(完整)初一数学综合练习题及答案(提高篇)

合集下载

人教版七年级(上)期末数学综合练习试卷含答案

人教版七年级(上)期末数学综合练习试卷含答案

2019—2020年七年级上学期期末考试数 学 试 卷考生注意: 1.考试时间90分钟.题号 一 二 三总分 21 22 23 24 25 26 27 28 分数一、选择题:每小题只有一个选项符合题意,本大题共6小题,每小题3分,满分18分. 1.已知x2m ﹣3+1=7是关于x 的一元一次方程,则m 的值是( )A .﹣1B .1C .﹣2D .22.一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是( ) A .0B .2C .lD .﹣13.已知a 2+2a -3=0,则代数式2a 2+4a -3的值是( )A .-3B .0C .3D .64.某同学在解方程3x -1=□x +2时,把□处的数字看错了,解得x =-1,则该同学把□看成了( )A .3B .13C .6D .-165.如图1,∠AOC 为直角,OC 是∠BOD 的平分线,且∠AOB =57.65°,则∠AOD 的度数是( )图1A .122°20′B .122°21′C .122°22′D .122°23′6.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B.C.D.二、填空题,本大题共6小题,每小题3分,共18分.7.-3的相反数是,-3的倒数是,-3的绝对值是.8.小明在做解方程的作业时,不小心将方程中的一个常数污染得看不清楚,方程是:2y+1 2=-y-■.小明翻看了书后的答案,此方程的解是y=-12,则这个常数是.9.已知线段MN,P是MN的中点,Q是PN的中点,R是MQ的中点.若MR=2,则MN =.10.如果一个角的补角比这个角的余角的3倍大10°,则这个角的度数是.11.如图所示,点A、点B、点C分别表示有理数a、b、c,O为原点,化简:|a﹣c|﹣|b﹣c|= .12.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数可以是.三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)计算:(1)点A、B、C在同一条直线上,点C在线段AB上,若AB=4,BC=1,求AC;(2)已知|x|=3,y2=4,且x<y<0,那么求x+y的值.14.(6分)计算.﹣14﹣(1﹣0.5)×[3﹣(﹣3)2].15.(6分)根据下列语句,画出图形.如图:已知:四点A、B、C、D.①画直线AB;②画射线AC、BD,相交于点O.16.(6分)根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合.17.(6分)先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=﹣1,b=﹣2.四、解答题(本大题共3小题,每小题8分,共24分)18.(8分)某超市为了回馈广大新老客户,元旦期间决定实行优惠活动.优惠一:非会员购物时,所有商品均可享受九折优惠;优惠二:交纳200元会费成为该超市的会员,所有商品可享受八折优惠.(1)若用x表示商品价格,请你用含x的式子分别表示两种购物方式优惠后所花的钱数.(2)当商品价格是多少元时,用两种方式购物后所花钱数相同?(3)若某人计划在该超市购买一台价格为2 700元的电脑,请分析选择哪种优惠方式更省钱.19.(8分)已知关于x的方程2(x+1)﹣m=﹣的解比方程5(x﹣1)﹣1=4(x﹣1)+1的解大2.(1)求第二个方程的解;(2)求m的值.20.(8分)“囧”(jiong)是最近时期网络流行语,想一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示图中“囧”的面积;(2)若|x﹣6|+(y﹣3)2=0时,求此时“囧”的面积.五、解答题(本大题共2小题,每小题9分,共18分)21.(9分)一个车队共有n(n为正整数)辆小轿车,正以每小时36千米的速度在一条笔直的街道上匀速行驶,行驶时车与车的间隔均为5.4米,甲停在路边等人,他发现该车队从第一辆车的车头到最后一辆的车尾经过自己身边共用了20秒的时间,假设每辆车的车长均为4.87米.(1)求n的值;(2)若乙在街道一侧的人行道上与车队同向而行,速度为v米/秒,当第一辆车的车头到最后一辆车的车尾经过他身边共用了40秒,求v的值.22.(9分)已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,点P从原点出发速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?六、解答题(本大题共1小题,共12分)23.(12分)【问题提出】已知∠AOB=70°,∠AOD=∠AOC,∠BOD=3∠BOC(∠BOC<45°),求∠BOC的度数.【问题思考】聪明的小明用分类讨论的方法解决.(1)当射线OC在∠AOB的内部时,①若射线OD在∠AOC内部,如图1,可求∠BOC 的度数,解答过程如下:设∠BOC=α,∴∠BOD=3∠BOC=3α,∴∠COD=∠BOD﹣∠BOC=2α,∴∠AOD=∠AOC,∴∠AOD=∠COD=2α,∴∠AOB=∠AOD+∠BOD=2α+3α=5α=70°,∴α=14°,∴∠BOC=14°问:当射线OC在∠AOB的内部时,②若射线OD在∠AOB外部,如图2,请你求出∠BOC 的度数;【问题延伸】(2)当射线OC在∠AOB的外部时,请你画出图形,并求∠BOC的度数.【问题解决】综上所述:∠BOC的度数分别是.。

