至多……”等形式的命题时,也常用反证法. 跟踪训练3 已知:ac ≥2(b +d ).求证:方程x 2+ax +b =0与方程x 2+cx +d =0中至少有一个方程有实数根. 证明 假设两方程都没有实数根,则Δ1=a 2-4b <0与Δ2=c 2-4d <0,有a 2+c 2<4(b +d ),而a 2+c 2≥2ac ,从而有4(b +d )>2ac ,即ac <2(b +d ),与已知矛盾,故原命题成立. 类型三 数学归纳法 例4 观察下列四个等式: 第一个式子 1=1 第二个式子 2+3+4=9 第三个式子 3+4+5+6+7=25 第四个式子 4+5+6+7+8+9+10=49 (1)按照此规律,写出第五个等式;(2)请你做出一般性的猜想,并用数学归纳法证明. 解 (1)第五个等式:5+6+7+…+13=81. (2)猜想第n 个等式为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2. 证明:①当n =1时,左边=1, 右边=(2-1)2=1,所以等式成立. ②假设当n =k (k ≥1,k ∈N *)时,等式成立, 即有k +(k +1)+(k +2)+…+(3k -2)=(2k -1)2.那么当n =k +1时,左边=(k +1)+(k +2)+…+(3k -2)+(3k -1)+3k +(3k +1) =k +(k +1)+(k +2)+…+(3k -2)+(2k -1)+3k +(3k +1) =(2k -1)2+(2k -1)+3k +(3k +1) =4k 2-4k +1+8k =(2k +1)2 =[2(k +1)-1]2. 右边=[2(k +1)-1]2,即当n =k +1时,等式也成立. 根据①②知,等式对任意n ∈N *都成立.反思与感悟 (1)用数学归纳法证明等式问题是数学归纳法的常见题型,其关键点在于“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始n 0是多少.(2)由n =k 到n =k +1时,除等式两边变化的项外还要利用当n =k 时的式子,即利用假设,正确写出归纳证明的步骤,从而使问题得以证明. 跟踪训练4 数列{a n }满足:a 1=1,a n +1=12a n +1.(1)写出a 2,a 3,a 4; (2)求数列{a n }的通项公式. 解 (1)因为a 1=1,a n +1=12a n +1,所以a 2=12a 1+1=12+1=32.a 3=12a 2+1=12·32+1=74.a 4=12a 3+1=12·74+1=158.(2)方法一 猜想a n =2n -12n -1.下面用数学归纳法证明.①当n =1时,a 1=21-121-1=1,满足上式,显然成立;②假设当n =k (k ≥1,k ∈N *)时,ak =2k -12k -1, 那么当n =k +1时,a k +1=12a k +1=12·2k -12k -1+1=2k -12k +1=2k -1+2k 2k =2k +1-12k ,满足上式,即当n =k +1时,猜想也成立, 由①②可知,对于n ∈N *,都有a n =2n -12n -1.方法二 因为a n +1=12a n +1,所以a n +1-2=12a n +1-2,即a n +1-2=12(a n -2).设b n =a n -2,则b n +1=12b n ,即{b n }是以b 1=-1为首项,12为公比的等比数列,所以b n =b 1·q n -1=-12n -1,所以a n =b n +2=2n -12n -1.1.观察按下列顺序排序的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,…,猜想第n (n ∈N *)个等式应为________. 答案 9(n -1)+n =10n -9解析 由已知中的式子,我们观察后分析: 等式左边分别为9与编号减1的积再加上编号, 等式右边是一个等差数列. 根据已知可以推断:第n (n ∈N *)个等式为9(n -1)+n =10n -9.2.猜想数列12×4,14×6,16×8,18×10,…的通项公式是____________________.答案 a n =12n (2n +2)(n ∈N *)解析 分析式子12×4,14×6,16×8,18×10,…的规律,可得分子均为1,分母为连续相邻的两个偶数的乘积.3.用反证法证明命题:“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是________________________________________________________________. 答案 方程x 3+ax +b =0没有实根解析 方程x 3+ax +b =0至少有一个实根的反面是方程x 3+ax +b =0没有实根. 4.如图,这是一个正六边形的序列:则第n个图形的边数为________.答案5n+1解析图(1)共6条边,图(2)共11条边,图(3)共16条边,其边数构成以6为首项,5为公差的等差数列,则图(n)的边数为a n=6+(n-1)×5=5n+1.5.用数学归纳法证明(1·22-2·32)+(3·42-4·52)+…+[(2n-1)(2n)2-2n(2n+1)2]=-n(n+1)(4n+3).证明当n=1时,左边=-14,右边=-1·2·7=-14,等式成立.假设当n=k(k≥1,k∈N*)时等式成立,即(1·22-2·32)+(3·42-4·52)+…+[(2k-1)·(2k)2-2k(2k+1)2]=-k(k+1)(4k+3).那么当n=k+1时,(1·22-2·32)+(3·42-4·52)+…+[(2k-1)(2k)2-2k(2k+1)2]+[(2k+1)(2k+2)2-(2k+2)(2k+3)2]=-k(k+1)(4k+3)-2(k+1)[4k2+12k+9-4k2-6k-2]=-(k+1)[4k2+3k+2(6k+7)]=-(k+1)(4k2+15k+14)=-(k+1)(k+2)(4k+7)=-(k+1)[(k+1)+1][4(k+1)+3].所以当n=k+1时等式也成立.根据以上论证可知,等式对任何n∈N*都成立.1.归纳和类比都是合情推理,前者是由特殊到一般,部分到整体的推理,后者是由特殊到特殊的推理,但二者都能由已知推测未知,都能用于猜想,推理的结论不一定为真,有待进一步证明.2.演绎推理与合情推理不同,是由一般到特殊的推理,是数学中证明的基本推理形式.也是公理化体系所采用的推理形式,另一方面,合情推理与演绎推理又是相辅相成的,前者是后者的前提,后者论证前者的可靠性.3.直接证明和间接证明是数学证明的两类基本证明方法.直接证明的两类基本方法是综合法和分析法:综合法是从已知条件推导出结论的证明方法;分析法是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用,间接证法的一种方法是反证法,反证法是从结论反面成立出发,推出矛盾的证明方法.4.数学归纳法主要用于解决与正整数有关的数学问题.证明时,它的两个步骤缺一不可.它的第一步(归纳奠基)当n=n0时,结论成立.第二步(归纳递推)假设当n=k时,结论成立,推得当n=k+1时,结论也成立.数学归纳法是在可靠的基础上,利用命题自身具有的传递性,运用有限的步骤(两步)证明出无限的命题成立.。

