七年级上数学综合练习题.
七年级数学上册综合算式专项练习题乘法运算

七年级数学上册综合算式专项练习题乘法运算解题思路:本文主要针对七年级数学上册综合算式专项练习题中的乘法运算进行解答。
首先,我们将给出一个练习题,并对其进行详细解析,包括答题步骤和解题方法。
然后,我们将逐步增加练习题的难度,以帮助读者更好地理解和掌握乘法运算。
最后,我们将总结本节内容,为读者提供一些建议和学习方法。
题目及解析:题目1:计算下列乘法算式的结果:(1) 3 × 4 (2) 5 × 6 (3) 8 × 7解析:(1) 3 × 4 = 12,所以答案是12。
(2) 5 × 6 = 30,所以答案是30。
(3) 8 × 7 = 56,所以答案是56。
拓展练习:题目2:计算下列乘法算式的结果:(1) 12 × 3 (2) 9 × 5 (3) 7 × 8解析:(1) 12 × 3 = 36,所以答案是36。
(2) 9 × 5 = 45,所以答案是45。
(3) 7 × 8 = 56,所以答案是56。
题目3:计算下列乘法算式的结果:(1) 15 × 2 (2) 25 × 4 (3) 30 × 5解析:(1) 15 × 2 = 30,所以答案是30。
(2) 25 × 4 = 100,所以答案是100。
(3) 30 × 5 = 150,所以答案是150。
题目4:计算下列乘法算式的结果:(1) 16 × 3 (2) 18 × 2 (3) 21 × 4解析:(1) 16 × 3 = 48,所以答案是48。
(2) 18 × 2 = 36,所以答案是36。
(3) 21 × 4 = 84,所以答案是84。
总结与建议:通过以上的练习题,我们可以看出乘法运算是一种基础的算术运算,在学习数学时非常重要。
人教版初中数学七年级(上)期末综合练习(2)及答案

人教版初中数学7年级(上)期末综合练习(二)一.选择题(共8小题)1.有理数a ,b 在数轴上的位置如图所示, 则下列各式:①0a b +>;②0a b ->;③||b a >;④0ab <. 一定成立的是( )A .①②③B .③④C .②③④D .①③④2.下列各组数中, 互为相反数的一组是( )A .32-与3(2)-B .2(2)--与22-C .23-与2(3)-D .3|2|-与3|2|3.如果2x <-,那么|1|1||x -+等于( )A .2x --B .2x +C .xD .x -4.下列两项中,属于同类项的是( )A .26与2xB .4ab 与4abcC .20.2x y 与20.2xyD .nm 和mn - 5.某商店经销一批衬衣,每件进价为a 元,零售价比进价高%m ,后因市场变化,该商把零售价调整为原来零售价的%n 出售.那么调整后每件衬衣的零售价是( )A .(%)(%)a l m l n +-元B .%(1%)am n -元C .(%)%a l m n +元D .(%%)a l m n +元 6.若方程53ax x =+的解为5x =,则a 的值是( )A .14B .4C .16D .807.将一个正方体的表面沿某些棱剪开, 展成的平面图形可以是下图中的( )A .B .C .D .8.钟表上 12 时 15 分钟时, 时针与分针的夹角为( )A .90︒B .82.5︒C .67.5︒D .60︒二.填空题(共10小题)9.2009-的相反数是 . 10.x 是实数, 那么|1||1||5|x x x -++++的最小值是 .11.一个数的倒数是8-,那么这个数是 .12.若26m n a b ++与42a b 是同类项,m n -= .13.代数式223a 的系数是 . 14.已知:25x y +=,347x y +=,则26x y += .15.代数式4a 可表示的实际意义是 .16.“节能减排, 低碳经济”是我国未来发展的方向, 某汽车生产商生产有大、 中、 小三种排量的轿车, 正常情况下的小排量的轿车占生产总量的30%,为了积极响应国家的号召, 满足大众的消费需求准备将小排量轿车的生产量提高, 受其产量结构调整的影响, 大中排量汽车生产量只有正常情况下的90%,但生产总量比原来提高了7.5%,则小排量轿车生产量应比正常情况增加 %.17.如图, 立方体的每个面上都写有一个自然数, 并且相对两个面所写出二数之和相等, 若 10 的对面写的是质数a , 12 的对面写的是质数b , 15 的对面写的是质数c ,则222a b c ab ac bc ++---= .18.如图所示, 已知4CB cm =,8DB cm =,且点D 是AC 的中点, 则AC = cm .三.解答题(共6小题)19. (1)295(6)(4)(8)-+⨯---÷- (2)432134()(2)[(2)(2)]213⨯-+-÷---. 20.如图所示是一个数表,现用一个矩形在数表中任意框出4个数,则(1)a 、c 的关系是: ; (2)当32a b c d +++=时,a = .21.已知m 满足的条件为:代数式5123m m --的值与代数式72m -的值的和等于5;||||a b n a b =+,试求mn 的值.22.在一条东西走向的马路旁, 有青少年宫、 学校、 商场、 医院四家公共场所, 已知青少年宫在学校东300m 处, 商场在学校西200m 处, 医院在学校东500m 处, 若将马路近似地看作一条直线, 以学校为原点, 向东方向为正方向, 用 1 个单位长度表示100m .(1) 在数轴上表示出四家公共场所的位置;(2) 列式计算青少年宫与商场之间的距离 .23.如图, 已知线段AB ,延长AB 到C ,使12BC AB =,D 为AC 的中点,3DC cm =,求BD 的长 .24.保护环境,市政府计划在连接A 、B 两居民区的公路北侧1500米处修建一座污水处理厂,设计时要求该污水处理厂到A 、B 两居民区的距离相等.(1)若要以1:50000的比例尺画设计图,求污水处理厂到公路的图上距离;(2)在图中画出污水处理厂的位置P .(要求:用尺规作图,并写出已知和求作)参考答案与试题解析一.选择题(共8小题)【解答】解: 由数轴可得,0a >,0b <,||||b a >,故可得:0a b ->,||b a >,0ab <;即②③④正确 .故选:C .【解答】解:A 、328-=-,3(2)-,8=-,32∴-与3(2)-相等, 故本选项错误; B 、2(2)4--=-,224-=-,2(2)∴--与22-相等, 故本选项错误;C 、239-=-,2(3)9-=,23∴-与2(3)-互为相反数, 故本选项正确;D 、3|2|8-=,3|2|8=,3|2|∴-与3|2|相等, 故本选项错误 .故选:C .【解答】解:2x <-|1|1|||11|2x x x ∴-+=++=--,故选:A .【解答】解:A 、26与2x 字母不同不是同类项;B 、4ab 与4abc 字母不同不是同类项;C 、20.2x y 与20.2xy 字母的指数不同不是同类项;D 、nm 和mn -是同类项.故选:D .【解答】解:每件进价为a 元,零售价比进价高%m ,∴零售价为:(1%)a m +元,要零售价调整为原来零售价的%n 出售.∴调整后每件衬衣的零售价是:(1%)%a m n +元.故选:C .【解答】解:将5x =代入方程得:520a =解得:4a =.故选:B .【解答】解: 由四棱柱四个侧面和上下两个底面的特征可知,A 、只有 5 个面, 不是正方体的展开图, 不符合题意;出现了田字格, 故不能;B 、D 、出现了田字格, 故不是正方体的展开图, 不符合题意;C 、可以拼成一个正方体, 符合题意 .故选:C .【解答】解:时针在钟面上每分钟转0.5︒,分针每分钟转6︒,∴钟表上 12 时 15 分钟时, 时针与分针的夹角可以看成时针转过 12 时0.5157.5︒⨯=︒,分针在数字 3 上 .钟表 12 个数字, 每相邻两个数字之间的夹角为30︒,12∴时 15 分钟时分针与时针的夹角907.582.5︒-︒=︒.故选:B .二.填空题(共10小题)【解答】解:2009-的相反数是2009.