初中数学综合提高训练试题(3)附答案

初中数学综合提高训练试题(3)附答案

初中数学综合提高训练试题(3)附答案第Ⅰ卷(选择题共36分)一、选择题(本大题共12个小题,每小题3分,共36分)1.一个多边形的内角和是720°,这个多边形的边数是( )A.4 B.5 C.6 D.72.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A.20° B.30°C.40° D.50°3.如果三角形的两边长分别为3和5,则周长L的取值范围是( ) A.6<L<15 B.6<L<16C.11<L<13 D.10<L<164.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CD B.∠BAC=∠DACC.∠BCA=∠DCA D.∠B=∠D=90°5.学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4 m,AB=1.6 m,CO=1 m,则栏杆C端应下降的垂直距离CD为( )A.0.2 m B.0.3 m C.0.4 m D.0.5 m6.如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是( )A.6 B.8 C.10 D.127.如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为( )A.5 5 B.10 5 C.10 3 D.15 38.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为( )A.13 B.2- 1 C .2- 3 D.149.如图,矩形纸片ABCD 中,AB =4,BC =6,将△ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A.35B.53C.73D.5410.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为( )A .6B .8C .10D .1211.如图,点E ,点F 分别在菱形ABCD 的边AB ,AD 上,且AE =DF ,BF 交DE 于点G ,延长BF 交CD 的延长线于点H.若AF DF =2,则HFBG的值为( )A.23B.712C.12D.512 12.如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B点落在点P 处,折痕为EC ,连接AP 并延长AP 交CD 于F 点,连接CP 并延长CP 交AD 于Q 点.给出以下结论:①四边形AECF 为平行四边形; ②∠PBA=∠APQ; ③△FPC 为等腰三角形; ④△APB≌△EPC.其中正确结论的个数为( )A .1B .2C .3D .4第Ⅱ卷(非选择题 共84分)二、填空题(本大题共5个小题,每小题4分,共20分)13.下列命题是真命题的序号为______.①对角线相等的四边形是矩形;②对角线互相垂直的四边形是菱形;③任意多边形的内角和为360°;④三角形的中位线平行于第三边,并且等于第三边的一半.14.如图,某景区的两个景点A,B处于同一水平地面上,一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时,测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100米,则两景点A,B间的距离为__________________米(结果保留根号).15.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是________步.16.矩形ABCD中,AB=6,BC=8,点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为________.17.如图,直线y=-x+1与两坐标轴分别交于A,B两点,将线段OA 分成n等份,分点分别为P1,P2,P3,…,P n-1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,T n-1,用S1,S2,S3,…,S n-1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n-1P n-2P n-1的面积,则S1+S2+S3+…+S n-1=________.三、解答题(本大题共7个小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤)18.(本题满分7分)如图,点A,D,C,F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.19.(本题满分7分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EA F=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求AFAG的值.20.(本题满分8分)随着航母编队的成立,我国海军日益强大,2018年4月12日,中央军委在南海海域隆重举行海上阅兵,在阅兵之前我军加强了海上巡逻.如图,我军巡逻舰在某海域航行到A处时,该舰在观测点P的南偏东45°的方向上,且与观测点P的距离PA为400海里;巡逻舰继续沿正北方向航行一段时间后,到达位于观测点P的北偏东30°方向上的B处,问此时巡逻舰与观测点P的距离PB为多少海里?(参考数据:2≈1.414,3≈1.732,结果精确到1海里).21.(本题满分9分)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.22.(本题满分10分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.23.(本题满分11分)如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图1,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:FA=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图2,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.24.(本题满分12分)如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AGBE 的值为________;(2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG 与BE 之间的数量关系,并说明理由; (3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图3所示,延长CG 交AD 于点H.若AG =6,GH =22,则BC =________.参考答案1.C2.C3.D4.C5.C6.C7.B8.A9.B 10.D 11.B 12.B13.④ 14.100+100 3 15.6017 16.65或317.14-14n18.(1)证明:∵AC=AD +DC ,DF =DC +CF ,且AD =CF ,∴AC=DF.在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,BC =EF ,AC =DF ,∴△ABC≌△DEF(SSS). (2)解:由(1)可知∠F=∠ACB. ∵∠A=55°,∠B=88°,∴∠ACB=180°-(∠A+∠B)=180°-(55°+88°)=37°, ∴∠F =∠ACB=37°.19.(1)证明:∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC =90°. ∵∠EAF=∠GAC,∴∠AED=∠ACB. ∵∠EAD=∠CAB,∴△ADE∽△ABC.(2)解:由(1)可知△ADE∽△ABC,∴AD AB =AE AC =35.∵∠AFE=∠AGC=90°,∠EAF=∠GAC, ∴△EAF∽△CAG,∴AF AG =AE AC ,∴AF AG =35.20.解:在△APC 中,∠ACP=90°,∠APC=45°,则AC =PC. ∵AP=400海里,∴由勾股定理知AP 2=AC 2+PC 2=2PC 2,即4002=2PC 2, ∴PC=2002海里.又∵在直角△BPC 中,∠PCB=90°,∠BPC=60°, ∴PB=PCcos 60°=2PC =4002≈566(海里).答:此时巡逻舰与观测点P 的距离PB 约为566海里. 21.(1)证明:∵四边形ABCD 是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°. ∵BE=DF ,∴△AEB≌△AFD, ∴AB=AD ,∴四边形ABCD 是菱形. (2)解:如图,连接BD 交AC 于点O.∵四边形ABCD 是菱形,AC =6,∴AC⊥BD,AO =OC =12AC =12×6=3.∵AB=5,AO =3,∴BO=AB 2-AO 2=52-32=4, ∴BD=2BO =8,∴S 平行四边形ABCD =12AC·BD=24.22.解:(1)在Rt△ABC 中,∠BAC=90°,∠BCA =60°,AB =60米, 则AC =AB tan 60°=603=203(米).答:坡底C 点到大楼距离AC 的值是203米. (2)如图,过点D 作DF⊥AB 于点F.设CD =2x ,则DE =x ,CE =3x. 在Rt△BDF 中,∵∠BDF=45°,∴BF=DF ,∴60-x =203+3x ,∴x=403-60,∴CD 的长为(803-120)米.23.(1)①证明:∵CF⊥CD,∴∠FCD=90°.∵∠ACB=90°,∴∠FCA+∠ACD=∠ACD+∠DCE,∴∠FCA=∠DCE.∵∠FAC=90°+∠B,∠CED=90°+∠B,∴∠FAC=∠CED.∵AC=EC,∴△AFC≌△EDC,∴FA=DE.②解:DE+AD=2CH.(2)解:AD+DE=23CH.理由如下:如图,连接CD,作∠FCD=∠ACB,交BA延长线于点F. ∵∠FCA+∠ACD=∠ACD+∠BCD,∴∠FCA=∠BCD.∵∠EDA=60°,∴∠EDB=120°.∵∠FAC=120°+∠B,∠DEC=120°+∠B,∴∠FAC=∠DEC.∵AC=EC,∴△FAC≌△DEC,∴AF=DE,FC=DC.∵CH⊥FD,∴FH=HD,∠FCH=∠HCD=60°.在Rt△CHD中,tan 60°=DHCH,∴DH=3CH.∵AD+DE=AD+AF=2DH=23CH,即AD+DE=23CH.24.(1)①证明:∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°.∵GE⊥BC,GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四边形CEGF是正方形.②解: 2提示:由①知四边形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴CGCE=2,GE∥AB,∴AG BE =CGCE= 2. (2)解:AG =2BE.理由如下: 如图,连接CG ,由旋转性质知∠BCE=∠ACG=α. 在Rt△CEG 和Rt△CBA 中,CE CG =cos 45°=22,CB CA =cos 45°=22, ∴CG CE =CACB =2,∴△ACG∽△BCE, ∴AG BE =CACB=2, ∴线段AG 与BE 之间的数量关系为AG =2BE. (3)解:3 5提示:∵∠CEF=45°,点B ,E ,F 三点共线, ∴∠BEC=135°.∵△ACG∽△BCE,∴∠AGC=∠BEC =135°, ∴∠AGH=∠CAH=45°.∵∠CHA=∠AHG,∴△AHG∽△CHA,∴AG AC =GH AH =AH CH. 设BC =CD =AD =a ,则AC =2a , 则由AG AC =GH AH 得62a =22AH ,∴AH=23a ,则DH =AD -AH =13a ,CH =CD 2+DH 2=103a ,∴AG AC =AH CH 得62a =23a 103a , 解得a =35,即BC =3 5.。

