七年级数学中的角度计算题
七年级数学上册专题提分精练三角板转动求角和角平分线结合(解析版)

专题23 三角板转动求角和角平分线结合1.直角三角形纸板COE的直角顶点O在直线AB上.(1)如图1,当∠AOE=165°时,∠BOE=°;(2)如图2,OF平分∠AOE,若∠COF=20°,则∠BOE=°;(3)将三角形纸板COE绕点O逆时针方向转动至如图3的位置,仍有OF平分∠AOE,若∠COF=56°,求∠BOE的度数.【答案】(1)15;(2)40;(3)112°【分析】(1)根据平角的定义求解即可;(2)根据∠COF=20°,先求解∠EOF=70°,再根据OF平分∠AOE,求解∠AOE=140°,最后根据平角的定义求解∠BOE即可;(3)根据∠COF=56°,先求解∠EOF=34°,由OF平分∠AOE,可得到∠AOE=68°,最后根据平角的定义求解∠BOE即可.【详解】解:(1)∵∠AOE+∠BOE=180°,∠AOE=165°,∴∠BOE=180°﹣∠AOE=15°,故答案为:15;(2)∵∠COE=90°,∠COF=20°,∠COE=∠COF+∠EOF,∴∠EOF=90°﹣20°=70°,∵OF平分∠AOE,∴∠AOE=2∠EOF=140°,∵∠AOE+∠BOE=180°,∴∠BOE=180°﹣∠AOE=40°,故答案为:40;(3)∵∠COE=90°,∠COE=∠COF+∠EOF,∠COF=56°,∴∠EOF=90°﹣∠COF=90°﹣56°=34°,∵OF平分∠AOE,∴∠AOE=2∠EOF=68°,∵∠AOE+∠BOE=180°,∴∠BOE=180°﹣∠AOE=112°.【点睛】本题考查了角的计算,平角的定义,角的平分线定义,直角的定义,熟练掌握补角的定义,角的平分线定义,角的和与差是解题的关键.2.如图1,某校七年级数学学习小组在课后综合实践活动中,把一个直角三角尺AOB 的直角顶点O 放在互相垂直的两条直线PQ 、MN 的垂足O 处,并使两条直角边落在直线PQ 、MN 上,将AOB 绕着点O 顺时针旋转()0180αα︒︒<<︒.(1)如图2,若26α=︒,则BOP ∠=_____________,AOM BOQ ∠+∠=_____________; (2)若射线OC 是BOM ∠的角平分线,且POC β∠=︒.①若AOB 旋转到图3的位置,BON ∠的度数为多少?(用含β的代数式表示) ②AOB 在旋转过程中,若∠AOC =2∠AOM ,求此时β的值. 【答案】(1)64°,180°; (2)①2β︒;②60°或36°【分析】(1)根据∠BOP =180°-∠AOB -∠AOQ ,可分别计算出结果; (2)①先求∠BOP 与∠PON ,再利用∠BON =∠BOP +∠PON 得出结论;②分两种情况讨论:当OB 旋转到OP 左侧时;当OB 旋转到OP 右侧时解答即可. (1)解:MN ⊥PQ ,∴∠MOQ =90°,∠AOB =90°, ∵∠AOQ =β︒,∴∠BOP =180°-∠AOB -∠AOQ =180°-90°-26°=64°,∠AOM =∠MOQ -∠AOQ =90°-β︒, ∵∠BOQ =∠AOB +∠AOQ =90°+β︒, ∴∠AOM +BOQ =90°-β︒+90°+β︒=180°; (2)①∵∠MOP =90°,∠POC =β︒, ∴∠MOC =90°-β︒,∵OC 是BOM ∠的角平分线,∴∠BOM =2∠MOC =2(90°-β︒)=180°-2β︒,∴∠BOP=90°-∠BOM=2β︒-90°,∵∠PON=90°,∴∠BON=∠BOP+∠PON=2β︒-90°+90°=2β︒;②当OB旋转到OP左侧时,如图:∠的角平分线,∵OC是BOM∴∠BOC=∠MOC,∵∠AOC=2∠AOM,∴∠AOM=∠MOC,∴∠BOC=∠MOC=∠AOM,∵∠BOC+∠MOC+∠AOM=90°,∴∠BOC=∠MOC=∠AOM=30°,∠=︒=90°-∠MOC=60°;∴POCβ当OB旋转到OP右侧时,如图:设∠AOM=x,∵∠AOC=2∠AOM=2x,∴∠MOC=3∠AOM=3x,∵∠BOC+∠MOC+∠AOM=90°,∴∠BOC=∠MOC=∠AOM=30°,∠的角平分线,∵OC是BOM∴∠BOC=∠MOC=3x,∴∠AOB=∠AOC+∠BOC=5x=90°,∴x=18°,∴∠MOC=3x=54°,∠=︒=90°-∠MOC=36°;∴POCβ综上β的值为:60°或36°.【点睛】本题考查了旋转的性质,角平分线的性质,分情况讨论是解题关键.3.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=50°.现将一直角三角板的直角顶点放在点O处,一边OD与射线OB重合,如图2.(1)∠EOC=;(2)如图3,将三角板DOE绕点O逆时针旋转一定角度,此时OC是∠EOB的角平分线,求∠BOD的度数;(3)将三角板DOE绕点O逆时针旋转,在OE与OA重合前,是否有某个时刻满足∠DOC=13∠AOE,求此时∠BOD的度数.【答案】(1)40°;(2)10°;(3)30°或60°)解:OC是∠BOC=∠=DOC ∠=BOD ∠+∠350α∴+︒-20α∴=︒②若OD 在设∠DOC 50BOD ∠=BOD ∠+∠350α∴+︒10α∴=︒(1)如图,若28MOC ∠=︒,求BON ∠的度数; (2)若MOC m ∠=︒,则BON ∠的度数为 ;(3)由(1)和(2),我们发现MOC ∠和BON ∠之间有什么样的数量关系?(4)若将三角形MON 绕点O 旋转到如图所示的位置,试问MOC ∠和BON ∠之间的数量关系是否发生变化?请说明理由.【答案】(1)56BON ∠=︒;(2)2m ︒;(3)2BON MOC ∠=∠;(4)不变.理由见解析. 【分析】(1)根据90MOC NOC ∠+∠=︒,28MOC ∠=︒,即可求出62NOC ∠=︒,根据角平分线的性质得到2124AON NOC ∠=∠=︒,即可求出BON ∠的度数. (2)根据(1)中的步骤进行求解即可. (3)根据(1),(2)的结果直接进行计算即可.(4)根据90MOC NOC ∠+∠=︒,得到90NOC MOC ∠=︒-∠,根据角平分线的性质得到2AON NOC ∠=∠,根据180180218029018018022BON AON NOC MOC MOC MOC ∠=︒-∠=︒-∠=︒-︒-∠=︒-︒+∠=∠(),即可求解.【详解】解:(1)90MON ∠=︒, 90MOC NOC ∴∠+∠=︒.又28MOC ∠=︒, 62NOC ∴∠=︒.OC 平分AON ∠,2124AON NOC ∴∠=∠=︒. 180BON AON ∠+∠=︒, 56BON ∴∠=︒.(2)90MON ∠=︒, 90MOC NOC ∴∠+∠=︒.又MOC m ∠=︒,90NOC m ∴∠=︒-︒. OC 平分AON ∠,21802AON NOC m ∴∠=∠=︒-︒.180BON AON ∠+∠=︒,2BON m ∴∠=︒.故答案为:2m ︒.(3)2BON MOC ∠=∠. (4)不变,理由如下: 90MON ∠=︒, 90MOC NOC ∴∠+∠=︒, 90NOC MOC ∴∠=︒-∠,OC 平分AON ∠,2AON NOC ∴∠=∠, 180BON AON ∠+∠=︒,180BON AON ∴∠=︒-∠1802NOC =︒-∠180290MOC ()=︒-︒-∠2MOC =∠, 即2BON MOC ∠=∠.【点睛】本题考查了直角三角形、角平分线的性质及邻补角等知识,熟练掌握直角三角形与角平分线的性质进行计算是解题的关键.5.如图1,点A 、O 、B 在同一直线上,∠AOC=60°,在直线AB 另一侧,直角三角形DOE 绕直角顶点O 逆时针旋转(当OD 与OC 重合时停止),设∠BOE=α: (1)如图1,当DO 的延长线OF 平分∠BOC ,∠α=______度;(2)如图2,若(1)中直角三角形DOE 继续逆时针旋转,当OD 位于∠AOC 的内部,且∠AOD=13∠AOC ,∠α=__度;(3)在上述直角三角形DOE 的旋转过程中,(∠COD+∠α)的度数是否改变?若不改变,请求出其度数;若改变,请说明理由.【答案】(1)30 ;(2) 110;(3)(∠COD+∠α)的度数不变,见解析.60角的三角板的上方,其中A 60∠=,另一块含45角的三角板POQ 的一边OQ 在直线MN 上,另一边OP 在直线MN 的下方.()1现将图1中的三角板POQ 绕点O 按顺时针方向旋转,当直线MN 恰好为POQ ∠的平分线时,如图2所示,则AOP ∠的度数______度;()2继续将图2中的三角板绕点O 按顺时针方向旋转至图3的位置,使得边OA 落在QOB∠的内部,且AO 恰好为POQ ∠的平分线时,求BOP ∠的度数;()3在上述直角三角板从图1按顺时针方向旋转至图位置为止,这个过程中,若三角板POQ绕点O 以每秒15的速度匀速旋转,当三角板POQ 的OP 边或OQ 边所在直线平分AOB ∠,则求此时三角板POQ 绕点O 旋转的时间t 的值(请直接写出答案).15;(3)当)1直线MN 90, 45,又AOB 60∠=且MOB ∠POA 180POM AOB 180456075∠∠∠=--=--=,故AOP ∠的度数为75; 故答案为75)2AO 恰好为POQ ∠的平分线,1AOP 452∠=,AOB 30∠=,BOP AOP BOP 15∠∠∴=-=;()3根据题意可知,分两种情况,①当OP AOB 时,136090AOB2∠--或1902∠-AOB 30∠=,∴时间()t 36090151517(=--÷=秒)9015155(-÷=秒②当OQ 边所在直线平分AOB ∠时,三角板PQO 绕点O 旋转的度数为13602∠-1180AOB 2∠-,AOB 30∠=,∴时间)t 360151523(=-÷=秒)180151511(-÷=秒∠时旋转时间为5秒或17秒,当OQ边所在直线平综合①②得当OP边所在直线平分AOB∠时旋转时间为11秒或23秒.分AOB【点睛】此题考查了角平分线的定义,根据题意找到各个量之间的关系是解题的关键.7.将一三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)如图1,若∠BOD=35°,则∠AOC=______°;若∠AOC=135°,则∠BOD=_____°;(2)如图2,若∠AOC=140°,则∠BOD=_____°;(3)猜想∠AOC与∠BOD的大小关系,并结合图1说明理由;(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD角度所有可能的值,不用说明理由.【答案】(1)145°,45°;(2)40°;(3)∠AOC与∠BOD互补,理由详见解析;(4)∠AOD 角度所有可能的值为:30°、45°、60°、75°【分析】(1)由于是两直角三角形板重叠,根据∠AOC=∠AOB+∠COD-∠BOD可分别计算出∠AOC、∠BOD的度数;(2)根据∠BOD=360°-∠AOC-∠AOB-∠COD计算可得;(3)由∠AOD+∠BOD+∠BOD+∠BOC=180°且∠AOD+∠BOD+∠BOC=∠AOC可知两角互补;(4)分别利用OD⊥AB、CD⊥OB、CD⊥AB、OC⊥AB分别求出即可.【详解】解:解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°,若∠AOC=135°,则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°;(2)如图2,若∠AOC=140°,则∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD=40°;(3)∠AOC与∠BOD互补.∵∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,即∠AOC与∠BOD互补.(4)OD⊥AB时,∠AOD=30°,CD⊥OB时,∠AOD=45°,CD⊥AB时,∠AOD=75°,OC⊥AB时,∠AOD=60°,即∠AOD角度所有可能的值为:30°、45°、60°、75°;故答案为(1)145°,45°;(2)40°.【点睛】本题题主要考查了互补、互余的定义等知识,解题的关键是理解重叠的部分实质是两个角的重叠.8.如图1,将三角板如图放置,∠AOC=60°.将另一把直角三角尺的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方,其中∠OMN=45°.(1)将图1中的三角尺MON绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;(2)将图1中的三角尺MON绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第____秒时,直线MN恰好与直线OC垂直;在第__秒时,直线ON恰好平分锐角∠AOC.(直接写出结果);(3)将图1中的三角尺MON绕点O顺时针旋转使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.(4)通过操作我们发现,将图1中三角形AOC绕点O顺时针旋转一定角度α(0<α<180°)时,三角形AOC会被直线AB或ON分成两个三角形,其中一个三角形有两个角相等,请直接写出所有符合条件的旋转角度α.【答案】(1)∠CON=150°(2)1.5或19.5;12或30(3)∠AOM与∠NOC之间的数量关系为:∠AOM﹣∠NOC=30°.理由见解析(4)45︒或60︒或135︒或150︒如图,当OMN旋转到直线如图,当OMN在直线当OMN旋转到当OMN旋转到∵∠MON=90°,∠AOC=60°,∴∠AON=90°﹣∠AOM,∠AON=60°﹣∠NOC,∴90°﹣∠AOM=60°﹣∠NOC,∴∠AOM﹣∠NOC=30°,故∠AOM与∠NOC之间的数量关系为:∠AOM﹣∠NOC=30°.(4)解:其中一个三角形是等腰三角形①OC在直线OB上方:当45AOH AHO∠=∠=︒时,α=︒-︒=︒∴904545的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系,并说明理由.【点睛】本题考查了角平分线,与三角板有关的计算,对顶角等知识.解题的关键在于找出角度的数量关系.10.已知直角三角板ABC和直角三角板DEF,∠ACB=∠EDF=90°,∠ABC=60°,∠DEF =45°.(1)如图1.将顶点C和顶点D重合.保持三角板ABC不动,将三角板DEF绕点C旋转,当CF平分∠ACB时,则∠ACE= ;(2)在(1)的条件下,继续旋转三角板DEF,猜想∠ACE与∠BCF有怎样的数量关系?并利用图2所给的情形说明理由;(3)如图3,将顶点C和顶点E重合,保持三角板ABC不动,将三角板DEF绕点C旋转.写出∠ACD与∠BCF之间的数量关系并说明理由.【答案】(1)45°(2)∠ACE=∠BCF(3)∠BCF-∠ACD =45°【分析】(1) 根据CF平分∠ACB,得到∠BCF=∠ACF=45°,结合∠EDF=90°,计算即可.(2) 根据∠ACB=∠EDF=90°,得∠ACE=90°-∠ACF,∠BCF=90°-∠ACF,根据互余的性质证明即可.(3)根据∠ACF+∠ACD =45°,∠ACF=90°-∠BCF,代入等式消去∠ACF,整理可得证.(1)∵CF平分∠ACB,∠ACB=∠EDF=90°,∴∠BCF=∠ACF=45°,∴∠ACE=∠EDF-∠ACF=90°-45°=45°,故答案为:45°.(2)∠ACE=∠BCF.理由如下:∵∠ACB=∠EDF=90°,∴∠ACE=90°-∠ACF,∠BCF=90°-∠ACF,∴∠ACE =∠BCF . (3)∠BCF -∠ACD =45°.理由如下: ∵∠ACB =∠EDF =90°,∠DEF =45°, ∴∠ACF +∠ACD =45°,∠ACF =90°-∠BCF , ∴∠BCF -∠ACD =45°.【点睛】本题考查了互余的性质,两个角的和,角的平分线即从角的顶点出发的射线把这个角分成相等的两个角,熟练掌握两个角互余的性质是解题的关键.11.将两块直角三角板的顶点A 叠在一起,已知∠BAC =30°,∠DAE =90°,将三角板ADE 绕点A 旋转,在旋转过程中,保持∠BAC 始终在∠DAE 的内部.(1)如图①,若∠BAD =25°,求∠CAE 的度数.