【解答】答: 当1x =时,|1||1||5|8x x x -++++=,当1x =-时,|1||1||5|6x x x -++++=,当5x =-时,|1||1||5|10x x x -++++=.所以当1x =-时,|1||1||5|x x x -++++取最小值 6 .故答案为: 6 .【解答】解:18()18-⨯-=, ∴这个数是18-. 故答案为:18-. 【解答】解:26m n a b ++与42a b 是同类项,24m ∴+=,62n +=,2m ∴=,4n =-,2(4)6m n ∴-=--=.故答案为 6 .【解答】解: 由题意可得223a 的系数是23. 故答案为23.【解答】解: 将已知两等式联立得:25347x y x y +=⎧⎨+=⎩, 解得:13515x y ⎧=⎪⎪⎨⎪=-⎪⎩, 则1312626455x y +=⨯-⨯=.故答案为: 4【解答】解:答案不唯一.如:每支钢笔4元,买了a 支钢笔所需的钱数,或正方形的边长为a ,它的周长是4a .【解答】解: 设小排量轿车生产量应比正常情况增加的百分数为x ,汽车原总量为a . 则可得方程:30%(1)70%90%(17.5%)a x a a ++⨯=+,化简得:0.30.30.70.910.075x ++⨯=+,解得48.3%x ≈.故填 48.3 .【解答】解: 根据相对的两个面的数字和相等, 得101215a b c +=+=+,则2a b -=,5a c -=,3b c -=. 则原式222()()()192a b b c a c -+-+-==.故答案为 19 .【解答】解:4CB cm =,8DB cm =,844CD DB CB cm ∴=-=-=, D 是AC 的中点,2248AC CD cm ∴==⨯=.故答案为: 8 .三.解答题(共6小题)【解答】解: (1) 原式95(6)16(8)=-+⨯--÷-9302=--+37=-;(2) 原式134()16[84]213=⨯-+÷-- 216(12)=-+÷-423=-- 103=-. 【解答】解:(1)当a 为4时,9c =,5c a ∴-=,即5a c =-, 当9a =时,14c =,5c a ∴-=,即5a c =-,a ∴、c 的关系是:5a c =-;(2)设a x =,则1b x =+,5c x =+,6d x =+,32a b c d +++=,15632x x x x ∴++++++=,解得5x =,5a ∴=.【解答】解:根据题意,5172532m m m ---+=, 去分母得,122(51)3(7)30m m m --+-=,去括号得,1210221330m m m -++-=,移项得,1210330221m m m --=--,合并同类项得,7m -=,系数化为1得,7m =-,a 、b 同号时,112n =+=或1(1)2n =-+-=-,a 、b 异号时,0n =,所以,当7m =-、2n =时,(7)214mn =-⨯=-,当7m =-,2n =-时,(7)(2)14mn =-⨯-=,当7m =-,0n =时,(7)00mn =-⨯=,综上所述,mn 的值为14-或14或0.【解答】解: (1) 如图所示: 点A 表示商场, 点C 表示青少年宫, 点D 表示医院, 原点表示学校;(2) 依题意得青少年宫与商场之间的距离为300(200)500()m --=. 答: 青少年宫与商场之间的距离为500m .【解答】解:D 为AC 的中点,3DC cm =,26AC DC cm ∴==, 12BC AB =, 123BC AC cm ∴==, 1BD CD BC cm ∴=-=.【解答】解:(1)比例尺为1:50000实际距离为1500米 ∴图上距离为150000500003cm ÷=;(2)已知:直线L 到AB 的距离为1500米,设计图比例尺为1:50000在L 上求作点P ,使P 到A 、B 的距离相等.作法:找到AB 的中点,过中点作AB 的垂线,交L 于点P , 则P 点为所求.。
七年级数学上学期第一、二章综合试题

七年级数学上学期第一、二章综合练习题一、填空题1、一群整数朋友按照一定的规律排成一列,可排在______位置的数跑掉了,请帮它们把跑掉的朋友找回来:(1) 5,8,11,14,________, 20.(2) 1,3,7,15,31,63,__________.(3) 1,1,2,3,5,8,_______,21.2、你能根据已知的算式找出规律吗?试把下列式子中的(4)式补全:(1)32+42+122=132;(2)42+52+202=212;(3)52+62+302=312;……(4)72+82+( )2=( )23、电梯上升20米记作+20米,那么电梯下降8米记作_________米.4、检查商店出售的袋装白糖,白糖加袋按规定重503克,一袋白糖重502克,就记作-1克,如果一袋白糖重505克,那么应记作__________克.5、比-3的相反数大2的数是__________.6、世界最高峰珠穆朗玛峰海拔高度8848米,陆上最低处位于亚洲西部死海湖,湖面海拔高度-392米,则两处高度差为___________米.7、小于5而大于-4的所有偶数之和是_________.8、若|x-1|+|y+2|=0,则|x|+|y|=_______.9、计算:(-0.125)7·88=________.10、在某地,人们发现蟋蟀叫的次数与温度有某种关系,用蟋蟀1分钟叫的次数n除以7,然后再加上3就可以近似地得到该地当时的温度(℃),若某天蟋蟀1分钟叫100次,则该地当时的温度约为__________℃(精确到个位)。
二、选择题11、规定一种运算:A*B=,则10*2的结果是().A、12B、20C、6D、1012、用两个3、一个5、一个7可以组成各种不同的四位数,这些四位数共有()个.A、6B、10C、11D、1213、如果有2004个同学站成一排,按1,2,3,4,3,2,1,2,3,4,3,2,1,……的规律报数,那么第2003个学生报的数是().A、1B、2C、3D、414、6个好朋友见面相互握手致意,每两人握手一次,一共握手()次.A、20B、15C、12D、815、一个数加上6,再减去2,然后除以5得7,这个数是().A、35B、31C、21D、2816、你一定知道少年高斯速算的故事吧,那么你能用他的方法计算出“1+2+3+4+…+998+999”的结果是().A、10 000B、499 000C、500 000D、499 50017、下面的式子很有趣:13+23=9,(1+2)2=9;13+23+33=36,(1+2+3)2=36;那么13+23+33+43+53=().A、225B、100C、115D、62518、如图所示,一块木板上钉了九个钉子,每行每列的距离都相等,以钉子为顶点拉上橡皮筋,组成一个正方形,这样的正方形共有()个.A、4B、5C、6D、719、国家规定存款利息的纳税办法是:利息税=利息×20%,银行1年定期储蓄的利率为2.25%,王迪家去年9月1日存入银行1万元(1年定期),今年9月1日扣税后可得利息().A、180元B、170元C、200元D、100元20、有一栋居民楼,每两层之间都是17级台阶,李明一口气从一楼跑到了最高层,接着又从最高层回到底楼,他一边跑一边数,一共数到238级台阶就回到底楼,那么这栋楼共有().A、6层B、9层C、8层D、7层21、如图所示,图1中的三个数存在着某种关系,要让图2中的三个数也满足这种关系,则空白处的数应是().A、5B、6C、7D、822、如图所示的图形中,正方形的边长为2,则阴影部分的面积是().(其中π取3.14)A、1.14B、0.28C、0.14D、2.2823、一个人上山后从原路返回,已知上山速度为3千米/时,下山速度为6千米/时,则此人上山与下山的平均速度为().A、4.5 千米/时B、3.8 千米/时C、4 千米/时D、3.5 千米/时24、把一个面积为1的正方形等分成两个长方形,接着把其中一个长方形等分成两个正方形……试利用图形计算:().A、1B、1.5C、D、25、天安门广场的面积大约44万平方米,请你估计一下,它的二百万分之一的大小相当于().A、教室地面的面积B、铅笔盒面的面积C、课桌面的面积D、教室门的面积26、下列说法中错误的一个是().