2020-2021学年浙教版数学七年级上册第五章《一元一次方程》综合提高B卷(附答案)

2020-2021学年浙教版数学七年级上册第五章《一元一次方程》综合提高B卷(附答案)

2020-2021学年浙教版数学七年级上册第五章《一元一次方程》综合提高B卷班级姓名学号得分________一、选择题(每题3分,共30分)1.下列变形中,正确的是 ( )A.由5x = - 4得x = - 54B.由4x + 2 = 3x - 1得4x + 3x = 2 - 1C.由x5 - 1 = 2得x - 5 = 2D.由4x - 3 = 2x - 2得2x = 12.已知方程(m + 1)mx + 3 = 0是关于x的一元一次方程,则m的值是( )A.±1B.1C. - 1D.0或13.已知x = - 3是方程k(x + 4)- 2k - x = 5的解,则k的值是( )A. - 2B.2C.3D.54.七年级一班有学生53人,二班有学生45人,从一班调x人到二班,这时两班的人数相等,应列方程是()A.53 - x = 45B.53 = 45 + xC.53 - x = 45 + xD.以上都不对5.方程12(1 -x3) -23(3 +x2) = 1去分母,两边同乘以6得( )A.3(6 - 2x) - 4(18 + 3x) = 1B.3(6 - 2x) - 4(18 + 3x) = 6C.3(1 - x3) - 4(3 +x2) = 1D.3(1 -x3) - 4(3 +x2) = 66.已知面包店的面包15元一个,小明去此店买面包,结账时店员告诉小明:“如果你再多买一个面包就可以打九折,价钱会比现在便宜45元”,小明说:“我买这些就好了,谢谢.”根据两人的对话,判断结账时小明买了多少个面包( )A.38B.39C.40D.417.解方程:4(x - 1)- x = 2(x + 12),步骤如下:(1)去括号,得4x - 4 - x = 2x + 1;(2)移项,得4x - x + 2x = 1 + 4;(3)合并,得5x = 5;(4)系数化1,得x = 1.经检验知x = 1不是原方程的解,证明解题的四个步骤中有错,其中做错的一步是( ) A.(1)B.(2)C.(3)D.(4)8.下面是一个被墨水污染过的方程:2x - 1 2 = 3x+ ,答案显示此方程的解是x = - 1,被墨水遮盖的是一个常数,则这个常数是( )A .1B . - 1C . - 1 2D . 1 29. A ,B 两地相距480 km ,一列慢车从A 地出发,每小时行驶60 km ,一列快车从B 地出发,每小时行驶90 km ,快车提前30min 出发,两车相向而行,慢车行驶多少小时后两车相遇?设慢车行驶x (h )后两车相遇,根据题意,下列所列方程中,正确的是( )A .60(x + 30) + 90x = 480B .60x + 90(x + 30) = 480C .48090)6030(60=++x x D .60x + 90(x + 30 60 ) = 480 10.下列说法:①若a+b=0,且ab ≠0,则x = 1是方程ax + b = 0的解;②若a-b=0,且ab ≠0.则x= - 1是方程ax + b = 0的解:③若ax+b=0,则x=-a b④若(a-3)2-a x +b=0是一元一次方程,则a=1.其中正确的结论是 ( )A .只有①②B .只有②④C .只有①③④D .只有①②④二、填空题(每题4分,共24分)11.方程3x + 1 = 7的解是 _________ .12.三个连续偶数的和比最小的一个数大26,则这三个连续偶数依次为 _________ .13.在高速公路上,一辆长4 m 、速度为110 km /h 的轿车准备超越一辆长12 m 、速度为90 km /h 的货车,则该辆轿车从追及到超越该货车所需的时间是 _________ .14.将4个数a ,b ,c ,d 排成2行2列,两边各加一条竖直线,记成d c ba ,定义:d c ba = ad - bc ,上述记号就叫做2阶行列式,若1111+--+x x x x = 4,则x = _________ .15.我们称使 x 2 + y 3 = 32++y x 成立的一对数x ,y 为“甜蜜数对”,记为(x ,y ),例如:当x = y = 0时,等式成立,记为(0,0).若(m ,3),(2,n )都是“甜蜜数对”,则m - n 的值为 _________ .16.如图所示,A ,B 分别为数轴上的两点,点A 对应的数为 - 20,点B 对应的数为100.现有一只电子蚂蚁P 从点B 出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从点A 出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的点D 相遇,点D 对应的数是n ,则m + n = _________ .三、解答题(共66分)17.(8分)解方程:(1)2(x - 2) - 3(4x - 1) = 9(1 - x ).(2)2221625312--=+--x x x .18.(6分)已知关于x 的方程3(x + a 3 )= 4x 与 3x +a 2 - 1+5x 3 = 1有相同的解,求a 的值.19.(8分)一项工程,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两队合作.(1)求甲、乙合作多少天才能把该工程完成.(2)在(1)的条件下,甲队每天的施工费用为2500元,乙队每天的施工费用为3000元,求完成此项工程需付给甲、乙两队共多少元.20.(10分)国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2400元,则应纳税 _________ 元;若王老师获得的稿费为4000元,则应纳税 _________ 元.(2)若王老师获得稿费后纳税420元,求这笔稿费是多少元.21. (10分)小东同学在解一元次方程时,发现这样一种特殊现象:X+=0的解为x= - 1 2 .而- 1 2 = 1 2- 1; 2x + 34 = 0的解为x= - 2 3 ,而 - 2 3 = 4 3 - 2. 于是,小东将这种类型的方程作如下定义:若一个关于x 的方程ax + b=0(a ≠0)的解为x = b - a ,则称之为“奇异方程”请和小东一起进行以下探究:(1)当a = - 1时,有符合要求的”奇异方程“吗?若有,请求出该方程的解;若没有,请说明理由.(2)若关于x 的方程ax+b=0(a ≠0)为奇异方程,解关于y 的方程:a (a - b )y + 2 = (b + 1 2 )y .22.(12分)小王逛超市时看到如图所示两家超市的促销信息,(1)当一次性购物标价总额是300元时,甲、乙超市实付款分别是多少?(2)当标价总额是多少时,甲、乙超市实付款一样?(3)小王两次到乙超市分别购物付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元?23.(12分)阅读理解:如图所示,A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离的2倍,我们就称点C是[A,B]的好点.例如,如图1所示,点A表示的数为- 1,点B表示的数为2.表示数1的点C到点A的距离是2,到点B的距离是1,那么点C是[A,B]的好点;又如,表示数0的点D到点A的距离是1,到点B的距离是2,那么点D就不是[A,B]的好点,但点D是[B,A]的好点.知识运用:如图2所示,M.N为数轴上的两点,点M所表示的数为 - 2,点N所表示的数为4.(1)数 _________ 所表示的点是[M,N]的好点.(2)现有一只电子蚂蚁P从点N出发,以每秒2个单位的速度沿数轴向左运动,运动时间为t(s).当t为何值时,P,M,N中恰有一个点为其余两点的好点?。