苏教版高中数学选修2-2 2.3 数学归纳法 教案

苏教版高中数学选修2-2  2.3 数学归纳法 教案

第1课时数学归纳法学习目标 1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.知识点数学归纳法对于一个与正整数有关的等式n(n-1)(n-2)…(n-50)=0.思考1验证当n=1,n=2,…,n=50时等式成立吗?答案成立.思考2能否通过以上等式归纳出当n=51时等式也成立?为什么?答案不能,上面的等式只对n取1至50的正整数成立.梳理(1)数学归纳法的定义一般地,对于某些与正整数有关的数学命题,我们有数学归纳法公理:如果①当n取第一个值n0(例如n0=1,2等)时结论正确;②假设当n=k(k∈N*,且k≥n0)时结论正确,证明当n=k+1时结论也正确.那么,命题对于从n0开始的所有正整数n都成立.(2)数学归纳法的框图表示类型一从n=k到n=k+1左边增加的项例1 用数学归纳法证明(n +1)·(n +2)·…·(n +n )=2n ×1×3×…×(2n -1)(n ∈N *),“从k 到k +1”左端增乘的代数式为________.答案 2(2k +1)解析 令f (n )=(n +1)(n +2)…(n +n ),则f (k )=(k +1)(k +2)…(k +k ),f (k +1)=(k +2)(k +3)…(k +k )(2k +1)(2k +2),所以f (k +1)f (k )=(2k +1)(2k +2)k +1=2(2k +1). 反思与感悟 在书写f (k +1)时,一定要把包含f (k )的式子写出来,尤其是f (k +1)中的最后一项,除此之外,多了哪些项都要分析清楚.跟踪训练1 用数学归纳法证明不等式1n +1+1n +2+…+1n +n >1324(n ≥2,n ∈N *)的过程中,由n =k 推导n =k +1时,不等式的左边增加的式子是________.答案 1(2k +1)(2k +2)解析 当n =k +1时左边的代数式是1k +2+1k +3+…+12k +1+12k +2,增加了两项12k +1与12k +2,但是少了一项1k +1,故不等式的左边增加的式子是12k +1+12k +2-1k +1=1(2k +1)(2k +2). 类型二 用数学归纳法证明恒等式例2 用数学归纳法证明当n ∈N *时,1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n . 证明 ①当n =1时,左边=1-12=12,右边=12. 左边=右边,等式成立.②假设当n =k (k ∈N *,k ≥1)时,等式成立,即1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k , 当n =k +1时,1-12+13-14+…+12k -1-12k +12k +1-12k +2=1k +1+1k +2+…+12k +12k +1-12k +2 =1k +2+1k +3+…+12k +1+(1k +1-12k +2) =1k +2+1k +3+…+12k +1+12k +2=1(k +1)+1+1(k +1)+2+…+12(k +1). ∴当n =k +1时,等式成立.由①②可知,对一切n ∈N *等式成立.反思与感悟 数学归纳法证题的三个关键点(1)验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定是1.(2)递推是关键:数学归纳法的实质在于递推,所以从“k ”到“k +1”的过程中,要正确分析式子项数的变化.关键是弄清等式两边的构成规律,弄清由n =k 到n =k +1时,等式的两边会增加多少项、增加怎样的项.(3)利用假设是核心:在第二步证明n =k +1成立时,一定要利用归纳假设,即必须把归纳假设“n =k 时命题成立”作为条件来导出“n =k +1时命题成立”,这是数学归纳法的核心,不用归纳假设的证明就不是数学归纳法.跟踪训练2 用数学归纳法证明:1+3+5+…+(2n -3)+(2n -1)+(2n -3)+…+5+3+1=2n 2-2n +1.证明 ①当n =1时,左边=1,右边=2×12-2×1+1=1,等式成立.②假设当n =k (k ∈N *)时,等式成立,即1+3+5+…+(2k -3)+(2k -1)+(2k -3)+…+5+3+1=2k 2-2k +1,则当n =k +1时,左边=1+3+5+…+(2k -3)+(2k -1)+(2k +1)+(2k -1)+(2k -3)+…+5+3+1 =2k 2-2k +1+(2k -1)+(2k +1)=2k 2+2k +1=2(k +1)2-2(k +1)+1.即当n =k +1时,等式成立.由①②知,对任意n ∈N *,等式都成立.1.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是_______________. 答案 f (k +1)=f (k )+(2k +1)2+(2k +2)2解析 ∵f (k )=12+22+…+(2k )2,f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2,f (k +1)-f (k )=(2k +1)2+(2k +2)2,即f (k +1)=f (k )+(2k +1)2+(2k +2)2.2.用数学归纳法证明“1+a +a 2+…+a2n +1=1-a 2n +21-a (a ≠1)”.在验证n =1时,左端计算所得项为________.答案 1+a +a 2+a 3解析 将n =1代入a 2n +1得a 3.3.已知数列{a n }满足a 1=1,且4a n +1-a n a n +1+2a n =9,那么可以通过求a 2,a 3,a 4的值猜想出a n =________.答案 6n -52n -14.请观察以下三个式子:(1)1×3=1×2×96; (2)1×3+2×4=2×3×116; (3)1×3+2×4+3×5=3×4×136, 归纳出一般的结论,并用数学归纳法证明该结论.解 结论:1×3+2×4+3×5+…+n (n +2)=n (n +1)(2n +7)6. 证明:①当n =1时,左边=3,右边=3,所以命题成立.②假设当n =k (k ≥1,k ∈N *)时,命题成立,即1×3+2×4+3×5+…+k (k +2)=k (k +1)(2k +7)6, 则当n =k +1时,1×3+2×4+…+k (k +2)+(k +1)(k +3)=k (k +1)(2k +7)6+(k +1)(k +3) =k +16(2k 2+7k +6k +18) =k +16(2k 2+13k +18) =(k +1)(k +2)(2k +9)6 =(k +1)[(k +1)+1][2(k +1)+7]6, 所以当n =k +1时,命题成立.由①②知,命题成立.应用数学归纳法证题时的注意点(1)验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定为1.(2)递推是关键:正确分析由n =k 到n =k +1时,式子项数的变化是应用数学归纳法成功证明问题的保障.(3)利用假设是核心:在第二步证明中一定要利用归纳假设,这是数学归纳法证明的核心环节,否则这样的证明就不是数学归纳法证明.课时作业一、填空题1.设n ∈N *,用数学归纳法证明2+4+6+…+2n =n 2+n 时,第一步应证明:左边=________. 答案 22.用数学归纳法证明3n ≥n 3(n ≥3,n ∈N *),n 所取的第一个值n 0为________.答案 3解析 由题意知,n 的最小值为3,所以第一步验证n =3是否成立.3.已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2(1n +2+1n +4+…+12n )时,若已假设n =k (k ≥2且k 为偶数)时命题为真,则还需要用归纳假设再证________.①n =k +1时等式成立②n =k +2时等式成立③n =2k +2时等式成立④n =2(k +2)时等式成立答案 ②解析 因为n 为正偶数,n =k 时等式成立,即n 为第k 个偶数时命题成立,所以需假设n 为下一个偶数,即n =k +2时等式成立.4.已知f (n )=1n +1n +1+1n +2+…+1n 2,则f (2)的表达式为________. 答案 f (2)=12+13+14解析 代入表达式可得.5.在数列{a n }中,a 1=2,a n +1=a n 3a n +1(n ∈N *),依次计算a 2,a 3,a 4,归纳得出a n 的通项表达式为________.答案 26n -5解析 由a 1=2,a 2=27,a 3=213,a 4=219,…,可推测a n =26n -5.6.用数学归纳法证明“1+2+22+…+2n -1=2n -1(n ∈N *)”的过程如下: ①当n =1时,左边=1,右边=21-1=1,等式成立;②假设当n =k 时,等式成立,即1+2+22+…+2k -1=2k -1; ③则当n =k +1时,1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1,即当n =k +1时等式成立.由此可知,对任意的n ∈N *,等式都成立.上述证明步骤错误的是________.(填序号)答案 ③解析 ③中没有用到归纳假设.7.用数学归纳法证明:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n ,第一步应验证的等式是________.答案 1-12=128.用数学归纳法证明关于n 的恒等式,当n =k 时,表达式为1×4+2×7+…+k (3k +1)=k (k +1)2,则当n =k +1时,表达式为_________________________________________. 答案 1×4+2×7+…+k (3k +1)+(k +1)(3k +4)=(k +1)(k +2)29.已知f (n )=1+12+13+…+1n ,n ∈N *,用数学归纳法证明f (2n )>n 2时,f (2n +1)-f (2n )=________________________________________________________________________. 答案 12n+1+12n +2+…+12n +1 10.证明:假设当n =k (k ∈N *)时等式成立,即2+4+…+2k =k 2+k ,则当n =k +1时,2+4+…+2k +2(k +1)=k 2+k +2(k +1)=(k +1)2+(k +1),即当n =k +1时,等式也成立.因此对于任何n ∈N *等式都成立.以上用数学归纳法证明“2+4+…+2n =n 2+n (n ∈N *)”的过程中的错误为____________________.答案 缺少步骤归纳奠基二、解答题11.用数学归纳法证明(1-14)(1-19)(1-116)·…·(1-1n 2)=n +12n(n ≥2,n ∈N *). 证明 ①当n =2时,左边=1-14=34,右边=2+12×2=34,所以左边=右边,所以当n =2时等式成立.②假设当n =k (k ≥2,k ∈N *)时等式成立,即(1-14)(1-19)(1-116)·…·(1-1k 2)=k +12k,那么当n =k +1时,(1-14)(1-19)(1-116)·…·(1-1k 2)[1-1(k +1)2]=k +12k [1-1(k +1)2]=k +12k ·k (k +2)(k +1)2=k +22(k +1)=(k +1)+12(k +1), 即当n =k +1时,等式成立.综合①②知,对任意n ≥2,n ∈N *,等式恒成立.12.用数学归纳法证明:对于任意正整数n ,(n 2-1)+2(n 2-22)+…+n (n 2-n 2)=n 2(n -1)(n +1)4. 证明 ①当n =1时,左边=12-1=0,右边=12×(1-1)×(1+1)4=0, 所以等式成立.②假设当n =k (k ∈N *)时等式成立,即(k 2-1)+2(k 2-22)+…+k (k 2-k 2)=k 2(k -1)(k +1)4. 那么当n =k +1时,有[(k +1)2-1]+2[(k +1)2-22]+…+k ·[(k +1)2-k 2]+(k +1)[(k +1)2-(k +1)2]=(k 2-1)+2(k 2-22)+…+k (k 2-k 2)+(2k +1)(1+2+…+k )=k 2(k -1)(k +1)4+(2k +1)k (k +1)2=14k (k +1)[k (k -1)+2(2k +1)] =14k (k +1)(k 2+3k +2) =(k +1)2[(k +1)-1][(k +1)+1]4. 所以当n =k +1时等式成立.由①②知,对任意n ∈N *等式成立.三、探究与拓展13.证明1+12+13+…+12n -1>n 2(n ∈N *),假设当n =k 时成立,当n =k +1时,左端增加的项数为________.答案 2k解析 当n =k +1时,1+12+13+…+12k -1+12k +12k +1+…+12k +1-1, 所以增加的项数为2k +1-1-(2k -1)=2k .14.已知数列{a n }的前n 项和S n 满足:S n =a n 2+1a n-1,且a n >0,n ∈N *. (1)求a 1,a 2,a 3,并猜想{a n }的通项公式;(2)证明通项公式的正确性.(1)解 当n =1时,由已知得a 1=a 12+1a 1-1,a 21+2a 1-2=0. ∴a 1=3-1(a n >0).当n =2时,由已知得a 1+a 2=a 22+1a 2-1, 将a 1=3-1代入并整理得a 22+23a 2-2=0. ∴a 2=5-3(a n >0).同理可得a 3=7- 5.猜想a n =2n +1-2n -1(n ∈N *).(2)证明 ①由(1)知,当n =1,2,3时,通项公式成立. ②假设当n =k (k ≥3,k ∈N *)时,通项公式成立, 即a k =2k +1-2k -1.由a k +1=S k +1-S k =a k +12+1a k +1-a k 2-1a k, 将a k =2k +1-2k -1代入上式并整理得 a 2k +1+22k +1a k +1-2=0,解得a k +1=2k +3-2k +1(a n >0).即当n =k +1时,通项公式也成立.由①和②可知,对所有n ∈N *,a n =2n +1-2n -1都成立.。