(A).一个数不是正数就是负数(B).正数都大于0(C).0.1是一个正数(D).自然数一定是非负数27、下列说法中正确的是().(A).整数包括正整数和负整数(B).0是整数,也是自然数(C).分数包括正分数、负分数和0(D).有理数中,不是负数就是正数28、在0.25和,和2,0和0,和5这四对数中,互为相反数的有().(A).4对(B).3对(C).1对(D).2对29、若ab>0,则下列结论正确的是().(A).a>0,b>0 (B).a,b同号(C).a,b异号(D).a<0,b<030、下列判断中错误的是().(A).一个正数的绝对值一定是正数(B).一个负数的绝对值一定是正数(C).任何数的绝对值都不是负数(D).任何数的绝对值一定是正数31、若|x|=x,则x为().(A).正数(B).负数(C).非正数(D).非负数32、下列说法正确的是().(A).两数相加,其和大于任何一个加数(B).异号两数相加,其和等于任何一个加数(C).两数相加,取较大一个加数的符号(D).若两个数互为相反数,则这两个数的和为033、两个有理数的和比其中任何一个加数都大,那么这两个数().(A).都是负数(B).以上都不对(C).都是正数(D).一个正数,一个负数34、保留三个有效数字得到17.8的数是().(A).17.86 (B).17.88 (C).17.74 (D).17.8235、近似数2.230×103精确到().(A).千分位(B).个位(C).十分位(D).百分位36、在(-3)2,-22,|-2|,(-1)3,-|-2|,(-1)2n-1 (n为正整数)中,负数有().(A).4个(B).3个(C). 2个(D).1个37、如图,右图方格中的任一行、任一列及对角线上的数的和相等,则m等于().38、一个点,从数轴的原点开始,先向右移动3个单位长度,再向左移动7个单位长度,这时点所对应的数是().(A).3 (B).1 (C). -2 (D). -439、如果两个有理数在数轴上对应的点分别在原点的两侧,则这两个数相除所得的商().(A).一定为负数(B).以上都不是(C).等于0 (D).一定为正数40、已知有理数a、b在数轴上的位置如图所示,现比较a、b、-a、-b的大小,则正确的是( ).(A).-a<-b<a<b (B).a<b<-b<-a(C).-b<a<-a<b (D).a<-b<b<-a三、解答题:41、计算:0-2123+(+314)-(-23)-(+14)42、计算:- 32-50÷22×(110 )-143、计算:(74 - 78 - 712 )÷(- 78 )+(- 83)44、计算:- 12008 -(1+0.5)×13 ÷(- 4)45、列式并计算:求1,-2,3,-4,…,99,-100这100个数的和。
人教版七年级数学上册第一章综合素质评价 附答案

人教版七年级数学上册第一章综合素质评价一、选择题(每题3分,共30分)1.【教材P 4练习T 3变式】如果温度上升3 ℃记作+3 ℃,那么温度下降2 ℃记作( )A .-2 ℃B .+2 ℃C .+3 ℃D .-3 ℃2.【教材P 10练习T 2变式】-16的相反数是( )A .16B .-16C .6D .-63.【2021·襄阳】下列各数中最大的是( )A .-3B .-2C .0D .14.【中考·白银】如图,数轴的单位长度为1,如果点A 表示的数是-1,那么点B 表示的数是( )A .0B .1C .2D .35.下列计算中,正确的是( )A .-2-1=-1B .3÷⎝ ⎛⎭⎪⎫-13×3=-3 C .(-3)2÷(-2)2=32 D .0-7-2×5=-176.【教材P 52复习题T 13变式】【2021·贵阳】袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年艰苦努力,目前我国杂交水稻种植面积达2.4亿亩,每年增产的粮食可以养活80 000 000人,将80 000 000这个数用科学记数法可表示为8×10n ,则n 的值是( )A .6B .7C .8D .97.【2020·枣庄】数a ,b 在数轴上对应点的位置如图所示,下列判断正确的是( )A .|a |<1B .ab >0C .a +b >0D .1-a >18.下列说法中,正确的是( )A .一个有理数不是正数就是负数B .|a |一定是正数C .如果两个数的和是正数,那么这两个数中至少有一个正数D .两个数的差一定小于被减数9.已知|a +3|=5,b =-3,则a +b 的值为( )A .1或11B .-1或-11C .-1或11D .1或-1110.已知有理数a ≠1,我们把11-a 称为a 的差倒数.如:2的差倒数是11-2=-1,-1的差倒数是11-(-1)=12.如果a 1=-2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……以此类推,那么a 1+a 2+…+a 100的值是( )A .-7.5B .7.5C .5.5D .-5.5二、填空题(每题3分,共24分)11.【教材P 4练习T 1变式】在数+8.3,-4,-0.8,-15,0,90,-343,-|-24|中,负数有____________________,分数有____________________.12.若A ,B ,C 三地的海拔高度分别是-102米,-80米,-25米,则最高点比最低点高________米.13.近似数2.30精确到__________位.14.绝对值不大于3.14的所有有理数之和等于________;不小于-4而不大于3的所有整数之和等于________.15.在数轴上与表示-1的点相距2个单位长度的点表示的数是________.16.【教材P 20例3变式】有5袋苹果,每袋以50千克为标准,超过的千克数记为正数,不足的千克数记为负数.若称重的记录如下(单位:千克):+4,-5,+3,-2,-6,则这5袋苹果的总质量是________.17.若x ,y 为有理数,且(3-x )4+|y +3|=0,则⎝ ⎛⎭⎪⎫x y 2 023的值为________.18.按照如图所示的计算程序,若x =2,则输出的结果是________.三、解答题(21题6分,19,22,23题每题8分,其余每题12分,共66分)19.【教材P 14习题T 6变式】将下列各数在数轴上表示出来,并按从小到大的顺序排列.(用“<”号连接起来)-22,-(-1),0,-|-2|,-2.5,|-3|20.【教材P 51复习题T 5变式】计算:(1)⎝ ⎛⎭⎪⎫-37+15+27+⎝ ⎛⎭⎪⎫-65; (2)-(-1)+32÷(1-4)×2;(3)⎝ ⎛⎭⎪⎫-162÷⎝ ⎛⎭⎪⎫12-132÷|-6|2; (4)(-1)1 000-2.45×8+2.55×(-8).21.如果a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2.求a +b a +b +c+m 2-cd 的值.22.若“⊗”表示一种新运算,规定a ⊗b =a ×b +a +b ,请计算下列各式的值.(1)-6⊗2;(2) [(-4)⊗(-2)]⊗12.23.在数轴上表示a ,0,1,b 四个数的点如图所示,已知OA =OB ,求|a +b |+⎪⎪⎪⎪⎪⎪a b +|a +1|的值.24.【教材P 26习题T 8拓展】足球比赛中,根据场上攻守形势,守门员会在球门前来回跑动.如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m):+10,-2,+5,-6,+12,-9,+4,-14.(假定开始计时时,守门员正好在球门线上)(1)守门员最后是否回到球门线上?(2)守门员离开球门线的最远距离是多少米?(3)如果守门员离开球门线的距离超过10 m(不包括10 m),则对方球员极可能挑射破门.