七年级数学上册《有理数》综合提高培优难题

七年级数学上册《有理数》综合提高培优难题

七年级《有理数》培优训练一、选择题1、 -2,0,2,-3这四个数中最大的是( )A.-1B.0C.1D.2 2、下列计算正确的是( )(A )088=--)( (B )1221=⨯)()(-- (C )011--=() (D )22-|-|= 3、小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为( )(A )4℃ (B )9℃ (C )-1℃ (D )-9℃ 4、下列各组数中,互为相反数的是( )A .2和-2B .-2和12 C .-2和12- D .12和2 5、计算(-3)3+52-(-2)2之值为何?( )(A) 2 (B) 5 (C)-3 (D)-6 6、下列等式成立是( )A. 22=-B. 1)1(-=--C.1÷31)3(=- D.632=⨯-7、数2-的相反数为( )A 、2B 、21C 、2-D 、21-8国家投资建设的泰州长江大桥已经开工,据泰州日报报道,大桥预算总造价是9 370 000 000元人民币,用科学记数法表示为( )A .93.7×109元B . 9.37×109元C . 9.37×1010元D .0.937×1010元 9、下列各组数中,互为相反数的是( )A .2和21B .-2和-21C . -2和|-2|D .2和2110、汶川发生特大地震后,国内外纷纷向灾区捐物捐款,截至5月26日12时,捐款达308.76亿元.把它用科学记数法表示为( ) A .930.87610⨯元B .103.087610⨯元C .110.3087610⨯元D .113.087610⨯元11、若实数a 、b 互为相反数,则下列等式中恒成立的是( ) A 0a b -= B 0a b += C 1ab = D 1ab =-12、实数a 、b 在数轴上的位置如图1所示,则a 与b 的大小关系是( ) CA.a > b B . a = b C . a < b D . 不能判断 13、若23(2)0m n -++=,则2m n +的值为( )A .4-B .1-C .0D .414、如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数为( )A.7 B.3 C.3-D.2-15、用四舍五入法得到a 的近似数是3.80,精确地说,这个数的范围是( )A 、3.795 3.805a ≤〈B 、3.75 3.85a ≤〈C 、3.75 3.85a 〈〈D 、3.795 3.805a 〈≤ 16、a 是有理数,代数式112++a 的最小值是( A ) (A) 1 (B) 2 (C) 3 (D) 4 17、a 是有理数,则112000a +的值不能是( ).(A)1 (B)-1 (C)0 (D)-2000 18、若a =19991998,b =20001999,c =20012000则下列不等关系中正确的是( )A. a <b <cB. a <c <bC. b <c <aD. c <b <a19、如果某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场( )A . 不赔不赚B . 赚160元 C. 赚80元 D. 赔80元20、有理数的大小关系如图2所示,则下列式子中一定成立 的是( ) (A )>0 (B )< (C )(D )>21、计算:221 4.5(12)3151.3223∙----⨯-=( ) (A)-720; (B)-12245; (C)-17720; (D)-29245.22、如果1=++cc bb aa ,则abcabc 的值为( )(A )1- (B )1 (C )1± (D )不确定二、填空题23、 9的相反数是______比–3小9的数是________;最小的正整数是____________24、 已知某地一天中的最高温度为10℃,最低温度为5-℃,则这天最高温度与最低温度的温差为___________________.25、如果数轴上点A 到原点的距离为3,点B 到原点的距离为5,那么A 、B 两点的距离为26、 计算:______21=⎪⎭⎫ ⎝⎛--;______21=-;______210=⎪⎭⎫ ⎝⎛-;______211=⎪⎭⎫⎝⎛--。

七年级数学上册有理数专题提高练习-有理数的乘法(含答案)

七年级数学上册有理数专题提高练习-有理数的乘法(含答案)