2021年高中数学苏教版选修2-2教学案:第1章 1.2 1.2.2 函数的和、差、积、商的导数

2021年高中数学苏教版选修2-2教学案:第1章 1.2 1.2.2 函数的和、差、积、商的导数

1.2.2 函数的和、差、积、商的导数f (x )=x ,g (x )=1x.问题1:f (x )、g (x )的导数分别是什么 ? 提示:f ′(x )=1 ,g ′(x )=-1x2.问题2:假设Q (x )=x +1x ,那么Q (x )的导数是什么 ?提示:∵Δy =(x +Δx )+1x +Δx -⎝⎛⎭⎫x +1x =Δx +-Δx x (x +Δx ) ,∴Δy Δx =1-1x (x +Δx ). 当Δx 无限趋近于0时 ,Δy Δx 无限趋近于1-1x 2 ,∴Q ′(x )=1-1x2.问题3:Q (x )的导数与f (x ) ,g (x )的导数有什么关系 ? 提示:Q ′(x )=f ′(x )+g ′(x ).导数的运算法那么设两个函数分别为f (x )和g (x ) ,那么 (1)[f (x )+g (x )]′=f ′(x )+g ′(x ); (2)[f (x )-g (x )]′=f ′(x )-g ′(x ); (3)[Cf (x )]′=Cf (x )′(C 为常数); (4)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (5)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )g 2(x )(g (x )≠0).1.对于和差的导数运算法那么 ,可推广到任意有限可导函数的和或差 ,即[f 1(x )±f 2(x )±…±f n (x )]′=f 1′(x )±f 2′(x )±…±f n ′(x ).2.对于积与商的导数运算法那么 ,首|先要注意在两个函数积与商的导数运算中 ,不能出现[f (x )·g (x )]′=f ′(x )·g ′(x )以及(5)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g ′(x )这样想当然的错误;其次还要特别注意两个函数积与商的求导公式中符号的异同 ,积的导数法那么中是 "+〞 ,商的导数法那么中分子上是 "-〞.[对应学生用书P9]求函数的导数[例1] (1)y =x 2+log 3x ;(2)y =x 3·e x ;(3)y =cos xx ;(4)y =x tan x .[思路点拨] 结合常见函数的导数公式及导数的四那么运算法那么直接求导. [精解详析] (1)y ′=(x 2+log 3x )′ =(x 2)′+(log 3x )′=2x +1x ln 3.(2)y ′=(x 3·e x )′=(x 3)′·e x +x 3·(e x )′ =3x 2·e x +x 3·e x =(3x 2+x 3)e x .(3)y ′=⎝⎛⎭⎫cos x x ′=(cos x )′·x -cos x ·x ′x 2 =-x ·sin x -cos xx 2=-x sin x +cos x x 2.(4)y ′=(x ·tan x )′=⎝⎛⎭⎫x sin x cos x ′ =(x sin x )′cos x -x sin x (cos x )′cos 2x=(sin x +x cos x )cos x +x sin 2x cos 2x=sin x cos x +xcos 2x.[一点通] (1)应用根本初等函数的导数公式和导数运算法那么可迅速解决一些简单的求导问题 ,要透彻理解函数求导法那么的结构特点 ,准确熟记公式 ,还要注意挖掘知识的内在联系及其规律.(2)在求较复杂函数的导数时应首|先利用代数恒等变换对函数解析式进行化简或变形 ,如把乘积的形式展开 ,公式形式变为和或差的形式 ,根式化成分数指数幂 ,然后再求导 ,使求导计算更加简化.1.假设f (x )=13x 3+2x +1 ,那么f ′(-1)=________.解析:f ′(x )=⎝⎛⎭⎫13x 3+2x +1′=⎝⎛⎭⎫13x 3′+(2x )′+1′=x 2+2 , 所以f ′(-1)=(-1)2+2=3. 答案:32.函数y =x (x 2+1)的导数是________. 解析:y ′=[x (x 2+1)]′=(x 3+x )′=3x 2+1. 答案:3x 2+13.求以下函数的导数:(1)y =ln xx +1-2x ;(2)y =sin x -cos x 2cos x .解:(1)y ′=⎝⎛⎭⎪⎫ln x x +1′-(2x )′=1x (x +1)-ln x (x +1)2-2x ln 2 =1+1x -ln x(x +1)2-2x ln 2 =x -x ln x +1x (x +1)2-2x ln 2. (2)y ′=⎝⎛⎭⎪⎫sin x -cos x 2cos x ′=⎝⎛⎭⎫sin x 2cos x -12′ =⎝⎛⎭⎫sin x 2cos x ′=2cos 2x +2sin 2x 4cos 2x=12cos 2x.导数运算法那么的简单应用[例2] 设f (x )=a ·e x +b ln x ,且f ′(1)=e ,f ′(-1)=1e,求a ,b 的值.[思路点拨] 首|先求f ′(x ) ,然后利用条件建立a ,b 的方程组求解. [精解详析] f ′(x )=(a ·e x )′+(b ln x )′=a ·e x +bx ,由f ′(1)=e ,f ′(-1)=1e ,得⎩⎨⎧a e +b =e a e -b =1e解得⎩⎪⎨⎪⎧a =1b =0 所以a ,b 的值分别为1,0.[一点通] 利用导数值求解参数问题 ,是(高|考)的热点问题.它比拟全面地考查了导数的应用 ,突出了导数的工具性作用.而熟练地掌握导数的运算法那么以及常用函数的求导公式是解决此类问题的关键.4.设f (x )=ax 3+3x 2+2 ,假设f ′(-1)=4 ,那么a =________. 解析:∵f (x )=ax 3+3x 2+2 ,∴f ′(x )=3ax 2+6x , ∴f ′(-1)=3a -6=4 ,即a =103. 答案:1035.假设函数f (x )=e xx 在x =c (c ≠0)处的导数值与函数值互为相反数 ,求c 的值.解:∵f (x )=e x x ,∴f (c )=e cc,又f ′(x )=e x ·x -e x x 2=e x (x -1)x 2 ,∴f ′(c )=e c (c -1)c 2 ,依题意知f (c )+f ′(c )=0 ,∴e c c +e c(c -1)c 2=0 ,∴2c -1=0得c =12.导数运算法那么的综合应用[例3] 2y =x -3相切 ,求实数a 、b 、c 的值.