(2)如图①,∠BAE 与∠CAD 有什么数量关系,请说明理由.(3)如图②,若AM 平分∠BAD ,AN 平分∠CAE ,问在旋转过程中,∠MAN 的大小是否发生改变?若不变,请说明理由;若改变,请求出变化范围. CAE 12,∠BAC 130902即可.=30°,∠DAE =90°,∠DAE -∠BAD -∠BAC =90°CAE 12, BAM , CAE 12, BAD CAE 1302,BAC 130902,3030,60=︒.【点睛】本题考查三角板中角度计算,余角性质,角的和差,角平分线有关计算,掌握三角板中角度计算,角的和差,角平分线有关计算是解题关键.12.如图1,O 为直线AB 上一点,的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周,如图2,经过t 秒后,OM 恰好平分BOC ∠. ①t 的值是_________;②此时ON 是否平分AOC ∠?说明理由;(2)在(1)的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分MON ∠?请说明理由; (3)在(2)的基础上,经过多长时间,10BOC ∠=︒?请画图并说明理由. 【答案】(1)①5;②是,理由见解析则有30°+6t+10°=180°,或30°+6t-10°=180°,∠COD=60°.(1)求图1中∠BOD的度数.(2)如图2,三角板COD固定不动,将三角板AOB绕点O按顺时针方向旋转一个角度α(即∠AOE=α),在转动过程中两个三角板一直处于直线EF的上方.①当OB平分OA、OC、OD其中的两边组成的角时,求满足要求的所有旋转角度α的值;②在转动过程中是否存在∠BOC=2∠AOD?若存在,求此时α的值;若不存在,请说明理由.【答案】(1)75(2)①旋转角α的值为30°,90°,105°;②当α=105°或125°时,存在∠BOC=2∠AOD.【分析】(1)根据平平角的定义即可得到结论;(2)①根据已知条件和角平分线的定义即可得到结论;②当OA在OD的左侧时,当OA在OD的右侧时,列方程即可得到结论.=30°)的直角顶点放在点O处,另一边OM与OC都在直线AB的上方,将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON与OC重合?(2)如图2,经过秒后,MN∥AB;(3)若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC与OM重合?请并说明理由.(4)在(3)的条件下,求经过多长时间OC平分∠MOB?请说明理由.顶点放在点O处.(1)如图1,将三角板MON的一边ON与射线OB重合时,求∠MOC的度数;(2)如图2,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的平分线,求∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图3时,∠NOC=14∠AOM,求∠NOB的度数.的量.16.如图1,已知50ABC ∠=︒,有一个三角板BDE 与ABC ∠共用一个顶点B ,其中45EBD ∠=︒.(1)若BD 平分ABC ∠,求EBC ∠的度数;(2)如图2,将三角板绕着点B 顺时针旋转α度(090α︒<<︒),当AB BD ⊥时,求EBC ∠的度数. )BD 平分12DBC ABC =∠ABC ∠=︒1502ABD DBC ∴∠==⨯EBC EBD DBC ∴∠=+∠(2)当AB ABD ∠=ABC ∴∠+EBC ∴∠=【点睛】本题考查角平分线的性质、与三角板有关的角的和差计算等知识,是重要考点,难度较易,掌握相关知识是解题关键.17.直角三角板ABC的直角顶点C在直线DE上,CF平分∠BCD.(1)在图1中,若∠BCE=40°,∠ACF=;(2)在图1中,若∠BCE=α,∠ACF=(用含α的式子表示);(3)将图1中的三角板ABC绕顶点C旋转至图2的位置,若∠BCE=150°,试求∠ACF 与∠ACE的度数.∵∠ACB=90°,∠BCE=40°,∵点C在DE上,【点睛】考查了角的计算和角平分线的定义,主要考查学生的计算能力,求解过程类似. 18.如图,以直线AB 上一点O 为端点作射线OC ,使80BOC ∠=︒,将一个直角三角形的直角顶点放在点O 处(注:90DOE ∠=︒)()1如图①,若直角三角板DOE 的一边OD 放在射线OB 上,则COE ∠= .()2如图②,将直角三角板DOE 绕点O 逆时针方向转动到某个位置,若OC 恰好平分∠BOE ,求COD ∠的度数;()3如图③,将直角三角板DOE 绕点O 转动,如果OD 始终在BOC ∠的内部,试猜想BOD ∠与COE ∠有怎样的数量关系?并说明理由.【答案】(1)10°;(2)10°;(3)∠COE -∠BOD =10°,理由见解析.(3)猜想:∠COE-∠BOD=10°理由:∵∠COE=∠DOE-∠COD=90°-∠COD∠COD=∠BOC-∠BOD=80°-∠B OD∴∠COE=90°-(80°-∠B OD)=10°+∠B OD即∠COE-∠BOD=10°【点睛】本题考查了角的度数问题,掌握角平分线的性质、余角的性质是解题的关键.。
专题06 角的运算-2021-2022学年七年级数学上学期期末考试好题汇编(北师大版)

专题06 角的运算1.(2021·河北高邑·七年级期中)下列角中,能用1∠,ACB∠,C∠三种方法表示同一个角的是()A.B.C.D.2.(2021·河北·石家庄市第四十二中学七年级期中)钟表盘上指示的时间是11时20分,此刻时针与分针之间的夹角为()A.160︒B.150︒C.140︒D.130︒3.(2021·全国·七年级课时练习)某一时刻从海岛观测站P观测到海面上的两艘轮船,轮船A位于南偏东35︒方向上,轮船B位于北偏西50︒方向上,此时APB∠为().A.95︒B.155︒C.165︒D.175︒4.(2021·全国·七年级专题练习)下列说法中:(1)角的两边越长,角就越大;(2)AOB∠与BOA∠表示同一个角;(3)在角一边的延长线上取一点D;(4)角可以看作由一条射线绕着它的端点旋转而形成的图形.错误的个数是()A.1个B.2个C.3个D.4个5.(2021·黑龙江·哈尔滨市第四十九中学校期中)下列说法中正确的是()=,则点C ①两条射线组成的图形叫做角;②角的大小与边的长短无关;③若线段AC BC是线段AB的中点;④将一根细木条固定在墙上,至少需要两根钉子,是因为两点确定一条直线.A.1个B.2个C.3个D.4个6.(2021·全国·七年级专题练习)如图,钟表上显示的时间是12:20,此时,时针与分针的夹角是()A.100︒B.110︒C.115︒D.120︒7.(2021·重庆第二外国语学校七年级期中)如图,O为直线AB上一点,OC平分∠∠=︒∠=∠,则DOE,50,4AOD AOC BOD DOE∠的度数为()A.20︒B.18︒C.60︒D.80︒8.(2021·福建省福州第十九中学八年级期中)如图,将一副三角板摆放在直线AB上,∠ECD =∠FDG=90°,∠EDC=45°,设∠GDB=x,则用x的代数式表示∠EDF的度数为()A.x B.x﹣15°C.45°﹣x D.60°﹣x 9.(2021·河北迁安·七年级期中)如图,∠AOB=α,OA1、OB1分别是∠AOM和∠MOB的平分线,OA2、OB2分别是∠A1OM和∠MOB1的平分线,OA3、OB3分别是∠A2OM和∠MOB2的平分线,…,OA n、分别是∠A n-1OM和∠MOB n-1的平分线,则∠A n OB n的度数是()A.anB.12na-C.2naD.2an10.(2021·黑龙江·哈尔滨市第四十七中学七年级期中)如图,直线AB、CD相交于点O,射线O M平分∠AOC,ON∠OM,若∠AOM=35°,则∠CON的度数为()A.45°B.55°C.65°D.7511.(2021·全国·七年级专题练习)已知小岛A位于基地O的东南方向,货船B位于基地O 的北偏东50°方向,那么∠AOB的度数等于_____.12.(2021·辽宁西丰·七年级期末)某校下午放学的时间是4:30,此时时针与分针夹角的度数为______.13.(2021·全国·七年级课时练习)小华家、小明家、小艳家在平面图上的标点分别为A、B、C,小明家在小华家的正东方向,小艳家在小华家南偏西25︒方向,则∠=CAB________︒.14.(2021·河南·永城市教育体育局教研室七年级期末)如图,已知∠AOC = 160°,OD平分∠AOC ,∠AOB是直角,则∠BOD的大小是__________.15.(2021·全国·七年级单元测试)计算:65°19′48″+35°17′6″=___(将计算结果换算成度).16.(2021·陕西神木·七年级期末)如图,已知∠BAE=∠CAF=110°,∠CAE=60°,AD是∠BAF的平分线,则∠BAD的度数为___°.17.(2021·黑龙江·哈尔滨市第四十九中学校八年级期中)如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,60AOB ∠=︒,AE 平分BAD ∠交BC 于点E ,连接OE ,则∠BOE 的度数是________.18.(2021·全国·七年级专题练习)计算: (1)23°45′36″+66°14′24″; (2)180°-98°24′30″; (3)15°50′42″×3; (4)88°14′48″÷4.19.(2021·全国·七年级专题练习)计算(1)把26.29°转化为度、分、秒表示的形式; (2)把33°24′36″转化成度表示的形式.20.(2021·辽宁太平·七年级期中)如图,33AOB ∠=︒,48BOC ∠=︒,23COD ∠=︒,OE 平分AOD ∠,求AOE ∠的度数.21.(2021·四川旌阳·七年级期末)已知O 为直线AB 上的一点,COE ∠是直角,OF 平分AOE ∠. (1)如图1,若28COF ∠=︒,则BOE ∠= ︒;(2)当射线OE 绕点O 逆时针旋转到如图2的位置时,∠BOE 与COF ∠之间有何数量关系?请说明理由.(3)在图3中,若65COF ∠=︒,在∠BOE 的内部是否存在一条射线OD ,使得12()2BOD AOF BOE BOD ∠+∠=∠-∠?若存在,请求出BOD ∠的度数;若不存在,请说明理由.22.(2021·辽宁抚顺·七年级期末)如图1,A 、O 、B 三点在同一直线上,∠BOD 与∠BOC 互补.(1)请判断∠AOC 与∠BOD 大小关系,并验证你的结论;(2)如图2,若OM 平分∠AOC ,ON 平分∠AOD ,∠BOD =30°,请求出∠MON 的度数.23.(2021·全国·七年级课时练习)如图,OM 是AOC ∠的平分线,ON 是BOC ∠的平分线. (1)如图1,当AOB ∠是直角,60BOC ∠=︒时, NOC ∠=________,MOC ∠=________ ,MON ∠=________;(2)如图2,当AOB α∠=,60BOC ∠=︒时,猜想:MON ∠与α的数量关系,并说明理由; (3)如图3,当AOB α∠=,BOC β∠= (β为锐角)时,猜想:MON ∠与α、β有数量关系吗?如果有,请写出结论,并说明理由.24.(2021·全国·七年级单元测试)如图1,点O 为直线AB 上一点,过O 点作射线OC ,使∠BOC =120°.将一块直角三角板的直角顶点放在点O 处,边OM 与射线OB 重合,另一边ON 位于直线AB 的下方.(1)将图1的三角板绕点O 逆时针旋转至图2,使边OM 在∠BOC 的内部,且恰好平分∠BOC ,问:此时ON 所在直线是否平分∠AOC ?请说明理由;(2)将图1中的三角板绕点O 以每秒6°的速度沿逆时针方向旋转一周,设旋转时间为t 秒,在旋转的过程中,ON 所在直线或OM 所在直线何时会恰好平分∠AOC ?请求所有满足条件的t 值;(3)将图1中的三角板绕点O 顺时针旋转至图3,使边ON 在∠AOC 的内部,试探索在旋转过程中,∠AOM 和∠CON 的差是否会发生变化?若不变,请求出这个定值;若变化,请求出变化范围.1.(2021·全国·七年级专题练习)如图,68AOB ∠=︒,OC 平分AOD ∠且15COD ∠=︒,则BOD ∠的度数为( ).A .28︒B .38︒C .48︒D .53︒2.(2021·全国·七年级课时练习)将矩形ABCD 沿AE 折叠,得如图所示的图形,已知'70CED ∠=︒,则AED ∠的大小是( ).A .50︒B .55︒C .60︒D .70︒3.(2021·全国·七年级课时练习)己知:2AOB AOM ∠=∠;②12BOM AOB ∠=∠;③12AOM BOM AOB ∠=∠=∠;④AOM BOM AOB ∠+∠=∠,其中能够得到射线OM 是AOB∠的平分线的有( ). A .0个 B .1个C .2个D .3个4.(2021·四川绵阳·七年级期末)如图,在竖直墙角AOB 中,可伸长的绳子CD 的端点C 固定在OA 上,另一端点D 在OB 上滑动,在保持绳子拉直的情况下,30BOE ∠=︒,BDC ∠的平分线DF 与OE 交与点E ,DCO α∠=,当CE DE ⊥时,则2OEC α∠+=( )A .120︒B .135︒C .150︒D .152︒5.(2021·辽宁兴城·七年级期末)如图,已知90AOD ∠=︒,90COB ∠=︒,OE 是COD ∠的平分线.有下列关系式:①AOC BOD ∠=∠;②AOE BOE ∠=∠;③90AOE COE ∠+∠=︒;④180AOB COD ∠+∠=︒,其中一定正确的个数是( ).A .4B .3C .2D .16.(2021·重庆酉阳·七年级期末)如图是一个时钟某一时刻的简易图,图中的12条短线刻度位置是时钟整点时时针(短针)位置,根据图中时针和分针(长针)位置,该时钟显示时间是( )A .1011点B .78点C .56点D .23~点7.(2021·全国·七年级专题练习)如图,点O 为线段AD 外一点,点M ,C ,B ,N 为AD 上任意四点,连接OM ,OC ,OB ,ON ,下列结论不正确的是( )A .以O 为顶点的角共有15个B .若MC CB =,MN ND =,则2CD CN = C .若M 为AB 中点,N 为CD 中点,则()12MN AD CB =- D .若OM 平分AOC ∠,ON 平分BOD ∠,5AOD COB ∠=∠,则()32MON MOC BON ∠=∠+∠8.(2021·全国·七年级专题练习)在锐角AOB ∠内部由O 点引出3种射线,第1种是将AOB ∠分成10等份;第2种是将AOB ∠分成12等份;第3种是将AOB ∠分成15等份,所有这些射线连同OA 、OB 可组成的角的个数是( ) A .595B .406C .35D .6669.(2021·全国·七年级专题练习)如图,点D 在∠AOB 的平分线OC 上,点E 在OA 上,ED ∠OB ,∠AOB =50°,则∠ODE 的度数是__.10.(2020·浙江杭州·七年级期末)如图,已知AOC Rt ∠=∠,OB 平分AOC ∠,20.5COD ∠=︒,OD 平分∠BOE ,则AOE ∠=_______︒.11.(2021·全国·七年级专题练习)如图,射线OE ,OA ,OD 均在BOC ∠内部,且0180BOC ︒<∠<︒.OE 平分BOC ∠,OD 平分AOC ∠.请从A ,B 两题中任选一题作答.我选择______.A .若30AOC ∠=︒,130BOC ∠=︒,则DOE ∠的度数为______︒.B .若AOB α∠=︒,则DOE ∠的度数为______︒.(用含α的式子表示)12.(2021·黑龙江齐齐哈尔·七年级期末)射线OC 平分∠AOB ,从点O 引出一条射线OD ,使∠AOB =3∠AOD ,若∠COD =20°,则∠AOB 的度数为_____.13.(2021·四川成都·七年级期末)已知OC 是∠AOB 的平分线,∠BOD =13∠COD ,OE 平分∠COD ,设∠AOB =β,则∠BOE =_____.(用含β的代数式表示)14.(2021·江西余干·七年级期末)在同一平面内,90AOB ∠=︒,20AOC ∠=︒,50COD =︒∠,COD ∠至少有一边在AOB ∠内部,则BOD ∠的度数为___.15.