请问在这段时间内,对方球员有几次挑射破门的机会?25.观察下列等式并回答问题.第1个等式a 1=11×3=12×⎝ ⎛⎭⎪⎫1-13,第2个等式a 2=13×5=12×⎝ ⎛⎭⎪⎫13-15,第3个等式a 3=15×7=12×⎝ ⎛⎭⎪⎫15-17,第4个等式a 4=17×9=12×⎝ ⎛⎭⎪⎫17-19…… (1)按发现的规律分别写出第5个等式和第6个等式;(2)求a 1+a 2+a 3+a 4+…+a 100的值.答案一、1.A 2.A 3.D 4.D 5.D 6.B 7.D 8.C 9.B 10.A二、11.-4,-0.8,-15,-343,-|-24|;+8.3,-0.8,-15,-34312.77 13.百分 14.0;-4 15.-3或1 16.244千克 17.-1 18.-26三、19.解:如图所示.-22<-2.5<-|-2|<0<-(-1)<|-3|.20.解:(1)原式=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-37+27+⎣⎢⎡⎦⎥⎤15+⎝ ⎛⎭⎪⎫-65=-17-1=-87. (2)原式=1+9÷(-3)×2=1+(-3)×2=1-6=-5.(3) 原式=136÷⎝ ⎛⎭⎪⎫162÷36 =136×36×136=136.(4)原式=1+(-2.45-2.55)×8=-39.21.解:由题意,得a +b =0,cd =1,m =±2,所以m 2=4.所以a +b a +b +c +m 2-cd =00+c+4-1=0+4-1=3. 22.解:(1)-6⊗2=-6×2+(-6)+2=-16.(2)[(-4)⊗(-2)]⊗12=[-4×(-2)+(-4)+(-2)]⊗12=2⊗12=2×12+2+12=312.23.解:因为OA =OB ,所以a +b =0,a =-b .由数轴知b >1,所以a <-1,所以a +1<0,所以原式=0+1-a -1=-a .24.解:(1)+10-2+5-6+12-9+4-14=0(m).所以守门员最后回到球门线上.(2)第一次,10 m ;第二次,10-2=8(m);第三次,8+5=13(m);第四次,13-6=7(m);第五次,7+12=19(m);第六次,19-9=10(m);第七次,10+4=14(m);第八次,14-14=0(m).因为19>14>13>10>8>7>0,所以守门员离开球门线的最远距离为19 m .(3)结合(2)中所求守门员离开球门线的距离,知:第一次,10=10;第二次,8<10;第三次,13>10;第四次,7<10;第五次,19>10;第六次,10=10;第七次,14>10;第八次,0<10.所以对方球员有3次挑射破门的机会.25.解:(1)第5个等式:a 5=19×11=12×⎝ ⎛⎭⎪⎫19-111;第6个等式:a 6=111×13=12×⎝ ⎛⎭⎪⎫111-113. (2)a 1+a 2+a 3+a 4+…+a 100=12×⎝ ⎛⎭⎪⎫1-13+12×⎝ ⎛⎭⎪⎫13-15+12×⎝ ⎛⎭⎪⎫15-17+12×⎝ ⎛⎭⎪⎫17-19+…+12×(1199-1201)=12×(1-13+13-15+15-17+17-19+…+1199-1201)=12×200201=100201.。
【初中数学】人教版七年级上册第一章综合提升卷 有理数(练习题)

人教版七年级上册第一章综合提升卷有理数(270) 1.股民吉姆上星期买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(上涨记为正,下跌记为负,星期六、星期日股市休市)(单位:元):(1)星期三收盘时,每股是多少元?(2)本周内每股最高价是多少元?最低价是多少元?(3)已知吉姆买进股票时付了1.5‰的手续费,卖出时还需付成交额的1.5‰的手续费和1‰的交易税,如果吉姆在星期五收盘前将股票全部卖出,他的收益情况如何?2.如图,数轴上的点P,O,Q,R,S表示某城市一条大街上的五个公交车站点,有一辆公交车距P站点3km,距Q站点0.7km,则这辆公交车的位置在()A.R站点与S站点之间B.P站点与O站点之间C.O站点与Q站点之间D.Q站点与R站点之间3.计算机中常用的十六进制是逢16进1的记数制,采用数字0~9和字母A~F共16个记数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=()A.16B.1CC.1AD.224.倒数为3的数是.5.已知a−3与b+4互为相反数,则a+b=.6.每袋大米以50kg为标准,其中超过标准的千克数记为正数,不足标准的千克数记为负数,则图中自左向右数第3袋大米的实际重量是kg.7.若|x+2|+|y−3|=0,则x−y的值为.8.2016年春节期间,在网络上搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为 .9.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是 (填“一类、二类、三类”中的一个).10.把下列各数分别填在相应的括号里:−7,3.01,2017,−0.142,0.1,0,99,−75. 整数集合:{…};分数集合:{…};负有理数集合:{ …}.11.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;(2)小明家与小刚家相距多远?12.规定“∗”是一种新的运算法则:a ∗b =a 2−b 2,其中a,b 为有理数.(1)求2∗6的值;(2)求3∗[(−2)∗3]的值.13.计算:(1)−14−(1−0.5)÷3×[2−(−3)2];(2)0.7×1949+234×(−14)+0.7×59+14×(−14).14.小宇在做分数的乘除法练习时,把一个数乘−213错写成除以−213,得到的结果是1835,这道题的正确结果应该是多少?15.小明有5张写着不同数的卡片,请你分别按要求抽出卡片,写出符合要求的算式:(1)从中取出2张卡片,使这2张卡片上的数的乘积最大;(2)从中取出2张卡片,使这2张卡片上的数相除的商最小;(3)从中取出2张卡片,使这2张卡片上的数通过有理数的运算后得到的结果最大;(4)从中取出4张卡片,使这4张卡片通过有理数的运算后得到的结果为24.(写出一种即可)16.某检修小组从A 地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶路程记录如下(单位:千米):(1)在第 次记录时距A 地最远;(2)求收工时距A 地多远;(3)若每千米耗油0.1升,每升汽油需7.2元,则检修小组工作一天需汽油费多少元?17.6.0009精确到千分位是()A.6.0B.6.00C.6.000D.6.00118.某商场购进某品牌上衣30件,下列与购进某品牌上衣30件具有相反意义的量是()A.发给员工这种上衣10件B.售出这种上衣10件C.这种上衣剩余10件D.穿着这种上衣10件19.在−0.4217中用数字3替换其中的一个非零数字后,使所得的数最小,则被替换的数字是()A.4B.2C.1D.720.对下列各式计算结果的符号判断正确的是()A.(−2)×(−213)×(−3)<0B.(−5)−5+1>0C.(−1)+(−13)+12>0D.(−1)×(−2)<021.两数相减,如果差等于减数的相反数,那么下列结论中正确的是()A.减数一定是零B.被减数一定是零C.原来两数互为相反数D.原来两数的和等于122.下面是小卢做的数学作业,其中正确的是()①0−(+47)=47;②0−(−714)=714;③(+15)−0=−15;④(−15)+0=−15.A.①②B.①③C.①④D.②④ 23.某工厂为了完成一项任务,第一天工作15分钟,以后的五天中,后一天的工作时间都是前一天的2倍,则第6天的工作时间是()A.1.5小时B.3小时C.4.8小时D.8小时 24.计算12÷(−3)−2×(−3)的结果是()A.−18B.