[思路点拨] 题中涉及三个未知参数 ,题设中有三个独立的条件 ,因此可通过解方程组来确定参数a 、b 、c 的值.[精解详析] ∵曲线y =ax 2+bx +c 过P (1,1)点 , ∴a +b +c =1.①∵y ′=2ax +b ,当x =2时 ,y ′=4a +b . ∴4a +b =1.②又曲线过Q (2 ,-1)点 ,∴4a +2b +c =-1.③ 联立①②③ ,解得a =3 ,b =-11 ,c =9.[一点通] 利用导数求切线斜率是行之有效的方法 ,它适用于任何可导函数 ,解题时要充分运用这一条件 ,才能使问题迎刃而解.解答此题常见的失误是不注意运用点Q (2 ,-1)在曲线上这一关键的隐含条件.6.P ,Q 为抛物线x 2=2y 上两点 ,点P ,Q 的横坐标分别为4 ,-2 ,过P ,Q 分别作抛物线的切线 ,两切线交于点A ,那么点A 的纵坐标为________.解析:易知抛物线y =12x 2上的点P (4,8) ,Q (-2,2) ,且y ′=x ,那么过点P 的切线方程为y =4x -8 ,过点Q 的切线方程为y =-2x -2 ,联立两个方程解得交点A (1 ,-4) ,所以点A 的纵坐标是-4.答案:-47.f ′(x )是一次函数 ,x 2f ′(x )-(2x -1)f (x )=1 ,求f (x )的解析式. 解:由f ′(x )为一次函数可知f (x )为二次函数. 设f (x )=ax 2+bx +c (a ≠0) , 那么f ′(x )=2ax +b .把f (x ) ,f ′(x )代入方程x 2f ′(x )-(2x -1)f (x )=1中得: x 2(2ax +b )-(2x -1)(ax 2+bx +c )=1 , 即(a -b )x 2+(b -2c )x +c -1=0. 要使方程对任意x 恒成立 , 那么需有a =b ,b =2c ,c -1=0 , 解得a =2 ,b =2 ,c =1 , 所以f (x )=2x 2+2x +1.1.应用和、差、积、商的求导法那么和常见函数的导数公式求导数时 ,在可能的情况下 ,应尽量少用甚至|不用乘积的求导法那么 ,应在求导之前 ,先利用代数、三角恒等变形对函数进行化简 ,然后再求导 ,这样可以减少运算量 ,提高运算速度 ,防止出错.2.对复杂函数求导 ,一般要遵循先化简后求导的原那么 ,但要注意化简过程中变换的等价性.[对应课时跟踪训练(四)]一、填空题1.(广东(高|考))曲线y =-5e x +3 在点(0 ,-2) 处的切线方程为________. 解析:由y =-5e x +3得 ,y ′=-5e x ,所以切线的斜率k =y ′|x =0=-5 ,所以切线方程为y +2=-5(x -0) ,即5x +y +2=0.答案:5x +y +2=02.设f (x )=x ln x ,假设f ′(x 0)=2 ,那么x 0=________. 解析:f ′(x )=ln x +x ·1x =ln x +1.∵f ′(x 0)=2 ,∴1+ln x 0=2 , ∴x 0=e. 答案:e3.函数f (x )=e x cos x ,x ∈[0,2π] ,且f ′(x 0)=0 ,那么x 0=________. 解析:f ′(x )=e x cos x -e x sin x , 由f ′(x 0)=0 ,得e x 0cos x 0-e x 0sin x 0=0 , ∴cos x 0=sin x 0 ,即tan x 0=1. 又∵x 0∈[0,2π] ,∴x 0=π4或5π4.答案:π4或5π44.(江西(高|考))假设曲线y =x α+1(α∈R )在点(1,2)处的切线经过坐标原点 ,那么α=________.解析:由题意y ′=αx α-1 ,在点(1,2)处的切线的斜率为k =α ,又切线过坐标原点 ,所以α=2-01-0=2.答案:25.曲线y =x2x -1在点(1,1)处的切线方程为________.解析:∵y ′=-1(2x -1)2 ,∴当x =1时 ,y ′=-1.∴切线方程为y -1=-(x -1) ,即x +y -2=0. 答案:x +y -2=0 二、解答题6.求以下函数的导数: (1)y =sin x +3x 2+x ; (2)y =(1+cos x )(2x 2+e x ).解:(1)y ′=(sin x +3x 2+x )′=(sin x )′+(3x 2)′+x ′=cos x +6x +1. (2)y ′=[(1+cos x )(2x 2+e x )]′=(1+cos x )′(2x 2+e x )+(1+cos x )(2x 2+e x )′ =-sin x (2x 2+e x )+(1+cos x )(4x +e x ) =e x (1+cos x -sin x )-2x 2sin x +4x (1+cos x ). 7.设定义在(0 ,+∞)上的函数f (x )=ax +1ax +b (a >0).(1)求f (x )的最|小值;(2)假设曲线y =f (x )在点(1 ,f (1))处的切线方程为y =32x ,求a ,b 的值.解:(1)法一:由题设和根本不等式可知 , f (x )=ax +1ax +b ≥2+b ,其中等号成立当且仅当ax =1 , 即当x =1a时 ,f (x )取最|小值为2+b .法二:f (x )的导数f ′(x )=a -1ax 2=a 2x 2-1ax 2,当x >1a 时 ,f ′(x )>0 ,f (x )在⎝ ⎛⎭⎪⎪⎫1a +∞上单调递增;当0<x <1a 时 ,f ′(x )<0 ,f (x )在⎝ ⎛⎭⎪⎪⎫0 1a 上单调递减.所以当x =1a时 ,f (x )取最|小值为2+b .(2)由题设知 ,f ′(x )=a -1ax 2 ,f ′(1)=a -1a =32 ,解得a =2或a =-12(不合题意 ,舍去).将a =2代入f (1)=a +1a +b =32 ,解得ba =2 ,b =-1.8.函数f (x )=13x 3-2x 2+ax (x ∈R ,a ∈R ) ,在曲线y =f (x )的所有切线中 ,有且仅有一条切线l 与直线y =x 垂直.求a 的值和切线l 的方程.解:∵f (x )=13x 3-2x 2+ax ,∴f ′(x )=x 2-4x +a .由题意可知 ,方程f ′(x )=x 2-4x +a =-1有两个相等的实根. ∴Δ=16-4(a +1)=0 ,∴a =3. ∴f ′(x )=x 2-4x +3=-1. 化为x 2-4x +4=0. 解得切点横坐标为x =2 , ∴f (2)=13×8-2×4+2×3=23.∴切线l 的方程为y -23=(-1)(x -2) ,即3x +3y -8=0.∴a =3 ,切线l 的方程为3x +3y -8=0.。