(2020·辽宁皇姑·七年级期末)如图,在平面内,点O 是直线AC 上一点,60AOB ∠=,射线OC 不动,射线OA ,OB 同时开始绕点O 顺时针转动,射线OA 首次回到起始位置时两线同时停止转动,射线OA ,OB 的转动速度分别为每秒40和每秒20.若转动t 秒时,射线OA ,OB ,OC 中的一条是另外两条组成角的角平分线,则t =______秒.16.(2020·北京·七年级期末)已知:如图,∠AOB =90°,从点O 出发引射线OC (点C 在∠AOB 的外部),OD 平分∠BOC ,OE 平分∠AOD .(1)若∠BOC =40°,请依题意补全图形,并求∠BOE 的度数;(2)若∠BOC =α(0°< α <180°),请直接写出∠BOE 的度数(用含α的代数式表示).17.(2021·河北·石家庄市第四十二中学七年级期中)已知∠AOB =90°,(1)如图1,OE、OD分别平分∠AOB和∠BOC,若∠EOD=64°,则∠BOC是°;(2)如图2,OE、OD分别平分∠AOC和∠BOC,若∠BOC=40°,求∠EOD的度数(写推理过程).(3)若OE、OD分别平分∠AOC和∠BOC,∠BOC=α(0°<α<180°),则∠EOD的度数是(在稿纸上画图分析,直接填空).18.(2021·辽宁大石桥·八年级期中)已知点P在∠MON内.(1)如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.①若∠MON=50°,则∠GOH=______;②若PO=5,连接GH,请说明当∠MON为多少度时,GH=10;(2)如图2,若∠MON=60°,A、B分别是射线OM、ON上的任意一点,当PAB的周长最小时,求∠APB的度数.19.(2021·河北·邯郸市永年区教育体育局教研室七年级期中)(问题)如图①,点C是线段AB上一点,点D,E分别是线段AC,BC的中点,若线段AB=26cm,则线段DE的长为cm.(拓展)在(问题)中,若把条件“如图①,点C 是线段AB 上一点”改为“点C 是直线 AB 上一点”,其余条件不变,则(问题)中DE 的长是否会发生变化?请画出示意图并求解. (应用)(1)如图②,∠AOB =α,点C 在∠AOB 内部,射线OM ,ON 分别平分∠AOC ,∠BOC ,则∠MON 的大小为 (用含字母α的式子表示).(2)如图③,在(1)中,若点C 在∠AOB 外部,且射线OC 与射线OB 在OA 所在直线的同侧,其他条件不变,则(1)中的结论是否成立,若成立,请写出求解过程;若不成立,请说明理由.图①20.(2022·河北·石家庄市第四十二中学八年级期中)已知90AOB ∠=︒,(1)如图1,OE 、OD 分别平分AOB ∠和BOC ∠,若64EOD ∠=︒,则BOC ∠是______︒;(2)如图2,OE 、OD 分别平分AOC ∠和BOC ∠,若40BOC ∠=︒,求EOD ∠的度数(写推理过程).(3)若OE 、OD 分别平分AOC ∠和BOC ∠,(0180)BOC αα∠=︒<<︒,则EOD ∠的度数是________(在稿纸上画图分析,直接填空).21.(2021·河北滦州·七年级期中)已知:如图①所示,OC 是AOB ∠内部一条射线,且OD 平分AOC ∠,OE 平分BOC ∠.(1)若80AOC ∠=︒,50BOC ∠=︒,则EOD ∠的度数是______.(2)若AOC α∠=,BOC β∠=,求EOD ∠的度数,并根据计算结果直接写出EOD ∠与AOB ∠之间的数量关系.(写出计算过程)(3)如图③所示,射线OC 在AOB ∠的外部,且OD 平分AOC ∠,OE 平分BOC ∠.试着探究EOD ∠与AOB ∠之间的数量关系.(写出详细推理过程)22.(2021·全国·七年级期末)已知∠AOB 和∠COD 均为锐角,∠AOB >∠COD ,OP 平分∠AOC ,OQ 平分∠BOD ,将∠COD 绕着点O 逆时针旋转,使∠BOC =α(0≤α<180°) (1)若∠AOB =60°,∠COD =40°, ①当α=0°时,如图1,则∠POQ = ; ②当α=80°时,如图2,求∠POQ 的度数;③当α=130°时,如图3,请先补全图形,然后求出∠POQ 的度数;(2)若∠AOB =m °,∠COD =n °,m >n ,则∠POQ = ,(请用含m 、n 的代数式表示).专题06 角的运算1.(2021·河北高邑·七年级期中)下列角中,能用1∠,ACB∠三种方法表示同一个角∠,C的是()A.B.C.D.【答案】C【分析】根据角的表示方法,顶点只存在一个角时,可以用一个字母表示角,据此分析即可【详解】根据角的表示方法,顶点只存在一个角时,可以用一个字母表示角,A、B、D选项中,点C为顶点的角存在多个,故不符合题意故选C【点睛】本题考查了角的表示方法,掌握角的表示方法是解题的关键.角的表示方法有三种:(1)用三个字母及符号“∠”来表示.中间的字母表示顶点,其它两个字母分别表示角的两边上的点.(2)用一个数字表示一个角.(3)用一个字母表示一个角.具体用哪种方法,要根据角的情况进行具体分析,总之表示要明确,不能使人产生误解.2.(2021·河北·石家庄市第四十二中学七年级期中)钟表盘上指示的时间是11时20分,此刻时针与分针之间的夹角为( ) A .160︒ B .150︒ C .140︒ D .130︒【答案】C 【分析】根据钟表的特点,可以计算出钟表上显示11时20分,则此刻时针与分针的夹角的度数. 【详解】解:当钟表上显示11时20分时,分针指着4,时针处于11和12之间,走了11到12之间的13, 由钟表的特点可知,每个大格是30°,如1到2,2到3都是30°,故钟表上显示11时20分,则此刻时针与分针的夹角的度数为:4×30°+30°×23=140°,故答案为:C . 【点睛】本题考查钟面角,解答本题的关键是明确钟面角的特点,求出相应的角的度数.3.(2021·全国·七年级课时练习)某一时刻从海岛观测站P 观测到海面上的两艘轮船,轮船A 位于南偏东35︒方向上,轮船B 位于北偏西50︒方向上,此时APB ∠为( ). A .95︒ B .155︒C .165︒D .175︒【答案】C 【分析】根据题意,作出示意图,进而根据方位角的表示方法可得APB ∠的度数 【详解】如图,依题意35,50APD BPE ∠=︒∠=︒3590(9050)165APB APD CPD CPB ∴∠=∠+∠+∠=︒+︒+︒-︒=︒故选C 【点睛】本题考查了方位角的计算,掌握方位角的表示方法是解题的关键.4.(2021·全国·七年级专题练习)下列说法中:(1)角的两边越长,角就越大;(2)AOB ∠与BOA ∠表示同一个角;(3)在角一边的延长线上取一点D ;(4)角可以看作由一条射线绕着它的端点旋转而形成的图形.错误的个数是( ) A .1个 B .2个C .3个D .4个【答案】B 【分析】由共一个端点的两条射线组成的图形叫做角,角也可以看作由一条射线绕着它的端点旋转而形成的图形,角的大小与角的两边张开的程度有关;根据角的概念、表示及大小逐一进行判断即可. 【详解】(1)角的大小与角的两边张开的程度有关,与角的两边长短无关,故说法错误; (2)AOB ∠与BOA ∠表示同一个角,此说法正确;(3)角的两边是两条射线,射线是向一端无限延伸的,故此说法错误; (4)此说法正确; 所以错误的有2个 故选:B . 【点睛】本题考查了角的概念、角的大小、角的表示等知识,掌握这些知识是关键. 5.(2021·黑龙江·哈尔滨市第四十九中学校期中)下列说法中正确的是( )①两条射线组成的图形叫做角;②角的大小与边的长短无关;③若线段AC BC =,则点C是线段AB的中点;④将一根细木条固定在墙上,至少需要两根钉子,是因为两点确定一条直线.A.1个B.2个C.3个D.4个【答案】B【分析】①根据有公共端点的两条射线组成的图形叫做角,即可判断;②根据角的特点判断即可;③A、B、C三点不一定在一条直线上,即可判断;④根据两点确定一条直线,即可判断.【详解】①有公共端点的两条射线组成的图形叫做角,①不正确,故不符合题意;②角的大小与边的长短无关,②正确,故符合题意;=,则三点不一定在一条直线上,③不正确,故不符合题意;③若线段AC BC④两点确定一条直线,④正确,故符合题意,∴正确的有2个,故选:B.【点睛】本题主要考查角的定义,中点定义以及两点确定一条直线,属于基础题,熟练掌握这些概念是解题的关键.6.(2021·全国·七年级专题练习)如图,钟表上显示的时间是12:20,此时,时针与分针的夹角是()A.100︒B.110︒C.115︒D.120︒【答案】B【分析】根据时针在钟面上每分钟转0.5,分针每分钟转6,然后分别求出时针、分针转过的角度,即可得到答案.【详解】解:∠时针在钟面上每分钟转0.5,分针每分钟转6,∠钟表上12时20分钟时,时针转过的角度为0.52010⨯=,⨯=,分针转过的角度为620120所以12:20时分针与时针的夹角为12010110-=.故选B.【点睛】本题主要考查了钟面角,解题的关键在于能够熟练掌握时针和分针每分钟所转过的角度是多少.7.(2021·重庆第二外国语学校七年级期中)如图,O为直线AB上一点,OC平分,50,4AOD AOC BOD DOE∠∠=︒∠=∠,则DOE∠的度数为()A.20︒B.18︒C.60︒D.80︒【答案】A【分析】根据角平分线的定义得到∠COD,从而得到∠BOD,再根据∠BOD=4∠DOE即可求出结果.【详解】解:∠OC平分∠AOD,∠∠AOC=∠COD=50°,∠∠BOD=180°-2×50°=80°,∠∠BOD=4∠DOE,∠∠DOE=14∠BOD=20°,故选A.【点睛】本题主要考查角的计算的知识点,运用好角的平分线这一知识点是解答的关键.8.(2021·福建省福州第十九中学八年级期中)如图,将一副三角板摆放在直线AB上,∠ECD =∠FDG=90°,∠EDC=45°,设∠GDB=x,则用x的代数式表示∠EDF的度数为()A.x B.x﹣15°C.45°﹣x D.60°﹣x【答案】C【分析】根据已知条件和平角的定义即可得到结论. 【详解】解:∠∠FDG =90°,∠EDC =45°,∠GDB =x , ∠∠EDF =180°﹣∠CDE ﹣∠GDB ﹣∠FDG =180°﹣45°﹣x ﹣90° =45°﹣x , 故选:C . 【点睛】本题考查了平角的定义,熟练掌握平角的定义是解题的关键.9.(2021·河北迁安·七年级期中)如图,∠AOB =α,OA 1、OB 1分别是∠AOM 和∠MOB 的平分线,OA 2、OB 2分别是∠A 1OM 和∠MOB 1的平分线,OA 3、OB 3分别是∠A 2OM 和∠MOB 2的平分线,…,OA n 、分别是∠A n -1OM 和∠MOB n -1的平分线,则∠A n OB n 的度数是( )A .a nB .12n a - C .2na D .2a n 【答案】C 【分析】由∠AOB =α,OM 是∠AOB 中的一射线,可得∠AOM +∠MOB =α,由OA 1、OB 1分别是∠AOM 和∠MOB 的平分线,可得∠A 1OM =12AOM ∠,∠B 1OM =12BOM ∠,可得∠A 1OB 1=∠A 1OM +∠B 1OM =12AOM∠+12BOM ∠=12α,由OA 2、OB 2分别是∠A 1OM 和∠MOB 1的平分线,可求∠A 2OB 2=∠A 2OM +∠B 2OM =112A OM ∠+112B OM ∠=212α,由OA 3、OB 3分别是∠A 2OM 和∠MOB 2的平分线,可求∠A 3OB 3=∠A 3OM +∠B 3OM =212A OM ∠+212B OM ∠=312α,…,然后根据规律可求∠A n OB n =12n α.【详解】解:∠∠AOB =α,OM 是∠AOB 中的一射线, ∠∠AOM +∠MOB =α,∠OA 1、OB 1分别是∠AOM 和∠MOB 的平分线,∠∠A 1OM =12AOM ∠,∠B 1OM =12BOM ∠ ∠∠A 1OB 1=∠A 1OM +∠B 1OM =12AOM ∠+12BOM ∠=()111222AOM BOM AOB α∠+∠=∠=, ∠OA 2、OB 2分别是∠A 1OM 和∠MOB 1的平分线,∠∠A 2OM =112A OM ∠,∠B 2OM =112B OM ∠, ∠∠A 2OB 2=∠A 2OM +∠B 2OM =112A OM ∠+112B OM ∠=()11112111222AOM B OM AOB α∠+∠=∠=, ∠OA 3、OB 3分别是∠A 2OM 和∠MOB 2的平分线,∠∠A 3OM =212A OM ∠,∠B 3OM =212B OM ∠, ∠∠A 3OB 3=∠A 3OM +∠B 3OM =212A OM ∠+212B OM ∠=()22223111222A OMB OM A OB α∠+∠=∠=, …,∠OA n 、分别是∠A n -1OM 和∠MOB n -1的平分线,∠∠A n OM =112n A OM -∠,∠B n OM =112n B OM -∠, ∠∠A n OB n =∠A n -1OM +∠B n -1OM =112n A OM -∠+112n B OM -∠=()1111111222n n n n n A OM B OM A OB α----∠+∠=∠=, 故选择C .【点睛】本题考查角的和,与角平分线的定义,规律探索,利用角平分线求出∠A 1OB 1,∠A 2OB 2,∠A 3OB 3,找出规律是解题关键.10.(2021·黑龙江·哈尔滨市第四十七中学七年级期中)如图,直线AB 、CD 相交于点O ,射线O M 平分∠AOC ,ON ∠OM ,若∠AOM =35°,则∠CON 的度数为( )A .45°B .55°C .65°D .75【答案】B【分析】根据角平分线的定义、垂线的定义、对顶角和邻补角的定义计算即可;【详解】∠O M 平分∠AOC ,∠AOM =35°,∠35MOC AOM ∠=∠=︒,∠ON ∠OM ,∠90MON ∠=︒,∠903555CON ∠=︒-︒=;故选B .【点睛】本题主要考查了角平分线的定义、垂线的性质和对顶角的定义,准确计算是解题的关键.11.(2021·全国·七年级专题练习)已知小岛A 位于基地O 的东南方向,货船B 位于基地O 的北偏东50°方向,那么∠AOB 的度数等于_____.【答案】85︒【分析】根据方位角的概念,画图正确表示出A ,B 的方位,易得结果.【详解】解:如图:250∠=︒,390240∴∠=︒-∠=︒,∠小岛A 位于基地O 的东南方向∠145∠=︒,13454085AOB ∴∠=∠+∠=︒+︒=︒,故答案为:85︒.【点睛】本题主要考查了方位角的概念,根据方位角的概念,画图正确表示出A ,B 的方位,注意东南方向是45度是解答此题的关键.12.(2021·辽宁西丰·七年级期末)某校下午放学的时间是4:30,此时时针与分针夹角的度数为______.【答案】45°【分析】根据钟面平均分成12份,可得每份是30°,4点30分时,时针分针相差1.5格,根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:4:30时,时针与分针的夹角的度数是30°×1.5=45°,故答案为:45°.【点睛】本题考查了钟面角,能够正确利用了时针与分针相距的份数乘以每份的度数进行计算是解题的关键.13.(2021·全国·七年级课时练习)小华家、小明家、小艳家在平面图上的标点分别为A 、B 、C ,小明家在小华家的正东方向,小艳家在小华家南偏西25︒方向,则∠=CAB ________︒.【答案】115【分析】由题意,正确的画出方向角,然后进行计算,即可得到答案.【详解】解:根据题意,如图∠9025115CAB ∠=︒+︒=︒.故答案为:115.【点睛】本题考查了方位角,解题的关键是正确的画出图形,从而进行解题.14.(2021·河南·永城市教育体育局教研室七年级期末)如图,已知∠AOC = 160°,OD 平分∠AOC ,∠AOB 是直角,则∠BOD 的大小是__________.【答案】10°【分析】根据角平分线的性质求出∠AOD,再用∠AOB-∠AOD即可求出∠BOD.【详解】解:∠OD平分∠AOC∠∠AOD=∠DOC=160°÷2=80°又∠AOB=90°∠∠DOB=∠AOB-∠AOD=90°-80°=10°故答案为10°【点睛】本题考查角平分线的性质,掌握这一点是解题关键.15.(2021·全国·七年级单元测试)计算:65°19′48″+35°17′6″=___(将计算结果换算成度).