−10C.2D.18参考答案1(1)【答案】解:星期三收盘时,每股是27+4+4.5−1=34.5(元).(2)【答案】本周内每股最高价为27+4+4.5=35.5(元),最低价为27+4+4.5−1−2.5−6=26(元).(3)【答案】买入成本:1000×27×(1+1.5‰)=27040.5(元),卖出所得:1000×26×(1−1.5‰−0.1‰)=25958.4(元).收益:25958.4−27040.5=−1082.1(元).答:如果吉姆在星期五收盘前将股票全部卖出,他将亏损1082.1元.2.【答案】:D3.【答案】:A【解析】:A+C=10+12=22=16+6,则用16进制表示是16.4.【答案】:135.【答案】:−1【解析】:由题意,得(a−3)+(b+4)=0,所以a+b+1=0,所以a+b=−1.6.【答案】:49.3【解析】:由于自左向右数第3袋大米不足标准重量0.7kg,所以其实际重量为50−0.7=49.3(kg).7.【答案】:−5【解析】:由|x+2|+|y−3|=0,得x+2=0,y−3=0,所以x=−2,y=3,所以x−y=−2−3=−58.【答案】:4.51×107【解析】:45100000用科学记数法表示为4.51×1079.【答案】:二类【解析】:如果停车所在地区的类别是一类,应该收费:2.5×4+3.75×8=40(元);如果停车所在地区的类别是二类,应该收费:1.5×4+2.25×8=24(元);如果停车所在地区的类别是三类,应该收费:0.5×4+0.75×8=8(元)10.【答案】:解:整数集合:{−7,2017,0,99,…};分数集合:{3.01,−0.142,0.1,−7,…};5负有理数集合:{−7,−0.142,−7,…}.511(1)【答案】如图:(2)【答案】根据(1)可得小明家与小刚家相距4−(−5)=9(千米) 12(1)【答案】解:根据题意,得2∗6=22−62=4−36=−32(2)【答案】根据题意,得(−2)∗3=4−9=−5,则3∗[(−2)∗3]=3∗(−5)=9−25=−1613(1)【答案】解:原式=−1−0.5×13×(2−9)=−1−16×(−7)=−1+76=1 6(2)【答案】原式=0.7×(1949+59)+(−14)×(234+14)=0.7×20−14×3=14−14×3=14×(1−3)\(= 14\times (-2)\)=−28.14.【答案】:解:根据题意,得18 35×(−73)×(−73)=14515(1)【答案】解:(−3)×(−5)=15(2)【答案】−5÷(+3)=−53(3)【答案】(−5)4=625(4)【答案】答案不唯一,如[(−3)−(−5)]×(+3)×(+4)=2×12=24 16(1)【答案】五【解析】:由题意,得第一次距A地|−3|=3(千米);第二次距A地|−3+8|=5(千米);第三次距A地|−3+8−9|=4(千米);第四次距A地|−3+8−9+10|=6(千米);第五次距A地|−3+8−9+10+4|=10(千米);而第六次、第七次是向相反的方向又行驶了8千米,所以在第五次记录时距A 地最远.故答案为五(2)【答案】根据题意,得−3+8−9+10+4−6−2=2(千米).答:收工时距A 地2千米.(3)【答案】根据题意,得检修小组工作一天行驶的路程为|−3|+|+8|+|−9|+|10|+|+4|+|−6|+|−2|=42(千米),42×0.1×7.2=30.24(元).答:检修小组工作一天需汽油费30.24元17.【答案】:D【解析】:6.0009≈6.001(精确到千分位)18.【答案】:B【解析】:与购进某品牌上衣30件具有相反意义的量是售出这种上衣10件19.【答案】:B【解析】:替换后的数可能是−0.3217,−0.4317,−0.4237,−0.4213,∵|−0.4317|>|−0.4237|>|−0.4213|>|−0.3217|,∴−0.4317最小,即被替换的数字是220.【答案】:A【解析】:由三个负数相乘,积为负,可知选项A 正确21.【答案】:B【解析】:由减法法则,知减去一个数等于加上这个数的相反数.因为差等于减数的相反数,所以被减数一定为022.【答案】:D【解析】:由于0−(+47)=−47,所以①不正确;(+15)−0=15, 所以③不正确;只有②④正确.23.【答案】:D【解析】:由题意1×25=8(时)424.【答案】:C。
2022-2023学年北师大版七年级数学上册阶段性(第4—5章)综合练习题(附答案)

2022-2023学年北师大版七年级数学上册阶段性(第4—5章)综合练习题(附答案)一、选择题(共12小题,共36分。
)1.把一条弯曲的河流改成直道,可以缩短航程,用数学知识解释其道理为()A.两点确定一条直线B.经过两点有且仅有一条直线C.直线可以向两端无限延伸D.两点之间,线段最短2.已知下列方程:①3x=6y;②2x=0;③=4x+x﹣1;④x2+2x﹣5=0;⑤3x=1;⑥﹣2=2.其中一元一次方程的个数是()A.2个B.3个C.4个D.5个3.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是()A.20°或50°B.20°或60°C.30°或50°D.30°或60°4.下列说法,正确的是()A.如果AP=BP,那么点P是线段AB的中点B.连接两点的线段叫两点间的距离C.点A和直线l的位置关系有两种D.点A,B,C过其中每两个点画直线,可以画出3条5.经过多边形的一个顶点的所有对角线把多边形分成9个三角形,这个多边形经过这一顶点的对角线条数是()A.7条B.8条C.9条D.10条6.把方程去分母,下列变形正确的是()A.2x﹣x+1=1B.2x﹣(x+1)=1C.2x﹣x+1=6D.2x﹣(x+1)=6 7.在所给的:①15°、②65°、③75°、④115°、⑤135°的角中,可以用一副三角板画出来的是()A.②④⑤B.①②④C.①③⑤D.①③④8.关于x的一元一次方程4x﹣1=7与3(x﹣1)+a=4的解相同,则a的值为()A.﹣2B.0C.1D.29.福州某机械厂加工车间有35名工人,平均每名工人每天加工大齿轮5个或小齿轮10个,已知2个大齿轮和3个小齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能刚好配套?若设加工大齿轮的工人有x名,则可列方程为()A.3×5x=2×10(35﹣x)B.2×5x=3×10(35﹣x)C.3×10x=2×5(35﹣x)D.2×10x=3×5(35﹣x)10.某文化商场同时卖出两台电子琴,每台均卖960元.以成本计算,第一台盈利20%,另一台亏本20%.则本次出售中,商场()A.不赚不赔B.赚160元C.赚80元D.赔80元11.如图,把长方形ABCD沿EF对折后使两部分重合,若∠1=40°,则∠AEF等于()A.115°B.110°C.125°D.120°12.如图,数轴上的点O和点A分别表示0和10,点P是线段OA上一动点.点P沿O→A→O以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t 秒(t不超过10秒).若点P在运动过程中,当PB=2时,则运动时间t的值为()A.秒或秒B.秒或秒或秒或秒C.3秒或7秒D.3秒或秒或7秒或秒二.填空题(共6题,共24分)13.上午6:30时,时针与分针的夹角为度.14.若(m+1)x|m|=6是关于x的一元一次方程,则m等于.15.由枣庄开往青岛的某一次列车,运行途中要停靠四个站,那么要为这次列车制作的火车票有种.16.七年级男生入住一楼,如果每间住6人,恰好空出一间;如果每间住5人就有4人没有房间住.那么一楼共有间.17.如图所示,两块三角板的直角顶点O 重叠在一起,且OB 恰好平分∠COD ,则∠AOD 的度数是 度.18.已知数列,,记第一个数为a 1,第二个数为a 2,…,第n 个数为a n ,若a n 是方程的解,则n= .三.解答题(共7题,共60分)19.解方程:(1)7x +6=8﹣3x ;(2). 