高中数学新苏教版精品教案《苏教版高中数学选修2-2 1.2.2 函数的和、差、积、商的导数》46

高中数学新苏教版精品教案《苏教版高中数学选修2-2 1.2.2 函数的和、差、积、商的导数》46

0'=C ()'kx b k +=,b 为常数1)'(-=n n nx x()'ln (0,0)x x a a a a a =>≠且 ()'x x e e =a x x a ln 1)'(log = 1(ln )'x x= x x cos )'(sin = x x sin )'(cos -=函数的和、差、积、商的导数【学习目标】1、掌握函数的和、差、积、商的求导法则;2、综合运用各种法则求函数的导数【教学重点】综合运用各种法则求函数的导数【问题导学】问题1常见函数的导数公式?问题2对下列涉及函数的和、差、积、商的导数,该如何求?22ln (1)()' (2)(sin )' (3)(e )' (4)()'x x x x x x x x+-⋅问题3用导数的定义求2y x x =+的导数。

并由该函数与2(),()f x x g x x ==的关系探究其导数间的关系。

问题4从特殊到一般,请你给出两个函数的和或差的导数公式,并用文字语言叙述。

法则1 []()()''()'()f x g x f x g x ±=± ;法则2 ()[]()x cf x cf ''=法则3 []()()''()()()'()f x g x f x g x f x g x =+法则4 ()()'⎥⎦⎤⎢⎣⎡x g x f =()()()()()x g x g x f x g x f 2''- 问题5针对函数的积、商的求导法则,请你谈谈导数公式的结构特征,并熟练记忆。