七年级数学上册有理数专题提高练习有理数的乘法学校:___________姓名:___________班级:___________一.选择题(共12小题)1.计算:(﹣3)×(﹣5)=()A.﹣8 B.8 C.﹣15 D.152.计算4×(﹣9)的结果等于()A.32 B.﹣32 C.36 D.﹣363.﹣9×的结果是()A.﹣3 B.3 C.D.4.若()×=﹣1,则括号内应填的数是()A.2 B.﹣2 C.D.﹣5.计算2×(﹣3)的结果等于()A.6 B.﹣6 C.﹣1 D.56.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了,下面两个图框是用法国“小九九”计算8×9和6×7的两个示例,若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是()A.2,4 B.3,3 C.3,4 D.2,37.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.2017 B.2016 C.2017!D.2016!8.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大9.已知:a=﹣2+(﹣10),b=﹣2﹣(﹣10),c=﹣2×(﹣),下列判断正确的是()A.a>b>c B.b>c>a C.c>b>a D.a>c>b10.正整数x、y满足(2x﹣5)(2y﹣5)=25,则x+y等于()A.18或10 B.18 C.10 D.2611.若a+b<0,ab>0,那么这两个数()A.都是正数B.都是负数C.一正一负D.符号不能确定12.利用裂项技巧计算﹙﹚×33时,最恰当的方案可以是()A.(100﹣)×33 B.(﹣100﹣)×33 C.﹣(99+)×33 D.﹣(100﹣)×33二.填空题(共10小题)13.计算=.14.a<0,ab<0,则b0.15.乘积是6的两个负整数之和为.16.数﹣5,1,﹣4,6,﹣3中任取二个数相乘,积最小值为.17.已知|a|=5,|b|=3,且ab<0,则a﹣b=.18.两个有理数之积是﹣1,已知一个数是﹣2,则另一个数是.19.若有理数a、b满足|a|=2,|b|=5,且ab<0,则a﹣b=.20.设有理数a,b,c满足a+b+c=0,abc>0,则a,b,c中正数的个数为.21.绝对值不大于3的所有整数的积是.22.在3,﹣4,5,﹣6这四个数中,任取两个数相乘,所得的积最大的是.三.解答题(共6小题)23.如果|a|=4,|b|=8,|c|=3,ab<0,求c﹣a﹣|b|的值.24.已知|x|=2,|y|=8.(1)若x<y,求x﹣y的值;(2)若xy<0,求x+y的值.25.计算:(1)﹣0.75×(﹣0.4 )×1;(2)0.6×(﹣)×(﹣)×(﹣2).26.如图,A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,|a|=10,a+b=80,ab<0.(1)求出a,b的值;(2)现有一只电子蚂蚁P从点A出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q从点B出发,以2个单位长度/秒的速度向左运动.①设两只电子蚂蚁在数轴上的点C相遇,求出点C对应的数是多少?②经过多长时间两只电子蚂蚁在数轴上相距20个单位长度?27.阅读下列材料并解决有关问题:我们知道|x|=,所以当x>0时,==1;当x<0时,==﹣1.现在我们可以用这个结论来解决下面问题:(1)已知a,b是有理数,当ab≠0时,+=;(2)已知a,b,c是有理数,当abc≠0时,++=.28.学习有理数得乘法后,老师给同学们这样一道题目:计算:49×(﹣5),看谁算的又快又对,有两位同学的解法如下:小明:原式=﹣×5=﹣=﹣249;小军:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;(1)对于以上两种解法,你认为谁的解法较好?(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:19×(﹣8)参考答案与试题解析一.选择题(共12小题)1.【分析】根据有理数的乘法法则计算可得.【解答】解:(﹣3)×(﹣5)=+(3×5)=15,故选:D.2.【分析】原式利用乘法法则计算即可求出值.【解答】解:原式=﹣36,故选:D.3.【分析】根据有理数的乘法法则计算可得.【解答】解:﹣9×=﹣(9×)=﹣3,故选:A.4.【分析】根据积除以一个因式得到另一个因式即可.【解答】解:根据题意得:﹣1÷=﹣1×2=﹣2,故选:B.5.【分析】原式利用乘法法则计算即可求出值.【解答】解:原式=﹣2×3=﹣6,故选:B.6.【分析】根据示例得出左手伸出的手指数为第一个数比5多的部分、右手伸出的手指数为第二个因数比5多的部分,据此可得.【解答】解:根据题意,左手伸出的手指数为第一个数比5多的部分、右手伸出的手指数为第二个因数比5多的部分,所以计算7×9,左、右手依次伸出手指的个数是2和4,故选:A.7.【分析】根据题意将原式变形为即可得.【解答】解:==2017,故选:A.8.【分析】先由有理数的乘法法则,判断出a,b异号,再用有理数加法法则即可得出结论.【解答】解:∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选:D.9.【分析】首先利用有理数的加法法则、减法法则、乘方法则计算出a、b、c的值,再比较大小即可.【解答】解:a=﹣2+(﹣10)=﹣12,b=﹣2﹣(﹣10)=﹣2+10=8,c=﹣2×(﹣)=,∵8>>﹣12,∴b>c>a,故选:B.10.【分析】易得(2x﹣5)、(2y﹣5)均为整数,分类讨论即可求得x、y的值即可解题.【解答】解:∵x、y是正整数,且最小的正整数为1,∴2x﹣5是整数且最小整数为﹣3,2y﹣5是整数且最小的整数为﹣3∵25=1×25,或25=5×5,∴存在两种情况:①2x﹣5=1,2y﹣5=25,解得:x=3,y=15,;②2x﹣5=2y﹣5=5,解得:x=y=5;∴x+y=18或10,故选:A.11.