20.嘉淇解方程+1=时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此得到方程的解为x =﹣1.(1)试求a 的值;(2)求原方程的解.21.(6分)如图,点A ,B 在线段EF 上,点M ,N 分别是线段EA ,BF 的中点,EA :AB :BF =1:2:3,若MN =6cm ,求线段EF 的长.22.列一元一次方程解决下面的问题.惠民水果店第一次用800元从水果批发市场购进甲、乙两种不同品种的苹果,其中甲种苹果的重量比乙种苹果重量的2倍多20千克,甲、乙两种苹果的进价和售价如下表:甲 乙 进价(元/千克)4 10售价(元/千克) 8 15(1)惠民水果店第一次购进的甲、乙两种苹果各多少千克?(2)惠民水果店第二次以第一次的进价又购进甲、乙两种苹果,其中甲种苹果的重量不变,乙种苹果的重量是第一次的3倍;甲种苹果按原价销售,乙种苹果打折销售.第二次甲、乙两种苹果都售完后获得的总利润为820元,求第二次乙种苹果按原价打几折销售?23.如图,已知线段AB=12cm,点C为线段AB上的一个动点,点D,E分别是AC和BC 的中点.(1)若AC=4cm,求DE的长;(2)若把“点C在线段AB上”改为“点C在直线AB上”,当AC=4cm时,求DE的长.(请画出图形,说明理由)24.如图,线段AB=8cm,点C是线段AB的中点,点D是线段BC的中点.(1)则线段AD的长是;(2)若在线段AB上有一点E,CE=BC,求AE长.(3)点P从点A出发,以每秒2cm的速度沿射线AB方向运动,点Q同时从C出发,以每秒1cm的速度沿射线CB方向运动,设运动时间为t秒,当PQ=AD时,直接写出t的值.25.(1)如图1所示,已知∠AOC=90°,∠AOB=38°,OD平分∠BOC,请判断∠AOD 和∠BOD之间的数量关系,并说明理由;(2)已知:如图2,点O在直线AD上,射线OC平分∠BOD.求证:∠AOC与∠BOC 互补;(3)已知∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ =β(0°<β<90°),直接写出锐角∠MPN的度数是参考答案一、选择题(共12小题,共36分。
北师大版七年级数学上册第四章《4

北师大版七年级数学上册第四章《4.角的比较》综合练习题(含答案)一、单选题1.若12018'∠=︒,22015'30''∠=︒,320.25∠=︒,则( )A .123∠>∠>∠B .213∠>∠>∠C .132∠>∠>∠D .312∠>∠>∠2.把10°36″用度表示为( )A .10.6°B .10.001°C .10.01°D .10.1° 3.已知α∠与∠β都小于平角,在平面内把这两个角的一条边重合,若α∠的另一条边恰好落在∠β的内部,则().A .αβ∠<∠B .αβ∠=∠C .αβ∠>∠D .不能比较α∠与∠β的大小4.下列度分秒运算中,正确的是( )A .48°39′+67°31′=115°10′B .90°﹣70°39′=20°21′C .21°17′×5=185°5′D .180°÷7=25°43′(精确到分) 5.计算:135333030306︒︒''''⨯-÷的值为( )A .335355︒'''B .363355︒'''C .63533︒'''D .53533︒''' 6.如图,把一张长方形的纸片沿着EF 折叠,点C 、D 分别落在M 、N 的位置,且∠MFB =12∠MFE .则∠E FM 的度数为( )A .30°B .36°C .45°D .72° 7.如图,直线AB 与CD 相交于点,60O AOC ∠=,一直角三角尺EOF 的直角顶点与点O 重合,OE 平分AOC ∠,现将三角尺EOF 以每秒3的速度绕点O 顺时针旋转,同时直线CD 也以每秒9的速度绕点O 顺时针旋转,设运动时间为t 秒(040t ≤≤),当CD 平分EOF ∠时,t 的值为( )A .2.5B .30C .2.5或30D .2.5或32.58.已知∠AOB=30°,∠BOC=45°,则∠AOC 等于( )A .15°B .75°C .15°或75°D .不能确定二、填空题9.55.66=____度____分____秒;433224'''=______度.10.单位换算:56°10′48″=_____°.11.12.3°=________°______′;1530'︒=_________°.12.如图,将一块三角板的直角顶点放在直尺的一边上,当237∠=︒时,1∠= _________.13.如图,已知点O 在直线AB 上,OC ⊥OD ,∠BOD :∠AOC =3:2,那么∠BOD =___度.14.把一副三角尺按如图所示拼在一起,如图,其中B ,C ,D 三点在同一条直线上,∠ACB =45°,∠DCE =60°.(1)若CM 和CN 分别平分∠ACB 和∠DCE ,如图1,则∠MCN 的度数为___________;(2)若CM 平分∠BCE ,CN 平分∠DCA ,如图2,则∠MCN 的度数为___________.三、解答题15.将一副三角尺叠放在一起:(1)如图①,若∠1=4∠2,请计算出∠CAE的度数;(2)如图②,若∠ACE=2∠BCD,请求出∠ACD的度数.16.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.17.如图,将一副三角板放到一起可以擦除怎样的数学火花呢?福山区某学校两个数学兴趣小组对一副三角板进行了以下两种方式的摆放组合.已知一副三角板重合的顶点记为点O,作射线OE平分∠AOC,射线OF平分∠BOD,来研究一下45°三角板不动,30°三角板绕重合的顶点O旋转时,∠EOF的度数如何变化.【A组研究】在同一平面内,将这副三角板的的两个锐角顶点重合(图中点O),此时∠AOB=45°,∠COD=30°将三角板OCD绕点O转动.(1)如图①,当射线OB与OC重合时,则∠EOF的度数为___________;∠=,∠EOF的度数是否发生变化?(2)如图②,将∠COD绕着点O顺时针旋转,设BOCα如果不变,请根据图②求出∠EOF的度数;如果变化,请简单说明理由.【B组研究】在同一平面内,将这副直角三角板中的一个直角顶点和一个锐角顶点重合(图中点O),此时∠AOB=90°,∠COD=30°,将三角板OCD绕点O转动.(3)如图③,当三角板OCD摆放在三角板AOB内部时,则∠EOF的度数为___________;(4)如图④,当三角板OCD转动到三角板AOB外部,设∠BOC=β,∠EOF的度数是否发生变化?如果不变,请根据图④求出∠EOF的度数;如果变化,请简单说明理由.18.【阅读理解】定义:在一条直线同侧的三条具有公共端点的射线之间若满足以下关系,其中一条射线分别与另外两条射线组成的角恰好满足2倍的数量关系,则称该射线是另外两条射线的“双倍和谐线”.如图1,点P在直线l上,射线PR,PS,PT位于直线l同侧,若PS平分∠RPT,则有∠RPT=2∠RPS,所以我们称射线PR是射线PS,PT的“双倍和谐线”.【迁移运用】(1)如图1,射线PS(选填“是”或“不是”)射线PR,PT的“双倍和谐线”;射线PT(选填“是”或“不是”)射线PS,PR的“双倍和谐线”;(2)如图2,点O在直线MN上,OA MN,∠AOB=40°,射线OC从ON出发,绕点O以每秒4°的速度逆时针旋转,运动时间为t秒,当射线OC与射线OA重合时,运动停止.①当射线OA是射线OB,OC的“双倍和谐线”时,求t的值;②若在射线OC旋转的同时,∠AOB绕点O以每秒2°的速度逆时针旋转,且在旋转过程中,射线OD平分∠AOB.当射线OC位于射线OD左侧且射线OC是射线OM,OD的“双倍和谐线”时,求∠CON的度数.19.已知∠AOB和∠COD均为锐角,∠AOB>∠COD,OP平分∠AOC,OQ平分∠BOD,将∠COD绕着点O逆时针旋转,使∠BOC=α(0≤α<180°)(1)若∠AOB=60°,∠COD=40°,①当α=0°时,如图1,则∠POQ=;②当α=80°时,如图2,求∠POQ的度数;③当α=130°时,如图3,请先补全图形,然后求出∠POQ的度数;(2)若∠AOB=m°,∠COD=n°,m>n,则∠POQ=,(请用含m、n的代数式表示).20.已知120AOB ∠=︒,OC 、OD 是过点O 的射线,射线OM 、ON 分别平分∠AOC 和∠DOB .(1)如图①,若OC 、OD 是∠AOB 的三等分线,则MON ∠=______°(2)如图②,若40COD ∠=︒,AOC DOB ∠≠∠,则MON ∠=______°(3)如图③,在∠AOB 内,若()060COD αα∠=︒<<︒,则MON ∠=______°(4)将(3)中的∠COD 绕着点O 逆时针旋转到∠AOB 的外部(0180AOC <∠<︒,0180BOD <∠<︒),求此时∠MON 的度数。