【答案】100.615°【分析】先把各度、分、秒相加,再结合度、分、秒的进制是60进行计算解答即可.【详解】65°19′48″+35°17′6″=100°36′54″,∠54÷60=0.9,(36+0.9)÷60=0.615,100+0.615=100.615,∠100°36′54″=100.615°.故答案是:100.615°.【点睛】本题考查角度的计算和度、分、秒的换算.掌握度、分、秒的进制是60是解答本题的关键.16.(2021·陕西神木·七年级期末)如图,已知∠BAE=∠CAF=110°,∠CAE=60°,AD是∠BAF 的平分线,则∠BAD的度数为___°.【答案】80【分析】由∠BAE =110°,∠CAE =60°,可得∠BAC =110°﹣60°=50°,结合∠CAF =110°,可得∠BAF =110°+50°=160°,再由AD 平分∠BAF 即可得∠BAD =80°.【详解】∠∠BAE =110°,∠CAE =60°,∠∠BAC =110°﹣60°=50°,又∠∠CAF =110°,∠∠BAF =110°+50°=160°,又∠AD 是∠BAF 的角平分线,∠∠BAD =12∠BAF =12×160°=80°.故答案为:80.【点睛】本题主要考查了角平分线的定义和几何中角度的计算,解题的关键在于能够熟练掌握角平分线的定义.17.(2021·黑龙江·哈尔滨市第四十九中学校八年级期中)如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,60AOB ∠=︒,AE 平分BAD ∠交BC 于点E ,连接OE ,则∠BOE 的度数是________.【答案】75︒【分析】由矩形的性质得出90BAD ABC ∠=∠=︒,OA OB =,证明AOB ∆是等边三角形,得出AB OB =,60ABO ∠=︒,证明出ABE ∆是等腰三角形,得出AB BE =,因此BE OB =,由等腰三角形的性质即可得出∠BOE 的大小.【详解】 解:四边形ABCD 是矩形,90BAD ABC ∴∠=∠=︒,12OA AC =,12OB BD =,AC BD = , OA OB ∴=,60AOB ∠=︒, AOB ∴∆是等边三角形,AB OB ∴=,60ABO ∠=︒,30OBE =∴∠︒,AE ∵平分BAD ∠,45BAE ∴∠=︒,ABE ∴∆是等腰直角三角形,AB BE ∴=,BE OB ∴= ,()118030752BOE ∠∴=︒-︒=︒ 故答案为:75︒.【点睛】本题考查了矩形的性质、等边三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的性质;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.18.(2021·全国·七年级专题练习)计算:(1)23°45′36″+66°14′24″;(2)180°-98°24′30″;(3)15°50′42″×3;(4)88°14′48″÷4.【答案】(1)90°;(2)81°35′30″;(3)47°32′6″;(4)22°3′42″【分析】类比与小数的计算方法,计算度分秒即可,注意满60进一,借一当60.【详解】解:(1)23°45′36″+66°14′24″=90°;(2)180°-98°24′30″=179°59′60″-98°24′30″=81°35′30″;(3)15°50′42″×3=45°150′126″=45°152′6″=47°32′6″;(4)88°14′48″÷4=22°3′42″.【点睛】本题考查了角度的四则运算以及度分秒的换算,注意度分秒之间的换算:1度=60分,1分=60秒.19.(2021·全国·七年级专题练习)计算(1)把26.29°转化为度、分、秒表示的形式; (2)把33°24′36″转化成度表示的形式.【答案】(1)26°17′24″;(2)33.41°【分析】根据度、分、秒之间的换算关系求解.【详解】解:(1)26.29°=26°+0.29°=26°+0.29×60′=26°+17.4′=26°+17′+0.4×60″=26°17′+24″=26°17′24″(2)33°24′36″=33°+24′+36×160'⎛⎫ ⎪⎝⎭=33°+24′+0.6′=33°+24.6′=33°+24.6×160⎛⎫ ⎪⎝⎭°=33.41° 【点睛】考查了度分秒的换算,度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.同时,在进行度、分、秒的运算时也应注意借位和进位的方法.20.(2021·辽宁太平·七年级期中)如图,33AOB ∠=︒,48BOC ∠=︒,23COD ∠=︒,OE 平分AOD ∠,求AOE ∠的度数.【答案】52︒【分析】首先根据角的和差关系算出∠AOD 的度数,再根据角平分线的性质可得12∠=∠AOE AOD ,进而得到答案.【详解】解:∠33AOB ∠=︒,48BOC ∠=︒,23COD ∠=︒,∠∠AOD =∠AOB +∠BOC +∠COD =33°+48°+23°=104°,∠OE 平分AOD ∠, ∠111045222AOE AOD ∠=∠=⨯︒=︒ . 【点睛】此题主要考查了角平分线的性质,解题的关键是掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.21.(2021·四川旌阳·七年级期末)已知O 为直线AB 上的一点,COE ∠是直角,OF 平分AOE ∠. (1)如图1,若28COF ∠=︒,则BOE ∠= ︒;(2)当射线OE 绕点O 逆时针旋转到如图2的位置时,∠BOE 与COF ∠之间有何数量关系?请说明理由.(3)在图3中,若65COF ∠=︒,在∠BOE 的内部是否存在一条射线OD ,使得12()2BOD AOF BOE BOD ∠+∠=∠-∠?若存在,请求出BOD ∠的度数;若不存在,请说明理由.【答案】(1)56°;(2)∠BOE =2∠COF ,理由见解析;(3)存在,16°【分析】(1)首先根据28COF ∠=︒,COE ∠是直角,求出∠EOF =62°,然后根据OF 平分AOE ∠求出∠AOE =124°,最后根据平角的性质即可求出∠BOE 的度数;(2)首先根据COE ∠是直角,OF 平分AOE ∠表示出∠AOE =180°﹣2∠COF ,然后根据平角的性质即可得到∠BOE 与COF ∠之间的数量关系;(3)首先根据COE ∠是直角,OF 平分AOE ∠求出∠EOF =25°,∠BOE =130°,然后代入12()2BOD AOF BOE BOD ∠+∠=∠-∠求解即可. 【详解】解:(1)∠∠COF =28°,∠COE =90°,∠∠EOF =90°﹣28°=62°,∠OF 平分∠AOE ,∠∠AOE =2∠EOF =124°,∠∠BOE =180°﹣∠AOE =56°;(2)结论:∠BOE =2∠COF ;理由如下:∠∠COE =90°,∠∠EOF =90°﹣∠COF ,∠OF 平分∠AOE ,∠∠AOE =2∠EOF =180°﹣2∠COF ,∠∠BOE =180°﹣∠AOE =180°﹣(180°﹣2∠COF )=2∠COF ;(3)存在;∠∠COF =65°,∠COE =90°,∠EOF =25°,∠OF 平分∠AOE ,∠∠AOF =∠EOF =25°,∠∠BOE =130°,∠2∠BOD +∠AOF =12(∠BOE ﹣∠BOD ),即2∠BOD +25°=12(130°﹣∠BOD ),解得∠BOD =16°.【点睛】此题考查了角平分线的有关运算,平角和直角的性质,解题的关键是正确分析图形中各角之间的关系.22.(2021·辽宁抚顺·七年级期末)如图1,A 、O 、B 三点在同一直线上,∠BOD 与∠BOC 互补.(1)请判断∠AOC与∠BOD大小关系,并验证你的结论;(2)如图2,若OM平分∠AOC,ON平分∠AOD,∠BOD=30°,请求出∠MON的度数.【答案】(1)∠AOC=∠BOD,证明见解析;(2)60°【分析】(1)根据补角的性质即可求解;(2)根据角平分线的定义以及等量关系列出方程求解即可.【详解】解:(1)∠AOC=∠BOD,理由如下:∠A,O,B三点共线,∠∠AOC+∠BOC=180°,∠∠AOC与∠BOC互补,∠∠BOD与∠BOC互补,∠∠AOC=∠BOD;(2)∠∠BOD=30°,∠∠AOC=∠BOD=30°,∠OM平分∠AOC,∠1152AOM AOC=∠=∠,∠∠AOD+∠BOD=180°,∠∠AOD=180°﹣30°=150°,∠ON平分∠AOD,∠1752AON AOD=∠=∠,∠∠MON=∠AON﹣∠AOM=60°.【点睛】本题考查的是角的有关计算和角平分线的定义,正确理解并灵活运用角平分线的定义是解题的关键.23.(2021·全国·七年级课时练习)如图,OM是AOC∠的平分线,ON是BOC∠的平分线.(1)如图1,当AOB ∠是直角,60BOC ∠=︒时, NOC ∠=________,MOC ∠=________ ,MON ∠=________;(2)如图2,当AOB α∠=,60BOC ∠=︒时,猜想:MON ∠与α的数量关系,并说明理由; (3)如图3,当AOB α∠=,BOC β∠= (β为锐角)时,猜想:MON ∠与α、β有数量关系吗?如果有,请写出结论,并说明理由.【答案】(1)30,75︒,45︒;(2)12MON ∠=α,理由见解析;(3)有,12MON ∠=α,理由见解析. 【分析】(1)观察图形,结合角平分线的定义可得11603022NOC BOC ∠∠==⨯︒=︒,09060150AOC AOB B C ∠=∠+∠=︒+︒=︒,111507522MOC AOC ∠∠===︒⨯︒即可求解;(2)观察图形,结合角平分线的定义可得60AOC AOB BOC ∠∠∠α=+=+︒,11603022NOC BOC ∠∠==⨯︒=︒,11303022MON MOC NOC ∠∠∠αα=-=+︒-︒=即可求解;(3)观察图形,结合角平分线的定义可得AOC AOB BOC αβ∠=∠+∠=+,1122NOC BOC β∠=∠=,111()222MON MOC NOC ∠∠∠αββα=-=+-=即可求解;【详解】解:(1)∠ON 平分BOC ∠,∠11603022NOC BOC ∠∠==⨯︒=︒,∠09060150AOC AOB B C ∠=∠+∠=︒+︒=︒, ∠OM 是AOC ∠的平分线,∠111507522MOC AOC ∠∠===︒⨯︒,∠753045MON MOC NOC ∠∠∠=-=︒-=︒︒; 故答案为:30,75︒,45︒;(2)12MON ∠=α.理由:60AOC AOB BOC ∠∠∠α=+=+︒,OM 是AOC ∠的平分线,()1116030222MOC AOC ∠∠αα︒==+=+︒,因为ON 平分BOC ∠, 所以11603022NOC BOC ∠∠==⨯︒=︒,11303022MON MOC NOC ∠∠∠αα=-=+︒-︒=;(3)12MON ∠=α.理由:因为ON 平分BOC ∠,所以1122NOC BOC β∠=∠=,又因为AOC AOB BOC αβ∠=∠+∠=+,OM 是AOC ∠的平分线,所以11()22MOC AOC ∠∠αβ==+,111()222MON MOC NOC ∠∠∠αββα=-=+-=.【点睛】本题主要考查了角平分线的定义及角的运算,解题的关键是掌握角平分线的定义并通过观察图形找到角与角之间的关系.24.(2021·全国·七年级单元测试)如图1,点O 为直线AB 上一点,过O 点作射线OC ,使∠BOC =120°.将一块直角三角板的直角顶点放在点O 处,边OM 与射线OB 重合,另一边ON 位于直线AB 的下方.(1)将图1的三角板绕点O 逆时针旋转至图2,使边OM 在∠BOC 的内部,且恰好平分∠BOC ,问:此时ON 所在直线是否平分∠AOC ?请说明理由;(2)将图1中的三角板绕点O 以每秒6°的速度沿逆时针方向旋转一周,设旋转时间为t 秒,在旋转的过程中,ON 所在直线或OM 所在直线何时会恰好平分∠AOC ?请求所有满足条件的t 值;(3)将图1中的三角板绕点O 顺时针旋转至图3,使边ON 在∠AOC 的内部,试探索在旋转过程中,∠AOM 和∠CON 的差是否会发生变化?若不变,请求出这个定值;若变化,请求出变化范围.【答案】(1)直线ON 平分∠AOC ,见解析;(2)10秒或40秒或25秒或55秒;(3)不变,30°【分析】(1)直线ON平分∠AOC,设ON的反向延长线为OD,已知OM平分∠BOC,根据角平分线的定义可得∠MOC=∠MOB,又由OM∠ON,根据垂直的定义可得∠MOD=∠MON=90°,所以∠COD=∠BON,再根据对顶角相等可得∠AOD=∠BON,即可∠COD=∠AOD,结论得证;(2)分直线ON平分∠AOC时和当直线OM平分∠AOC时两种情况进行讨论求解即可;(3)设∠AON=x°,则∠CON=60°-x°,∠AOM=90°-x°,即可得到∠AOM-∠CON=30°.【详解】解:(1)直线ON平分∠AOC理由:设ON的反向延长线为OD,∠OM平分∠BOC,∠∠MOC=∠MOB,又∠OM∠ON,∠∠MOD=∠MON=90°,∠∠COD=∠BON,又∠∠AOD=∠BON,∠∠COD=∠AOD,∠OD平分∠AOC,即直线ON平分∠AOC;(2)①当直线ON平分∠AOC时,三角板旋转角度为60°或240°,∠旋转速度为6°/秒,∠t=10秒或40秒;②当直线OM平分∠AOC时,三角板旋转角度为150°或330°,∠t=25秒或55秒,综上所述:t=10秒或40秒或25秒或55秒;(3)设∠AON=x°,则∠CON=60°-x°,∠AOM=90°-x°,。
七年级上册数学钟表上的角度计算题

一、概述时钟是我们日常生活中常见的物品,我们常常需要根据时钟所指的时间来进行日常活动安排。
时钟上的指针可以用来计算角度,这也是数学中常见的问题。
本文将介绍七年级上册数学中关于钟表上的角度计算题,帮助读者更好地理解和掌握这一知识点。
二、时钟上的角度计算1. 时针和分针指向的角度计算在时钟上,时针和分针指向的角度可以通过简单的数学计算得出。
在整点时刻,时针和分针之间的角度是固定的,具体计算公式如下:角度 = |30 * 时针所指小时数 - (11/2) * 分针所指分钟数|当时钟指向3点时(15:00),时针和分针之间的角度为:角度 = |30 * 3 - (11/2) * 0| = |90 - 0| = 90°2. 分针指向的角度计算分针所指的角度也可以通过简单的公式计算得出:角度 = 6 * 分针所指的分钟数当时钟指向15分钟时,分针所指的角度为:角度 = 6 * 15 = 90°三、练习题示例1. 时钟指向6点,分针指向10分钟,求时针和分针之间的角度。
解:时针指向6,分针指向10,根据公式计算可得:角度 = |30 * 6 - (11/2) * 10| = |180 - 55| = 125°2. 时钟指向9点,分针指向25分钟,求时针和分针之间的角度。
解:时针指向9,分针指向25,根据公式计算可得:角度 = |30 * 9 - (11/2) * 25| = |270 - 137.5| = 132.5°3. 分针指向35分钟,求分针所指的角度。
解:分针指向35,根据公式计算可得:角度= 6 * 35 = 210°四、总结时钟上的角度计算题是中学数学中一个基础而重要的知识点,通过掌握时钟上的角度计算方法,我们可以更好地理解和应用数学知识。
本文通过介绍时钟上的角度计算方法,并给出了相应的练习题示例,希望读者能够通过本文的学习更好地掌握这一知识点。
同时也希望读者能够在日常生活中运用数学知识,更好地理解和利用周围的事物。
数学试题三角函数的计算题

数学试题三角函数的计算题数学试题:三角函数的计算题三角函数是数学中常见且重要的概念之一,在计算题中经常会涉及到三角函数的计算。
本文将介绍几个常见的三角函数计算题,分别是求角度、求边长和简化表达式。
通过这些例题的讲解,读者将能够更好地理解三角函数的运算规则和应用方法。
1. 求角度例题1:已知sin(x) = 0.5,求角度x的值。
解析:根据sin函数的定义可知,当sin(x) = 0.5时,角度x的取值有两个解,一个是30°,另一个是150°。
因此,角度x的值可以表示为x = 30°或x = 150°。
例题2:已知cos(y) = 0.8,求角度y的值。