典型例题:例1请根据函数的和、差、积、商的求导法则,求下列函数的导数。

2(1)()sin f x x x =+;323(2)()622f x x x x =--+; 3()sin h x x x = 4tan y x = 5 =x 1·co (6)()()x x e x f x 22+=例2你能用两种方法求解下列函数的导数吗? 21(1)();(2)()(21)(3)t f x g x x x t +==-+小结 求导数前的变形,目的在于简化运算;如遇求多个积的导数,可以逐层分组进行;求导数后应对结果进行整理化简.例3(1)曲线C :6623+--=x x x y ,求经过曲线C 上一点P 的切线斜率最小的切线方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新苏教版高中数学选修2-2教学案(全册)_1.1导数的概念1.1.1 平均变化率假设下图是一座山的剖面示意图,并在上面建立平面直角坐标系.A 是出发点,H 是山顶.爬山路线用函数y =f (x )表示.自变量x 表示某旅游者的水平位置,函数值y =f (x )表示此时旅游者所在的高度.设点A 的坐标为(x 0,y 0),点B 的坐标为(x 1,y 1).问题1:若旅游者从A 点爬到B 点,则自变量x 和函数值y 的改变量Δx ,Δy 分别是多少?提示:Δx =x 1-x 0,Δy =y 1-y 0.问题2:如何用Δx 和Δy 来刻画山路的陡峭程度? 提示:对于山坡AB ,可用ΔyΔx 来近似刻画山路的陡峭程度.问题3:试想Δy =y 1-y 0x 1-x 0的几何意义是什么?提示:Δy Δx =y 1-y 0x 1-x 0表示直线AB 的斜率.问题4:从A 到B ,从A 到C ,两者的Δy Δx 相同吗?ΔyΔx 的值与山路的陡峭程度有什么关系?提示:不相同.ΔyΔx的值越大,山路越陡峭.1.一般地,函数f (x )在区间[x 1,x 2]上的平均变化率为f (x 2)-f (x 1)x 2-x 1.2.平均变化率是曲线陡峭程度的“数量化”,或者说,曲线陡峭程度是平均变化率的“视觉化”.在函数平均变化率的定义中,应注意以下几点:(1)函数在[x 1,x 2]上有意义;(2)在式子f (x 2)-f (x 1)x 2-x 1中,x 2-x 1>0,而f (x 2)-f (x 1)的值可正、可负、可为0.(3)在平均变化率中,当x 1取定值后,x 2取不同的数值时,函数的平均变化率不一定相同;同样的,当x 2取定值后,x 1取不同的数值时,函数的平均变化率也不一定相同.[对应学生用书P3][例1] (1)求函数f (x )=3x 2+2在区间[2,2.1]上的平均变化率; (2)求函数g (x )=3x -2在区间[-2,-1]上的平均变化率.[思路点拨] 求出所给区间内自变量的改变量及函数值的改变量,从而求出平均变化率. [精解详析] (1)函数f (x )=3x 2+2在区间[2,2.1]上的平均变化率为: f (2.1)-f (2)2.1-2=(3×2.12+2)-(3×22+2)0.1=12.3.(2)函数g (x )=3x -2在区间[-2,-1]上的平均变化率为g (-1)-g (-2)(-1)-(-2)=[3×(-1)-2]-[3×(-2)-2](-1)-(-2)=(-5)-(-8)-1+2=3.[一点通] 求函数平均变化率的步骤为: 第一步:求自变量的改变量x 2-x 1; 第二步:求函数值的改变量f (x 2)-f (x 1); 第三步:求平均变化率f (x 2)-f (x 1)x 2-x 1.1.函数g (x )=-3x 在[2,4]上的平均变化率是________. 解析:函数g (x )=-3x 在[2,4]上的平均变化率为g (4)-g (2)4-2=-3×4-(-3)×24-2=-12+62=-3.答案:-32.如图是函数y =f (x )的图象,则:(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________.解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案::(1)12 (2)343.本例条件不变,分别计算f (x )与g (x )在区间[1,2]上的平均变化率,并比较变化率的大小.解:(1)f (2)-f (1)2-1=3×22+2-(3×12+2)2-1=9.(2)g (2)-g (1)2-1=3×2-2-(3×1-2)2-1=3.f (x )比g (x )在[1,2]上的平均变化率大.[例2] t =1 s 到t =(1+Δt )s 这段时间内的平均速度.[思路点拨] 求物体在某段时间内的平均速度,就是求位移的改变量与时间的改变量的比值.[精解详析] 物体在[1,1+Δt ]内的平均速度为 S (1+Δt )-S (1)(1+Δt )-1=(1+Δt )+1-1+1Δt=2+Δt -2Δt =(2+Δt -2)(2+Δt +2)Δt (2+Δt +2)=12+Δt +2(m/s).即物体在t =1 s 到t =(1+Δt )s 这段时间内的平均速度为12+Δt + 2m/s.[一点通] 平均变化率问题在生活中随处可见,常见的有求某段时间内的平均速度、加速度、膨胀率、经济效益等.分清自变量和因变量是解决此类问题的关键.4.圆的半径r 从0.1变化到0.3时,圆的面积S 的平均变化率为________.解析:∵S =πr 2,∴圆的半径r 从0.1变化到0.3时, 圆的面积S 的平均变化率为S (0.3)-S (0.1)0.3-0.1=π×0.32-π×0.120.2=0.4π.答案:0.4π5.在F 1赛车中,赛车位移(单位:m)与比赛时间t (单位:s)存在函数关系S =10t +5t 2,则赛车在[20,20.1]上的平均速度是多少?解:赛车在[20,20.1]上的平均速度为S (20.1)-S (20)20.1-20=(10×20.1+5×20.12)-(10×20+5×202)20.1-20=21.050.1=210.5(m/s).[例3] 甲、乙两人走过的路程s 1(t ),s 2(t )与时间t 的关系如图所示,试比较两人的速度哪个大?[思路点拨] 要比较两人的速度,其实就是比较两人走过的路程对时间的平均变化率,通过平均变化率的大小关系得出结论.[精解详析] 在t 0处s 1(t 0)=s 2(t 0), 但s 1(t 0)-s 1(t 0-Δt )Δt <s 2(t 0)-s 2(t 0-Δt )Δt,所以在单位时间内乙的速度比甲的速度大,因此,在如图所示的整个运动状态中乙的速度比甲的速度大.[一点通] 平均变化率的绝对值反映函数在给定区间上变化的快慢,平均变化率的绝对值越大,函数在区间上的变化率越快;平均变化率的绝对值越小,函数在区间上的变化率越慢.6.汽车行驶的路程s 和时间t 之间的函数图象如图所示.在时间段[t 0,t 1],[t 1,t 2],[t 2,t 3]上的平均速度分别为v 1,v 2,v 3,则三者的大小关系是________.解析:v 1=s (t 1)-s (t 0)t 1-t 0=k OA ,v 2=s (t 2)-s (t 1)t 2-t 1=k AB ,v 3=s (t 3)-s (t 2)t 3-t 2=k BC ,由图象知:k OA <k AB <k BC , 所以v 3>v 2>v 1. 答案:v 3>v 2>v 17.A 、B 两机关开展节能活动,活动开始后,两机关每天的用电情况如图所示,其中W 1(t )、W 2(t )分别表示A 、B 两机关的用电量与时间第t 天的关系,则下列说法一定正确的是________.(填序号)①两机关节能效果一样好; ②A 机关比B 机关节能效果好;③A 机关在[0,t 0]上的用电平均变化率比B 机关在[0,t 0]上的用电平均变化率大; ④A 机关与B 机关自节能以来用电量总是一样大. 解析:由图可知,在t =0时,W 1(0)>W 2(0), 当t =t 0时,W 1(t 0)=W 2(t 0), 所以W 1(t 0)-W 1(0)t 0<W 2(t 0)-W 2(0)t 0,且⎪⎪⎪⎪W 1(t 0)-W 1(0)t 0>⎪⎪⎪⎪W 2(t 0)-W 2(0)t 0.故只有②正确. 答案:②1.求函数在指定区间上的平均变化率应注意的问题(1)平均变化率的公式中,分子是区间两端点间的函数值的差,分母是区间两端点间的自变量的差.(2)平均变化率公式中,分子、分母中被减数同时为右端点,减数同为左端点. 2.