【分析】根据有理数的乘法法则,得a、b同号,再由有理数的加法法则,得a、b都是负数.【解答】解:∵ab>0,∴a、b同号,∵a+b<0,∴a、b都是负数,故选:B.12.【分析】将变形为﹣100+,进一步根据乘法分配律进行计算.【解答】解:﹙﹚×33=﹣(100﹣)×33=﹣3300+1=﹣3299.故选:D.二.填空题(共10小题)13.【分析】根据乘法分配律展开,再根据有理数的乘法和加减法运算法则计算.【解答】解:,=×12+×12﹣×12,=3+2﹣6,=5﹣6,=﹣1.14.【分析】根据异号得负解答即可.【解答】解:∵a<0,ab<0,∴b>0.故答案为:>.15.【分析】利用有理数的乘法法则确定出两个负整数,求出之和即可.【解答】解:乘积是6的两个负整数为﹣1和﹣6或﹣2与﹣3,之和为﹣7或﹣5,故答案为:﹣7或﹣516.【分析】根据所求的积最小,选取最大的正数和最小的负数相乘,即可解答.【解答】解:﹣5×6=﹣30,故答案为:﹣30.17.【分析】由a与b异号,利用绝对值的代数意义求出a与b的值,即可确定出a ﹣b的值.【解答】解:∵|a|=5,|b|=3,且ab<0,∴a=﹣5,b=3;a=5,b=﹣3,则a﹣b=±8,故答案为:±818.【分析】已知积和其中的一个因数,求另一个因数用除法.根据题意先列出除法算式,再计算出结果.【解答】解:﹣1÷(﹣2)=﹣1÷(﹣)=故答案为:19.【分析】根据异号得负和绝对值的性质确定出a、b的值,然后相减即可得解.【解答】解:∵ab<0,|a|=2,|b|=5,∴a=2时,b=﹣5,a﹣b=2﹣(﹣5)=2+5=7,a=﹣2时,b=5,a﹣b=﹣2﹣5=﹣7,∴a﹣b=7或﹣7.故答案为:7或﹣7.20.【分析】由abc>0可以得到a、b、c中负数有偶数个,而a+b+c=0,由此即可判定其中的正数的个数.【解答】解:∵abc>0,∴a、b、c中负数有偶数个,而a+b+c=0,∴a,b,c中负数有2个,即正数的个数为一个.故填空答案:1.21.【分析】根据绝对值的含义,写出符合条件的整数,然后求出它们的积.【解答】解:绝对值不大于3的所有整数是:±3,±2,±1,0,它们的积是:(﹣1)×(﹣2)×(﹣3)×1×2×3×0=0.故答案是:0.22.【分析】两个数相乘,同号得正,异号得负,且正数大于一切负数,所以找积最大的应从同号的两个数中寻找即可.【解答】解:∵(﹣4)×(﹣6)=24>3×5.故答案为:24.三.解答题(共6小题)23.【分析】根据绝对值的意义得到a=±4,b=±8,c=±3,由ab<0,则a=4,b=﹣8或a=﹣4,b=8,把它们分别代入c﹣a﹣|b中计算即可.【解答】解:∵|a|=4,|b|=8,|c|=3,ab<0,∴a=4,b=﹣8,c=3或a=4,b=﹣8,c=﹣3或a=﹣4,b=8,c=3或a=﹣4,b=8,c=﹣3,∴c﹣a﹣|b|=﹣9或﹣15或﹣1或﹣7.24.【分析】(1)根据绝对值的性质以及有理数的大小比较判断出x、y的值,然后相减计算即可得解;(2)根据有理数的乘法运算法则和绝对值的性质判断出x、y的值,然后相加计算即可得解.【解答】解:(1)∵|x|=2,|y|=8,x<y,∴x=±2,y=8,∴x﹣y=2﹣8=﹣6,或x﹣y=﹣2﹣8=﹣10;(2)∵|x|=2,|y|=8,xy<0,∴x=2,y=﹣8或x=﹣2,y=8,∴x+y=2+(﹣8)=﹣6,或x+y=﹣2+8=6.25.【分析】(1)直接利用有理数的乘法运算法则计算得出答案;(2)直接利用有理数的乘法运算法则计算得出答案.【解答】解:(1)原式=﹣0.75×(﹣0.4 )×=××=;(2)原式=0.6×(﹣)×(﹣)×(﹣2)=﹣×××=﹣1.26.【分析】(1)根据题意可以a、b的符号相反、可得a=﹣10,根据a+b=80可得b的值,本题得以解决;(2)①根据题意可以求得两只电子蚂蚁在数轴上的点C相遇是点C对应的数值;②根据题意和分类讨论的数学思想可以解答本题.【解答】解:(1)∵A,B两点在数轴上对应的数分别为a,b,且点A在点B 的左边,|a|=10,a+b=80,ab<0,∴a=﹣10,b=90,即a的值是﹣10,b的值是90;(2)①由题意可得,点C对应的数是:90﹣[90﹣(﹣10)]÷(3+2)×2=90﹣100÷5×2=90﹣40=50,即点C对应的数为:50;②设相遇前,经过m秒时间两只电子蚂蚁在数轴上相距20个单位长度,[90﹣(﹣10)﹣20]÷(3+2)=80÷5=16(秒),设相遇后,经过n秒时间两只电子蚂蚁在数轴上相距20个单位长度,[90﹣(﹣10)+20]÷(3+2)=120÷5=24(秒),由上可得,经过16秒或24秒的时间两只电子蚂蚁在数轴上相距20个单位长度.27.【分析】(1)分3种情况:a<0、b<0;a>0、b>0;a、b异号讨论即可求解;(2)分4种情况:a<0、b<0、c<0;a>0、b>0、c>0;a、b、c两负一正;a、b、c两正一负讨论即可求解.【解答】解:(1)已知a,b是有理数,当ab≠0时,①a<0,b<0,+=﹣1﹣1=﹣2;②a>0,b>0,+=1+1=2;③a、b异号,+=0.所以+=±2或0,故答案为:±2或0;(2)已知a,b,c是有理数,当abc≠0时,①a<0,b<0,c<0,++=﹣1﹣1﹣1=﹣3;②a>0,b>0,c>0,++=1+1+1=3;③a、b、c两负一正,++=﹣1﹣1+1=﹣1;④a、b、c两正一负,++=﹣1+1+1=1.所以++=±1或±3,故答案为:±1或±3.28.【分析】(1)根据计算判断小军的解法好;(2)把49写成(50﹣),然后利用乘法分配律进行计算即可得解;(3)把19写成(20﹣),然后利用乘法分配律进行计算即可得解.【解答】解:(1)小军解法较好;(2)还有更好的解法,49×(﹣5)=(50﹣)×(﹣5)=50×(﹣5)﹣×(﹣5)=﹣250+=﹣249;(3)19×(﹣8)=(20﹣)×(﹣8)=20×(﹣8)﹣×(﹣8)=﹣160+=﹣159.。