解析:同样地,根据cos函数的定义可知,当cos(y) = 0.8时,角度y的取值有两个解,一个是36.87°,另一个是-36.87°。
因此,角度y的值可以表示为y = 36.87°或y = -36.87°。
2. 求边长例题3:已知直角三角形的一个锐角为30°,斜边长为10,求直角边的长度。
解析:根据三角函数sin和cos的定义可知,sin(30°) = 1/2,cos(30°) = √3/2。
设直角边的长度为x,则有以下方程组:x*sin(30°) + x*cos(30°)= 10,x*(1/2) + x*(√3/2) = 10。
整理得√3/2x + 1/2x = 10,即(√3 + 1)/2x = 10。
解得x = 20/(√3 + 1) ≈ 5.86。
因此,直角边的长度约为5.86。
3. 简化表达式例题4:简化表达式sin(x) - cos(x)*tan(x)。
解析:根据三角函数的定义和性质,可以进行以下简化:sin(x) - cos(x)*tan(x) = sin(x) - cos(x)*(sin(x)/cos(x))。
求角的度量度分秒的计算及习题

求⾓的度量度分秒的计算及习题七年级数学求⾓的度量度分秒的计算及习题第三节⾓(⼆)⾓的度量与画法⼀. 教学内容:⾓的度量与画法【知识点讲解】1. ⾓的度量:按对线、对中、度数的步骤⽤量⾓器量出⾓的度数2. ⾓的度数计算:⾓的单位是度分秒,都是60进制,可以⽐照时间中的时分秒理解,分别⽤“°”、“ ’”、“ ””来表⽰。
3 . 余⾓、补⾓的概念与性质:如果两个⾓的和是90度(或直⾓)时,叫做两个⾓互余;4. 如果两个⾓的和是180度(或平⾓)时,叫做两个⾓互补。
(补⾓同理)性质:同⾓(或等⾓)的余⾓相等;同⾓(或等⾓)的补⾓相等(补⾓同理)5. 能利⽤三⾓板画出15°、30°、45°、60°、75°、90°等11种特殊⾓6. 会⽤尺规画⼀个⾓等于已知⾓,⾓的和、差的画法。
【技能要求】1. 掌握度、分、秒的计算。
2. 逐步掌握学过的⼏何图形的表⽰⽅法,懂得学过的⼏何语句,能由这些语句准确、整洁地画出图形。
认识学过的图形,会⽤语句描述这些简单的⼏何图形。
【典型例题】例1. 将33.72°⽤度、分、秒表⽰。
解:33.72°=33°+(0.72×60′)=33°+43.2′=33°+43′+(0.2′×60″)=33°43′12″例2. ⽤度表⽰152°13′30″。
解:152°13′30″=152°+(13 )′=152°+13.5′=152°+( )°=152.225°例3. 判断下列计算的对错,对的画“√”,错的说明错在哪⾥,并改正。
(1)31°56′÷3=10°52′(2)138°29′+44°49′=183°18′(3) 13.5°×3=39.50(4) 21.36°-18°30′=3.14°.解:(1)错,因为⽤1°=100′计算的。
初中数学几何专题-三角形、多边形中的角度计算问题

三角形、多边形中的角度计算问题【方程】1、如图,在四边形ABCD中,∠B+∠ADC=180°,CE平分∠BCD交AB于点E,连结DE.(1)若∠A=50°,∠B=85°,求∠BEC的度数;(2)若∠A=∠1,求证:∠CDE=∠DCE.2、探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.(1)当∠BAD=60°时,求∠CDE的度数;(2)当点D在BC(点B、C除外)边上运动时,试猜想∠BAD与∠CDE的数量关系,并说明理由.(3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠BAD与∠CDE的数量关系.3、如图,△ABC中,∠B=65°,∠BAD=40°,∠AED=100°,∠CDE=45°,求∠CAD的度数.4、△ABC中,∠C=80°,点D、E分别是△ABC边AC、BC上的点,点P是一动点,令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α..(1)若点P在边AB上,且∠α=50°,如图1,则∠1+∠2=;(2)若点P在边AB上运动,如图2所示,则∠α、∠1、∠2之间的关系为.(3)若点P运动到边AB的延长线上,如图3,则∠α、∠1、∠2之间有何关系?猜想并说明理由5、△ABC中,∠A=60°,点D、E分别是△ABC边AC、AB上的点(不与A、B、C重合),点P是一动点,令∠PDC=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在边BC上,如图l,且∠α=50°,则∠1+∠2=°.(2)若点P在边BC上运动,如图2,试判断∠α、∠1、∠2之间的关系,并证明.(3)直接写出:若点P运动到△ABC形外,如图3,则∠α、∠l、∠2之间的关系为.【高、角平分线】6、(1)已知如图1,锐角△ABC中,AB、AC边上的高CE、BD相交于O点.若∠A=70°,则∠BOC.(2)若将(1)题中已知条件“锐角△ABC”改为“钝角△ABC,∠A为钝角且∠A=n°”,其它条件不变(图2),请你求出∠BOC的度数.7、如图①,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.(1)求证:CD⊥AB;(2)如图②,若∠BAC的平分线分别交BC,CD于点E,F,求证:∠AEC=∠CFE.8、如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H;下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC﹣∠C;④∠BGH =∠ABE+∠C,其中正确的结论有.9、已知:△ABC中,∠C>∠B,AE平分∠BAC.(1)如图①AD⊥BC于D,若∠C=70°,∠B=30°,求出∠DAE的度数;(2)若△ABC中,∠B=α,∠C=β(α<β),探索∠DAE与α、β间的等量关系,不必说明理由;(3)如图②所示,在△ABC中AD⊥BC,AE平分∠BAC,F是AE上的任意一点,过F作FG⊥BC于G,且∠B=30°,∠C=80°,请你运用(2)中结论求出∠EFG的度数;(4)在(3)的条件下,若F点在AE的延长线上(如图③),其他条件不变,则∠EFG的度数大小发生改变吗?说明理由.10、如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个点.PE⊥AD交直线BC于点E.(1)若∠B=30°,∠ACB=70°,则∠ADC=度,∠E=度;(2)若∠B=58°,∠ACB=102°,则∠ADC=度,∠E=度;(3)若∠B=m°,∠ACB=n°,且n>m,请用含m、n的式子表示∠ADC、∠E的度数.(写出结论即可,不需要证明)11、如图,四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F.(1)若∠F=70°,则∠ABC+∠BCD=°;∠E=°;(2)探索∠E与∠F有怎样的数量关系,并说明理由;(3)给四边形ABCD添加一个条件,使得∠E=∠F,所添加的条件为.【折叠】12、如图,在△ABC中,D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)求∠AFC的度数;(2)求∠EDF的度数.13、如图1,一张三角形ABC纸片,点D、E分别是△ABC边上两点.研究(1):如果沿直线DE折叠,使A点落在CE上,则∠BDA′与∠A的数量关系是研究(2):如果折成图2的形状,猜想∠BDA′、∠CEA′和∠A的数量关系是研究(3):如果折成图3的形状,猜想∠BDA′、∠CEA′和∠A的数量关系是.14、(1)如图①,把△ABC纸片沿DE折叠,使点A落在四边形BCED内部点A′的位置.试写出∠A与∠1+∠2之间的关系,并说明理由;(2)如果把△ABC纸片沿DE折叠,使点A落在四边形BCED外部点A′的位置,如图②所示.此时∠A 与∠1、∠2之间存在什么样的关系?直接写出.(3)如果把四边形ABCD沿EF折叠,使点A、D分别落在四边形BCFE内部点A′、D′的位置,如图③所示.直接写出∠A′、∠D′、∠1与∠2之间的关系.15、如图1,一张△ABC纸片,点M、N分别是AC、BC上两点.(1)若沿直线MN折叠,使C点落在BN上,则∠AMC′与∠ACB的数量关系是(写出结论即可).(2)若折成图2的形状,猜想∠AMC′、∠BNC′和∠ACB的数量关系,并说明理由.(3)若折成图3的形状,猜想∠AMC′、∠BNC′和∠ACB的数量关系,并说明理由.(4)将上述问题推广,如图4,将四边形ABCD纸片沿MN折叠,使点C、D落在四边形ABNM的内部时,∠AMD′+∠BNC′与∠C、∠D之间的数量关系是(写出结论即可).【人字形】16、如图,已知∠B=45°,∠A=30°,∠C=25°,求∠ADC的大小.17、阅读下列材料,然后解答后面的问题.(1)定义:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形.如图1,四边形ABCD为凹四边形.(2)性质探究:请完成凹四边形一个性质的证明.已知:如图2,四边形ABCD是凹四边形.求证:∠BCD=∠B+∠A+∠D.(3)性质应用:如图3,在凹四边形ABCD中,∠BAD的角平分线与∠BCD的角平分线交于点E,若∠ADC=140°,∠AEC =102°,则∠B=°.18、如图,BE平分∠ABD,CF平分∠ACD,BE、CF交于G,若∠BDC=150°,∠BGC=120°,求∠A 的度数.19、(1)如图①,在凹四边形ABCD中,∠BDC=135°,∠B=∠C=25°,求∠A的度数;(2)如图②,在凹四边形ABCD中,∠ABD与∠ACD的角平分线交于点E,∠A=60°,∠BDC=140°,则∠E=°;(3)如图③,∠ABD,∠ACD的10等分线相交于点F1、F2、…、F9,若∠BDC=120°,∠BF3C=64°,则∠A的度数为.(4)如图④,∠BAC,∠BDC的角平分线交于点E,则∠B,∠C与∠E之间有怎样的数量关系.(5)如图⑤,∠ABD,∠BAC的角平分线交于点E,∠C=40°,∠BDC=140°,求∠AEB的度数.【8字形】20、“8字”的性质及应用:(1)如图①,AD、BC相交于点O,得到一个“8字”ABCD,求证:∠A+∠B=∠C+∠D.(2)图②中共有多少个“8字”?(3)如图②,∠ABC和∠ADC的平分线相交于点E,利用(1)中的结论证明∠E=(∠A+∠C).21、求∠A+∠B+∠C+∠D+∠E+∠F为多少度.22、已知,如图,AB与CD交于点O(1)如图1,若∠A=∠B,求证:∠A+∠C=∠B+∠D(2)如图2,若∠A≠∠B,(1)中的结论是否仍然成立?请判断并证明你的结论(注:不能用三角形内角和定理)(3)如图3,若∠B=65°,∠C=25°,AP平分∠BAC,DP平分∠BDC,请你(2)中结论求出∠P的度数,请直接写出结果∠P=.23、探究:中华人民共和国国旗上的五角星的每个角均相等,小明为了计算每个角的度数,画出了如图①的五角星,每个角均相等,并写出了如下不完整的计算过程,请你将过程补充完整.解:∵∠AFG=∠C+∠E,∠AGF=∠B+∠D.∴∠AFG+∠AGF=∠C+∠E+∠B+∠D.∵∠A+∠AFG+∠AGF=°,∴∠A+∠B+∠C+∠D+∠E=°,∴∠A=∠B=∠C=∠D=∠E=°.拓展:如图②,小明改变了这个五角星的五个角的度数,使它们均不相等,请你帮助小明求∠A、∠B、∠C、∠D、∠E的和.应用:如图③.小明将图②中的点A落在BE上,点C落在BD上,若∠B=∠D=36°,则∠CAD+∠ACE +∠E=°.24、阅读材料:如图1,AB、CD交于点O,我们把△AOD和△BOC叫做对顶三角形.结论:若△AOD和△BOC是对顶三角形,则∠A+∠D=∠B+∠C.结论应用举例:如图2:求五角星的五个内角之和,即∠A+∠B+∠ACE+∠ADB+∠E的度数.解:连接CD,由对顶三角形的性质得:∠B+∠E=∠1+∠2,在△ACD中,∵∠A+∠ACD+∠ADC=180°,即∠A+∠3+∠1+∠2+∠4=180°,∴∠A+∠ACE+∠B+∠E+ADB=180°即五角星的五个内角之和为180°.解决问题:(1)如图①,∠A+∠B+∠C+∠D+∠E+∠F=;(2)如图②,∠A+∠B+∠C+∠D+∠E+∠F+∠G=;(3)如图③,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=;(4)如图④,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=;请你从图③或图④中任选一个,写出你的计算过程.【基本图形】25、△ABC中,∠A=a,(1)若∠ABC,∠ACB的平分线相交于O,如图(1),求∠BOC的度数;(2)若∠ABC,∠ACB的外角平分线相交于O,如图(2),求∠BOC的度数;(3)若∠ABC的平分线与∠ACB的外角平分线相交于O,如图(3),求∠BOC的度数.26、如图,△ABC的三条内角平分线相交于点O,过点O作OE⊥BC于E点,求证:∠BOD=∠COE.27、如图,在△ABC中,∠CBD、∠BCE是△ABC的外角,BP平分∠ABC,CP平分∠ACB,BQ平分∠CBD,CQ平分∠BCE.(1)∠PBQ的度数是,∠PCQ的度数是;(2)若∠A=70°,求∠P和∠Q的度数;(3)若∠A=α,则∠P=,∠Q=(用含α的代数式表示).28、如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线交于点E,EC延长线交∠ABC的外角平分线于点D,若∠D比∠E大10°,则∠A的度数是.【基本图形变式】29、探究与发现:(1)探究一:三角形的一个内角与另两个内角的平分线所夹的角之间的关系已知:如图1,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系,并说明理由.(2)探究二:四边形的两个个内角与另两个内角的平分线所夹的角之间的关系已知:如图2,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试探究∠P与∠A+∠B的数量关系,并说明理由.(3)探究三:六边形的四个内角与另两个内角的平分线所夹的角之间的关系已知:如图3,在六边形ABCDEF中,DP、CP分别平分∠EDC和∠BCD,请直接写出∠P与∠A+∠B +∠E+∠F的数量关系:.30、如图①,△ABC的角平分线BD、CE相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,过P点作直线MN,分别交AB和AC于点M和N,且MN平行于BC,则有∠MPB+∠NPC=90°﹣∠A.若将直线MN绕点P旋转,(ⅰ)如图③,试探索∠MPB、∠NPC、∠A三者之间的数量关系是否依然成立,并说明理由;(ⅱ)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,如图④,试问(ⅰ)中∠MPB、∠NPC、∠A三者之间的数量关系是否仍然成立?若不成立,请给出∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由.31、如图1,△ABC中,∠A=n°,∠ABC、∠ACB的角平分线交于点O.(1)求∠BOC的度数(用n的代数式表示);(2)如图2,过点O的直线EF分别交ACAB于点E、F,∠FEC与∠EFB的平分线交于点D,则∠BOC 与∠EDF有怎样的数量关系,请说明理由.32、如图,四边形ABCD中,∠F为四边形ABCD的∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的锐角,若设∠A=α,∠D=β;(1)如图①,α+β>180°,试用α,β表示∠F;(2)如图②,α+β<180°,请在图中画出∠F,并试用α,β表示∠F;(3)一定存在∠F吗?如有,求出∠F的值,如不一定,指出α,β满足什么条件时,不存在∠F.33、如图,点C、D分别在∠AOB的OA、OB边上运动(不与点O重合).射线CE与射线DF分别在∠ACD和∠CDO内部,延长EC与DF交于点F.(1)若∠AOB=90°,CE、DF分别是∠ACD和∠CDO的平分线,猜想:∠F的度数是否随C,D的运动发生变化?