一次函数的平均变化率一次函数y =kx +b (k ≠0)在区间[m ,n ]上的平均变化率为f (n )-f (m )n -m =(kn +b )-(km +b )n -m=k .由上述计算可知,一次函数y =kx +b ,在区间[m ,n ]上的变化率与m ,n 的值无关,只与一次项系数有关,且其平均变化率等于一次项的系数.3.平均变化率的几何意义(1)平均变化率f (x 2)-f (x 1)x 2-x 1表示点(x 1,f (x 1)),(x 2,f (x 2))连线的斜率,是曲线陡峭程度的“数量化”.(2)平均变化率的大小类似函数的单调性,可说明函数图象的陡峭程度.[对应课时跟踪训练(一)]一、填空题1.函数f (x )=x 2-1在区间[1,1.1]上的平均变化率为________. 解析:f (1.1)-f (1)1.1-1=(1.12-1)-(12-1)1.1-1=0.210.1=2.1.答案:2.12.函数f (x )=2x +4在区间[a ,b ]上的平均变化率为________. 解析:f (b )-f (a )b -a =(2b +4)-(2a +4)b -a =2(b -a )b -a =2.答案:23.某人服药后,人吸收药物的情况可以用血液中药物的浓度c (单位:mg/mL)来表示,它是时间t (单位:min)的函数,表示为c =c (t ),下表给出了c (t )的一些函数值:服药后30~70 min 这段时间内,药物浓度的平均变化率为________. 解析:c (70)-c (30)70-30=0.90-0.9840=-0.002.答案:-0.0024.如图所示物体甲、乙在时间0到t1范围内路程的变化情况,则在0到t 0范围内甲的平均速度________乙的平均速度,在t 0到t 1范围内甲的平均速度________乙的平均速度(填“等于”、“大于”或“小于”).解析:由图可知,在[0,t 0]上,甲的平均速度与乙的平均速度相同;在[t 0,t 1]上,甲的平均速度大于乙的平均速度.答案:等于 大于5.函数y =x 3+2在区间[1,a ]上的平均变化率为21,则a =________. 解析:(a 3+2)-(13+2)a -1=a 3-1a -1=a 2+a +1=21.解之得a =4或a =-5. 又∵a >1,∴a =4. 答案:4 二、解答题6.已知函数f (x )=2x 2+1.求函数f (x )在区间[2,2.01]上的平均变化率. 解:函数f (x )在区间[2,2.01]上的平均变化率为2×2.012+1-2×22-12.01-2=8.02.7.求函数y =sin x 在0到π6之间和π3到π2之间的平均变化率,并比较它们的大小.解:在0到π6之间的平均变化率为sin π6-sin 0π6-0=3π;在π3到π2之间的平均变化率为sin π2-sin π3π2-π3=3(2-3)π. ∵2-3<1,∴3π>3(2-3)π,∴函数y =sin x 在0到π6之间的平均变化率为3π,在π3到π2之间的平均变化率为3(2-3)π,故在0到π6之间的平均变化率较大.8.已知气球的表面积S (单位:cm 2)与半径r (单位:cm)之间的函数关系是S (r )=4πr 2.求:(1)气球表面积S 由10 cm 2膨胀到20 cm 2时的平均膨胀率即气球膨胀过程中半径的增量与表面积增量的比值;(2)气球表面积S 由30 cm 2膨胀到40 cm 2时的平均膨胀率. 解:根据函数的增量来证明.由S (r )=4πr 2,r >0,把r 表示成表面积S 的函数: r (S )=12ππS . (1)当S 由10 cm 2膨胀到20 cm 2时,气球表面积的增量ΔS =20-10=10(cm 2),气球半径的增量Δr =r (20)-r (10)=12π(20π-10π)≈0.37(cm). 所以气球的平均膨胀率为Δr ΔS ≈0.3710=0.037.(2)当S 由30 cm 2膨胀到40 cm 2时,气球表面积的增量ΔS =12π(40π-30π)≈0.239(cm 2).所以气球的平均膨胀率为Δr ΔS ≈0.23910=0.023 9.1.1.2 瞬时变化率——导数如图P n 的坐标为(x n ,f (x n ))(n =1,2,3,4…),P 的坐标为(x 0,y 0).问题1:当点P n →点P 时,试想割线PP n 如何变化? 提示:当点P n 趋近于点P 时,割线PP n 趋近于确定的位置. 问题2:割线PP n 斜率是什么? 提示:割线PP n 的斜率是k n =f (x n )-f (x 0)x n -x 0.问题3:割线PP n 的斜率与过点P 的切线PT 的斜率k 有什么关系呢? 提示:当点P n 无限趋近于点P 时,k n 无限趋近于切线PT 的斜率. 问题4:能否求得过点P 的切线PT 的斜率? 提示:能.1.割线设Q 为曲线C 上不同于P 的一点,这时,直线PQ 称为曲线的割线. 2.切线随着点Q 沿曲线C 向点P 运动,割线PQ 在点P 附近越来越逼近曲线C .当点Q 无限逼近点P 时,直线PQ 最终就成为在点P 处最逼近曲线的直线l ,这条直线l 也称为曲线在点P 处的切线.一质点的运动方程为S =8-3t 2,其中S 表示位移,t 表示时间. 问题1:该质点在[1,1+Δt ]这段时间内的平均速度是多少?提示:该质点在[1,1+Δt ]这段时间内的平均速度为8-3(1+Δt )2-8+3×12Δt =-6-3Δt .问题2:Δt 的变化对所求平均速度有何影响? 提示:Δt 越小,平均速度越接近常数-6.1.平均速度运动物体的位移与所用时间的比称为平均速度. 2.瞬时速度一般地,如果当Δt 无限趋近于0时,运动物体位移S (t )的平均变化率S (t 0+Δt )-S (t 0)Δt 无限趋近于一个常数,那么这个常数称为物体在t =t 0时的瞬时速度,也就是位移对于时间的瞬时变化率.3.瞬时加速度一般地,如果当Δt 无限趋近于0时,运动物体速度v (t )的平均变化率v (t 0+Δt )-v (t 0)Δt 无限趋近于一个常数,那么这个常数称为物体在t =t 0时的瞬时加速度,也就是速度对于时间的瞬时变化率.1.导数设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值ΔyΔx =f (x 0+Δx )-f (x 0)Δx 无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称该常数A 为函数f (x )在x =x 0处的导数,记作f ′(x 0).2.导数的几何意义导数f ′(x 0)的几何意义是曲线y =f (x )P (x 0,f (x 0))处的切线的斜率. 3.导函数(1)若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数,记作f ′(x ),在不引起混淆时,导函数f ′(x )也简称f (x )的导数.(2)f (x )在x =x 0处的导数f ′(x 0)就是导函数f ′(x )在x =x 0处的函数值.1.利用导数的几何意义,可求曲线上在某点处的切线的斜率,然后由点斜式写出直线方程.2.函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在x =x 0处的函数值,所以求函数在一点处的导数,一般先求出函数的导函数,再计算这点的导函数值.[对应学生用书P5][例1] 已知曲线y =x +1x 上的一点A ⎝⎭⎫2,52,用切线斜率定义求: (1)点A 处的切线的斜率; (2)点A 处的切线方程.[思路点拨] 先计算f (2+Δx )-f (2)Δx ,再求其在Δx 趋近于0时无限逼近的值.[精解详析] (1)∵Δy =f (2+Δx )-f (2)=2+Δx +12+Δx -⎝⎛⎭⎫2+12=-Δx 2(2+Δx )+Δx ,∴Δy Δx =-Δx 2Δx (2+Δx )+Δx Δx =-12(2+Δx )+1. 当Δx 无限趋近于零时,Δy Δx 无限趋近于34,即点A 处的切线的斜率是34.(2)切线方程为y -52=34(x -2),即3x -4y +4=0.[一点通] 根据曲线上一点处的切线的定义,要求曲线过某点的切线方程,只需求出切线的斜率,即在该点处,Δx 无限趋近于0时,ΔyΔx无限趋近的常数.1.曲线y =-12x 2-2在点P ⎝⎛⎭⎫1,-52处的切线的斜率为________. 解析:设P ⎝⎛⎭⎫1,-52,Q ⎝⎛⎭⎫1+Δx ,-12(1+Δx )2-2,则割线PQ 的斜率为k PQ =-12(1+Δx )2-2+52Δx =-12Δx -1.