七年级上学期数学期末试题及答案(提高)

七年级上学期数学期末试题及答案(提高)
A. 1.8×105B. 1.8×106C. 1.8×107D.0.18×108
4.下面的调查方式中,你认为合适的是()
A.乘坐地铁前的安检,采用抽样调查方式
B.要检测一批灯管的使用寿命,采用全面调查方式
C.了解某市居民的出行方式,采用全面调查方式
D.调查市场上水果的质量情况,采用抽样调查方式
5.如图,已知∠AOC=∠BOC=90°,若∠1=∠2,则图中互余的角共有( )
(1)当点P在BC上运动时,PB=;(用含t的代数式表示)
(2)当点Q在AD上运动时,AQ=;(用含t的代数式表示)
(3)当点Q在DC上运动时,DQ=,QC=;(用含t的代数式表示)
(4)当t等于多少时,点Q运动到DC的中点?
(5)当t等于多少时,点P与点Q相遇?
27.点O为直线l上一点,射线OA、OB均与直线l重合,如图1所示,过点O作射线OC和射线OD,使得∠BOC=100°,∠COD=90°,作∠AOC的平分线OM.
(5)t+t=4×3,t=
27.(1)50度
(2)50度或150度
(3)6秒或62秒
七年级上学期数学期末试题及答案(提高)
一、选择题
1. 的倒数的相反数是()
A. B. C. D.
2.如图,是由若干个相同 小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的主视图是( )
A. B. C. D.
3.某市2022年常住人口将达到1800万人,城区常住人口规模达900万人以上,1800万这个数用科学记数法表示为( )
16.已知A= -2x+3,若多项式4A+B的值与字母x的取值无关,则ab的值是_______.

初一数学综合练习题及答案(提高篇)

初一数学综合练习题及答案(提高篇)

初一练习——提高篇一、选择题:1.二元一次方程的非负整数解共有()对A、1B、2C、3D、42.如图1,在锐角中,CD、BE分别是AB、AC边上的高,且CD、BE相交于一点P,若∠A=50°,则∠BPC的度数是()A.150°B.130°C.120°D.100°图13.已知:│m-n+2│与(2m+n+4)2 互为相反数,则m+n 的值是( )A.-2 B.0 C.–1 D. 14.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()A.1个B.2个C.3个D.4个5. 已知a.b互为相反数,且| a b | = 6,则| b1|的值为()A.2 B.2或3 C.4 D.2或46.若2x+3y-z=0且x-2y+z=0,则x : z=()A、1: 3B、-1 : 1C、1 : 2D、-1 : 77. 下列计算正确的有()①a m+1·a=a m+1②b n+1·b n-1=③4x2n+2·[-x n-2]=-3x3n④[-(-a2)]2=-a4⑤(x4)4=x16⑥a5·a6÷(a5)2÷a=a⑦ (-a)( -a)2+a 3+2a 2·(-a)=0⑧(x 5)2+x 2·x 3+(-x 2)5=x 5A 、2个B 、3个C 、4个D 、5个8. 关于x 的方程2ax=(a+1)x+6的根是正数,则a 的值为( )A 、a>0B 、a ≤0C 、不确定D 、a>1二、填空题:9.把84623000用科学计数法表示为 ; 近似数2.4×105有 ____ 个有效数字,它精确到 ___ 位10.如图2,A 、O 、B 是同一直线上的三点,OC 、OD 、OE 是从O 点引出的三条射线,且∠1∶∠2∶∠3∶∠4=1∶2∶3∶4,则∠5=_________.图2 图3 图4 11. 不等式 的非负整数解是____________。

初中数学七年级上学期知识和能力提高综合训练题(含解答)

初中数学七年级上学期知识和能力提高综合训练题(含解答)

初中数学七年级上学期知识和能力提高综合训练题1、The sequence ,,,,,,,,,,,,525144434241333231222111…then the 2011th number is 。

2、文件保密传递是按一定规则将其加密,收件人再按约定的规则将其解密。

某电文按下面规则加密:将一个英文字母变成英文字母表中其后的第四个字母,比如a 变成e ,b 变成f ,w 变成a ,z 变成d ,…,那么“hope ”加密后是 ;电文中的“jvmirh ”解密后是 。

3、在数1,2,3,…,2010前添符号“+”和“-”,并依次运算,所得可能的最小非负数是 。

(提示:若干个整数的奇偶性只与奇数的个数有关)4、某班20名学生的数学期末考试成绩如下:87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88。