请说明理由.(2)若∠AOB=α°(0<α<180),∠ECD=∠ACD,∠CDF=∠CDO,则∠F=°.(用含α、n的代数式表示)34、如图,在△ABC中,∠B=90°(1)分别作其内角∠ACB与外角∠DAC的平分线,且两条角平分线所在的直线交于点E(如图1).则∠E=°;(2)分别作∠EAB与∠ECB的平分线,且两条角平分线交于点F(如图1).求∠AFC的度数;(3)在(2)的条件下,射线FM在∠AFC的内部且∠AFM=∠AFC,设EC与AB的交点为H,射线HN在∠AHC的内部且∠AHN=∠AHC,射线HN与FM交于点P,若∠F AH,∠FPH和∠FCH满足的数量关系为∠FCH=m∠F AH+n∠FPH,请直接写出m,n的值.35、(2017-2018武昌七校期中)已知D、E分别为△ABC中AB、BC上的动点,直线DE与直线AC相交于F,∠ADE的平分线与∠B的平分线相交于P,∠ACB的平分线与∠F的平分线相交于Q.﹙1﹚如图1,当F在AC的延长线上时,求∠P与∠Q之间的数量关系.﹙2﹚如图2,当F在AC的反向延长线上时,求∠P与∠Q之间的数量关系﹙用等式表示﹚.35、直线MN与PQ相互垂直,垂足为点O,点A在射线OQ上运功,点B在射线OM上运动,点A、点B均不与点O重合.(1)如图①,AI平分∠BAO,BI平分∠ABO,若∠BAO=40°,求∠AIB的度数.(2)如图②,AI平分∠BAO,BC平分∠ABM,BC的反向延长线交AI于点D.①若∠BAO=40°,则∠ADB=度(直接写出结果,不需说理)②点A、B在运动的过程中,若∠BAO=m°,试求∠ADB的度数.(3)如图③,已知点E在BA的延长线上,∠BAO的角平分线AI、∠OAE的角平分线AF与∠BOP的角平分线所在的直线分别相交于点D、F,在△ADF中,如果有一个角的度数是另一个角的4倍,请直接写出∠ABO的度数.36、直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(2)如图2,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线相交于E、F,则∠EAF=°;在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.37、(1)如图1,在平面直角坐标系xOy中,点A、B分别为x轴正半轴和y轴正半轴上的两个定点,点C 为x轴上的一个动点(与点O,A不重合),分别作∠OBC和∠ACB的角平分线,两角平分线所在直线交于点E,直接问答∠BEC的度数及点C所在的相应位置.(2)如图2,在平面直角坐标系xOy中,△FGH的一个顶点F在y轴的负半轴上,射线FO平分∠GFH,过点H的直线MN交x轴于点M,满足∠MHF=∠GHN,过点H作HP⊥MN交x轴于点P,请探究∠MPH 与∠G的数量关系,并写出简要证明思路.38、如图,A,B两点同时从原点O出发,点A以每秒a个单位长度沿x轴的负方向运动,点B以每秒b 个单位长度沿y轴的正方向运动.(1)如图1,若|a+2b﹣5|+(2a﹣b)2=0,试分别求出1秒钟后,A,B两点的坐标;(2)如图2,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC,∠FCA,∠ABC的平分线交于点G,过点G作BE的垂线,垂足为H,试问∠AGH,∠BGC的大小关系如何?请写出你的结论并证明;(3)如图3,过A,O两点的直线相交于点N,AB的延长线交ON于点M,若∠MAN=∠NOB,∠BAO ﹣∠N=m°,试求∠AMO的度数.【补充练习】1、如图,在△ABC中,分别作其内角∠ACB与外角∠DAC的角平分线,且两条角平分线所在的直线交于点E(1)填空:①如图1,若∠B=60°,则∠E=;②如图2,若∠B=90°,则∠E=;(2)如图3,若∠B=α,求∠E的度数;(3)如图4,仿照(2)中的方法,在(2)的条件下分别作∠EAB与∠ECB的角平分线,且两条角平分线交于点G,求∠G的度数.2、已知:如图①,BP、CP分别平分△ABC的外角∠CBD、∠BCE,BQ、CQ分别平分∠PBC、∠PCB,BM、CN分别是∠PBD、∠PCE的角平分线.(1)当∠BAC=40°时,∠BPC=,∠BQC=;(2)当BM∥CN时,求∠BAC的度数;(3)如图②,当∠BAC=120°时,BM、CN所在直线交于点O,直接写出∠BOC的度数.3、(1)已知△ABC中,∠B>∠C,AD⊥BC于D,AE平分∠BAC,如图1,设∠B=x,∠C=y,试用x、y表示∠DAE,并说明理由.(2)在图②中,其他条件不变,若把“AD⊥BC于D”改为“F是AE上一点,FD⊥BC于D”,试用x、y表示∠DFE=;(3)在图③中,若把(2)中的“点F在AE上”改为“点F是AE延长线上一点”,其余条件不变,试用x、y表示∠DFE=;(4)在图3中,分别作出∠BAE和∠EDF的角平分线,交于点P,如图4.试用x、y表示∠P=.4、如图1,在平面直角坐标系中,A、B两点同时从原点O出发,点A以每秒m个单位长度沿x轴的正方向运动,点B以每秒n个单位长度沿y轴正方向运动.(1)已知运动1秒时,B点比A点多运动1个单位;运动2秒时,B点与A点运动的路程和为6个单位,求m、n;(2)如图2,设∠OBA的邻补角的平分线、∠OAB的邻补角的平分线相交于点P,∠P的大小是否发生改变?若不变,求其值;若变化,说明理由.(3)若∠OBA的平分线与∠OAB的邻补角的平分线的反向延长线相交于点Q,∠Q的大小是否发生改变?如不发生改变,求其值;若发生改变,请说明理由.5、如图,直线x⊥直线y于点O,直线x⊥AB于点B,E是线段AB上一定点,D点为线段OB上的一动点(点D不与点O、B重合),CD⊥DE交直线y于点C,连接AC.(1)当∠OCD=60°时,求∠BED的度数;(2)当∠CDO=∠A时,CD⊥AC吗?请说明理由;(3)若∠BED、∠DCO的角平分线的交点为P,当点D在线段OB上运动时,问∠P的大小是否为定值?若是定值,求其值,并说明理由;若变化,求其变化范围.【备选】(16光谷实验10月月考)如图,已知:△ABC的三条高交于点H,AG平分∠BAD,CG平分∠BCF,CG 交EB于M,下列结论:①∠ABE=∠ACF;②∠BHF=∠BAC;③∠MBC=∠MCB;④∠HMC=∠GAC,正确的有()A.①②③B.①②④C.①③④D.②③④。
七年级上册数学角试卷【含答案】

七年级上册数学角试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 角是由两条具有公共端点的射线组成的图形,这个公共端点称为角的()。
A. 顶点B. 边C. 射线D. 直线2. 下列哪种角是锐角?A. 30°B. 90°C. 120°D. 180°3. 两条直线相交,如果形成的两个相邻角相等,那么这两个角是()。
A. 钝角B. 锐角C. 直角D. 对顶角4. 一个角的补角比这个角的余角大()。
A. 30°B. 45°C. 60°D. 90°5. 如果一个角的度数是另一个角的2倍,那么这两个角的关系是()。
A. 补角B. 余角C. 对顶角D. 无法确定二、判断题(每题1分,共5分)1. 所有的角都可以分为锐角、直角和钝角。
()2. 如果两个角的和为180°,那么这两个角互为补角。
()3. 任何角都有对应的余角和补角。
()4. 一个角的补角和余角的和为90°。
()5. 对顶角相等。
()三、填空题(每题1分,共5分)1. 一个角的补角比这个角的余角大______。
2. 如果两个角的和为______,那么这两个角互为补角。
3. 任何角都有对应的余角和补角,余角和补角的和为______。
4. 对顶角是指两个角的顶点相同,且两个角的边分别是另两个角的______。
5. 一个角的度数是另一个角的2倍,那么这两个角的关系是______。
四、简答题(每题2分,共10分)1. 请简述角的概念。
2. 什么是补角?什么是余角?它们之间的关系是什么?3. 如何判断两个角是对顶角?4. 什么是锐角?什么是钝角?什么是直角?5. 如何计算一个角的补角和余角?五、应用题(每题2分,共10分)1. 已知一个角的度数是60°,求它的补角和余角。
2. 如果两个角的和为120°,求这两个角的补角。
3. 画出两个对顶角,并标出它们的度数。
2023学年浙江七年级数学上学期专题训练专题03数形思想之几何图形中的角度计算问题(解析版)

专题03数形思想之几何图形中的角度计算问题综合专练(解析版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2021·浙江)如图,从8点钟开始,过了20分钟后,分针与时针所夹的度数是()A.120︒B.130︒C.140︒D.150︒【答案】B【分析】此时时针超过8点,分针指向4,根据每2个数字之间相隔30度和时针1分钟走0.5度可得夹角度数.【详解】解:时针超过20分所走的度数为20×0.5=10°,分针与8点之间的夹角为4×30=120°,∴此时时钟面上的时针与分针的夹角是120+10=130°.故选:B.【点睛】本题考查钟面角的计算,用到的知识点为:钟面上每2个数字之间相隔30度;时针1分钟走0.5度.2.(2021·浙江七年级期末)周末早上,小兰9:00从家里出发去图书馆看书,上午10:30回到家中,这段时间内钟面上的时针转了()A.37.5°B.45°C.52.5°D.60°【答案】B9时是分针指向12,时针指向9,10:30时分针指向6,时针指向10和11正中间,所以时针走了1.5个大格,因为每个大格所对的角度是30度,所以3个大格之间的夹角是30°×1.5=45°,据此解答即可.【详解】解:由分析得出:从上午9:00到上午10:30,钟面上的时针转了:30°×1.5=45°. 故选:B .【点睛】解决本题要先分析时针位置的变化,再利用每个大格所对的角度是30度进行解答.二、填空题3.(2021·浙江七年级期中)如图,直线AB ,CD 相交于点O ,AO 平分COE ∠,且50EOD ∠=︒,则DOB ∠的度数是________.【答案】65︒【分析】根据180COE EOD ∠+∠=︒,50EOD ∠=︒,求出130COE ∠=︒,利用AO 平分COE ∠,求得65AOC ∠=︒,即可得到∴DOB=65AOC ∠=︒.【详解】∴180COE EOD ∠+∠=︒,50EOD ∠=︒,∴130COE ∠=︒,∴AO 平分COE ∠,∴65AOC ∠=︒,∴∴DOB=65AOC ∠=︒,故答案为:65︒.此题考查求一个角的补角,角平分线的性质,对顶角相等,正确理解补角定义求出130COE ∠=︒是解题的关键.三、解答题4.(2021·浙江七年级期末)(1)如图(a ),将两块直角三角尺的直角顶点C 叠放在一起∴若60DCE ∠=︒,则ACB =∠__________;若140ACB ∠=︒,则DCE ∠=___________. ∴猜想ACB ∠与DCE ∠的度数有何特殊关系,并说明理由.(2)如图(b ),两个同样的三角尺60︒锐角的顶点A 重合在一起,则DAB ∠与CAE ∠的度数有何关系?请说明理由.(3)如图(c ),已知AOB α∠=,作COD β∠=(α,β都是锐角且αβ>),若OC 在AOB ∠的内部,请直接写出AOD ∠与BOC ∠的度数关系.【答案】(1)∴120°;40°∴∴ACB+∴DCE=180°,理由见解析(2)∴DAB+∴CAE=120°,理由见解析(3)∴AOD+∴BOC=αβ+ 或∴AOD+∴BOC= αβ-或∴BOC -∴AOD= αβ-【分析】(1)∴先求出∴BCD ,再代入∴ACB=∴ACD+∴BCD 求出即可;先求出∴BCD ,再代入∴DCE=∴BCE -∴BCD 求出即可;∴根据∴ACB=∴ACD+∴BCD ,∴DCE=∴BCE -∴BCD ,利用角的加减化简即可 (2)先表示∴CAB 、∴DAB ,利用角的加减即可求解.(3)分∴OD 在OB 上方时∴OD 在∴BOC 内部∴OD 在∴AOC 内部∴OD 在OA 下方4种情况进行讨论.【详解】(1)∴若∴DCE=60°∴∴DCE=60°,∴ACD=∴BCE=90°∴∴BCD=∴BCE -∴DCE=30°∴∴ACB=∴ACD+∴BCD=120°;若∴ACB=140°∴∴ACB=140°,∴ACD=∴BCE=90°∴∴BCD=∴ACB -∴ACD =50°∴∴DCE=∴BCE-∴BCD=40°故答案为:120°;40°∴猜想:∴ACB+∴DCE=180°,理由是:∴∴ACD=∴BCE=90°∴∴ACB=∴ACD+∴BCD=90°+∴BCD,∴DCE=∴BCE-∴BCD=90°-∴BCD ∴∴ACB+∴DCE=90°+∴BCD+90°-∴BCD=180°(2)∴DAB+∴CAE=120°,理由是:∴∴DAC=∴EAB=60°∴∴DAB=∴DAC+∴CAB=60°+∴CAB,∴CAE=∴BAE-∴CAB=60°-∴CAB ∴∴DAB+∴CAE=60°+∴CAB+60°-∴CAB=120°(3)∴OD在OB上方时,如图:+∴AOD+∴BOC=∴AOB+∴BOD+∴COD-∴BOD=∴AOB +∴COD=αβ∴OD在∴BOC内部,如图:+∴AOD+∴BOC=∴AOB-∴BOD+∴COD+∴BOD=∴AOB +∴COD=αβ∴OD在∴AOC内部,如图:∴AOD+∴BOC=∴AOB -∴BOD +∴BOD -∴COD =∴AOB -∴COD=αβ-∴OD 在OA 下方,如图:∴BOC -∴AOD= ∴AOB -∴AOC -(∴COD -∴AOC )=∴AOB -∴COD=αβ-综上所述:∴AOD+∴BOC=αβ+ 或∴AOD+∴BOC= αβ-或∴BOC -∴AOD= αβ-【点睛】本题考查了角的有关计算的应用,能灵活运用角的和差进行计算是解此题的关键. 5.(2021·浙江七年级期末)操作探究:将两块相同的直角三角板(含有30,60︒︒角)如图1摆放在直线AD 上,三角板OMN 绕点O 以每秒10︒的速度顺时针旋转,当ON 旋转至与射线OA 重合时停止.设旋转时间为t 秒.(1)若三角板OBC 保持不动,如图2,当3t =时,试判断AOM ∠和BOM ∠是否相等,并说明理由;(2)若两块三角板同时旋转,三角板OBC 以每秒5︒的速度绕点O 顺时针旋转,当OB 旋转至与射线OD 重合时停止.∴在三角板OBC 停止运动之前,求AOM ∠和AOB ∠的度数(用含t 的代数式表示); ∴定义:能把一个角分成1:2的两部分的直线叫做该角的三分线...,当直线OM 为AOB ∠的三分线时,求t 的值.【答案】(1)相等,见解析;(2)∴10AOM t ∠=,(AOM ∠大于180︒时填写36010t -也可)560AOB t ∠=+;∴12,6,245===t t t 【分析】∴在三角板OBC 停止运动时,运动时间为24秒直线OM 为AOB ∠的三分线,分为两种情况:当024t <<时,及当24t 27时,结合三角板转动的速度及时间和三分线的定义即可解答本题.【详解】解:(1)相等.理由如下:当3t =时,3030AOM BOM ︒︒∠=∠=,所以AOM BOM ∠=∠.(2)∴10AOM t ∠=,(AOM ∠大于180︒时填写36010t -也可)560AOB t ∠=+; ∴在三角板OBC 停止运动时,运动时间为24秒直线OM 为AOB ∠的三分线,分为两种情况:情况1:当024t <<时, 当13AOM AOB ∠=∠时,如图1. 110(605)3t t =+ 125t =; 当23AOM AOB ∠=∠时,如图2. 210(605)3t t =+ 6t =;情况2:当24t 27时 当1603AOM AOB ︒∠=∠=时,如图3. 2t =;12,6,245∴===t t t ;【点睛】本题考查了三分线的定义,以及角的和差,解题的关键是结合三角形转动的速度解题.6.(2021·浙江七年级期末)如图,已知直线AB 与CD 相交于点40O OE CD AOC OF ︒⊥∠=,,,为AOD ∠的角平分线.(1)求EOB ∠的度数;(2)求EOF ∠的度数.【答案】(1)50EOB ∠=︒;(2)160EOF ∠=︒【分析】(1)由对顶角相等的性质得40BOD AOC ∠=∠=︒,再由90EOD ∠=︒,即可求出EOB ∠的度数;(2)先求出AOD ∠的度数,再由角平分线的性质得到FOD ∠的度数,即可求出EOF ∠的度数.