当Δx 无限趋近于0时,k PQ 无限趋近于-1,所以曲线y =-12x 2-2在点P ⎝⎛⎭⎫1,-52处的切线的斜率为-1.答案:-12.已知曲线y =2x 2+4x 在点P 处的切线的斜率为16,则P 点坐标为________. 解析:设P 点坐标为(x 0,y 0),则f (x 0+Δx )-f (x 0)(x 0+Δx )-x 0=2(Δx )2+4x 0Δx +4ΔxΔx =4x 0+4+2Δx .当Δx 无限趋近于0时,4x 0+4+2Δx 无限趋近于4x 0+4, 因此4x 0+4=16,即x 0=3, 所以y 0=2×32+4×3=18+12=30. 即P 点坐标为(3,30). 答案:(3,30)3.已知曲线y =3x 2-x ,求曲线上一点A (1,2)处的切线的斜率及切线方程. 解:设A (1,2),B (1+Δx,3(1+Δx )2-(1+Δx )), 则k AB =3(1+Δx )2-(1+Δx )-(3×12-1)Δx=5+3Δx ,当Δx 无限趋近于0时,5+3Δx 无限趋近于5,所以曲线y =3x 2-x 在点A (1,2)处的切线斜率是5.切线方程为y -2=5(x -1),即5x -y -3=0.[例2] 2s),若该质点在t =2 s 时的瞬时速度为8 m/s ,求常数a 的值.[思路点拨] 先求出质点在t =2s 时的平均速度,再根据瞬时速度的概念列方程求解. [精解详析] 因为ΔS =S (2+Δt )-S (2)=a (2+Δt )2+1-a ·22-1=4a Δt +a (Δt )2,所以ΔSΔt =4a +a Δt .当Δt 无限趋近于0时,ΔSΔt 无限趋近于4a .所以t =2 s 时的瞬时速度为4a m/s. 故4a =8,即a =2.[一点通] 要计算物体的瞬时速度,只要给时间一个改变量Δt ,求出相应的位移的改变量ΔS ,再求出平均速度v =ΔS Δt ,最后计算当Δt 无限趋近于0时,ΔSΔt 无限趋近常数,就是该物体在该时刻的瞬时速度.4.一做直线运动的物体,其位移S 与时间t 的关系是S =3t -t 2,则此物体在t =2时的瞬时速度为________.解析:由于ΔS =3(2+Δt )-(2+Δt )2-(3×2-22)=3Δt -4Δt -(Δt )2=-Δt -(Δt )2,所以ΔS Δt =-Δt -(Δt )2Δt=-1-Δt .当Δt 无限趋近于0时,ΔSΔt 无限趋近于常数-1.故物体在t =2时的瞬时速度为-1. 答案:-15.如果一个物体的运动方程S (t )=⎩⎪⎨⎪⎧t 2+2,0≤t <3,29+3(t -3)2,t ≥3,试求该物体在t =1和t =4时的瞬时速度.解:当t =1时,S (t )=t 2+2,则ΔS Δt =S (1+Δt )-S (1)Δt =(1+Δt )2+2-3Δt=2+Δt , 当Δt 无限趋近于0时,2+Δt 无限趋近于2, 所以v (1)=2; ∵t =4∈[3,+∞),∴S (t )=29+3(t -3)2=3t 2-18t +56,∴ΔS Δt =3(4+Δt )2-18(4+Δt )+56-3×42+18×4-56Δt=3Δt 2+6·Δt Δt=3·Δt +6,∴当Δt 无限趋近于0时,3·Δt +6→6,即ΔSΔt →6,所以v (4)=6.[例3] 已知f (x )=2(1)求f (x )在x =2处的导数; (2)求f (x )在x =a 处的导数.[思路点拨] 根据导数的定义进行求解.深刻理解概念是正确解题的关键. [精解详析] (1)因为Δy Δx =f (2+Δx )-f (2)Δx=(2+Δx )2-3-(22-3)Δx=4+Δx ,当Δx 无限趋近于0时,4+Δx 无限趋近于4, 所以f (x )在x =2处的导数等于4. (2)因为Δy Δx =f (a +Δx )-f (a )ΔxΔx =2a +Δx ,当Δx 无限趋近于0时,2a +Δx 无限趋近于2a , 所以f (x )在x =a 处的导数等于2a .[一点通] 由导数的定义知,求一个函数y =f (x )在x =x 0处的导数的步骤如下: (1)求函数值的改变量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)令Δx 无限趋近于0,求得导数.6.函数y =x +1x 在x =1处的导数是________.解析:∵函数y =f (x )=x +1x ,∴Δy =f (1+Δx )-f (1)=1+Δx +11+Δx -1-1=(Δx )21+Δx ,∴Δy Δx =Δx 1+Δx ,当Δx →0时,Δy Δx→0, 即y =x +1x 在x =1处的导数为0.答案:07.设f (x )=ax +4,若f ′(1)=2,则a =________. 解析:∵f (1+Δx )-f (1)Δx =a (1+Δx )+4-a -4Δx =a ,∴f ′(1)=a ,即a =2. 答案:28.将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第x h 时,原油的温度(单位:℃)为f (x )=x 2-7x +15(0≤x ≤8).求函数y =f (x )在x =6处的导数f ′(6),并解释它的实际意义.解:当x 从6变到6+Δx 时,函数值从f (6)变到f (6+Δx ),函数值y 关于x 的平均变化率为:f (6+Δx )-f (6)Δx=(6+Δx )2-7(6+Δx )+15-(62-7×6+15)ΔxΔx当x →6时,即Δx →0,平均变化率趋近于5,所以f ′(6)=5,导数f ′(6)=5表示当x =6 h 时原油温度的瞬时变化率即原油温度的瞬时变化速度.也就是说,如果保持6 h 时温度的变化速度,每经过1 h 时间,原油温度将升高5℃.1.利用导数的几何意义求过某点的切线方程(1)若已知点(x 0,y 0)在已知曲线上,则先求出函数y =f (x )在点x 0处的导数,然后根据直线的点斜式方程,得切线方程y -y 0=f ′(x 0)(x -x 0).(2)若题中所给的点(x 0,y 0)不在曲线上,首先应设出切点坐标,然后根据导数的几何意义列出等式,求出切点坐标,进而求出切线方程.2.f ′(x 0)与f ′(x )的异同[对应课时跟踪训练(二)]一、填空题1.一质点运动的方程为S =5-3t 2,若该质点在时间段[1,1+Δt ]内相应的平均速度为-3Δt -6,则该质点在t =1时的瞬时速度为________.解析:∵当Δt 无限趋近于0时,-3Δt -6无限趋近于常数-6,∴该质点在t =1时的瞬时速度为-6.答案:-62.函数f (x )=1-3x 在x =2处的导数为________. 解析:Δy =f (2+Δx )-f (2)=-3Δx ,ΔyΔx =-3,则Δx 趋于0时,Δy=-3.故f (x )在x =2处的导数为-3. 答案:-33.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.解析:由题意知f ′(1)=12,f (1)=12+2=52,所以f (1)+f ′(1)=52+12=3.答案:34.曲线f (x )=12x 2-2在点⎝⎛⎭⎫1,-32处的切线的倾斜角为________. 解析:∵f (1+Δx )-f (1)Δx =12(1+Δx )2-2-⎝⎛⎭⎫12-2Δx=12(Δx )2+Δx Δx =12Δx +1.∴当Δx 无限趋近于0时,f (1+Δx )-f (1)无限趋近于常数1,即切线的斜率为1.∴切线的倾斜角为π4.答案:π45.已知曲线y =2ax 2+1过点P (a ,3),则该曲线在P 点处的切线方程为________. 解析:∵y =2ax 2+1过点P (a ,3), ∴3=2a 2+1,即a 2=1.又∵a ≥0,∴a =1,即y =2x 2+1. ∴P (1,3).又Δy Δx =f (1+Δx )-f (1)Δx =2(1+Δx )2+1-2×12-1Δx=4+2Δx . ∴当Δx 无限趋近于0时,ΔyΔx 无限趋近于常数4,∴f ′(1)=4,即切线的斜率为4.由点斜式可得切线方程为y -3=4(x -1), 即4x -y -1=0. 答案:4x -y -1=0 二、 解答题6.已知质点运动方程是S (t )=12gt 2+2t -1(g 是重力加速度,常量),求质点在t =4 s 时的瞬时速度(其中s 的单位是m ,t 的单位是s).。

相关文档
最新文档