他们的总分是 ,平均分是 。

5、m 个a 和n 个b 的平均数为 ,举例验证 。

6、规律数的计算:①(7+9+11+…+101)-(8+10+12+…+102)= ②-9-99-999-9999-99999 = ③20112010201132011220111++++Λ= ④32191617815413211++++= ⑤101971171311391951⨯++⨯+⨯+⨯Λ= ⑥561742163015201412136121++++++= ⑦⎪⎭⎫ ⎝⎛-⨯⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-2500111611911411Λ= 7、若,2007200820082009,20092010-=-=-=c b a ,用“<”将c b a ,,按从小到大排列为 8、如果有理数b a ,满足等式020112011=+b a,那么( ) A. ()02011=+b a B. ()02011=-b a C. ()02011=⋅b a D. ()02011=+b a 9、如图,若数轴上a 的绝对值是b 的绝对值的3倍,则数轴的原点在点 或点 (填A 、B 、C 或D )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一练习——提高篇
一、选择题:
1.二元一次方程10
+y
x的非负整数解共有()对
3=
A、1
B、2
C、3
D、4
2.如图1,在锐角∆ABC中,CD、BE分别是AB、AC边上的高,且CD、BE相
交于一点P,若∠A=50°,则∠BPC的度数是()
A.150°B.130°C.120°D.100°
图1
3.已知:│m-n+2│与(2m+n+4)2 互为相反数,则m+n 的值是( )
A.-2 B.0 C.–1 D. 1
4.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()
A.1个B.2个C.3个D.4个
5. 已知a.b互为相反数,且| a-b | = 6,则| b-1|的值为()
A.2 B.2或3 C.4 D.2或4
6.若2x+3y-z=0且x-2y+z=0,则x : z=()
A、1: 3
B、-1 : 1
C、1 : 2
D、-1 : 7
7. 下列计算正确的有()
①a m+1·a=a m+1
②b n+1·b n-1=
③4x2n+2·[-x n-2]=-3x3n
④[-(-a2)]2=-a4
⑤ (x 4)4=x 16 ⑥ a 5·a 6÷(a 5)2÷a=a
⑦ (-a)( -a)2+a 3+2a 2·(-a)=0 ⑧(x 5)2+x 2·x 3+(-x 2)5=x 5
A 、2个
B 、3个
C 、4个
D 、5个
8. 关于x 的方程2ax=(a+1)x+6的根是正数,则a 的值为( ) A 、a>0 B 、a ≤0 C 、不确定 D 、a>1 二、填空题:
9.把84623000用科学计数法表示为
; 近似数2.4×105有 ____ 个有效数字,它精确到 ___ 位
10.如图2,A 、O 、B 是同一直线上的三点,OC 、OD 、OE 是从O 点引出的三条射线,且∠1∶∠2∶∠3∶∠4=1∶2∶3∶4,则∠5=_________.
5
4321A
B
O C
D
E
图2 图3 图4
11. 不等式 的非负整数解是____________。

12.(27°12′7″-17°13′55″)×2=_____________.
13. 如图3,∠1=∠2,∠3=∠4,∠A=1100,则X=_________。

x 0
4
32
1
C
A
14. 如图4,从左到右,在每个小格子中都填入一个整数..,使得其中任意三个相.邻.
格子中所填整数之和都相等,可求得c 等于3,那么第2009个格子中的数为 . 三、解答题:
15.计算:(1)()()()4
322007249
231-÷--⨯-+-
(2) ()()
32006212475.28
13
11---+-⨯⎪⎭
⎫ ⎝⎛-+
16.解不等式组或方程组:
(1) (2)
17.求当32,2==y x 时,代数式⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝

--22312332221y x y x x 的值。

18. 已知关于x, y的方程组的解与方程组的解相同,求m, n的值。

19. 列方程组解应用题:∠ABC比∠MNP的补角的小10°,∠ABC的余角的比∠MNP的余角大10°,求∠ABC与∠MNP的度数。

20. 某水果批发市场香蕉的价格如下表:
购买香蕉数(千克)不超过20千克20千克以上但不
超过40千克
40千克以上
每千克价格6元5元4元
张强两次共购买香蕉50千克(第二次多于第一次),共付出264元,请问张强第一次、第二次分别购买香蕉多少千克?
21. 如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△
OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.
①观察每次变换前后的三角形的变化规律,若将△OA 3B 3变换成△OA 4B 4,则A 4
的坐标是
,B 4的坐标是 .
②若按第(1)题找到的规律将△OAB 进行n 次变换,得到△OA n B n ,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n 的坐标
是 ,B n 的坐标是 .
22.(1)如图①,BD 、CD 是∠ABC 和∠ACB 的角平分线且相交于点D ,请猜想∠A 与∠BDC 之间的数量关系,并说明理由。

(2)如图②,BC 、CD 是∠ABC 和∠ACB 外角的平分线且相交于点D 。

请猜想∠A 与∠BDC 之间的数量关系,并说明理由。

y
x
8
17161514131211101987654321054321
B A A 2A 3B 1
B 2
B 3
23.
24. 某饮料厂开发了A 、B 两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示,现用甲原料和乙原料各2800克进行试生产,计划生产A 、B 两种饮料共100瓶,设生产A 种饮料x 瓶,解答下列问题:(1)有几种符合题意的生产方案?写出解答过程;(2)如果A 种饮料每瓶的成本为2.60元,B 种饮料每瓶的成本为2.80元,这两种饮料成本总额为y 元,请写出y 与x 之间的关系式,并说明x 取何值会使成本总额最低?
原料名称 饮料名称
甲 乙
A 20克 40克 B
30克
20克
答案
一、1 C 2 B 3 A 4 C 5 D 6 D 7 B 8 D
二、9. 78.462310⨯,2,万 10. 60° 11. 0,1,2,3,4 12. 19°56′24″ 13. 145°14. -1
三、15. (1)-3 (2)24 16.(1)1x ≤ (2)1x =±
3y =
17. 18. 解:
19. 解:设∠ABC 为x °,∠MNP 为y °,

解之得
答:∠ABC 为25°,∠MNP 为75°。

20. 分析:由题意知,第一次购买香蕉数小于25千克,则单价分为两种情况进行讨论。

解:设张强第一次购买香蕉x 千克,第二次购买香蕉y 千克,由题意0<x<25,
(1)当0<x ≤20,y ≤40时,由题意可得:⎩⎨⎧=+=+2645650y x y x ,解得⎩⎨⎧==3614y x
(2)当0<x ≤20,y>40时,由题意可得:⎩⎨⎧=+=+2644650y x y x ,解得⎩⎨⎧==1832
y x (不
合题意,舍去)
(3)当20<x<25时,则25<y<30,由题意可得:⎩⎨⎧=+=+2645550
y x y x ,方程组
无解
559
-
由(1)(2)(3)可知,张强第一次、第二次分别购买香蕉14千克、36千克。

21. (1)A 4(16,3) 4B (32,0) (2)n A (2,3n ) 1(2,0)n n B +
22. (1) ∠A=2∠BDC (2)∠A=180︒-2∠D
23.(1)23a -<≤ (2)5 (3)a 为1
2
a <-的所有整数
24. 分析:(1)据题意得:()()⎩⎨⎧≤-+≤-+280010020402800
1003020x x x x
解不等式组,得 4020≤≤x
因为其中的正整数解共有21个,所以符合题意的生产方案有21种。

(2)由题意得: ()x x y -+=1008.26.2 整理得:2802.0+-=x y
因为y 随x 的增大而减小,所以x=40时,成本额最低。

相关文档
最新文档