【详解】解:(1)OE CD ⊥,∴90EOD ∠=︒,∴40BOD AOC ∠=∠=︒,50EOB EOD BOD ∴∠=∠-∠=︒;(2)∴直线AB 与CD 相交于点O ,40AOC BOD ∴∠=∠=︒,∴180140=︒-=︒∠∠,AOD BODOF为AOD∠的角平分线,∴∠=∠=︒,AOF FOD70EOF EOD FOD∴∠=∠+∠=︒.160【点睛】本题考查角度求解,解题的关键是掌握对顶角的性质,垂直的性质,以及角平分线的性质.7.(2021·浙江七年级期末)如图,已知直线AB,CD相交于点O,OE,OF为射线,∴AOE=90°,OF平分∴BOC,(1)若∴EOF=30°,求∴BOD的度数;(2)试问∴EOF与∴BOD有什么数量关系?请说明理由.【答案】(1)∴BOD=60°;(2)∴BOD=2∴EOF,理由见解析【分析】(1)求出∴FOB=90°-∴EOF=60°,由OF平分∴BOC求出∴BOC=120°,进而求出∴BOD=180°-120°=60°;(2)设∴EOF=α,将∴FOB、∴BOC分别用α的代数式表示,最后∴BOD=180°-∴BOC即可求解.【详解】解:(1)∴BOE=180°-∴AOE=180°-90°=90°,∴∴EOF=30°,∴∴FOB=90°-30°=60°,∴OF为∴BOC的角平分线,∴∴BOC=2∴FOB=120°,∴∴BOD=180°-∴BOC=180°-120°=60°;(2)设∴EOF=α,则∴FOB=90°-α,∴∴BOC=2∴FOB=2(90°-α),∴∴BOD=180°-∴BOC=180°-2(90°-α)=2α,即∴BOD=2∴EOF .【点睛】本题主要考查了垂线,角平分线的定义以及平角的综合运用,掌握角平分线平分角,垂线得到直角这两个性质是解决本题的关键.8.(2021·浙江七年级期末)将一副三角板如图1摆放,30AOB ∠=︒,45COD ∠=︒,OM 平分AOD ∠,ON 平分BOC ∠.(1)MON ∠=_______;(2)将图1的三角板OCD 绕点O 逆时针旋转α度至图2位置.∴当25α=时,求MON ∠的度数.∴当0150α<<时,请直接写出MON ∠,AOB ∠,COD ∠之间的数量关系.【答案】(1)37.5︒;(2)∴37.5︒;∴1()2MON AOB COD ∠=∠+∠ 【分析】(1)根据角平分线的定义分别计算∴BOM 和∴BON 的度数,从而求解;(2)∴根据角平分线的定义分别计算∴DOM 和∴BON 的度数,从而求解; ∴根据角平分线的定义分别表示出∴DOM 和∴BON 的度数,从而利用角的数量关系求解.【详解】解:(1)在图1中,∴OM 平分AOD ∠,ON 平分BOC ∠,30AOB ∠=︒,45COB ∠=︒, ∴∴BOM=1152AOB ∠=︒,∴BON=122.52COB ∠=︒ ∴1522.5MON BOM BON ∠=∠+∠=︒+︒=37.5︒(2)在图2中,当25α=时,25BOD ∠=︒∴OM 平分AOD ∠,ON 平分BOC ∠,30AOB ∠=︒,45COD ∠=︒∴302527.522AOB BOD DOM ∠+∠︒+︒∠===︒,45253522COD BOD BON ∠+∠︒+︒∠===︒ MON DOM BON BOD ∴∠=∠+∠-∠27.53525=︒+︒-︒37.5=︒(3)当0150α<<时,∴OM 平分AOD ∠,ON 平分BOC ∠ ∴2AOB DOM α∠+∠=,2COD BON α∠+∠= MON DOM BON BOD ∴∠=∠+∠-∠ =2AOB α∠++2COD αα∠+- 1()2AOB COD =∠+∠ ∴1()2MON AOB COD ∠=∠+∠. 【点睛】本题考查角平分线的定义与角的运算,正确理解图意列出角之间的数量关系式正确计算是解题关键.9.(2021·浙江宁波市·七年级期末)将一副三角板叠放在一起,使直角顶点重合于点O .(1)如图1,若∴AOD =35°,求∴BOC 的度数.(2)若三角板AOB 保持不动,将三角板COD 的边OD 与边OA 重合,然后将其绕点O 旋转.试猜想在旋转过程中,∴AOC 与∴BOD 有何数量关系?请说明理由.【答案】(1)∴BOC=35°;(2)∴AOC+∴BOD=180°,理由见解析【分析】(1)先求出∴BOD 的度数,进而可求出∴BOC 的度数;(2)分两种情况,根据∴AOB=∴COD=90°即可求出答案.【详解】解:(1)∴∴AOB=90°,∴AOD=35°,∴∴BOD=90°-35°=55°,∴∴COD=90°,∴∴BOC=90°-55°=35°;(2)∴AOC+∴BOD=180°,如图1时,∴∴AOB=∴COD=90°,∴∴AOC+∴BOD=∴AOB+∴BOC+∴BOD=∴AOB+∴COD=90°+90°=180°;如图2时,∴AOC+∴BOD=360°-90°-90°=180°;综上可知,∴AOC+∴BOD=180°.【点睛】本题考查了三角板中角的计算,正确识图是解题的关键.10.(2021·浙江七年级期末)从一个锐角()4590αα︒<<︒顶点出发在角的内部引一条射线,把α分成两个角,若其中一个角与α互余,则这条射线叫做锐角α的余分线,这个角叫做锐角α的余分角.例如:图∴中,当60,30AOB BOC ∠=︒∠=︒时,BOC ∠与AOB ∠互余,那么OC 是AOB ∠的余分线,BOC ∠是AOB ∠的余分角.(1)若70AOB ∠=︒,OC 是它的余分线,则AOC ∠=_________;(2)如图∴,EOB ∠是平角,BOC ∠是AOB ∠的余分角,90AOD ∠=︒,试说明DOE BOC ∠=∠.(3)如图∴,在(2)的条件下,若OF 是AOB ∠的平分线,14DOE ∠=︒,求COF ∠度数.【答案】(1)20°或50°;(2)见解析;(3)24°【分析】(1)根据余分线的定义分情况讨论,从而求解;(2)根据余分角的定义可得90BOC AOB ∠+∠=︒,根据题意可得90DOE AOB ∠+∠=︒,从而利用同角的余角相等可以得到结论;(3)根据上一问的结论可得14BOC ∠=︒,然后利用余分角和角平分线的定义求得角的数量关系,从而求解.【详解】解:(1)∴70AOB ∠=︒,OC 是它的余分线,∴90AOC AOB 或90BOC AOB ∠+∠=︒ ∴90AOC AOB 或()90AOB AOC AOB ∠-∠+∠=︒解得:=20AOC ∠︒或=50AOC ∠︒故答案为:20°或50°(2)∴BOC ∠是AOB ∠的余分角,∴90BOC AOB ∠+∠=︒,∴EOB ∠是平角,90AOD ∠=︒,∴90DOE AOB ∠+∠=︒,∴BOC DOE ∠=∠(3)∴BOC DOE ∠=∠,14DOE ∠=︒,∴14BOC ∠=︒,∴BOC ∠是AOB ∠的余分角,∴901476AOB ∠=︒-︒=︒,∴OF 平分AOB ∠, ∴11763822BOF AOB ∠=∠=⨯=︒, ∴381424COF ∠=︒-︒=︒【点睛】本题考查角平分线的定义及角的数量关系,正确理解题意准确计算并注意分类讨论思想的运用是解题关键.11.(2021·浙江)如图,直线AB ,CD 交于点O ,射线OE ,OF 都在直线AB 的上方,且OE OF ⊥.(1)若28AOC ∠=︒,30BOF ∠=︒,求DOE ∠的度数.(2)若OB 平分DOF ∠,请写出图中与AOE ∠互余的角:________.(直接写出所有..答案)【答案】(1)148°;(2)∴BOF ,∴BOD ,∴AOC【分析】(1)根据对顶角相等得到∴AOC=∴BOD=28°,结合OE∴OF ,得到∴DOE=∴EOF+∴BOD+∴BOF ;(2)根据∴EOF=90°得到∴AOE+∴BOF=90°,再证明∴BOD=∴BOF ,∴AOC=∴BOD ,可得其他互余的角.【详解】解:(1)∴∴AOC=∴BOD=28°,OE∴OF ,∴∴DOE=∴EOF+∴BOD+∴BOF=90°+28°+30°=148°;(2)∴OE∴OF ,∴∴EOF=90°,∴∴AOE+∴BOF=90°,∴OB 平分∴DOF ,∴∴BOD=∴BOF ,∴∴AOE+∴BOD=90°,∴∴AOC=∴BOD ,∴∴AOE+∴AOC=90°,∴与∴AOE 互余的角有:∴BOF ,∴BOD ,∴AOC .【点睛】本题考查了余角,角平分线的定义,对顶角相等,是基础题,熟记概念并准确识图理清图中各角度之间的关系是解题的关键.12.(2021·浙江七年级期末)如图,直线AB 与CD 相交于点O ,30AOC ∠=︒,射线OE 从OC 开始绕点O 按顺时针方向旋转到OB .(1)当OE AB ⊥时,求EOD ∠的度数.(2)当OE 平分COB ∠时,求EOD ∠的度数.【答案】(1)120°;(2)105°【分析】(1)根据垂直,得出90BOE ∠=︒,再根据对顶角的性质得出30BOD ∠=︒,相加即可; (2)根据角平分线,求出∠BOE 即可.【详解】解:(1)∴OE AB ⊥,∴90BOE ∠=︒.∴30AOC ∠=︒,∴30BOD ∠=︒,∴9030120EOD BOE BOD ∠=∠+∠=︒+︒=︒.(2)∴30AOC ∠=︒,∴150COB ∠=︒.∴OE 平分COB ∠,∴111507522BOE COB ∠=∠==︒⨯︒. ∴30BOD ∠=︒,∴7530105EOD BOE BOD ∠=∠+∠=︒+︒=︒.【点睛】本题考查了垂线的性质,角平分线的性质,对顶角的性质,解题关键是熟练运用这些性质进行推理和计算.13.(2021·浙江)如图,直线AB 与CD 交于点O ,OF AB ⊥垂足为O ,OE 平分FOD ∠.(1)若70AOC ∠=︒,求BOD ∠和EOB ∠的度数;(2)若AOC α∠=,则EOB ∠=___________.(用含α的代数式表示)【答案】(1)70,10BOD EOB ∠=︒∠=︒;(2)452α︒-【分析】(1)根据对顶角相等求得∴BOD 的度数,利用垂直的定义求得90FOB ∠=︒,然后利用角的和差运算及角平分线的定义求解;(2)根据角的和差运算及角平分线的定义列式求解.【详解】解:(1) ∴AOC ∠与BOD ∠是对顶角∴70AOC BOD ∠=∠=︒(对顶角相等)∴FO OB ⊥∴90FOB ∠=︒∴9070160FOD FOB BOD ︒︒∠=∠+∠=+=︒∴OE 平分FOD ∠ ∴111608022FOE FOD ∠=∠==︒⨯︒ ∴908010EOB FOB FOE ∠=∠-∠=︒-=︒︒(2)由题意可得:AOC BOD α∠=∠=∴FO OB ⊥∴90FOB ∠=︒∴90FOD FOB BOD α∠=∠+=︒∠+∴OE 平分FOD ∠ ∴2(90)112FOE FOD α=∠=︒+∠ ∴1(90)452290EOB FOB FOE αα︒∠=∠-∠==︒+︒-- 故答案为:452α︒-.【点睛】 本题考查对顶角相等,角平分线的定义及角的和差运算,准确识图,掌握相关概念正确推理计算是解题解题关键.14.(2021·浙江七年级期末)已知AOB ∠与COD ∠互补,射线OE 平分COD ∠,设AOC α∠=,BOD β∠=.(1)如图1,COD ∠在AOB ∠的内部,∴当45COD ∠=︒时,求αβ+的值.∴当3αβ=时,求∠BOE 的度数.(2)如图2,COD ∠在AOB ∠的外部,45BOE ∠=︒,求α与β满足的等量关系.【答案】(1)∴90°;∴45°;(2)3360αβ+=︒.【分析】(1)∴根据补角的定义可得135AOB ∠=︒,AOB ∠-COD ∠即可得到结论;∴设2COD x ∠=,根据角平分线的定义和补角的定义即可得到结论;(2)根据角平分线的定义和角的和差求出45COE DOE β∠=∠=-︒,则2290COD DOE β∠=∠=-︒,根据角的和差求出,BOC AOB ∠∠,再由AOB ∠与COD ∠互补即可得到结论.【详解】解:(1)∴∴180AOB COD ∠+∠=︒,45COD ∠=︒,∴135AOB ∠=︒,∴90AOB COD αβ+=∠-∠=︒;∴设2COD x ∠=,∴OE 平分COD ∠, ∴12COE DOE COD x ∠=∠=∠=, ∴180AOB COD ∠+∠=︒,∴22180x x αβ+++=︒又∴3αβ=,∴()4180x β+=︒,∴45BOE x β∠=+=︒;(2)∴45COE DOE BOD BOE β∠=∠=∠-∠=-︒,∴2290COD DOE β∠=∠=-︒,∴90BOC BOE COE β∠=∠-∠=︒-,∴90AOB AOC BOC αβ∠=∠-∠=+-︒,∴180AOB COD ∠+∠=︒,∴()()90290180αββ+-︒+-︒=︒,∴3360αβ+=︒【点睛】本题考查了角的计算,角平分线的定义,补角的定义,正确的识别图形是解题的关键.15.(2021·浙江)新定义问题如图∴,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠、BOC ∠、AOB ∠.若这三个角中有一个角是另外一个角的2倍,则称射线OC 为AOB ∠的“幸运线”.(本题中所研究的角都是大于0︒而小于180︒的角.)(阅读理解)(1)角的平分线_________这个角的“幸运线”;(填“是”或“不是”)(初步应用)(2)如图∴,45AOB ∠=︒,射线OC 为AOB ∠的“幸运线”,则AOC ∠的度数为_______; (解决问题)(3)如图∴,已知60AOB ∠=︒,射线OM 从OA 出发,以每秒20︒的速度绕O 点逆时针旋转,同时,射线ON 从OB 出发,以每秒15︒的速度绕O 点逆时针旋转,设运动的时间为t 秒(09t <<).若OM 、ON 、OA 三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求出所有可能的t 值.【答案】(1)是;(2)15°或22.5°或30°;(3)127t =或125t =或1211t =或365t = 【分析】(1)若OC 为∴AOB 的角平分线,则有2AOB AOC ∠=∠,则根据题意可求解; (2)根据“幸运线”的定义可得当2AOB AOC ∠=∠时,当2AOC BOC ∠=∠时,当2BOC AOC ∠=∠时,然后根据角的和差关系进行求解即可;(3)由题意可分∴当04t <<时ON 在与OA 重合之前,则有20MOA t ∠=,6015AON t ∠=-,由OA 是MON ∠的幸运线可进行分类求解;∴当49<<t 时,ON 在与OA 重合之后,则有560MON t ∠=+,1560AON t ∠=-,由ON 是AOM ∠的幸运线可分类进行求解.【详解】解:(1)若OC 为∴AOB 的角平分线,则有2AOB AOC ∠=∠,符合“幸运线”的定义,所以角平分线是这个角的“幸运线”;故答案为是;(2)由题意得:∴45AOB ∠=︒,射线OC 为AOB ∠的“幸运线”,∴∴当2AOB AOC ∠=∠时,则有:22.5AOC ∠=︒;∴当2AOC BOC ∠=∠时,则有2303AOC AOB ∠=∠=︒; ∴当2BOC AOC ∠=∠时,则有1153AOC AOB ∠=∠=︒; 综上所述:当射线OC 为AOB ∠的“幸运线”时,∴AOC 的度数为15︒,22.5︒,30, 故答案为15︒,22.5︒,30;(3)∴60AOB ∠=︒,∴射线ON 与OA 重合的时间为15460︒÷︒=(秒),∴当04t <<时ON 在与OA 重合之前,如图所示:∴20MOA t ∠=,6015AON t ∠=-,OA 是MON ∠的幸运线,则有以下三类情况:∴206015t t =-,127t =, ∴()2026015t t =-,125t =, ∴2206015t t ⨯=-,1211t =; 当49<<t 时,ON 在与OA 重合之后,如图所示:∴560MON t ∠=+,1560AON t ∠=-,ON 是AOM ∠的幸运线,则有以下三类情况:∴5601560t t +=-,12t =(不符合题意,舍去),∴()56021560t t +=-,365t =, ∴()25601560t t +=-,36t =(不符合题意,舍去); 综上:127t =或125t =或1211t =或365t =. 【点睛】本题主要考查角平分线的定义及角的动点问题,熟练掌握角平分线的定义及和差关系是解题的关键.16.(2021·浙江七年级期中)如图,直线AB ,CD ,EF 相交于点O ,且AB CD ⊥,OG 平分∠BOE ,若13EOG AOE ∠∠=,求DOF ∠的度数.