人教版七年级上册数学 第一章 有理数 数轴 综合培优练习题

人教版七年级上册数学第一章有理数数轴综合培优练习题1.已知数轴上两点A,B对应的数分别为a,b,点M为数轴上一动点,其中a,b满足(a+2)2+|b ﹣7|=0.(1)写出点A表示的数是;点B表示的数是.(2)若点M到A的距离是点M到B的距离的两倍,我们就称点M是[A,B]的好点.①若点M到运动到原点O时,此时点M [A,B]的好点(填是或者不是);②若点M以每秒1个单位的速度从原点O开始运动,当M是[A,B]的好点时,求点M所表示的数.2.如图,数轴上点A、B分别对应数a、b,其中a<0,b>0.(1)当a=﹣3,b=7时,线段AB的中点对应的数是.(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=3,b>3,且AM=2BM时,求代数式a+2b+2010的值;②a=﹣3.且AM=3BM时学生小朋通过演算发现代数式3b﹣4m是一个定值,老师点评;琪琪同学的演算发现还不完整!请你通过演算解释为什么“小朋的演算发现”是不完整的?3.数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.数轴上表示数a的点与表示数b的点的距离记作|a﹣b|,如|3﹣5|表示数轴上表示数3的点与表示数5的点的距离,|3+5|=|3﹣(﹣5)|表示数轴上表示数3的点与表示数﹣5的点的距离,|a﹣3|表示数轴上表示数a的点与表示数3的点的距离.根据以上材料回答下列问题:(将结果直接填写在答题卡相应位置,不写过程)(1)若|x﹣1|=|x+1|,则x=,若|x﹣2|=|x+1|,则x=;(2)若|x﹣2|+|x+1|=3,则x能取到的最小值是,最大值是;(3)若|x﹣2|﹣|x+1|=3,则x能取到的最大值是;(4)关于x的式子|x﹣2|+|x+1|的取值范围是.4.数轴上两点A,B,其中A表示的数为﹣2,B表示的数为2,若数轴上存在一点C,使得AC+2BC =l,则称C为点A,B的“和l点”(其中AC,BC分别表示点C到点A,B的距离).(1)若点E在数轴上(不与A,B重合),若BE=AE,且点E为点A,B的“和l点”,则l的值可能为;(2)若点D在是点A,B的“和5点”,则点D表示的数可能为.5.如图,在数轴上点A表示的数是8,若动点P从原点O出发,以2个单位/秒的速度向左运动,同时另一动点Q从点A出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t(秒).(1)当t=0.5时,求点Q到原点O的距离;(2)当t=2.5时求点Q到原点O的距离;(3)当点Q到原点O的距离为4时,求点P到原点O的距离.6.阅读材料:我们知道,若点A、B在数轴上分别表示有理数a、b,A、B两点间的距离表示为AB.则AB=|a﹣b|.所以式子|x﹣3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.根据上述材料,探究下列问题.(1)式子|x+1|+|x﹣2|的最小值是.(2)式子|x+1|﹣|x﹣2|的最大值是.(3)式子|x﹣2|+|2x﹣6|+|3x﹣1|的最小值是.7.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离,这个结论可以推广为|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离,在解题中,我们会常常运用绝对值的几何意义:例1:已知|x|=2求x的值.解:在数轴上与原点距离为2的点对应的数为±2,即x=±2.例2:已知|x﹣1|=2,求x的值.解:在数轴上与1的距离为2的点对应的数为﹣1,3,即x=﹣1或x=3.参考阅读材料,解答下列问题:(1)已知|x|=3,则x的值为.(2)已知|x+2|=4,则x的值为.(3)已知x是有理数,当x取不同数时,式子|x﹣3|+|x+4|的值也会发生变化,问式子|x﹣3|+|x+4|是否有最小值?若有写出最小值,若没有,请说出理由.8.在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC=1,如图所示,设点A,B,D,C所对应数的和是p.(1)若以B为原点.写出点A,D,C所对应的数,并计算p的值;(2)①若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x.②此时,若数轴上存在一点E,使得AE=2CE,求点E所对应的数(直接写出答案).9.如图,数轴的单位长度为1,点A,B,C,D都在数轴上,且点A,B表示的数互为相反数.(1)请在数轴上描出原点O的位置,并写出点A,C,D所表示的数.(2)点P在数轴上,且PA+PB=PD.①琪琪说:点P不可能在点A左侧.琪琪说得对吗?请说明理由.②求所有满足条件的点P所表示的数.10.甲、乙两辆汽车在东西走向的公路上行驶,规定向东为正,开始时甲车在西60千米的点A处,乙车在东10千米的点B处,(如图所示),甲车的速度为90千米/小时,乙车的速度为60千米/小时.(1)求甲、乙两车之间的距离(列式计算);(2)甲、乙两车同时向东行驶,甲车行驶270千米后进入服务区休息10分钟,然后继续向东行驶30千米,乙车一直向东行驶.①求此时乙车到达的位置点C所表示的数(列式计算);②甲车司机发现自己的手提包丢在服务区,立即调头来取,然后再追赶乙车,当甲车追上乙车时,求乙车到达的位置点D所表示的数(直接写出答案).11.点A在数轴的﹣1处,点B表示的有理数比点A表示的有理数小1,将点A向右移动8个单位得到点C,点D、点E是线段BC的两个三等分点.在所给的数轴(如图)上标出B、C、D、E各点,再写出它们各自对应的有理数.12.数轴上,当点A在原点的左边,点B在原点的右边,点A,B之间的距离为28个单位长度,点A与原点的距离为8个单位长度,若点A,B对应的有理数分别是a,b.(1)求a,b;(2)若质点M从点A沿数轴以每秒1个单位长度向左运动,质点N从点B沿数轴以每秒3个单位长度向左运动,若质点N在点C处追上质点M,求点C对应的有理数c;(3)若质点P从点A沿数轴以每秒2单位长度向右运动,质点Q从点B沿数轴以每秒1个单位长度向右运动,t秒钟后质点P与质点Q之间的距离为18时,求t的值.13.对于数轴上的A、B、C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“至善点”.例如:若数轴上点A、B、C所表示的数分别为1、3、4,则点B是点A、C的“至善点”.(1)若点A表示数﹣2,点B表示数2,下列各数、0、1、6所对应的点分别C1、C2、C3、C4,其中是点A、B的“至善点”的有(填代号);(2)已知点A表示数﹣1,点B表示数3,点M为数轴上一个动点:①若点M在点A的左侧,且点M是点A、B的“至善点”,求此时点M表示的数m;②若点M在点B的右侧,点M、A、B中,有一个点恰好是其它两个点的“至善点”,求出此时点M 表示的数m.14.如图①,在数轴上有一条线段AB,点A,B表示的数分别是﹣2和﹣11.(1)线段AB=.(2)若M是线段AB的中点,则点M在数轴上对应的数为.