【答案】18°【分析】首先根据角平分线的性质可得∴EOG=∴BOG,设∴EOG=x°,进而得到∴EOG=1 3∴AOE=x°,再根据平角为180°可得x+x+3x=180,解出x可得∴EOG,进而可得∴DOF 的度数.【详解】解:∴OG平分∴BOE,∴∴EOG=∴BOG,设∴EOG=x°,∴∴EOG=13∴AOE,∴∴AOE=3x°,∴x+x+3x=180,解得:x=36,∴∴AOE=3×36°=108°,∴∴AOF=180°-∴AOE=180°-108°=72°,∴AB∴CD,∴∴AOD=90°,∴∴DOF=∴AOD-∴AOF=90°-72°=18°.所以∴DOF的度数18°.【点睛】此题考查了垂线、角平分线,关键是掌握角平分线可以把角分成相等的两部分.17.(2021·浙江)已知:如图,直线AB CD、相交于点O,EO CD于O.(1)若:2:7BOD BOC ∠∠=,求AOE ∠的度数;(2)在(1)的条件下,请你过点O 画直线MN AB ⊥,并在直线MN 上取一点F (点F 与O 不重合),然后直接写出EOF ∠的度数. 【答案】(1)130°;(2)40°或140° 【分析】(1)依据平角的定义以及垂线的定义,即可得到∴AOE 的度数;(2)分两种情况:若F 在射线OM 上,则∴EOF =∴BOD =40°;若F '在射线ON 上,则∴EOF '=∴DOE +∴BON -∴BOD =140°. 【详解】解:(1)∴∴BOD :∴BOC =2:7, ∴∴BOD =29∴COD =40°, ∴∴AOC =40°, 又∴EO ∴CD , ∴∴COE =90°,∴∴AOE =90°+40°=130°; (2)分两种情况: 若F 在射线OM 上, ∴∴EOD =∴BOF =90°, ∴∴EOF =∴BOD =40°; 若F '在射线ON 上,则∴EOF '=∴DOE +∴BON -∴BOD =140°;综上所述,∴EOF 的度数为40°或140°. 【点睛】本题考查了角的计算,对顶角,垂线等知识点的应用,关键是分类讨论思想的运用. 18.(2021·浙江杭州外国语学校七年级期末)已知150AOB ∠=︒,OC 为AOB ∠内部的一条射线,60BOC ∠=︒.(1)如图1,若OE 平分AOB ∠,OD 为BOC ∠内部的一条射线,12COD BOD ∠=∠,求DOE ∠的度数;(2)如图2,若射线OE 绕着O 点从OA 开始以每秒15︒的速度顺时针旋转至OB 结束、OF 绕着O 点从OB 开始以每秒5︒的速度逆时针旋转至OA 结束,当一条射线到达终点时另一条射线也停止运动.若运动时间为t 秒,当EOC FOC ∠=∠时,求t 的值;(3)若射线OM 绕着O 点从OA 开始以每秒15︒的速度逆时针旋转至OB 结束,在旋转过程中,ON 平分AOM ∠,试问2BON BOM ∠-∠在某时间段内是否为定值;若不是,请说明理由;若是,请补全图形,并直接写出这个定值以及t 相应所在的时间段.(本题中的角均为大于0︒且小于180︒的角)【答案】(1)35︒;(2)t 的值为3或7.5;(3)当02t ≤≤或412t ≤≤时,2BON BOM ∠-∠为定值,此时补全的图形见解析. 【分析】(1)先根据角平分线的定义求出∠BOE 的度数,再根据角的倍差求出BOD ∠的度数,最后根据角的和差即可;(2)先求出AOC ∠的度数和t 的最大值,从而可知停止运动时,OF 在OC 的右侧,因此,分OE 在OC 左侧和右侧两种情况,再根据EOC FOC ∠=∠列出等式求解即可; (3)因本题中的角均为大于0︒且小于180︒的角,则需分OM 与OB 在一条直线上、ON 与OB 在一条直线上、OM 与OA 在一条直线上三个临界位置,从而求出此时t 的取值范围,并求出各范围内BON ∠和BOM ∠的度数,即可得出答案. 【详解】(1)OE 平分AOB ∠,150AOB ∠=︒ 7512AO OE B B ∠∴=∠=︒160,2BOC COD BOD∠=︒∠=∠2403BOD BOC ∴∠=∠=︒754035BOE BO DOE D ∴∠-∠=︒-︒=∠=︒;(2)15060,A C O BO B ∠=︒∠=︒90AOC AOB BOC ∠∴∠-=∠=︒由题意知,当OE 转到OB 时,两条射线均停止运动 此时150101515AOB t ︒==∠=︒︒(秒) 则OF 停止转动时,55060BOF t ∠=︒=︒<︒ 即OF 从开始旋转至停止运动,始终在OC 的右侧 因此,分以下2种情况:∴当OE 在OC 左侧时,9015605EOC AOC AOE tFOC BOC BOF t ∠=∠-∠=︒-︒⎧⎨∠=∠-∠=︒-︒⎩则由EOC FOC ∠=∠得9015605t t ︒-︒=︒-︒,解得3t =∴当OE 在OC 右侧时,1590605EOC AOE AOC t FOC BOC BOF t ∠=∠-∠=︒-︒⎧⎨∠=∠-∠=︒-︒⎩则由EOC FOC ∠=∠得1590605t t ︒-︒=︒-︒,解得7.5t = 综上,t 的值为3或7.5;(3)射线OM 从开始转动至OB 结束时,转动时间为3601501415t ︒-︒==︒(秒)由题意,分OM 与OB 在一条直线上(180150215t ︒-︒==︒)、ON 与OB 在一条直线上(2(180150)415t ⨯︒-︒==︒)、OM 与OA 在一条直线上(1801215t ︒==︒)三个临界位置 ∴当02t ≤≤时,如图1所示此时,1151501502215015t BON AOB AON AOM BOM AOB AOM t︒⎧∠=∠+∠=︒+∠=︒+⎪⎨⎪∠=∠+∠=︒+︒⎩ 则1522(150)(15015)1502tBON BOM t ︒∠-∠=⨯︒+-︒+︒=︒为定值 ∴当24t <<时,如图2所示此时,11515015022360()360(15015)21015t BON AOB AON AOM BOM AOB AOM t t︒⎧∠=∠+∠=︒+∠=︒+⎪⎨⎪∠=︒-∠+∠=︒-︒+︒=︒-︒⎩ 则1522(150)(21015)90302tBON BOM t t ︒∠-∠=⨯︒+-︒-︒=︒+︒不为定值 ∴当412t ≤≤时,如图3所示此时,1515360()360(150)21022360()360(15015)21015t t BON AOB AON BOM AOB AOM t t︒︒⎧∠=︒-∠+∠=︒-︒+=︒-⎪⎨⎪∠=︒-∠+∠=︒-︒+︒=︒-︒⎩ 则1522(210)(21015)2102tBON BOM t ︒∠-∠=⨯︒--︒-︒=︒为定值 ∴当1214t <<时,如图4所示此时,1360151515030222360()360(15015)21015t t BON AOB AOM BOM AOB AOM t t︒-︒︒⎧∠=∠-∠=︒-=-︒⎪⎨⎪∠=︒-∠+∠=︒-︒+︒=︒-︒⎩ 则1522(30)(21015)302702tBON BOM t t ︒∠-∠=⨯-︒-︒-︒=︒-︒不为定值 综上,当02t ≤≤或412t ≤≤时,2BON BOM ∠-∠为定值.【点睛】本题考查了角平分线的定义、角的和差倍分,较难的是题(3),正确找出三个临界位置是解题关键.19.(2021·浙江七年级期末)已知OC 是AOB ∠内部的一条射线,M N 、分别为,OA OC 上的点,线段, OM ON 同时分别以30/s, 10/s ︒︒的速度绕点O 逆时针旋转,设旋转时间为t 秒.(1)如图∴,若120AOB ∠=︒,当OM ON 、逆时针旋转到OM ON ''、处, ∴若, OM ON 旋转时间t 为2时,则BON COM ''∠+∠=______; ∴若OM '平分,AOC ON '∠平分,BOC M ON ''∠∠=_____;(2)如图∴,若4AOB BOC OM ON ∠=∠,,分别在,AOC BOC ∠∠内部旋转时,请猜想COM ∠与BON ∠的数量关系,并说明理由.(3)若80AOC OM ON ∠=︒,,在旋转的过程中,当20MON ∠=︒时,求t的值.【答案】(1)∴40°;∴60°;(2)∴COM =3∴BON ,理由见解析;(3)3秒或5秒 【分析】(1)∴先求出AOM ∠'、CON ',再表示出BON ∠'、COM ∠',然后相加并根据120AOB ∠=︒计算即可得解;∴先由角平分线求出12AOM COM AOC ∠'=∠'=∠,12BON CON BOC ∠'=∠'=∠,再求出111206022COM CON AOB ∠'+∠'=∠=⨯︒=︒,即60M ON ∠''=︒;(2)设旋转时间为t ,表示出CON ∠、AOM ∠,然后列方程求解得到BON ∠、COM ∠的关系,再整理即可得解;(3)设旋转时间为t ,表示出CON ∠、AOM ∠,然后得到COM ∠,再列方程求解得到MON ∠的关系,整理即可得解. 【详解】解:(1)线段OM 、ON 分别以30/s ︒、10/s ︒的速度绕点O 逆时针旋转2s ,23060AOM ∴∠'=⨯︒=︒,21020CON ∠'=⨯︒=︒, 20BON BOC ∴∠'=∠-︒,60COM AOC ∠'=∠-︒,206080BON COM BOC AOC AOB ∴∠'+∠'=∠-︒+∠-︒=∠-︒,120AOB ∠=︒,1208040BON COM ∴∠'+∠'=︒-︒=︒;故答案为:40︒;∴OM '平分AOC ∠,ON '平分BOC ∠,12AOM COM AOC ∴∠'=∠'=∠,12BON CON BOC ∠'=∠'=∠,1111120602222COM CON AOC BOC AOB ∴∠'+∠'=∠+∠=∠=⨯︒=︒,即60M ON ''∠=︒;(2)3COM BON ∠=∠,理由如下: 设BOC x ∠=,则4AOB x ∠=,3AOC x ∠=, 旋转t 秒后,30AOM t ∠=,10CON t ∠=,3303(10)COM x t x t ∴∠=-=-,10NOB x t ∠=-, 3COM BON ∴∠=∠;(3)设旋转t 秒后,30AOM t ∠=,10CON t ∠=,8030COM t ∴∠=︒-,10NOC t ∠=,可得MON MOC CON ∠=∠+∠, 可得:|803010|20t t ︒-+=︒,解得:3t =秒或5t =秒, 故答案为:3秒或5秒. 【点睛】此题考查了角的计算,读懂题目信息,准确识图并表示出相关的角度,然后列出方程是解题的关键.20.(2021·浙江)如图1,点O 在直线AB 上,过点O 引一条射线OC ,使50AOC ∠=︒,将一个直角三角尺的直角顶点放在点O 处,直角边OM 在射线OB 上,另一边ON 在直线AB 的下方.(操作一):将图1中的三角尺绕着点O 以每秒15︒的速度按顺时针方向旋转.当它完成旋转一周时停止,设旋转的时间为t 秒.(1)BOC ∠的度数是___________,图1中与它互补的角是___________.(2)三角尺旋转的度数可表示为___________(用含t 的代数式表示):当t =___________时,MO OC ⊥.(操作二):如图2将一把直尺的一端点也放在点O 处,另一端点E 在射线OC 上.如图3,在三角尺绕着点O 以每秒15︒的速度按顺时针方向旋转的同时,直尺也绕着点O 以每秒5︒的速度按顺时针方向旋转,当一方完成旋转一周时停止,另一方也停止旋转,设旋转的时间为t 秒.(3)当t 为何值时,OM OE ⊥,并说明理由? (4)试探索:在三角尺与直尺旋转的过程中,当6203t ≤≤,是否存在某个时刻,使得COM ∠与COE ∠中其中一个角是另一个角的两倍?若存在,请求出所有满足题意的t的值;若不存在,请说明理由.【答案】(1)130︒,AOC ∠;(2)15t ︒,83秒或443秒;(3)4秒或22秒,理由见解析;(4)存在,265t =秒、527秒、525秒【分析】(1)根据BOC ∠与AOC ∠互补即可得出结果;(2)用旋转的速度乘以t 得到度数,由MO OC ⊥,分情况讨论,求出旋转角的度数,即可算出t 的值;(3)分类讨论,用t 表示出三角尺和直尺的旋转度数,根据OM OE ⊥,列式求出t 的值; (4)分类讨论,当OM 在OC 左侧或当OM 在OC 右侧,根据COM ∠与COE ∠中其中一个角是另一个角的两倍,列出式子求出t 的值. 【详解】(1)∴50AOC ∠=︒,180AOC BOC ∠+∠=︒, ∴130BOC ∠=︒,与BOC ∠互补的角是AOC ∠, 故答案是:130︒,AOC ∠; (2)旋转的速度是每秒15︒, ∴旋转的度数表示为15t ︒, 当MO OC ⊥时, ∴90MOC ∠=︒,∴18040BOM MOC AOC ∠=︒-∠-∠=︒, 1540t ︒=︒,解得83t s =,∴旋转角为13090220BOC COM ∠+∠=︒+︒=︒, 15220t ︒=︒,解得443t s =, 故答案是:15t ︒,83s 或443s ;(3)∴如图∴当OM 在OE 左侧时,(1305)BOE t ∠=+度,(15)BOM t ∠=度,∴OM OE ⊥,∴90MOE ∠=︒,由题意得13059015t t +=+,解得4t s =,∴如图∴当OM 在OE 右侧时,三角尺旋转的角度为15t 度,直尺旋转的角度为5t 度,∴OM OE ⊥, ∴90MOE ∠=︒,由题意得13059015t t ++=,解得22t s =, 综上所述,当4t =秒或22秒时,OM OE ⊥; (4)∴当OM 在OC 左侧时, (∴):2:1COM COE ∠∠=,如图∴,2513015t t ⨯=-,解得265t s =; (∴):1:2COM COE ∠∠=,如图∴,52(13015)t t =-,解得527t s =; ∴当OM 在OC 右侧时,(∴):1:2COM COE ∠∠=,如图∴,()5215130t t =-,解得525t s =; (∴):2:1COM COE ∠∠=,因为6203t ≤≤,所以不存在; ∴综上所述,当265t =秒、527秒、525秒时两个角其中一个是另一个的两倍.【点睛】本题考查角度旋转问题,解题的关键是根据角度旋转的速度设出旋转角的度数,再根据题意列出与时间t 有关的方程进行求解,需要掌握分类讨论的思想.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学--角有关的计算问题
1、如图所示,AB 为一条直线,OC 是∠AOD 的平分线,OE 在∠BOD 内,∠DOE=3
1
∠BOD ,∠
COE=72°,求∠EOB 的度数。
2、如图,已知∠AOB 是∠AOC 的余角,∠AOD 是∠AOC 的补角,且BOD BOC ∠=∠2
1
求∠BOD 、∠AOC 的度数
3、一条射线OA ,若从点O 再引两条射线OB 、OC ,使∠AOB=60°,∠BOC=20°,求∠AOC 的度数。
4、已知∠AOB=100°,∠BOC=20°,若OM 平分∠AOB ,ON 平分∠BOC ,求∠MON 的度数。
5、已知,如图∠BOC 为∠AOC 内的一个锐角,射线OM 、ON 分别平分∠AOC 、∠BOC 。
(1)若∠AOB=90°,∠BOC=30°,求∠MON 的度数; (2)若∠AOB=α,∠BOC=30°,求∠MON 的度数;
(3)若∠AOB=90°,∠BOC=β,还能否求出∠MON 的度数?若能,求出其值,若不能,说
明理由。
(4)从前三问的结果你发现了什么规律?
6(2014▪漳州)如图是一副学生用的三角形板摆放的位置,A 、O 、C 三点在同一直线上,则∠AOB 的度数是 度.
B (第 13 题)
A
C
O
D
O C
B A
7、点O 是直线AB 上一点,∠COD 是直角,OE 平分∠BOC 。
(1)如图1,若∠AOC=40°,求∠DOE 的度数;
(2)在如1中,若∠AOC=α,直接写出∠DOE 的度数(用含α的代数式表示)
8如图,已知AB= 40,点C 是线段AB 的中点,点D 为线段CB 上的一点,点E 为线段DB 的中点,EB=6,求线段CD 的长。
A
B
C
D
E
9、如图,已知∠BOC =2∠AOC ,OD 平分∠AOB ,且∠COD =29°,求∠AOB 的度数。
10、如图,OB 平分∠AOC ,且∠2 : ∠3 : ∠4 = 1:3:4,求∠1、∠2、∠3、∠4。
11(如图,将一幅三角尺叠放在一起,使直角顶点重合于点O ,绕点O 任意转动其中一个三角尺,则与∠AOD 始终相等的角是 .
C
B
A
D
O
3
D
C
B
A
2
1
4
O。