(3)若C为线段AB上一点,如图②,以点C为折点,将此数轴向右对折;如图③,点B落在点A 的右边点B′处,若AB′=B′C,求点C在数轴上对应的数是多少?15.同学们知道,|8﹣3|表示8与3的差的绝对值,也可理解为数轴上表示数8与3两点间的距离.试探索:(1)填空:|8+3|表示数轴上数8与数两点间的距离;(2)|x+5|+|x﹣2|表示数轴上数x与数的距离和数x与数的距离的和.(3)满足|x+5|+|x﹣2|=7的所有整数x的值是.(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有写出最小值;如果没有,说明理由.16.已知A,B两点在数轴上分别示有理数a,b,A,B两点之间的距离表示为AB,在数轴上A,B 两点之间的距离AB=|a﹣b|.已知数轴上A,B两点对应的数分别为﹣1,3,P为数轴上一动点,A,B两点之间的距离是.设点P在数轴上表示的数为x,则点P与﹣4表示的点之间的距离表示为若点P到A,B两点的距离相等,则点P对应的数为若点P到A,B两点的距离之和为8,则点P对应的数为现在点A以2个单位长度/秒的速度向右运动,同时点B以0.5个单位长度/秒的速度向右运动,当点A与点B之间的距离为3个单位长度时,求点A所对应的数是多少?17.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.18.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.19.如图,点A、B在数轴上表示的数分别为﹣12和8,两只蚂蚁M、N分别从A、B两点同时匀速出发,同向而行时间/秒0 1 5A点位置﹣12 ﹣9B点位置8 18(1)请填写表格;(2)若两只蚂蚁在数轴上点P相遇,求点P在数轴上表示的数;(3)若运动t秒钟时,两只蚂蚁的距离为10,求出t的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上数学 综合练习题(一)
一、填空题(每小题3分,共24分) 1.计算:(-2.5)×2
3
1
= 。
2. 已知x=2是方程mx -5=10+m 的解,则m = 。
3. 在多项式7x 2
y -4y 2
-5 -x +x 2
y +3x -10中,同类项共有 对。
4. 数轴上点A 表示 2,从A 出发,沿数轴移动4个单位长度到达点B ,则点B 表示的数是________。
5. 写出系数为-3,只含有a 、b 、c 三个字母,而且次数是5的一个单项式 。
6. 如图,将长方形纸条折成如图所示形状,BC 为折痕,若∠DBA=70°,则∠ABC= 。
7. 如图所示,已知∠BOD=2∠AOB ,OC 平分∠AOD ,∠BOC=25°,则∠AOB= 。
8. 如图所示,边长为a cm 的正方形剪去一个长、宽分别为3cm 和2cm 的长方形,那么剩余部分的面积可表示为 cm 2。
二、单项选择题(每小题3分,共24分)
9. 在“十一五”期间,中国减少二氧化碳排放1 460 000 000吨,赢得国际社会广泛赞誉.将 1 460 000 000用科学记数法表示为 ( ) A .146×107 B .1.46×107 C .1.46×109 D .1.46×1010
10.小红同学在一个正方体盒子的每个面都写上一个字,分别是“我”、“喜”、“欢”、“数”、“学”、 “课”,其平面展开图如图所示,那么在该正方体盒子中,和“我”相对的面上的字是 ( ) A. 喜 B. 课 C. 数 D. 学
七年级数学试卷 第1页 (共8页)
11. 下列说法正确..的是 ( ) A. 射线就是直线 B. 连接两点间的线段,叫做这两点的距离 C.两条射线组成的图形叫做角 D. 经过两点有一条直线,并且只有一条直线
12.若单项式223
x y
-的系数是m ,次数是n ,则mn 的值为 ( )
A.2-
B.6-
C.4-
D.4
3-
13. 如果方程0)12(2
=+++c bx x a 表示关于字母x 的一元一次方程,则必有 ( )
A.c b a ,0,21≠=
为任意数 B.0,0,21
=≠≠c b a C.0,0,21≠≠-=c b a D.c b a ,0,2
1
≠-=为任意数
14. 一个商店把某件商品按进价加20%作为定价,后来老板按定价8折192元卖出这件商品,那
么老板在销售这件商品的过程中的盈亏情况为 ( ) A .盈利16元 B .亏损24元 C .亏损8元 D .不盈不亏
15. 下列说法错误..的是 ( ) A. 0是绝对值最小的有理数 B. 如果x 的相反数是-5, 那么x=5 C. 若|x|=|-4|, 那么x= -4 D. 任何非零有理数的平方都大于0
16. 由几个大小相同的小正方体组成的立体图形从上面看如图所示,则这个立体图形应是下图中 的 ( )
三、解答题(17、20每小题6分,18、19每小题5分,共22分) 17.计算:(1)2×(-3)+18×321)3
1
(-. (2)-12
-[132)4
3(]6)12(73-⨯÷-+.
七年级数学试卷 第2页 (共8页)
D
C
B A
A
B
D
C 第7题
第6题
O
3
2
第8题
从上面看 A B C D
图4
我
喜欢数
学课
18.解方程:2
2
13269--
-=+--x x x x .
19.先化简再求值: 2(x 3
-2y 2
)-(x -2y )-(x -3y 2
+2x 3
),其中x=-3,y=-2.
七年级数学试卷 第3页 (共8页)
20. 线段AB=4cm,延长线段AB到C,使BC=1cm,再反向延长AB到D,
使AD=3cm,点E是AD中点,点F是CD的中点,求EF的长度.
四、解答题(每小题7分,共14分)
21. 一项工作甲单独完成要9天,乙单独完成要12天,丙单独完成要15天,若甲、丙先做3天
后,甲因故离开由乙接替甲的工作,问还要多少天才能完成这项工作的6
5?
七年级数学试卷 第4页 (共8页)
22.如图,一副三角尺的两个直角顶点重合在一起。
(1)比较∠EAM与∠FAN的大小,并说明理由;
(2)∠EAN与∠MAF的和是多少度?为什么?
五、解答题(每小题8分,共16分)
23.用棋子按下面的方式摆出正方形,观察各图形的规律:
(1)(2)(3)
①按图示规律填写下表:
②按照这种方式摆下去,摆第25个正方形需要多少个棋子?
③按照这种方式摆下去,第n个正方形需要多少个棋子?
七年级数学试卷第5页(共8页)24.在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政
补贴.村民小李购买了一台A型洗衣机,小王购买了一台B型洗衣机,两人一共得到财政补贴351元,又知B型洗衣机售价比A型洗衣机售价多500元.试求:
(1)A型洗衣机和B型洗衣机的售价各是多少元?
(2)小李和小王购买洗衣机除财政补贴外实际各付款多少元?
七年级数学试卷第6页(共8页)
六、解答题(每小题10分,共20分)
25.(1)如图所示, 已知∠AOB=90°, ∠BOC=30°,OP平分∠AOC,OQ平分∠BOC. 求∠POQ的
度数;
(2)若(1)中∠AOB=α,其他条件不变,求∠POQ的度数;
(3)若(1)中∠BOC=β(β为锐角),其他条件不变,求∠POQ的度数;
(4)从(1) 、(2) 、(3)的结果中能看出什么规律?
七年级数学试卷第7页(共8页)26.东风织布厂现有工人130人,为获取更高的利润,厂方与外商签订了制衣合同,已知每人每天能织布20米或制衣4件,每件衣服用料1.5米,若直接销售布每米可获利2元,制成衣服后销售,每件衣服可获利30元,每名工人一天只能做一项工作,且不计其它因素,设安排了x名工人制衣,那么:
(1)一天制衣所获得的利润是元;(用x表示)
(2)一天中剩余布所获得的利润是元;(用x表示)
(3)要使一天所获得的利润为10640元,应安排多少名工人制衣?
(4)若要使每天织出的布正好制衣,又应如何安排工人?这时每天可获利多少元?
七年级数学试卷第8页(共8页)。